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 COURSE CODE: ECON-112 (DSC) 

ELEMENTARY MATHEMATICS FOR ECONOMICS 

Block-I:  MATRICES AND DETERMINANTS 

Their properties, addition, subtraction, and multiplication of matrices. Transpose of a 
Matrix. Some special forms of square matrices-Trace, Idempotent matrix. Sub-matrix of a 
matrix. Inverse of a matrix and solution of equations using both the inverse of a matrix and 
Cramer's rule Rank of a Matrix (Numericals relating to inverse of a matrix and Cramer's rule 
should to be confined to matrix of order 3x3). 

Block-II: DIFFERENTIATION 

Derivatives: differentiations of functions of a single variable. Derivative of a 
composite function, Parametric function, logarithmic function. Exponential. and inverse 
functions Concave and convex functions. Derivative of higher order Partial Derivatives and 
total derivative Homogenous functions and Euler's Theorem. Maxima and Minima of 
functions of single variable. Profit maximization and cost minimization. Constrained 
optimization of function with two variables. Constrained utility maximization, constrained 
minimization, and the interpretation of the Lagrange multiplier  

Block-III: DIFFERENTIAL AND DIFFERENCE EQUATIONS 

Introduction, non-linear and linear differential equations of the first order and first 
degree. Solutions of differential equations when variables are separable. homogenous 
equations and non-homogenous equations, exact differential equations and linear 
equations. Solution of linear differential equations of second with constant coefficient. Finite 
difference, difference equations. Solutions of homogeneous linear difference equation with 
constant coefficients. linear first-order difference equations, Linear second order difference 
equations with constant coefficients. 

Application of differential and difference equations in economic models (dynamics of 
market price, Solow growth model, cob-web model, multiplier- accelerator interaction model. 
Domar growth model).  

Block-IV:  ANALYTIC GEOMETRY 

Introduction of a Straight Line, section formula, the gradient of a straight in, the 
equation of a straight line in intercept form, two-point form. Circle: The general equation of a 
circle. Parabola: equation of a parabola, the points of intersection of line and a parabola. 
Equation of a rectangular hyperbola. Problems based on applications of analytic geometry 
in economics. 
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Integration of function of one variable by parts and substitution. Integration of 
logarithmic and exponential functions. Definite integral and area between two curves. 
Simple applications of integration to the relationship between marginal functions and total 
functions. Consumer's surplus and producer's surplus. Investment and capital formation and 
the present value of a continuous flow. 

Block-V: THE INPUT-OUTPUT MODEL 

Its assumptions, technological coefficient matrix, closed and open input -output 
model, the Hawkins-Simon conditions. Solving the input-output models both open and 
closed using the inverse matrix. 

An Introduction to Linear Programming, Linear equations, slack variables. Feasible 
and basic solutions. Degeneracy. Solving the primal and Dual with simplex method. 
Interpretation of the linear programming results.  
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 Unit01 

MATRICES-CONCEPTS AND OPERATIONS 

STRUCTURE  

1.1 Introduction 

1.2 Learning Objectives 

1.3 Matrix 

Self-Check Exercise-1.1 

1.4 Types of Matrices  

 1.4.1 Square Matrix 

 1.4.2 Diagonal Matrix 

 1.4.3 Scalar Matrix 

 1.4.4 Unit (or Identity) 

 1.4.5 Zero Matrix or Null Matrix 

 1.4.6 Row and Column Matrices  

 1.4.7 Sub Matrices 

 1.4.8 Determinant of a Square Matrix 

 1.4.9 Minor of a Matrix 

1.4.10 Equality of Matrices 

Self-Check Exercise-1.2 

1.5 Operation on Matrices 

 1.5.1 Sum of Matrices 

  1.5.1.1 Properties of Matrix Addition  

1.5.2 Negative of a Matrix 

 1.5.3 Scalar Multiple of a Matrix 

1.5.4 Multiplication or Product of Matrices  

  1.5.4.1 Properties of Matrix Multiplication 

Self-Check Exercise-1.3 

1.6 Positive Integral Power of Matrices 

Self-Check Exercise-1.4 
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1.7 Transpose of a Matrix 

 1.7.1 Properties of the Transpose of a Matrix 

Self-Check Exercise-1.5 

1.8 Summary 

1.9 Glossary 

1.10 Answer to Self-Check Exercises 

1.11 References/Suggested Readings 

1.12 Terminal Questions 

1.1 INTRODUCTION 

 In this Unit, we will discuss meaning of matrices and its different types, operation on 
matrices and trace of a square matrix. This unit ends by giving some properties of matrix and 
how these properties are used, is explained with the help of some examples. 

1.2 LEARNING OBJECTIVES 

 After studying this Unit, you will able to know 

 basic concepts of a matrix 

 methods of representing large quantities of data in matrix form 

 various operations concerning matrices  

 explain the properties of matrix 

1.3 MATRIX 

A system of mn numbers arranged i the form of an ordered set of m rows and n columns 
is called an m×n matrix. In simple words, a matrix is only an arrangement of numbers written 
in the form of rows columns. For example m × n matrix as 

 

C
ol

um
n 

1 

C
ol

um
n 

2 

C
ol

um
n 

3 

 

C
ol

um
n 

4 

 

 ↓ ↓ ↓  ↓  

Row 1 

Row 2 

. 

. 

Row m 

11 12 13 1

21 22 23 2

1 2 3

...

...

. . . .

. . . . .

n

n

m m m mn m x

a a a a

a a a a

a a a a


 
 
 
 
 
 
  
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In the above arrangement of number called a matrix, these are m rows and n columns 
and the a matrix is said to be of the order m × n to be read as m by n. The number a11,a12 etc are 
called the elements of the matrix. It is often convenient to abbreviate the notation. Thus (1) 
may be written as  

A=

11 12 13 1

21 22 23 2

1 2 3

...

...

... ... ... ... ...

...

n

n

m m m mn

a a a a

a a a a

a a a a

 
 
 
 
 
 

m×n 

or simply A= [aij] m × n where i = 1, 2 ......m 

j = 1,2 (2) ....n ......(2) 

Note:1. In the matrix, (1) there are mu elements  

2. In the matrix, the number of row and columns need not be the same. 

 3. A matrix is only convenient way of representing numbers in row and column 
form and it has no numerical value as in the case of determinant which has a numerical value. 

 4. aij in A means element in the ith row and jth column, thus a23 means element in 
the 2nd row and third column. 

SELF-CHECK EXERCISE-1.1 

Q1. What is meant by Matrix? 
 

1.4 TYPES OF MATRICES 

Here we define various types of matrix commonly used in practice.  

1.4.1 Square Matrix.A matrix in which the number of rows is equal to the number of 
columns is called a square matrix. Thus in m × n matrix A will be called a square matrix if m = 
n and it will be termed as a square matrix order of n or n rows square matrix. 

 
1 2 3

1 2
4 5 6

1 2
7 8 9

 
   
      

 

 are the square matrix of order 2 and 3 respectively 

Note: Through in a square matrix no. of rows is the same as no. of columns even then, it is not 
same as determinant. Because a matrix has no value whereas determinant has a value. 

 The two can never be the same.  

Note: In a square matrix the pair of elements aijand aji are said to be the conjugate elements and 
the elements a11, a22... ann are called the diagonal elements. 

1.4.2 Diagonal matrix. A square matrix is said to be a diagonal matrix if all its non-diagonal 
elements are zero. i.e. aij=0 when ij. 
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For example 
11

22

23

0 0 4 0 0
1 0

0 0 0 5 0
0 4

0 0 0 0 6

a

a

a

  
   
       

  

 

are all diagonal matrices.  

These can be written as diagonal 1[1, 4], diagonal [a21,a22,a23] and diagonal [4, 5, 6] 
respectively. 

 In general we can say that a square matrix A will be a diagonal matrix if all those 
elements aij for which i j (i.e. those elements which do not lie on the leading or principal 
diagonal) are zero. If the diagonal elements are d1, d2,.... dn, then the diagonal matrix is written 
as 

 Diagonal (d1, d2..... dn) 

1.4.3 Scalar Matrix. A diagonal matrix in which all the diagonal elements are scalar matrix. 
For Example 

 
4 0

0 4

 
 
 

0 0

0 0

0 0

d

d

d

 
 
 
  

3 0 0

0 3 0

0 0 3

 
  
  

are all thescalar matrices. 

 In general, for a scalar matrix 

 aij=0 for ij 

 aij= d for ij 

1.4.4 Unit (or Identity) Matrix. A square matrix is said to be an identity matrix if all its non-
diagonal elements are zero and all its diagonal elements are equal to unity. 

 
1 0

0 1

 
 
 

1 0 0

0 1 0

0 0 1

 
 
 
  

1 0 0 0

0 1 0 0

0 0 0 0

 
 
 
  

 are all identity matrix   

 aij=0 for ij 

aij=1for ij 

Identity matrices are denoted by 1. Thus I2, I3, ..........In denote identity matrices of order 2, 
3.......,n. 

1.4.5 Zero Matrix or Null Matrix. 

Any m × n matrix in which all the element are zero is called a null matrix of the type m 
n and is denoted by Om×x A null matrix of the type n×n is denoted by On×nor simply by On. 

1.4.6 Row and Column Matrices. 

A matrix in which there is only one row and any number of columns is called a row 
matrix or a row vector and a matrix in which there is only one column and any number of row 
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is called a column matrix or a column vector. Thus a row matrix is of the type 1 × n and a 
column matrix is of the type m× 1. 

 For example. [1 2 3]1×3 is a row matrix whereas 

3 1

1

2

3


 
 
 
  

is a column matrix. 

Note. Sometimes it is convient to write a column vector as a row vector and enclose the 
elements bybraces bracket {} 

 Thus {1 2 4} 

1.4.7 Sub Matrices. 

If from a given matrix A, we delete any number of row and/or any number of column 
then the remaining matrix is called the sub-matrix of the given matrix A. 

 e.g. If A =

3 4

1 3 5 7

2 4 6 8

2 4 5 6


 
 
 
  

 

 then  (i) 
1 3 5

2 4 6

 
 
 

 (ii) 
1 3

2 4

3 4

 
 
 
  

 

  (iii) 
3 7

4 6

 
 
 

 (iv) 
1 3

2 4

 
 
 

 

are sub-matrix obtained after deleting. 

 (i) 3rd row 4th column 

 (ii) 3rd row 4th columns  

(iii) 1st and 3rd column and 2nd row. 

 (iv) 3rd and 4th column 3rd row. 

 If the resulting sub matrix is a square matrix it iscalled a square sub-matrix. 

1.4.8 Determinant of a Square Matrix. 

If A is a square matrix of the type n×n then these numbers also determine a determinant 
having n rows and n column and is denoted by [A] or determinant A. 

Thus if A = 
1 3 5

2 4 6

3 4 5

 
 
 
  
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 Then |A| = 
1 3 5

2 4 6

3 4 5

 
 
 
  

 

1.4.9 Minor of a Matrix. 

If A be an m×n then we can have any number of square sub-matrices from it by deleting 
certain number of rows and certain number of columns. If we delete m-4 rows and n-4 
columns, then we will be left with only 4 rows out of m rows 4 columns, out of n which will 
from a square sub matrix of order 4. The determinant of square submatrix is called minor of the 
matrix A or 4 rowed minor of the matrix A in the above case. 

1.4.10 Equality of Matrices 

 Two matrices A=(a) and B = bij of the sameorder (or type) are defined to be equal if and 
only if aij = bij for each pair of the subscripts. In other words two matrices A and B are equal if 
and only if  

(i) They are of the same order. 

 (ii) The corresponding elements of the two matrices are the same. 

 e.g. If A= 11 12

21 23

a a

a a

 
 
 

 and B = 11 12

21 23

b b

b b

 
 
 

 

Then A= B if  a11 = b11,  a12 = b12 

   a21 = b21,  a22 = b22 

SELF-CHECK EXERCISE-1.2 

Q1. What is meant by Square Matrix? 

Q2. Define Scalar Matrix. 

Q3. What is Identity Matrix? 

Q. 4 Write orders and types of the following matrices 

 (i) 
2 9

3 4

 
 
 

   (ii) 
3 0

0 5

 
 
 

 

 (iii) 
8 0

0 8

 
 
 

   (iv) 
1 0

0 1

 
 
 

 

 (v) 
2 5 7

0 8 0

0 0 9

 
 
 
  

  (vi) 
3 0 0

0 5 0

0 7 6

 
 
 
  

 

 (vii) 
2

9

6

 
 
 
  

   (viii)  8 9 1 5  
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Q. 5 If 
3

7

x y

xy z

 
  

 = 
3 6

8 4

 
 
 

, find x, y, z 

 

1.5 OPERATION ON MATRICES 

1.5.1 Sum of Matrices 

 Let A = [aij] and B = [bij] be two matrices of the same order m×n. Then their sum A+B 
(or difference A-B) is defined to be another matrix of the same order m×n, say C - (cij) such 
that any element of C is the sum (difference) of the corresponding elements of A and B. 

 C = A+B=[aij+bij] 

 Thus, we say that two matrices are conformable for addition if they are of the same 
order once the matrices are conformable for addition, we add the corresponding elements of the 
two matrices. 

 For example 

 If A = 
2 3

1 2 3

2 3 0 

 
  

 and B =
2 3

4 2 3

5 0 6 

 
 
 

 

 Then A + B = 
1 2 3

2 3 0

 
  

 +
4 2 3

5 0 6

 
 
 

 

  = 
1 4 2 2 3 3

2 5 3 0 0 6

   
     

 

  = 
5 4 0

7 3 6

 
  

 

 A-B  = 
1 2 3

2 3 0

 
  

–
4 2 3

5 0 6

 
 
 

 

  = 
1 4 2 2 3 ( 3)

2 5 3 0 0 6

    
     

 

  = 
3 0 6

3 3 6

 
    

 

1.5.1.1 PROPERTIES OF MATRIX ADDITION 

Let A = [aij], B = [bij] be three matrices conformable for addition, each of order m×n, 
thenthe following laws hold: 

 1. Matrix addition is Commutative 

i.e. A+B=B+A. 
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 2. Matrix addition is Associative 

i.e. (A+B)+C=(B+C). 

 3. Matrix addition is Distributive w.r.t a scalark. 

  i.e. k(A+B)=kA+kB. 

 4. Existence of identity. 

   A+0=0+A-A, 0 being a null matrix. 

5. Existence of an inverse 

  A+(-A)=(-A)+A=0 

 6. Cancellation law 

   A+B = A+C B=C  

 We shall prove these results. 

Proof 

(1) A+B = [aij]+[bij] 

  = [aij]+[bij] 

  = [bij]+[aij]  

= [bij]+[aij] 

  =B+A 

(2) (A+B) +C = [aij +bij]+[Cij]  

= [aij+bij+ Cij] 

  =[aij]+ [bij+ Cij] 

  =A+B+C] 

(3) k(A+B) = k[aij + bij] 

  = [kaij + kbij] 

  = [kaij] + [kbij,]  

= kA + kB. 

(4) A + 0 = [aij+0]  

= [0+aij] 

  = a.0+A ( 0+A=0=(0+aij) = [aij] = A 

 A+0=0+A=0 

(5) A+-A[aij+(-aij)]  

= [(-aij) +aij] 
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=(-A) + A. 

Also [aij+(-aij)] = [0] = 0 

 A+(-A)=(-A) + A = 0. 

(6)  A+B = A+C. 

 It implies that the cij the element on the two sides are equal so that 

 aij+bij=aij+ bij 

Since aij, cijare scalars, this equality hold if andonly if 

 bij = cij 

which B=C 

This is known as left cancellation law of addition. In commutative, right cancellation law also 
holds 

i.e. B+A=C+A 

⇒B=C 

Example 1. If A= 
1 2

3 4

 
 
 

 

B=
2 3

4 0

 
  

 C = 
0 1

1 0

 
 
 

 

and k = 7.  

Verify commnutative associative and distrubutive laws of addition. 

Solution 1. A+B=
1 2

3 4

 
 
 

 + 
2 3

4 0

 
  

 

 = 
1 2 2 ( 3)

3 ( 1) 4 0

   
    

 

 = 
3 1

1 4

 
  

 

 B+A 
2 3

4 0

 
  

 + 
1 2

3 4

 
 
 

 

 Hence A + B = B + A. 

2. A + (B + C) = 
1 2

3 4

 
 
 

 + 
2 3

4 0

 
  

+
0 1

1 0

 
 
 
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 = 
1 2

3 4

 
 
 

 +
2 0 3 1

4 1 0 0

   
    

 

 = 
1 2

3 4

 
 
 

 +
2 2

3 0

 
  

 

 = 
1 2 ( 3)2

3 ( 3) 4 0

   
    

 

 = 
3 0

0 4

 
 
 

 

(A + B) + C = 
1 2 2 3

3 4 4 0

    
         

+
0 1

1 0

 
 
 

 

 = 
1 2 2 ( 3)

3 ( 4) 4 0

  
    

 +
0 1

1 0

 
 
 

 

 = 
3 1

1 4

 
  

+
0 1

1 0

 
 
 

 

 = 
3 0 1 1

1 1 4 0

   
    

 +
3 0

0 4

 
 
 

 

 Hence A + (B+C) 

3. 7(A + B) = 7 
1 2 2 3

3 4 4 0

    
         

 

 = 
1 2 2 ( 3)

3 ( 4) 4 0

   
    

 

 = 7 
3 1

1 4

 
  

 

 = 
21 7

7 28

 
  

 

 7A + 7 B = 7 
1 2

3 4

 
 
 

 + 7
2 3

4 0

 
  

 

 = 
7 14

21 28

 
 
 

 + 7 
14 21

28 0

 
  

 

 = 
7 14 14 ( 21)

2 ( 28) 28 0

   
    

 = 
21 7

7 28

 
  
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Example 2. If A = 
2 5 1

2 1 4

 
   

 

 B = 
3 4 0

5 2 3

 
  

 

 C = 
7 6 2

1 4 11

 
  

 

find  (i) A + B (ii) A - B (iii) 2A + B - C 

 (iv) 3A - 4B  (v) 4B - 2C 

Solution (i) A + B = 
2 5 1

2 1 4

 
   

+
3 4 0

5 2 3

 
  

 

 = 
2 3 5 4 1 0

2 5 1 2 4 3

    
      

 

 = 
5 1 1

3 3 7

 
  

 

(ii) A-B = 
2 5 1

2 1 4

 
   

–
3 4 0

5 2 3

 
  

 

 = 
2 5 1

2 1 4

 
   

+
3 4 0

5 2 3

  
  

 

 = 
2 3 5 4 1 0

2 5 1 2 4 3

    
      

 

 = 
1 9 1

7 1 1

  
  

 

(iii) 2A = 2
2 5 1

2 1 4

 
   

 

 2A = 2 
4 10 2

4 2 4

 
   

 

 2A + B – C = 
4 10 2

4 2 8

 
   

+
3 4 0

5 2 3

 
  

 –
7 6 2

1 4 11

 
  

 

 = 
4 10 2

4 2 8

 
   

+
3 4 0

5 2 3

 
  

 –
7 6 2

1 4 11

  
   
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 = 
4 3 7 10 4 6 2 0 2

4 5 1 2 2 4 8 3 11

       
         

 + 
0 0 0

0 0 0

 
 
 

+ 0 (matrix) 

(iv) 3A = 3 
2 5 1

2 1 4

 
   

 

 = 
6 15 3

6 3 12

 
   

 

 4B = 
3 4 0

5 2 3

 
  

 

 = 
12 16 0

20 8 12

 
   

 

 3A - 4B = 
6 15 3

6 3 12

 
   

–
12 6 0

20 8 12

 
  

 

 = 
6 15 3

6 3 12

 
   

+
12 16 0

20 8 12

  
    

 

 = 
6 12 5 16 3 0

6 20 3 8 12 12

    
      

 

 =
6 21 3

26 5 0

  
  

 

(v) 4B = 
12 16 0

20 8 12

 
  

 

 2C = 2
7 6 2

1 4 11

 
  

 

 = 
14 12 4

2 8 22

 
  

 

 4B – 2C = 
12 16 0

20 8 12

 
  

–
14 12 4

2 8 22

 
  

 

 = 
12 16 0

20 8 12

 
  

–
14 12 4

2 8 22

   
    

 

 = 
12 14 16 12 0 4

20 2 8 8 12 22

   
     

 = 
2 28 4

18 0 10

 
  
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Example 3. Add the matrices  

 
1 2 3

3 4 5

5 6 8

 
 
 
  

– 
4 3

5 6

9 8

 
 
 
  

 

Solution: Two matrices are conformable for addition if they are of the same order. Hence the 
first matrix is of the type 3×3 while the second matrix of the type 3×3. Hence the two matrices 
are not conformable for addition, i.e. addition of these two matrices is not possible. In other 
words, adding such matrices do not make any sense.  

Example 4. Find a matrix X such that 

(i) 3X = 
9 12 15

6 18 21

1 6 3

 
    
  

 

(ii) X+
1 2 3

0 1 5

3 4 5

 
 
 
  

 = 
1 2 3

2 3 4

3 4 5

 
 
 
  

–2
1 2 3

2 3 1

3 2 1

 
 
 
  

 

Solution Let X = 
11 12 13

21 22 23

32 32 33

X X X

X X X

X X X

 
 
 
  

 

 3X = 3 
11 12 13

21 22 23

32 32 33

3 3 3

3 3 3

3 3 3

X X X

X X X

X X X

 
 
 
  

 

But 3 X = 
9 12 15

6 18 21

1 6 3

 
    
  

 

Comparing these two, we get  

3x11 = 9, 3x12 = 12, 3x13 = 15 

3x21 = -6, 3x22 = -18, 3x23 = -21 

3x31 = 1, 3x32 = 6, 3x33 = 3 

x11 = 3, x12 = 4, x13 = 5 

 x21 = -2, x22 = -6, x23 = 7 

 x31 = 1/3, x32 = 2, x13 = 1 

Hence X = 
3 12 15

6 18 21

1 6 3

 
    
  
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Note. If follow that if  

 3 X = 
9 12 15

6 18 21

1 6 3

 
    
  

 

 Then X = 1

3

9 12 15

6 18 21

1 6 3

 
    
  

 

  = 
9 / 3 12 / 3 15 / 3

6 / 3 18 / 3 21 / 3

1 / 3 6 / 3 3 / 3

 
    
  

 

 = 
3 4 5

2 6 7

1 / 3 2 1

 
    
  

 

(ii) X + 
1 2 3

0 1 5

3 4 5

 
 
 
  

=
1 2 3

2 3 1

3 4 5

 
 
 
  

–2
1 2 3

2 3 1

3 2 1

 
 
 
  

 

 Or  X = 
1 2 3

2 3 4

3 4 5

 
 
 
  

 =
2 4 6

4 6 2

6 4 2

   
    
    

 –
1 2 3

0 1 5

3 4 5

 
 
 
  

 

 = 
1 2 3

2 3 4

3 4 5

 
 
 
  

 +
2 4 6

4 6 2

6 4 2

   
    
    

+
1 2 3

0 1 5

3 4 5

   
   
    

 

 = 
1 2 1 2 4 2 3 3 6

2 4 0 3 6 1 4 2 5

3 6 6 4 4 4 5 2 5

      
       
       

 

 = 
2 4 6

2 4 3

6 4 2

   
    
    

 

 = 
2 4 6

2 4 3

6 4 2

 
 
 
  
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Example 5. Find a 2×4 matrix X such that  

 A – 2X = 3B 

given that A = 
1 2 0 4

2 4 1 3

 
  

 

 B = 
2 1 0 3

1 1 2 3

 
  

 

Solution  A - 2X = 3B 

 or  2X = A - 3B 

A = 
1 2 0 4

2 4 1 3

 
  

 

 3B = 3 
2 1 0 3

1 1 2 3

 
  

 

 = 
6 3 0 9

3 3 6 9

 
  

 

 -3B = 
6 3 0 9

3 3 6 9

   
    

 

 A-3B = 
1 2 0 4

2 4 1 3

 
  

+
6 3 0 9

3 3 6 9

   
    

 

  = 
1 6 2 3 0 0 4 9

2 3 4 3 1 6 3 9

    
      

 

 = 
5 1 0 5

1 7 7 6

   
    

 

 2X = A - 3B = 
5 1 0 5

1 7 7 6

   
    

 

 or X = 1

2

5 1 0 5

1 7 7 6

   
    

 

 = 
5 / 2 1/ 2 0 5 / 2

1 / 2 7 / 2 7 / 2 3

   
    
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1.5.2 NEGATIVE OF A MATRIX 

 If A be given matrix and - A is called the negative of the matrix A and all its elements 
are the corresponding elements of A multiplied by-1. 

 Thus if A= 
1 2 3

2 3 0

 
  

 

Then -A=
1 2 3

2 3 0

   
  

 

1.5.3 SCALAR MULTIPLE OF A MATRIX 

If A be a given matrix and k be any scalar then kA is the matrix all of whose elements 
are k times the corresponding elements of A.  

For Example 

 if A = 
2 3 4

1 0 3

 
  

then 

 3A = 3
2 3 4

1 0 3

 
  

 

    = 
6 9 12

3 0 3

 
  

 

 –4A = –4 
2 3 4

1 0 3

 
  

 

 = 
8 12 16

4 0 12

   
  

 

1.5.4 MULTIPLICATION OR PRODUCT OF MATRICES 

Product of a row matrix by a column matrix 

 If a = (a, a1 ..... an) be a row matrix of order 1 × n and b = {b1, b2 ... bn} be a column 
matrix or order n × 1, then the product ab is defined as 

 ab = [a1, a₂ ...... an]

1

2

...

n

b

b

b

 
 
 
 
 
 

 

 = (a1b1+a2b₂+..... + anbn) = aibi)  

Product of two matrices in general 

Two matrices A and B are said to be conformable for mulplication if the number of 
colums of A (the first matrix) is equal to the number of B(the second matrix). 
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 Thus If A = (aij) be m×n matrix and B=(bij) be ann×p matrix, then a product AB is 
defined as the matrix C = (cik) of type m×p, where 

  

1

2

...

n

b k

b k

b k

 
 
 
 
 
 

 

Cik =(1th row of A) (k the column of B) 

 = [a11 a12 ........ ain] 

 = aijbik+ a12 b2k + ....... ain bak 

1

, 1, 2,........ ; 1,2...... .ij ik
j

a b i m k p


   

  = aij, bij, where j is the dummy suffix. 

 Thus if we multiply the Ith of kth column of B,we get the (i, k) the element of AB = C.  

The rule of multiplication of matrices is rowcolumn wise. The first row of AB is 
obtained by multiplying the 1st row of A with 1st, 2nd, 3rd..... columns of B respectively. 
Similarly second row of AB is obtained by multiplying the 2nd row or A with 1st, 2nd, 3rd..... 
columns of B respectively and so on. The rule of multiplication is the same for matrices of any 
order provided the matrices are conformable for multiplication. 

Let A =

3 3

1 2 3

4 5 6

7 8 9


 
 
 
  

 and B =

3 3

1 0 2

2 1 2

5 2 3


 
 
 
  

 

Now AB =
1 2 3

4 5 6

7 8 9

 
 
 
  

1 0 2

2 1 2

5 2 3

 
 
 
  

 

=

1 0 2

[1 2 3] 2 [1 2 3] 1 [1 2 3] 2

3 2 3

1 0 2

[4 5 6] 2 [4 5 6] 1 [4 5 6] 2

5 2 3

1 0 2

[7 8 9] 2 [7 8 9] 1 [7 8 9] 2

5 2 3

      
      
      
            
      
      
      
            

      
      
      
            

 



 

21 
 

= 
1.1 2.2 3.3 1.0 2.1 3.2 1.2 2.2 3.3

4.1 5.2 6.5 4.0 5.1 6.2 4.2 5.2 6.3

7.1 8.2 9.5 7.0 8.1 9.2 7.2 8.2 9.3

      
       
       

 

= 
1 4 15 0 2 6 2 4 9

4 10 30 0 5 12 8 10 18

7 16 45 0 8 18 14 16 27

      
       
       

 

=
20 8 15

44 17 36

68 26 57

 
 
 
  

 

Thus Row AB. 

       
   

       
   

     

1st row or A  1st col. of B  1st row of A  2nd col. of B

1st row of A  3rd co. of B

2nd col. of A . 1st col. of B  2nd row of A  2nd col. of B

 2nd row of A  3rd co. of B

 3rd row or A  1st col. of B  3rd row of A   
   

2nd col. of B

 3rd row of A  3rd co. of B

 
 
 
 
 
 
 
 
  

 

= 
1 1 1 2 1 3

2 1 2 2 3 3

3 1 3 2 3 3

R C R C R C

R C R C R C

R C R C R C

 
 
 
  

 

In practice we will follow this rule of multiplication. If we need the element in the 2nd 
row and 3rdcolumn (i.e. C23) of the product AB, then we neednot find the whole of AB(= C) 

C23 = (2nd row of A) (3rd column of A) = R2C3 

1.5.4.1 PROPERTIES OF MATRIX MULTIPLICATION 

 If A, B, C are three matrices such that the products AB. BC are well-defined then, 

 1. Matrix multiplication is Associative, i.e.  

A(BC)=(AB)C 

 2. Matrix multiplication is Distributive, i.e. 

  A(B+C) = AB+AC 

  (B+C)A = BA+CA 

 3. Martix multiplication is not, in general, commutative. 

  i.e. ABBA, in genral. 

 (i) It is possible that the matrix AB may exist whereas BA may not exist. For 
example, if A is of the type m×n and B of the type n×p but BA will not exist unless p= m (ii) 
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even if AB and BA both exist, it is not necessary that AB=BA. For if the matrix A is of the 
type m×n and B is of the type n×m then both AB and BA exist. But AB is of the m×m and BA 
is of the type n x m. 

AB and BA cannot be equal.  

(iii) If A and B are square matrices of the same order, then both the product matrices 
AB and BA exist and are also of the same type but not necessarily equal. For example, if we 
take 

 A = 
1 2

3 4

 
 
 

, B = 
0 1

1 3

 
 
 

 

then AB = 
1 2

3 4

 
 
 

0 1

1 3

 
 
 

 

 = 

0 2
[1 2] [1 2]

1 3

0 2
[3 4] [3 4]

1 3

    
    

    
             

 

= 
1.0 2.1 1.2 2.3

3.0 4.1 3.2 4.3

  
   

 = 
0 2 2 6

0 4 16 12

  
   

 

= 
2 8

4 18

 
 
 

 

BA = 
0 2

1 3

 
 
 

 = 
1 2

3 4

 
 
 

 

= 

1 2
[0 2] [0 2]

3 4

1 2
[1 3] [1 3]

3 4

    
    

    
             

 

= 
0.1 2.3 0.2 2.4

1.7 3.3 1.2 3.4

  
   

 

= 
6 8

10 14

 
 
 

 

Thus ABBA. 

But if we take A= 
1 2

3 4

 
 
 

and B = 
1 0

0 1

 
 
 

it can 

be verified that AB=BA.  
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SELF-CHECK EXERCISE 1.3 

Q1. If A = 

2 4 5

3 6 7

1 8 9

 
  
  

 and B = 

3 6 2

1 4 5

8 7 1

 
 
 
  

, then evaluate the following  

 (i) 3A + 2B  (ii) 2A – 3B (iii) AB 

Q. 2 If A = 
1 2

4 3

 
 
 

 then find A4 

Q3. Explain the Properties of Matrix Addtion 

Q4. Explain the Properties of Matrix Multiplication 

1.6 POSITIVE INTEGRAL POWER OF MATRICES 

If A is any square matrix, then the product A × A is written as A2 and we write 

A2A=(AA)A=A(AA) = AA2 as A3 

In general, A A A ...... A(m factors) = Am and Am, An= Am+n 

(Am)n = Amn 

 AB=0 does not necessary imply that either A = 0or B=0 

 e.g. If A = 
0 1

0 0

 
 
 

 and B = 
1 0

0 0

 
 
 

 

 then AB 
0 1

0 0

 
 
 

1 0

0 0

 
 
 

 = 
0 0

0 0

 
 
 

 = 0 

Thus AB=0, even then neither A=0 nor B=0.  

SELF-CHECK EXERCISE 1.4  

Q1. What is positive integral power of matrices 

1.7 TRANSPOSE OF A MATRIX 

 If A=aij) be a given matrix of the type m × n then the matrix obtained by interchanging 
rows and columns of A is defined as the transpose of A and is written as A' or AT. 

 Thus A' = (aij) and is of the type n × m. 

e.gif 

 A = 
1 2 3

5 5 6

7 8 9

 
 
 
  

, then A' = 
1 4 7

2 5 8

3 6 9

 
 
 
  
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1.7.1 PROPERTIES OF THE TRANSPOSE OF A MATRIX 

1. (A+B)'=A'+B' 

 2. (AB)'=B' A' (not A'B') 

 3. (ABC)' = C'B'A' 

 4. (Ak)'=(A')k 

 5. (A')'=A  

We shall illustrate the properties of multiplication and transpose by taking example 

 If A = 
1 2 3

3 0 2

2 1 1

 
 
 
  

 B = 
3 0 1

4 2 5

3 2 1

 
 
 
  

 C = 
4 1 3

0 2 3

3 2 1

 
 
 
  

 

Verify the  (i)  A(BC) = (AB) C 

  (ii) A(B + C) = AB + AC 

  (iii) (AB)' = B'A' 

Solution (i) B = 
1 2 3

3 0 2

3 1 1

 
 
 
  

3 0 1

4 0 5

3 2 1

 
 
 
  

 

 = 
1.3 2.4 3.3 1.0 2.2 3. 2 1.1 2.5 3.1

3.3 0.4 2.3 3.0 0.2 2. 2 3.1 0.5 2.1

2.3 1.4 1.3 2.0 1.2 1. 2 2.1 1.5 1.1

       
        
        

 

 = 
3 8 9 0 4 6 1 10 3

9 0 6 0 0 4 3 0 2

6 4 3 0 2 2 2 5 1

      
       
       

 = 
20 2 14

15 4 5

7 4 6

 
  
  

 

 (AB) C = 
20 2 14

15 4 5

7 4 6

 
  
  

4 1 3

0 2 3

3 2 1

 
 
 
  

 

  = 
20.4 2.0 14.3 20.1 2.2 14. 2 20.3 2.3 14.1

15.4 4.0 5.3 15.1 4.2 5. 2 15.3 4.3 5.1

7.4 4.0 6.3 7.1 4.2 6. 2 7.3 4.3 6.1

       
        
        

 

= 
80 0 42 20 4 28 60 6 14

60 2 15 15 0 10 45 12 5

28 0 18 7 8 12 21 12 6

      
       
       

= 
122 12 68

75 3 38

46 3 39

 
 
 
  
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 BC = 
3 0 1

4 2 5

3 2 1

 
 
 
  

4 1 3

0 2 3

3 2 1

 
 
 
  

 

= 
3.4 0.0 1.3 3.1 0.2 1. 2 3.3 0.3 1.1

4.4 2.0 5.3 4.1 2.2 5. 2 4.3 2.3 5.1

3.4 2.0 1.3 3.1 2.2 1. 2 3.3 2.3 1.1

       
        
        

 

= 
12 0 3 3 0 2 9 0 1

16 0 15 4 4 10 12 6 5

12 0 3 3 4 2 9 6 1

      
       
       

 = 
15 1 10

31 2 23

15 3 4

 
  
  

 

 A(BC) = 
1 2 3

3 0 2

3 1 1

 
 
 
  

15 1 10

31 2 23

15 3 4

 
  
  

 

 = 
1.15 2.31 3.45 1.1 2. 2 3. 2 1.10 2.23 3.4

3.15 0.31 2.15 3.1 0 2 2.3 3.10 0.23 2.4

2.15 1.31 1.15 2.1 1.2 1. 3 2.10 1.13 1.4

        
        
        

 

 = 
15 62 45 1 4 9 10 46 12

45 0 30 3 0 6 30 0 8

30 31 15 2 2 3 20 23 4

      
       
       

 = 
122 22 68

75 3 38

46 3 39

 
  
  

 

Hence A (BC) = (AB) C  

 (ii) B+C = 
3 0 1

4 2 5

3 2 1

 
 
 
  

+
4 1 3

0 2 3

3 2 1

 
 
 
  

 

  = 
3 4 0 1 1 3

4 0 2 2 5 3

3 3 2 2 1 1

   
    
     

 

  = 
7 1 4

4 4 8

6 4 2

 
 
 
  

 

 A( B+ C) = 
1 2 3

3 0 2

2 1 1

 
 
 
  

7 1 4

4 4 8

6 4 2

 
 
 
  

 

 = 
1.7 2.4 3.6 1.1 2.4 3. 4 1.4 2.8 3.2

3.7 0.4 2.6 3.1 0.4 2. 4 3.4 0.8 2.2

2.7 1.4 1.6 2.1 1.4 1. 4 2.4 1.8 1.2

       
        
         
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 = 
7 8 18 1 8 12 4 16 6

21 0 12 3 0 8 12 0 4

14 4 6 2 4 4 8 8 2

      
       
       

 = 
33 3 26

33 5 16

12 10 14

 
  
  

 

 Now AC = 
1 2 3

3 0 2

2 1 1

 
 
 
  

4 1 3

0 2 3

3 2 1

 
 
 
  

 

  = 
13 1 12

18 1 11

12 6 8

 
  
  

(verify) 

AB + AC =  
20 2 14

15 4 5

7 4 6

 
  
  

+ 
13 1 12

18 1 11

12 6 8

 
  
  

 

 =
20 13 2 1 14 12

15 18 4 1 5 11

7 5 4 6 6 8

    
     
    

 

 = 
33 3 26

33 5 16

12 10 14

 
  
  

 

Hence A(B + C) = AB + AC 

 (iii) AB  = 
20 2 14

15 4 5

7 4 6

 
  
  

 

  (AB)' = 
20 15 7

2 4 4

7 4 6

 
   
  

 

 Also B' = 
3 4 3

0 2 2

1 5 1

 
  
  

 

 A' =  
1 3 2

2 0 1

3 2 1

 
 
 
  

 

 B'A' = 
3 4 3

0 2 2

1 5 1

 
  
  
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 = 
3 8 9 9 0 6 6 4 3

0 4 6 0 0 4 0 0 2

1 10 3 3 0 2 2 5 1

      
       
       

 

 = 
20 15 7

2 4 4

14 5 6

 
   
  

 

Hence (AB)' = B'A' 

Example 2. Given  

 A = 
1 2

3 4

 
 
 

 B = 
3 1

2 5

 
 
 

 

find (A + B)', (AB)' and B'A' and show that (AB)' = B'A' 

Solution:  A + B = 
1 2

3 4

 
 
 

 + 
3 1

2 5

 
 
 

 

 =
1 3 2 1

3 2 4 5

  
   

 = 
4 3

5 9

 
 
 

 

 (A + B)' = 
4 5

3 9

 
 
 

 

 AB = 
1 2

3 3

 
 
 

 + 
3 1

2 5

 
 
 

 

 = 
3 4 1 10

9 8 3 20

  
   

+ 
7 11

17 23

 
 
 

 

 (A + B)'  = 
7 11

17 23

 
 
 

 

 B' = 
3 2

1 5

 
 
 

 

 A' =
1 3

2 4

 
 
 

 

 B'A' = 
3 2

1 5

 
 
 

1 3

2 4

 
 
 

 

 = 
3 4 9 8

1 10 3 20

  
   

  = 
7 17

11 23

 
 
 
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Hence (AB)' = B'A' 

Example 3. Find the value of  

 
1 0

4 1

 
  

1 15

4 2

 
 
 

1 0

0 1

 
 
 

 

 
1 0

4 1

 
  

1 15

4 2

 
 
 

 = 
1 0 1.5 0

4 1 6 2

  
     

 = 
1 1.5

0 4

 
  

 


1 0 1 1.5

4 1 4 2

    
       

1 0

0 1

 
 
 

=
1 1.5

0 4

 
  

1 0

0 1

 
 
 

 

 = 
1 0 0 1.5

0 0 0 4

  
   

1 1.5

0 4

 
  

 

Example 4. Show that for all value of u, v, w and x the matrices  

 A = 
u v

v u

 
  

 and B = 
w x

x w

 
  

commute for multiplication. 

Solution : AB = 
u v

v u

 
  

w x

x w

 
  

 

  = 
. .

.

u w v x ux vw

vw u x vx uw

   
      

 

  = 
uw vx ux vw

vw ux vx uw

  
     

 

 BA   =  
w x

x w

 
  

u v

v u

 
  

 

   = 
. . . .

. . . .

w u x v wv x u

x u w v x v w u

   
      

 

  = 
uw vx ux vw

vw ux vx uw

  
     

 

Hence AB = BA for all of u, v, w and x. 

Example 5. Show that  

 X = 
1 0 0

2 1 0

3 2 1

 
 
 
  

 satisfy the equation X3 = 3X2 + 3X - 1 =0 

Solution. 
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 X = 
1 0 0

2 1 0

3 2 1

 
 
 
  

 

 X2 = X.X = 
1 0 0

2 1 0

3 2 1

 
 
 
  

1 0 0

2 1 0

3 2 1

 
 
 
  

 

 = 
1 0 0 0 0 0 0 0 0

2 2 0 0 1 0 0 0 0

3 4 3 0 2 2 0 0 1

      
       
       

 

 = 
1 0 0

4 1 0

10 4 1

 
 
 
  

 

 X3 = X2.X = 
1 0 0

4 1 0

10 4 1

 
 
 
  

= 
1 0 0

4 1 0

10 4 1

 
 
 
  

 

 = 
1 0 0 0 0 0 0 0 0

4 2 0 0 1 0 0 0 0

10 8 3 0 4 2 0 0 1

      
       
       

 

 = 
1 0 0

6 1 0

21 6 1

 
 
 
  

 

 X3 – 3X2 + 3X –1 

 =
1 0 0

6 1 0

21 6 1

 
 
 
  

–3
1 0 0

4 1 0

10 4 1

 
 
 
  

+3
1 0 0

2 1 0

3 2 1

 
 
 
  

 + 
1 0 0

0 1 0

0 0 1

 
 
 
  

 

 =
1 0 0

6 1 0

21 6 1

 
 
 
  

–3
3 0 0

12 3 0

30 12 3

 
   
    

 + 
3 0 0

6 3 0

9 6 3

 
 
 
  

+3 
1 0 0

0 1 0

0 0 1

 
  
  

 

 = 
1 3 3 1 0 0 0 0 0 0 0 0

6 12 6 0 1 3 3 1 0 0 0 0

21 30 9 0 6 12 6 0 1 3 3 1

         
          
          

 

= 
0 0 0

0 0 0

0 0 0

 
 
 
  

 = 0Hence the result. 
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Example 6. 

 A man buys 8 dozen of mangoes, 10 dozen of apples, and 4 dozen of banana. Mango 
cost Rs. 18 per dozen, apples Rs 9 per dozen and banana Rs. 6per dozen. Represent the 
quantities bought by a row matrix and the price by a column matrix and hence obtain the total 
cost. 

Solution: 

 If A be the row matrix representing the quantities brought i.e. 8 dozen of mangoes, 10 
dozen of apples, 4 dozen of bananas, then a is 1 × 3 matrix given by 

 B = 
18

9

6

 
 
 
  

 

The total cost is given by the elements of the product AB which is a1 × 1 matrix. 

AB = [8 10 4] × 
18

9

6

 
 
 
  

= [8 × 10 + 10 × 9 + 4 × 6] 

= [144 + 90 + 24] = [258] 

Hence the required the total cost in Rs. 258/=  

Example 7. A, B, C and X are four matrix given by 

 A = 
1 2 3

0 1 2

0 0 1

 
 
 
  

 B = 
1 2 7

0 1 2

0 0 1

 
  
  

 C = 
0

11

5

 
 
 
  

 

 and X = 
1

2

3

X

X

X

 
 
 
  

 

(i) Verify: AB=BA = I (is a unit matrix of order 3)  

(ii) IfX=BC, find x1, x2 and x3. 

Sol. 

(i) AB = 
1 2 3

0 1 2

0 0 1

 
 
 
  

× 
1 2 7

0 1 2

0 0 1

 
  
  

 

 =
1 0 0 2 2 0 7 4 3

0 0 0 0 1 0 0 2 2

0 0 0 0 0 0 0 0 1

       
       
       

 =
1 0 0

0 1 0

0 0 1

 
 
 
  

= 1 
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and BA = 
1 2 7

0 1 2

0 0 1

 
  
  

1 2 3

0 1 2

0 0 1

 
 
 
  

=

1 0 0

0 1 0

0 0 1

 
 
 
  

+1 

Hence   AB = BA =I 

 (ii) We have X  = BC 

or  
1

2

3

x

x

x

 
 
 
  

= 

1 2 7

0 1 2

0 0 1

 
  
  

0

11

5

 
 
 
  

= 

0 22 35

0+11-10

0+0+5

  
 
 
  

 = 

13

1

5

 
 
 
  

 

Hence X1 = 13, x2 = 1, x3 = 5. 

SELF-CHECK EXERCISE 1.5 

Q1. What is meant by Transpose of a Mtrix? 

Q2. If A = 

2 3 5

6 8 4

9 1 3

 
 
 
  

 then find tr (A) 

Q3.  Explain the Properties of Transpose of a Matrix 

1.8 SUMMARY 

 Matrices play an important role in quantitative analysis of managerial decisions. They 
also provide very convenient and compact methods of writing a system of linear simultaneous 
equation and methods of solving them. These tools have also become very useful in all 
functional areas of management. A number of basic matrix operations (such as matrix addition, 
subtraction, multiplication) were discussed in this unit. This was followed for finding matrix 
inverse. Numbers of examples were given in support of the above said operations and inverse 
of a matrix. 

1.9 GLOSSARY 

 1. Co-factor : The number Cij = (-1)i+j Mij is called the co-factor of element aij in 
A. 

 2. Identify Matrix : A matrix in which diagonal elements are equal to 1 and all 
other elements are zero. 

 3. Matrix : It is an array number, arranged in rows and columns. 

 4. Minor : The minor of an element is the determinant of the sub-matrix obtained 
from a given matrix by deleting the row and the column containing that element 
and is devoted by Mij. 

 5. Null Matrix : A matrix in which all elements are zero. 
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 6. Transpose Matrix : A matrix obtaining by interchanging rows and column of 
the original matrix. 

1.12 ANSWER TO SELF-CHECK EXERCISES 

Self-Check Exercise-1.1 

Ans. Q1. Refer to Section 1.3 

Self-Check Exercise-1.2 

Ans. Q1. Refer to Section 1.4.1 

Ans. Q2. Refer to Section 1.4.3 

Ans. Q3. Refer to Section 1.4.4 

Ans. Q4. Solution 

  Order     Type 

(i) 2×2 Square matrix [ rows and columns are equal in number] 

(ii) 2×2 Diagonal matrix [ all the non-diagonal elements are zero] 

(iii) 2×2 Scalar matrix [ all the diagonal elements are equal and non-
diagonal are zero] 

(iv) 2×2 Identify matrix [ all the diagonal elements are unity + non-
diagonal element are zero] 

(v) 3×3 Upper triangular matrix [ all the elements below the principal 
diagonal are zero] 

(vi) 3×3 Lower triangular matrix [ all the elements above the principal 
diagonal are zero] 

(vii) 3×1 Column matrix [ It has only one column] 

(viii) 1×4 Row matrix [ It has only one row] 

 

Ans. Q5:  Solution  

 (i) We know that two matrices A and B are equal if 

 (a) their orders are same and  

 (b) the corresponding elements of A and B are equal  On comparing 
corresponding elements of two matrices, we have  

 3 = 3 

 x + y = 6    ... (1) 

 xy = 8     ... (2) 

 7 + 2 = 4  z = –3    

 From (1) y, = 6 – x   ... (3) 
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 Putting y from (3) in (2), we get  

 x(6 – x) = 8 

   6x – x2 – 8 = 0  x2 – 6x + 8 = 0 x2 – 4x – 2x + 8 = 0 

 x(x – 4), 2(x – 4) = 0 x(x – 4), (x – 2) = 0 x = 4, 2 

 when x = 4, y = 6 – 4 = 2 and when x = 2, y = 6 – 2 = 4 

 x = 4, y = 2, z = –3 or x = 2, z = –3 

Self-Check Exercise-1.3 

Ans. Q1: Solution 

 (i) 3A + 2 B = 3 

2 4 5

3 6 7

1 8 9

 
  
  

 + 2 

3 6 2

1 4 5

8 7 1

 
 
 
  

 

  = 

6 12 15

9 18 21

3 24 27

 
  
  

 + 

6 12 4

2 5 10

16 14 2

 
 
 
  

 

  = 

6 6 12 12 15 4

9 2 18 8 21 10

3 16 24 14 27 2

   
     
    

 = 

12 24 19

7 26 31

19 38 25

 
  
  

 

 (ii) 2A – 3B = 2 

2 4 5

3 6 7

1 8 9

 
  
  

 – 3 

3 6 2

1 4 5

8 7 1

 
 
 
  

 

  = 

4 8 10

6 12 14

2 16 18

 
  
  

– 

9 18 6

3 12 15

24 21 3

 
 
 
  

 

  = 

4 9 8 18 10 6

6 3 12 12 14 15

2 24 16 21 18 3

   
     
    

 = 

5 10 4

9 0 1

22 5 21

  
   
   

 

 (ii) AB = 

2 4 5

3 6 7

1 8 9

 
  
  

3 6 2

1 4 5

8 7 1

 
 
 
  

 

  = 

6 4 40 12 16 35 4 20 5

9 61 56 18 24 49 6 30 7

3 8 72 6 32 63 2 40 9

      
          
       
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  = 

50 63 19

53 55 17

83 101 33

 
 
 
  

 

Ans Q2.: Solution 

 A2 = AA = 
1 2

4 3

 
 
 

1 2

4 3

 
 
 

 = 
1 8 2 6

4 12 8 9

  
   

 = 
9 8

16 17

 
 
 

 

 A4 = A2A2 = 
9 8

16 17

 
 
 

9 8

16 17

 
 
 

 = 
81 128 72 136

144 272 128 289

  
   

 

  = 
209 208

416 417

 
 
 

 

Ans. Q3. Refer to Section 1.5.1.1 

Ans. Q4. Refer to Section 1.5.4.1 

Self-Check Exercise-1.4 

Ans. Q1. Refer to Section 1.6 

Self-Check Exercise-1.5 

Ans. Q1. Refer to Section 1.7 

Ans. Q2: tr(A) = 2 + 8 + (–3) = 7 Ans. 

Ans. Q3. Refer to Section 1.7.1 

1.11 REFERENCES/SUGGESTED READINGS 
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Application, Harper & Raw : New York. 

1.12 TERMINAL QUESTIONS 

Q. 1 If A = 
1 2 1

0 1 3

 
  

, B = 
1 2 1

0 1 3

 
  

, C = 
2 0 3

4 1 6

 
 
 

 then Find 

(i) A + B 

 (ii) B+C 

 (iii) C+A 

 (iv) A-2B 
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 (v) 2A-3C 

 (vi) 3B-5C 

 (vii) 2A-3B+5C 

Q. 2 If A = 

1 2 3

3 4 5

6 7 8

 
 
 
  

, B = 

2 3 0

3 4 6

0 1 7

 
  
   

 

Find a matrix X such that 

 (i) 2A+3X=5B 

 (ii) 2X-3A=4B 

 (iii)A +2B+3X=0 

Q. 3 A= 

1 1 1

3 2 1

2 4 0

 
   
  

, B = 

2 2 3

2 4 6

1 2 3

 
 
 
  

 

 Find AB, BA. Is AB = BA 

Q.4 Find AB and BA (if defined) where 

 A= 
3 4

1 1

 
  

 and B = 
1 3 2

0 1 1

 
  

 

Q. 5 If A = 
2 2

4 5

 
 
 

, B = 
3 1

2 5

 
  

 and C = 
1 0 1

0 1 1

 
  

 

(i) A (BC)=(AB) C  

(ii) (ABC)'=C'B'A'  

Is AB BA? 

Q. 6 If A = 

1 3 2

2 1 3

4 3 1

 
  
   

B = 

1 4 1 0

2 1 1 1

1 2 1 1

 
 
 
  

 C = 

2 1 1 2

3 2 1 1

2 5 1 0

  
    
   

 

 Show that AB = AC 
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2.1 INTRODUCTION 

 In the last unit we studied about the matrices and determinants. In this unit, we will 
study about the adjoint of the matrices and rank of matrix. We, will also discuss about solving 
the linear equations by matrix methods. 

2.2 LEARNING OBJECTIVES 

 After studying this unit, you will be able to  

 explain adjoint of a square matrix 

 differentiate singular and non-singular matrices 

 find the inverse or Reciprocal of matrix 

 use the inverse of a square of a matrix in solving a system of linear equation. 

 find Rank of matrix. 

2.3 ADJOINT OF A SQUARE MATRIX 

 Let A = (aij) be a square matrix of order n and Aij denote the cofactor of aij in the 
determinant A. Then the adjoint (or adjugate) of A, to be written as adj A, is defined as the 
transpose of the matrix of the cofactors (Aij) 

 Thus if A = 
11 12 1n

21 22 2n

n1 n2 nn n×n

a a ....a

a a ....a

a a ....a

 
 
 
 
 

 

and C(A)=Cofactor matrix or matrix of the cofactors of the elements a, sij's 

 = 
11 12 1n

21 22 2n

n1 n2 nn n×n

A A ....A

A A ....A

A A ....A

 
 
 
 
 

 

Then adj A= Transpos of the cofactor matrix  

= C(A) 

 = 
11 21 n1

12 22 n2

1n 2n nn n×n

A A ....A

A A ....A

A A ....A

 
 
 
 
 

 

Hence in order to find the adjoint a matrix, repalce each element in the matrix by its 
corresponding cofactor and then take the transpose. 

Example 1. If A=
1 2

3 4

 
 
 

, find adj A. 

Solution. Firstly we shall find the cofactor of theelements of A. 

 C(1) = Cofactor of 1 = (+) 4 = 4  
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 C(2) =  Cofactor of 2 = (-)3 = -3 

 C(3) = Cofactor of 3 = (-)2=-2 

 C(4) Cofactor of 4 = (+) 1 = 1 

 C(A) = Cofactor matrix 

 = 
(1) (2)

(3) (4)

C C

C C

 
 
 

 

 = 
4 3

9 1

 
  

 

Example 2. If A= 

1 0 1

3 4 5

0 6 7

 
 
 
   

, find adj A. 

Solution. Here we have 

A11 = Cofactor of a11 =+
4 5

6 7 
 =2 

A12 = Cofactor of a12 = - 
2 5

0 7
 =21 

A13 = Cofactor of a13 =+
3 4

0 6
 = -18 

A21 = Cofactor of a21 = - 
0 1

6 7


 

 = 6 

A22 = Cofactor of a22 =+
1 1

0 7




 = -7 

A23 = Cofactor of a23 = - 
1 0

0 6
 = 6 

A31 = Cofactor of a31 =+
0 1

4 5


 = 4 

A32 = Cofactor of a32 = - 
1 1

3 5


= -8 

A33 = Cofactor of a33 =+
1 0

3 4
 = 4 
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 C(A) = 
11 12 13

21 22 23

31 32 33

A A A

A A A

A A A

 
 
 
  

 = 

2 21 18

6 7 6

4 8 4

 
  
  

 

and adj C(A) = 

2 6 4

21 7 8

18 6 4

 
   
  

 

Note:- In all such questions, we first find cofactors of all the elements so as to get cofactor 
matirx and then transpose to get adjoint. 

 1.The product of a matrix and its adjoint is commutative. i.e. 

 A(adj A) = (adj A) A = |A| I  

where a is a Square matrix and I is the identitymatrix. 

 2.If |A|0, (i) |adj A|=|An-1| 

 (ii) 
| |

adj A

A

 
 
 

 

3.If |A| = 0, A(adj A)=0. 

 4. Adj (AB)=(adj B), wehre A and B are n-squared matrices.  

5. Adj (adj A)= |A|n 2, A, where A is an n × n matrix. 

  All these peoperties can be verified by taking a square matrix. Student are 
advised to verify these statements by taking a 3 × 3 matrix. 

SELF-CHECK EXERCISE2.1 

Q1. Find the adjoint of each of the following matrices  

 (i) 
a b

c d

 
 
 

 (ii) 

2 1 3

0 1 2

1 3 5

 
 
 
  

 

2.4 SINGULAR AND NON-SINGULAR MATRICES 

A square matrix A is said to be singular if its deteminant is zero i.e. |A| = 0 and said to 
be non singular if its determinant is zero i.e|A|0 

SELF-CHECK EXERCISE 2.2 

Q1. Distingush between a singular and non-singular matrix 

2.5 INVERSE OR RECIPROCAL OF A MATRIX 

 Let A be a square matrix of order n. Then the matrix B of order n, if it exists, such that 

AB= In=BA, is called the inverse or reciprocal of a and is denoted by A-1 
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2.5.1 PROPERTIES OF INVERSE OF A MATRIX 

 1. If a matrix A has an inverse, then it is unique. 

  Let A be an squared matrix where inverse exist. Let us suppose that B and C are 
the two inverses of A. Then by definition, we have 

 AB = BA = I ...(1) B is the inverse of A 

 AC= CA= I ...(2) C is the inverse of A 

 from (1) and (2), it follows that 

 AB=I Consider C(AB) (CA)B C(AB) = CI=C 

 and CA = I Consider C(AB) and (CA)B(CA)B=IB=B 

 But by associated law. 

 C(AB) = (CA)B = IB = B 

 B=C 

Hence the inverse of a matrix is unique. 

 2. A squared matrix A can passess an inverse only if A is non singular i.e. |A| 0. 

 Let A be n-shaped matrix and B be its inverse. Then by definition we have, 

  AB =1 

 Taking determinants of both sides, we get. 

|AB|=|I| 

  |A||B|=I 

 Since the R.H.S. is non zero, the L.H.S. has to be non-zero which in turn implies that | 
A | is non zero A is non-singular. 

 3. If A non-singular and AB = AC, then B = C 

(Cancellation law) 

 Since A is non-singular A-1 exists. 

 NowAB = BC 

  Pre-multiplying by A-1, we get 

 A-1 (AB)= A-1 (AC) 

or (A-1A) B = (A-1)AC  

or IB = IC  

 B =C 

 4. Reversal law for the inverse of the productholds i.e. (AB)-1 = B-1A-1 

5. (A¹)-1=(A-1) 
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Remark: Inverse of a matrix exists only if 

 (i) The given matrix is a square matrix, and 

 (ii) The determinant of the given matrix 0 (i.e.the matrix is non-singular). 

In other words, 

 (i) Every matrix need not have an inverse. 

 (ii) Every square matrix need not have an inverse.  

(iii) Every square non-singular matrix has an inverse. 

 6. Inverse of a non-singular diagonal matrix is a diagonal, matrix is a diagonal, 
matrix 

Let A = diag, (a, b, c)

0 0

0 0

0 0

a

b

c

 
 
 
  

 

and B = diag 
1 1 1

a b c
 
 
 

 = 

1
0 0

1
0 0

1
0 0

a

b

c

 
 
 
 
 
 
 
  

 

Then AB = BA = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 = I 

Hence B is the inverse of A. 

 In general, If A ding (a1, a2, ......... an) 

 Then A-1= diag 
1 1 n

1 1 1

a a a

 
 
 

 

Method to find inverse of a Matrix  

Let Abe the given square matrix such that|A|0 

 B will be the inverse of A if.  

AB = BA = 1  ....(1) 

 So we have to find such a B which satisfies (i). Let 

 us choose B=
1

| |A
adj A. 

 Since |A|0, our choice of B is justified. 
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 Now AB = A.
1

| |
adj A

A

 
 
 

 

Simirly BA = I 

 = 
1

| |A
(Aadj A) 

 = 
1

| |A
 = |A| I = I 

Hence B 
| |

adjA

A
=is the inverse of A  

i.e. A-1 = 
| |

adjA

A
 (|A|  0). 

Thus the necessary and the sufficient conditionfor a square matrix A to posses an inverse is that 
it is non singulari.e. | A|  0.  

For finding the inverse of a square matrix,we shall first find the determinant of Aviz  
|A|. If |A|=0 inverse does not exist. If |A|=0, we shall find the adjoint matrix and then divide it 
by to get theinverse matrix. 

 Example 1. Find the inverse of A=
a b

c d
 

 Solution: |A|=
a b

c d
 Cofactor of A = + b 

 Cofactor of b = -c 

 Cofactor of c = -b 

 Cofactor of d=+a 

 C(A) = Cofactor matrix = 
d -c

-c a

 
 
 

 

 adj C' (A) = 
d -b

-c a

 
 
 

 

 A-1 = 
adj A

|A|
 = 

1

ad - bc
d -b

-c a

 
 
 

 

provided ad - be  0. 

Verification. AA-1 should be i. 

Here AA-1 = 
a b

c d

 
 
 

1

ad - bc
d -b

-c a

 
 
 
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 = 
1

ad - bc
a b

c d

 
 
 

d -b

-c a

 
 
 

 

 = 
1

ad - bc
ad - bc -ab + ab

cd - cd -bc + ad

 
 
 

 

 = 
1

ad - bc
ad - bc 0

0 ad - bc

 
 
 

 

 = 
1 0

0 1

 
 
 

 = 1 

Hence A-1 is correct.  

Example 2. Find the inverse of 

 

0 1 2

1 2 3

3 1 1

 
 
 
  

 

Solution 

 A = 

0 1 2

1 2 3

3 1 1

 
 
 
  

 

|A| = 0 - 1 (1 - 2) + 3 (3 - 4) 

 We proceed to find adj A 

Cofactor or the elements of the first row of A 

 + 
2 3 1 3 1 2

, ,
1 1 3 1 3 1

   

 or     -1,        8,         -5 

Cofactor of the element of the third row of A 

 – 
1 2 0 2 0 1

, ,
1 1 3 1 3 1

   

 or      1,        2,         3 

Cofactor of the element of the third row of A 

 – 
1 2 0 2 0 1

, ,
1 1 1 3 1 2

  

or C(A) = cofactor matrix 
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  = 

1 8 5

1 6 3

5 2 1

  
  
   

 

and adj A = C' (A) 

 = 

1 1 1

8 6 2

5 3 1

  
  
   

 

 A-1 = 
adj A

|A|
 

 = 
1

2

1 1 1

8 6 2

5 3 1

 
   
  

 

1

2

1 1 1

8 6 2

5 3 1

 
   
  

or 

Verification. AA-1 should b e I. 

Here  AA-1 = 

0 1 2

1 2 3

3 1 1

 
 
 
  

1

2

1 1 1

8 6 2

5 3 1

 
   
  

 

 = 
1

2

0 1 2

1 2 3

3 1 1

 
 
 
  

1 1 1

8 6 2

5 3 1

 
   
  

 

 = 
1

2

0 8 10 0 6 6 0 2 2

1 16 15 1 12 9 1 4 3

3 8 5 3 6 3 3 2 1

      
        
        

 

 = 
1

2

2 0 0

0 2 0

0 0 2

 
 
 
  

 

 = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 

Hence A-1 is correct. 
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Example 3. Find the inverse of  

 (i) A = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 

 (ii) A = 

1 2 3

2 3 4

3 4 5

 
 
 
  

 

 (iii) A = 

1 2 3 4

3 4 5 6

4 5 6 7

 
 
 
  

 

Solution  (i)  

A = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 

|A| = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 

C(A) = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 

adj A = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 

A-1 adj A

|A|
=

1 0 0

0 1 0

0 0 1

 
 
 
  

= A 

 A has its own inverse.  

Actually the given matrix is an identity matrix andwe know that II = I  

 Identity matrix has its own inverse. 

Which implies that A has its own inverse. 
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 (ii) A = 

1 2 3

2 3 4

3 4 5

 
 
 
  

 

|A|=1(15-16)-2(10-12)+3(8-9)  

=-1+4-3  

=4-4=0 

 Since |A|=0, inverse does not exist. 

 (iii) A = 

1 2 3 4

3 4 5 6

4 5 6 7

 
 
 
  

 

Since the given matrix is not a square matrix, |A| is not defined and consequently A-1 
does not exist.  

Example 4. Find the adjoint of the matrix. 

A = 

1 2 3

2 3 2

3 3 4

 
 
 
  

 

and verify that A (adj A) = (adj A), A = |A|I.  

Hence or otherwise find A-1 

Solution. 

A=

1 2 3

2 3 2

3 3 4

 
 
 
  

 

 |A| =1(12-6)-28(8-6)+3(6-9)  

=6-4-9=-70. 

If Aij donate the cofactor of aijin A, then Aij= cofactor of] 

a11 = + 
3 2

3 4
= + (12 - 6) = 6 

A12 = cofactor of  

a12 = - 
2 2

3 4
 = - (8 - 6) = -2 

A13 = cofactor of  
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a13 = + 
2 3

3 2
 = + (6 - 9) = -3 

A21 = cofactor of  

a21 = - 
2 3

3 4
= - (8 - 9) = 1 

A22 = cofactor of  

a22 = + 
1 3

3 4
 = + (4 - 9) = -5 

A23 = cofactor of  

a23 = - 
1 2

3 3
= - (3 - 6) = 3 

A31 = cofactor of  

a31 = + 
2 3

3 2
 = + (4 - 9) = -5 

A32 = cofactor of  

a32 = - 
1 3

2 2
= - (2 - 6) = 4 

A33 = cofactor of  

a33 = + 
1 2

2 3
 = + (3 - 4) = -1 

 C(A) = cofactor matrix 

 = 
11 12 13

21 22 23

31 32 33

A A A

A A A

A A A

 
 
 
  

 

 = 

6 2 3

1 5 3

5 4 1

  
  
   

 

adj A = C'(A) 

 = 

6 1 5

2 5 4

3 3 1

 
   
   
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 A(adj A) = 

1 2 3

2 3 2

3 3 4

 
 
 
  

6 1 5

2 5 4

3 3 1

 
   
   

 

 = 

6 4 9 1 10 9 5 8 3

12 6 6 2 15 6 10 12 2

18 6 12 3 15 12 15 12 4

       
        
        

 

 = 

7 0 0

0 7 0

0 0 7

 
  
  

 

 = – 7 

1 0 0

0 1 0

0 0 1

 
 
 
  

 = –7I  = |A| I 

 (adj A) A = 

6 1 5

2 5 4

3 3 1

 
   
   

1 2 3

2 3 2

3 3 4

 
 
 
  

 

 = 

6 2 15 12 3 15 18 2 20

2 1 12 4 15 12 6 10 16

3 6 3 6 9 3 9 6 4

      
          
          

 

= 

7 0 0

0 7 0

0 0 7

 
  
  

= –7I  = |A| I 

Hence A(adj A) - (adj A) A | A | I 

 Also A1 adj A

|A|
 

 =
1

7

6 1 5

2 5 4

3 3 1

 
   
   

 

 = 
1

7

6 1 5

2 5 4

3 3 1

  
   
  

 

Note. To verify A-1, we check that AA-1 = 1.  
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Example 5. Show that (AB)-1=B-1A-1, providedA and B are non-singular matrices of same 
order.  

Solution. (AB) (B-¹ A-¹) =A(BB-¹) A-¹ 

   = AIA-¹ ( BB-1= 1) 

   = AA-¹  (A-¹ = 1) 

   =I 

 Similarly (B-1A-1) (AB) =I 

 (AB) (B-1A-1) (AB) = I 

Hence by the defination of an inverse. 

(AB)-1=B-1A-1 

Extending this argument, we can show that  

(ABC)-1=C-1B-1A-1 and so on.  

Example 6. 

 If A = 

1 1

1 2

1 3

 
 
 
  

 compute B = I3 - A(A' A)-1 A-1 

Solution. A = 

1 1

1 2

1 3

 
 
 
  

,  A' = 

1 1 1

1 2 3

 
 
 
  

 

 A' A = 

1 1 1

1 2 3

 
 
 
  

1 1

1 2

1 3

 
 
 
  

 

 = 
1 1 1 1 2 3

1 2 3 1 4 9

    
     

 = 
3 6

6 14

 
 
 

 

 |A' A| + 
3 6

6 14
 = 42 - 36 = 6 

C(A' A) = cofactor matrix of (A' A) 

 = 
14 6

6 3

 
  

 

 adj (A' A) = C' (A' A) 

 = 
14 6

6 3

 
  
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 (A' A)-1 =
adj (A' A)

|A' A|
 

 = 
1

6
14 6

6 3

 
  

 

 = 
1

6

14
1

6
31 6

  
 
  

 = 

7
1

3
1

1
2

  
 

  
 

 

B = I3 - A (A' A)-1 A' 

 = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 –

1 1

1 2

1 3

 
 
 
  

×
7 / 3 1

1 1 / 2

 
   

1 1 2

1 2 3

 
 
 

 

 = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 –

1 1

1 2

1 3

 
 
 
  

 

 = 
7 / 3 1 7 / 3 2 7 / 3 3

1 1 / 2 1 1 1 3 / 2

   
       

 

 = 

1 0 0

0 1 0

0 0 1

 
 
 
  

 –

1 1

1 2

1 3

 
 
 
  

× – 
4 / 3 1 / 3 2 / 3

1 / 2 0 1 / 2

 
  

 

 = 

1 0 0

0 1 0

0 0 1

 
 
 
  

– 

4 / 3 1/ 2 1/ 3 0 2 / 3 1/ 2

4 / 3 1 1/ 3 0 2 / 3 1

4 / 3 3 / 2 1/ 3 0 2 / 3 3 / 2

    
     
     

 

 = 

1 0 0

0 1 0

0 0 1

 
 
 
  

–

5 / 6 1/ 3 1/ 6

1/ 3 1/ 3 1/ 3

1/ 5 1/ 3 5 / 6

 
 
 
  

 

 = 

1 5 / 6 0 1/ 3 0 1/ 6

0 1/ 3 1 1/ 3 0 1/ 3

0 1/ 6 0 1/ 3 1 5 / 6

   
    
    

 

 = 

1/ 6 1/ 3 1/ 6

1/ 3 2 / 3 1/ 3

1/ 6 1/ 3 1/ 6

 
   
  

 

 which is the required result. 
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SELF-CHECK EXERCISE 2.3 

Q1. Explain the proporties of a inverse matrix. 

Q2. Find the inverse of A =

2 1 3

0 1 2

1 3 5

 
 
 
  

 

Q3. Find the condition under which  

 A = 
a b

c d

 
 
 

 is invertible. Also obtain the inverse of A. 

2.6 SOLUTION OF LINEAR EQUATIONS BY MATRIX METHOD 

2.6.1 Linear Equation is Two Unknowns 

Let us consider two linear equations in x and y. 

11 12 1

21 22 2

a x + a y = b

a x + a y = b





   (1) 

Let A be the matrix of coefficient= 11 12

21 22

a a

a a

 
 
 

 

 X = 
x

y

 
 
 

 and B = 1

2

b

b

 
 
 

 

The equation (1) can be written in the matrix notation as  

 AX = B 

Let |A|=0 then A-1 exists. Multiplying equation (2) by A-1. 

 A-1 (AX)=A-1B 

or A-1AX=A-1B 

or IX=A-1B 

 X=A-1B 

which gives the required solution. 

Example 7. Solve the system of equations x + 2y=4,2x+5y=9 using matrix method.  

Solution. The given equations are 

 x+2y=4 

 2x+5y=9 
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Let A = 
1 2

2 5

 
 
 

X = 
x

y

 
 
 

and B = 
4

9

 
 
 

 

Then |A| = 
1 2

2 5

 
 
 

 = 5 - 4 = 1  0 

The given system has a unique solution. The equations (1) can be written in the matrix 
notationas 

 AX=B which gives X = A-1B 

 To solve the equation, first we have to calculate A-1. 

 A-1 = 
1

| A |
(adj A) = 

1

1
5 2

1 1

 
  

= 
5 2

2 1

 
  

 

Equation (2) can be written as  

 
x

y

 
 
 

= 
5 2

2 1

 
  

4

9

 
 
 

= 
20 18

8 9

 
   

 = 
2

1

 
 
 

 

2.6.2 Linear equations in three unknowns  

 Let us consider the equations 

 
11 12 13 1

21 22 23 2

31 32 33 3

a x + a y + a Z = b

a x + a y + a Z = b

a x + a y + a Z = b

 
 
 
  

  (1) 

 Let A = 
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 
 
  

 X = 

x

y

z

 
 
 
  

 and B = 
1

2

3

b

b

b

 
 
 
  

 

The given equations (1) can be written as AX = B. If |A|0, then the equations (1) has a 
unique solution given by X=A-1B.  

Example 8. Solve the following equations by matrix method: 

x+y=0, y + z = 1, x+z = 3. 

Solution. The given equations are 

 

x + y = 0

y + z = 1

x + z = 3

 
 
 
  

 or 

x + y + 0.z = 0

0.x + y + z = 1

x + 0.y + z = 3

 
 
 
  
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Let A = 

1 1 0

0 1 1

1 0 1

 
 
 
  

 X = 

x

y

z

 
 
 
  

 and B = 

0

1

3

 
 
 
  

 

Then the system (1) can be written as AX = B. 

 Now |A| = 

1 1 0

0 1 1

1 0 1

 
 
 
  

 = z  0 

 The system has a unique solution given by 

 X = A-1 B 

Now A-1 = 
-1

1

A
 (adj A) = 

1

2

1 1 1

1 1 1

1 1 1

 
  
  

 

From (2) 

 

x

y

z

 
 
 
  

 = 
1

2

1 1 1

1 1 1

1 1 1

 
  
  

0

1

3

 
 
 
  

=
1

2

0 1 3

0 1 3

0 1 3

  
   
   

 

 =
1

2

2

2

4

 
  
  

 = 

1

1

2

 
  
  

 

⇒x=1,y=-1, z=2  

Hence the required solution is 

 x=1,y=-1, z=2 

 Before we define the rank of a matrix, we would like to explain the concept elementary 
trans- formation which will be of much help to us in determining the rank of matrix. 

SELF-CHECK EXERCISE 2.4 

Q1. Solve the following system of equation by the matrix inverse method : 

 x + 2y = 4, 2x + 5y = 9 

Q2. If A =

1 1 0

2 3 4

0 1 2

 
 
 
 
 

  and B =

2 2 4

4 2 4

2 1 5

 
   
  

 

are two square matrices, verify that AB = BA = 6I3. Hence solve the system of linear equation : 
x - y = 3, 2x + 3y + 4z = 17, y + 2z = 7 
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Q3. Solve the following system of homogeneous linear equation by the matrix method 

 2x - y + z = 0 , 3x + 2y - z = 0, x + 4y + 3 = 3 

2.7 ELEMENTARY TRANSFORMATIONS AND ELEMENTARY MATRICES. 

 There are three kinds of elementary transformations: 

 (a) Interchange of any two rows (or columns).  

 (b) Multiplication of any row (or column) by an non-zero scalar. 

 (c) Addition to one row (or column), of another row (or column) multiplied by now 
nonzero scalar. 

 The operations (a), (b), (c) are called elementary row transformations if applied to row 
and elementarycolumn transformations if applied to columns.  

Square matrices obtained from an identity matrixby any single elementary 
transformation (a), (b) or (c) are called Elementary Matrices. 

Notations. 

 1. Rij (cij) will denote the interchange of ith and jth rows columns. 

 2. R1 (k) [c1(k)] will stand for the multiplicationof the elements of the ith row (column) 
by the nonzero scalar K. 

 3. Rij (k) [Cij (k)] will stand for the addition tothe elements of the ith row (column) K 
times th corresponding elements of the ith roe (column). 

Example. If A = 

1 2 3

2 3 4

3 4 5

 
 
 
 
 

 then, 

1. R12 means inerchanging 1st and 2nd row.  

Applying R12 to A, we get 

 B = 

1 2 3

2 3 4

3 4 5

 
 
 
 
 

 

 Applying C13 (e) interchanging 1st and 3rd column we get, 

 C = 

4 3 2

3 2 1

5 4 3

 
 
 
 
 

 

R2(3) means the multiplication of the elements of the 2nd by 3. Applying R2 (3) to A, 
we get  
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D = 

1 2 3

6 9 12

3 4 5

 
 
 
  

 

3.C13 (4) means the addition to the elements of the 1st column, the elements of 3rd column 
multiplied by 4. 

 Therefore, applying C13 (4) to A, we get 

 B = 

1 12 2 3

6 48 9 12

3 20 4 5

 
  
  

 

 = 

13 2 3

54 9 12

23 4 5

 
 
 
  

 

2.7.1 EQUIVALENT MATRICES 

 Two matrices A and B of the same orderare said to be equivalent, if it is possible to 
obtain one matrix from the other by the application of elementary transformation. IfB is 
obtained from A by a series of elementary transformation then we say that A is equivalent to B 
and write it as A B. 

 For example, if  A = 

1 2 3

2 3 4

3 4 5

 
 
 
  

 

 then 

1 2 3

2 3 4

3 4 5

 
 
 
  

 – 

2 3 4

1 2 3

3 4 5

 
 
 
  

 (Applying R12) 

  – 

4 3 2

3 2 1

5 4 3

 
 
 
  

 (Applying R13) 

2.7.2 INVERSE ELEMENTARY TRANSFORMATION 

If by an elementary transformation on a matrix A, we get an equivalent matrix B, then 
the elementary transformation which when applied onB gives the matrix A will be called the 
inverse elementary transformation. 

 1. Inverse Transformation of Rij is R1 

  Rij =RijCij
-1=Cij 

2. R1
-1 (a) = R1 (1/α), Cij ( ) = C(1/α) 

 3. Rij
1 ( ) = Rij(- ). Cij

1 ( ) = Cij (- ) 
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2.7.3   PROPERTIES OF ELEMENTARY TRANSFORMATIONS AND ELEMENTARY 
MATRICES 

 1.  Every elementary row (column) transformation of a matrix can be affected by 
pre (post) multiplication with the corresponding elementary matrix.  

 2.  Two matrices A and B are equivalent if there exist non-singular matrices P and 
Q such that PAQ= B.  

 3.  Every non-singular square matrix can be expressed as the product of an 
elementary matrices.  

 4.  Elementary transformations do not alter theorder or rank of a matrix.  

 5.  Equivalent matrices have the same rank.  

SELF-CHECK EXERCISE 2.5 

Q1. What is equivanlent matrix? 

Q2.  Explain the properties of Elementary Transformations and Elementary Matrices. 

2.8 RANK OF A MATRIX 

 Let A = (aij)mxnbe a given matrix of the type m×n. Then the rank of A, to be written as 
P(A), is defined to be r, where r min <(m.n) if and only if  

(i) Every minor (i.e. determinant of a square submatrix of order (r+1) of A is zero, 
and 

 (ii) There exists at least one minor of orderr of Awhich is non-zero.  

only (i)  p(A) <r 

 only (ii)p(A)>r 

 (i) and (ii) together P(A)=1. 

Note. From the above definition, it clearly follows that 

 (i) The rank of a null matrix is zero. 

 (ii) The rank of a non-singular matrix of order n isn. 

 (iii) The rank of a singular matrix of order n is lessthan n. 

 (iv) The rank of a non-zero matrix is always≥1. 

 (v) The rank of an identity matrix of order n is n.  

(vi) If A is of order m×n. P(A)≤m and ≤n.  

(vii) If A' is the transpose of A.P(A) = P(A'). 

Example 1. Discuss the rank of the following matrices  
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 (i) 
1 3 4

2 6 8

 
 
 

 (ii) 

2 1 1

0 3 2

2 4 3

 
  
  

 

 (iii) 

0 0 1

0 1 0

1 0 0

 
 
 
  

 (iv) 

1 0 0

0 0 0

0 0 0

 
 
 
  

 

Solution. (i) Let A=
2 3

1 3 4

2 6 8 

 
 
 

 

Since A is of the type 2 × 3 

 P(A)≤2 

The minors of order 2 are 

 
1 3 1 4 3 4

2 6 2 8 6 8
 

which are all zero. Therefore P(A) cannot be equal to 2 but<2 since the matrix is non zero. 
Therefore P(A)≥1. 

 P(A)> and P(A) <2 P(A)=1. 

  viz. 1  0   

P(A) = 1 

(ii) Let A = 

2 1 1

0 3 2

2 4 3

 
  
  

 

|A| = 2(-9+8) + 2(-3+4)  

 =-2+2=0 

 Since the matrix is of the type 3 × 3 and it issingular P(A)<3. 

 Let us find minors of order 2. 

 One of the minor of order 2 viz 
2 1

0 3
 0 

 Hence by definition P(A)=2. 

(iii) Let A = 

0 0 1

0 1 0

1 0 0

 
 
 
  

 

|A|=1(0-1)=-1 



 

58 
 

 Since the given matrix is a non-singular square matrix of the type 3×3. 

  By definition, P(A)=3. 

(iv) Let A=

3 3

1 0 0

0 0 0

0 0 0


 
 
 
  

 

 Clearly |A| = 0. Also all the minors of order twoare zero. 

  P(A)=1 

 But it is a non-zero matrix and one minor of order 1 = 1 0. 

  P(A) = 1 

Example 2. Discuss the rank of the matrix. 

 A= 

1 3 4 2

2 6 8 4

3 0 3 3

 
  
  

 

Solution. Since the given matrix is of the type 3 × 4. 

 P(A)≤ 3. 

 All the 3 × 3 order minors of A are 

 

1 3 4

2 6 8

3 0 3

 
 
 
  

1 3 2

2 6 4

3 0 3

 
  
  

1 4 2

2 8 4

3 3 3

 
  
  

3 4 2

6 8 4

0 3 3

 
  
  

 

 i.e.   0  0       0    0 

(verify) 

 Since each of the 3×3 minor is 0.  

P(A) <3. 

Now we consider the 2 × 2 minors of A.  

There exists at least one minor or order 2 of A viz. 

 
2 6

3 0
 = - 18  0. 

Hence p(A)=2. 

Note. If all the 2 × 2 minors of A had been zero, then rank of A would have been <1. 
But since the given matrix is a non-zero matrix,... rank would have been 1. 
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 Note. If is very tedious to check all the 3 × 3 order minors. So we devise some method 
by which we can directly find the rank of a matrix without calculating each minor. We shall 
state the important theorems and results in this connection. 

Important Results 

 R1. Elementary transformations do not alter the rank of a matric. 

 R2. Equivalent matrices have the same rank. 

 R3. Every matrix A of order × n and rank r (>0) can be reduced to one of the following 
forms: 

 (i) 11 0

0 0

 
 
 

 (ii) 
1

0
r 

 
 

 (iii) (10) (iv) (Ir) 

and these are called normal forms. 

 Example 3. Reduce the matrix A to its normal form and hence determine its rank, 
where 

 A = 

1 1 1 1

1 2 3 4

3 4 5 2

 
 
 
  

 

Solution. A = 

1 1 1 1

1 2 3 4

3 4 5 2

 
 
 
  

 

By the operation R21 (-1), we have 

 A ~ 

1 1 1 1

0 1 2 5

3 4 5 2

 
 
 
  

 

 ~ 

1 1 1 1

0 1 2 5

0 1 2 5

 
 
 
  

 ~ By R31 (-3) 

 ~ 

1 0 1 1

0 1 2 5

0 1 2 5

 
 
 
  

 ~ By C21 (-1) 

~ 

1 0 0 1

0 1 2 5

0 1 2 5

 
 
 
  

 ~ By C31 (-1) 
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~ 

1 0 0 0

0 1 2 5

0 1 2 5

 
 
 
  

 ~ By C41 (-1) 

~ 

1 0 0 0

0 1 2 5

0 0 0 0

 
 
 
  

 ~ By R32 (-1) 

~ 

1 0 0 0

0 1 0 5

0 0 0 0

 
 
 
  

 ~ By C31 (-2) 

~ 

1 0 0 0

0 1 0 0

0 0 0 0

 
 
 
  

 ~ By C42 (-5) 

Thus A ~ 
1 0

0 0

 
 
 

 

The rank of f2=2 

Hence p(A)=2.  

Note. For finding the rank of the given matrix, itis not necessary to find the normal form. In 
example (4) above, we would have stopped even at the 5thstep 

 i.e. A ~ 

1 0 0 0

0 1 2 5

0 1 2 5

 
 
 
  

 

  This matrix clearly shows that all the minors of order 3 zero there is a minor of order 
2 viz. 

 
1 0

0 0

 
 
 

 = 1  0 

Hence rank = 2. 

Example 4. Find the rank of the matrix. 

 A = 

4 4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


 
 
 
 
 
 
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Solution A = 

4 4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


 
 
 
 
 
 

 

Since all the four rows (column) are same 

|A|=0. 

 Also all the minors of order 3 and order 2 arezero. But since minor of order 1 is non-
zero.. the rank of the given matrix is 1. 

 In fact, the rank of a matrix of any order each ofwhose element is one is always one. 

2.8.1 RANK OF LINEAR INDEPENDENCE 

The rank of a matrix is always equal to the number of linearly independent column 
which also equals to the number of linearly independent rows of the matrix. 

 If the rank of the matrix A = (a) m × n (m<n) if r <m, then there are exactly r rows of 
the matrix which are linearly independent while each of the remaining (m-r) rows can be 
expressed as a linear combination of these r rows. The same applies to columns. 

 If A~P=
1 0

0 0
r 

 
 

, then clearly I, has r independent rows or columns and consequently P, 

and A also have independent rows or columns.  

SELF-CHECK EXERCISE 2.6 

Q1. Find the rank of the matrix A, where 

 (i) A = 

1 2 3

1 4 2

2 6 5

 
 
 
  

 

 (ii) A = 

6 1 3 8

4 2 6 1

10 3 9 7

16 4 12 15

 
  
 
 
 

 

2.9 SUMMARY 

 In this unit we have discussed about the adjoint of matrix. We have also studied about 
the inverse of Reciprocal of a matrix. In the next section we discussed about the properties of 
inverse of a matrix. We have also discussed about the method of solving linear equation in a 
variables using matrices giving different and suitable example. 

2.10 GLOSSARY 

 1. Adjoint of a square matrix A = (aij)n×n is defined to be the transpose of the 
cofactor matrix of A. It is devoted by adj A. 
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 2. Singular : A square matrix A is said to be singular it is determinant is zero i.e. | 
A| = 0 

 3. Non-singular : A square matrix A is said to be non-singular if its determinant is 
zero i.e. |A|  0. 

 4. Inverse or Reciprocal of matrix : Let A be a square matrix of order n. Then the 
matrix B of order n, if it exists, such that AB = In = BA is called the inverse or 
reciprocal of a and is denoted by A-1. 

2.11 ANSWER TO SELF-CHECK EXERCISE  

Self-Check Exercise 2.1 

Ans. Q1 (i) Let A = 
a b

c d

 
 
 

.  

The Co-factors are  

 A11 = (–1)1+1 | d | = d  A12 = (–1)1+2 | c | = -c 

 A21 = (–1)1+2 | b | = -b + A22 = (–1)2+2 | a | = -a 

adj  A = 
d c

b a

 
  

 

 (ii) Let A = 

2 1 3

0 1 2

1 3 5

 
 
 
  

 

The co-factors of the elements of A are 

A11 = (–1)1+1 1 2

3 5

 
 
 

 = -1  A12 = (–1)1+2 0 2

1 5

 
  

 = -2 

 A13 = (–1)1+3 0 1

1 5

 
  

 = -1  A21 = (–1)2+1 1 3

3 5

 
 
 

 = 14 

A22 = (–1)2+2 2 3

1 5

 
  

= 13  A23 = (–1)2+3 2 1

1 3

 
  

= -5  

A31 = (–1)3+1 1 3

1 2

 
 
 

= -5  A32 = (–1)3+2 2 3

0 2

 
 
 

= -4 

A33 = (–1)3+3 2 1

0 2

 
 
 

= 2 

 adj A = 

1 14 5

2 13 4

1 5 2

 
   
  
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Self-Check Exercise 2.2 

Ans. Q1. Refer to Section 2.4 

Self-Check Exercise 2.3 

Ans. Q1. Refer to Section 2.5.1 

Ans. Q2. Here, | A | = (2) (–1) + (–1) (–2) + 3(1) = 3 and adj A = 

1 14 5

2 13 4

1 5 2

 
   
  

 

 A-1 = 
1

| A |
 adj Ans. 

 = 
1

3

1 14 5

2 13 4

1 5 2

 
   
  

 = 

1/ 3 14 / 3 5 / 3

2 / 3 13 / 3 4 / 3

1/ 3 5 / 3 2 / 3

 
   
  

 

Ans. Q3. We have | A | = ad – bc. recall that A is invertible if and only if | A |  0. That is A = 
a b

c d

 
 
 

  is invertible if and only if ad – bc  0 

 Also, adj A = 
d c

b a

 
  

 

 Hence A-1 = 
1

| A |
 adj A = 

1

ad - bc
d c

b a

 
  

 

Self-Check Exercise 2.4  

Ans. Q1. We can put the given system of equations into matrix mutation as follows : 

 
1 2

2 5

 
 
 

x

y

 
 
 

 = 
4

9

 
 
 

 

Here the coefficient matrix is given by A = 
1 2

2 5

 
 
 

 

To check if A-1 exists, we not that A11 =  (–1)1+1 | S | = 5 and A12 =  (–1)1+2 | 2 | = –2 

Since | A |   0 A is non-singular (invertible). We also have A21 =  (–1)2+1 | 2 | = –2 : 

 A22 =  (–1)2+2 | 1 | = 1. 

Therefore the adjoint of A is  

 adj A = 
5 2

2 1

 
  
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  A-1 = 
1

| A |
(adj A) = 

1

1
5 2

2 1

 
  

= 
5 2

2 1

 
  

 

  x = A-1 B =
5 2

2 1

 
  

4

9

 
 
 

 = 
20 18

8 9

 
   

= 
2

1

 
 
 

 

  x

y

 
 
 

 = 
2

1

 
 
 

 or x = 2, y =1 

Ans. Q2.  AB 

1 1 0

2 3 4

0 1 2

 
 
 
 
 

2 2 4

4 2 4

2 1 5

 
   
  

 

 =

2 4 0 2 2 0 4 4 0

4 12 8 4 6 4 8 12 20

0 4 4 0 2 2 0 4 10

       
        
       

  

 = 

6 0 0

0 6 0

0 0 6

 
 
 
 
 

 = 6 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 = 6I3 

and BA = 

2 2 4

4 2 4

2 1 5

 
   
  

1 1 0

2 3 4

0 1 2

 
 
 
 
 

 

 = 

2 4 0 2 2 4 0 8 8

4 4 0 4 6 4 0 8 8

2 2 0 2 3 5 0 4 10

       
        
        

 

 = 

6 0 0

0 6 0

0 0 6

 
 
 
 
 

 = 6 

1 0 0

0 1 0

0 0 1

 
 
 
 
 

 = 6I3 

 Thus AB = BA = 6I3 

  A 
1

6
B

 
 
 

 = 
1

6
B

 
 
 

 A = I3 

This shows that A-1 = 
1

6
B . Now the given system of equation can be written as  

 

1 1 0

2 3 4

0 1 2

 
 
 
 
 

x

y

z

 
 
 
 
 

 = 

3

17

7

 
 
 
 
 
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 or Ax = C, where  

  x = 

x

y

z

 
 
 
 
 

 = c = 

3

17

7

 
 
 
 
 

 

 X = A-1 C = 
1

6
BC  1 1

6
A B   

  

 = 
1

6

2 2 4

4 2 4

2 1 5

 
   
  

3

17

7

 
 
 
 
 

 

 = 
1

6
 

6 34 28

12 34 28

2 17 38

 
    
  

  = 
1

6

12

6

24

 
  
 
 

 = 

2

1

4

 
  
 
 

 

 Thus x = 2, y = –1, z = 4 is the required solution.  

Ans. Q3. We can write the system of equations as the single matrix equation AX = 0, where  

 A = 

2 1 1

3 2 1

1 4 3

 
  
 
 

 , X = 

x

y

z

 
 
 
 
 

 and 0 = 

0

0

0

 
 
 
 
 

 

 The Co factors of | A | are 

A11 = (–1)1+1 2 1

4 3


 = 10   

A12 = (–1)1+2 3 1

1 3


 = -10 

 and A13 = (–1)1+3 3 2

1 4
 = 10 

  | A | = a11 A12 + a12 A12 + a13 A13 = (2) (10) + (-1) (-18) + 1 (10) =4 

Since | A |   0, A is non-singular (invertible). This is by known result  

X = 0, that x = 0, y = 0 Z = 0. 

Self-check Exercise 2.5  

Ans. Q1. Refer to Section 2.7.1 

Ans. Q2. Refer to Section 2.7.3 
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Self-Check Exercise 2.6  

Ans. Q1. Solution 

(i) A = 

1 2 3

1 4 2

2 6 5

 
 
 
  

 

we shall find the rank of A by applying elementary transformations. 

By performing the operation R31(-1) we have 

 A ~ 

1 2 3

1 4 2

2 1 6 2 5 3

 
 
 
    

 

 A ~ 

1 2 3

1 4 2

1 4 2

 
 
 
  

 

 ~ 

1 2 3

1 4 2

0 0 0

 
 
 
  

 

which clearly shows that the determinant of the 3rd order is zero. But a determinant of 2nd 
order (or minor of 2nd order) viz. 

 
1 2

1 4

 
 
 

 = 2  0 

Hence rank of the transformed matrix is 2.  

But equivalent matrices have the same rank. 

 P(A) = 2 

(ii) A =

4 4

6 1 3 8

4 2 6 1

10 3 9 7

16 4 12 15


 
  
 
 
 

 

By the operation R31(-1), R41(-1), we have 

 A ~ 

6 1 3 8

4 2 6 1

4 2 6 1

10 3 9 7

 
  
 
 
 
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Again by the operations R32(-1), R41(-1), we have 

 A ~ 

6 1 3 8

4 2 6 1

0 0 0 0

4 3 9 1

 
  
 
 

 

 

By the operation R43 (-1), we have 

 ~ 

6 1 3 8

4 2 6 1

0 0 0 0

0 0 0 0

 
  
 
 
 

 

Therefore, all the minors of order 4 and 3 are zero. 

But there is one minor of order 2 viz. 

 
6 1

4 2
 = 8  0 

Hence P(a)=2. 
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2.13 TERMINAL QUESTIONS  

Q.1 Find the (i) adjoint and (ii) Inverse of the following matrices. 

 (i) 

2 2 3

1 0 3

1 4 0

 
  
  

  (ii) 

2 3 0

3 1 2

1 0 4

 
  
   

(iii) 

1 2 3

5 7 4

2 1 3

 
 
 
  

  

 (iii) 

1 2 3

5 7 4

2 1 3

 
 
 
  

  (iv) 

1 2 2

1 3 0

0 2 1

 
  
  

 (v) 

2 1 3

1 2 1

4 8 4

 
 
 
  
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Q.2 Find the ranks of the following matrices : 

 (i) 

1 2 3

2 3 4

3 4 5

 
 
 
  

  (ii) 

0 1 2

0 3 6

0 5 10

 
 
 
  

 

 (iii) 

1 2 3

2 2 0

2 3 1

3 1 4

 
  
 
 
 

  (iv) 

2 3 1 1

1 1 2 4

3 1 3 2

6 3 0 7

  
    
 
 

 

 

 (v) 

1 2 4 5

2 1 3 6

8 1 9 7

 
  
  

 

Q. 3 If A = 

1 1 1

2 3 4

3 2 3

 
  
  

 

 B = 

1 12 1

6 12 6

5 10 5

   
 
 
  

 

 Find the ranks of A, B, A + B, AB and BA with & by  

(i) The help of minors of corresponding matrices.  

(ii) Reducing them to canonical forms. 
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Unit-3 

DETERMINANTS 

STRUCTURE  

3.1 Introduction  

3.2 Learning Objectives 

3.3 Determinant  

 3.3.1 Definition 

 3.3.2 Rule 

 3.3.3 Minors and Cofactors of the Elements of a Determinant  

Self-Check Exercise-3.1 

3.4 Properties of Determinant 

Self-Check Exercise-3.2 

3.5 Summary 

3.6 Glossary 

3.7 Answer to Self Check Exercises 

3.8 References/Suggested Readings 

3.9 Terminal Questions. 

3.1 INTRODUCTION  

 In this Unit, we will study about the determinants. We will also go through the minors 
and co-factors of the elements of a determinants. In the last section of this unit, we will learn 
about the properties of determinant. 

3.0 LEARNING OBJECTIVES  

After completing this unit, you will be able to: 

 define Determinant  

 find minors and co-factors of square matrices of different orders; and  

 Apply properties of determinants 

3.3 DETERMINANTS  

A determinant is a mathematical tool of a very ordinary kind and involves no new ideas 
of any description. Briefly, a determinant is a notation that is found convenient in handling 
certain algebraic processes. Certain expressions of a common form appear in algebraic 
problems such as that of the solution of linear equation, expressions consisting of sums or 
differences of a no. of terms each of which is the product of a no. of quantities. Quite apart how 
other considerations, the labor of writing out the more complicated of these expression is 
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severe and there is every reason to welcome a compact and general notation for them. As some 
of the characteristics of a vector x can be represented by a scalar, for ex- ample the norm 
(length) ||x||. Similarly some of the characteristics of a square matrix A can be represented by a 
scalar, called the determinant, denoted by Al or det, A of the square matrix A. The definition is 
arbitrary but useful. It should be remembered that the determinant of a square will be scalar 
eqantity i.e. with a determinant we associate some value," whereas a matrix is essentially an 
arrangement of numbers and has no value. If the matrix is not square, we cannot associate 
determinant with it. 

3.3.1 DEFINITION 

 For the square matrix A 1 1

2 2

a b

a b
of second  

order the  

symbol |A| = 1 1

2 2

a b

a b
is called a determinant of second order or determinant of order 2 

and its value is defined by 

1 1

2 2

a b

a b
 = a1 b2 - a2 b1 

The four numbers a1, b1, a2, b2, are called elements of the determinant. 

 For the square matrix A = 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 

order 3., the symbol 

|A| = 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 

 consisting of nine number arrangement in three rows and three columns is called 
determinant of third order or determinant of order 3 and its value is defined by 

 2 2 2 2 2 2
1 1 1

3 3 3 3 3 3

| |
b c a c a b

A a b c
b c a c a b

    

3.3.2 RULE 

 Write down the elements of the first row (or first column) with alternately positive and 
negative sign, the first element having always positive sign before it. Multiply each signed 
element by a determinant of second order after omitting the row and the column in which that 
element occurs. 

Example 



 

71 
 

 Expand the determinant 

 

6 3 2
15 12

( ) ( ) 2 1 2
9 10

10 5 2

i ii







 

Solution 

 
15 12

( )
9 10

i



= 15 x 10 - (-9) (-12) 

   = 150 - 108 = 42 

 

6 3 2

( ) 2 1 2

10 5 2

ii


 15 12

6 ( 3)
9 10


 


 

   
2 2 2 1

2
10 2 10 5




 
 

 =6(-2-10)+3(4+20)+2 (10 – 10) 

 =72+72 +2 (0)=0 

Remarks:- Determinants are originally connected with the solution of linear equation.  

Eliminating x and y from two homogeneous equations. 

 a1x + b1 y=0 

 a2x + b₂y=0 

 we obtain a1b1– a2b1 =0  

The expression on the left side of this eliminant issymbolically written as 1 1

2 2

a b

a b
which 

is a determinant of second order. 

 Similarly, eliminating x, y, z from three equations. 

 a1x+b1 y+c1 z=0 

 a2 x+b2y+c2z= 0  

a3x+b3 y+c3 z=0 

 we get, 

 a1 (b2c3–b3 c2)+b1 (c2a3 – c3 a2)+c1 (a1b3– a3 b₂)=0 

 The expression on the left side of this eliminant issymbolically written as 
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 |A|=
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 

 which is a determinant of third order. 

3.3.3 MINORS AND COFACTORS OF THE ELEMENTS OF A DETERMINANT 

 Let us consider a determinant of third order givenby 

 
11 12 13

21 22 23

31 32 33

a b c

a b c

a b c

  

 The minor of any element in  is a determinant of second order obtained by omitting 
from   the row and the column in which the element occurs. 

 Thus minor of a11, a12, a13, a21, etc. are respectively. 

 22 23 21 23 12 1321 22

31 3232 33 31 33 32 32

.
a b a a a aa a

etc
a aa b a a a a

  

 Minors of a11, a12, a13, a21, etc. are denoted by M11, M12, M13, M21, etc. respectively. 

 The cofactors of any element in  is the minor of that element in  with proper sign 
depending on the number of the row and the column is which the element occur. If an element 
occurs in the i th row and j th row columns in  , then the cofactor of the element=(-1)i+j× 
(minor of the element). 

 Thus the cofactors of a11, a12, a13,a21, etc. in   are respectively. 

 22 23 21 231 1 1 2

32 33 31 33

( 1) ,( 1)
a a a a

a a a a
   , 

 22 23 21 231 3 2 1

32 33 31 33

( 1) ,( 1)
a a a a

a a a a
    

 i.e. 22 23

32 33

a a

a a

 
 
 

, – 21 23

31 33

a a

a a

 
 
 

, + 22 23

31 32

a a

a a

 
 
 

, – 12 13

31 32

a a

a a

 
 
 

etc. 

We shall denote the cofactors of a11, a12, a13, a21 etc. in Δ by C11, C12, C13, C21 etc. 

 Thus 

 C11 =
22 23

32 33

a a

a a

 
 
 

,  C12 = - 21 23

31 33

a a

a a

 
 
 

 

 C13 =  21 22

31 32

a a

a a

 
 
 

 C21 = - 12 13

32 33

a a

a a

 
 
   
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We have 

 

22 23 21 23
11 12

32 33 31 33

a a a a
a a

a a a a

   
    

   
21 22

13
31 32

a a
a

a a

 
  

    

= a₁₁ C₁₁ + a12 C12+ a13 C13 

Similarly, we can prove that 

 a21 C21+ a22 C22 + a23 C23 = Δ 

a31 C31 + a32 C32 + a33 C33 = Δ 

 From these results, it follows that we can find the value of the determinant Δ by 
expanding it along any row or any column. 

 For quick working, the signs of the different cofactors according to the positions of the 
corresponding elements in Δ are given by 

 

  
  
  

 

Example 2 

 Write the cofactors of the elements of the second row of the determinant and hence 
evaluate the determinant. 

 

1 2 3

4 3 6

2 7 9


  

Solution

 

 Let 

 Δ = 

1 2 3

4 3 6

2 7 9




 

Let C21, C22, C23 be the cofactors of the element of second row in Δ. Then 

C21=cofactor of (-4)=(-1)2+1 2 3

7 9
=-(18+21)=-39 

C22=cofactor of (3)=(-1)2+2
1 3

2 9 =+(9-6)=3 

C23 = cofactor of (6)=(-1)2+3 1 2

2 7
 = (-7-4)=11 
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  Δ = -4 C21 +3 C22 + 6 C23 

=-4(-39)+3(3)+6 (11)  

= 156+9+66 

=231 

SELF-CHECK EXERCISE- 3.1 

Q1. Define determinant. 

Q2. Find the value of the determinant 

  det A = 

1 18 72

2 40 96

2 45 75

 

3.4 PROPERTIES OF DETERMINANT 

Although the following properties of determinants hold good of determinants of any 
order, we shall verify then for determinants of third only.  

(1) The value of a determinant remain unaltered if the rows and columns are 
interchanged. i.e. 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
   
  

1 2 3

1 2 3

1 2 3

a b c

a b c

a b c

 
 
 
    

Proof 

 = a1 (b2c3 – b3c2) – b1 (a2c3 –  a3c₂) + c1(a2b1 – a3b2) 

 =a1 (b2c3 – b3c2) –  a2b1c3+ a3b1 c2+ a2 b3 c1 – a3 b2 c1 

==a1 (b2c3 – b3c2) – a2 (b1 c3 – b3c1)+a3 (b1 c2 –  b₂c₁) 

= 
1 2 3

1 2 3

1 2 3

a b c

a b c

a b c

 
 
 
  

(by definitions) 

(2) If two adjacent rows (or columns) of a determinant are interchanged, the numerical 
value remains the same, but the sign of the determinant is changed, i.e. 

1 1 1 1 2 1

2 2 2 2 2 2

3 3 3 3 3 3

a b c a b c

a b c a b c

a b c a b c

   
       
      

 

Proof: 
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1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
   
  

2 2 2 2 2 2
1 1 1

3 3 3 2 3 3

b c a c a b
a b c

b c a c a b
   

 =a1 (b1 – c1 – b3 – c1) – b1 (a1 c3 – a3 c1)+c1 (a1b3– a3 b₁)  

= a1 b1 c3 – a1 b3 c1 – a1 b1 c3 – a3 b1 c1 + a1 b3 c1 – a3 b1 c₁ = 0 

 Proceeding as in I, we can expand L. H.S. and R.H.S. and then verify that 

 L.H.S. = R.H.S. 

 Instead of the first two rows, we can interchange any two consecutive rows and verify 
the same result. 

 The same result can also be verified by interchanging any two adjacent columns. 

 Cor: The sign of a determinant is either changed or in not changed according as the 
number of interchanges of two adjacent rows (or columns) is odd or even. 

 The cor: can be easily proved by using Property (2) 

 (3) If the two rows (or columns) of a determinantare identical the value of the 
determinant is zero, i.e 

 
1 1 1

1 1

3 3 3

1 0

a b c

a b c

a b c

 
   
  

 

Proof: 

 
1 1 1

1 1

3 3 3

1

a b c

a b c

a b c

 
   
  

1 1 1 1 1 1
1 1 1

3 3 3 3 3 3

b c a c a b
a b c

b c a c a b
   

 =a1 (b1 – c1 – b3 – c1) – b1 (a1 c3 – a3 c1)+c1 (a1b3– a3 b₁)  

= a1 b1 c3 – a1 b3 c1 – a1 b1 c3 – a3 b1 c1 + a1 b3 c1 – a3 b1 c₁ = 0 

 Similarly, we can verify the result when two columns are identical. 

 (4)If all the elements of any one row (or column)are multiplied by the same constant, 
then the original determinant is multiplied by that constant, i.e.- 

 Proof: 

 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ka kb kc a b c

a b c k a b c

a b c a b c

   
       
      

 (by definitions) 
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L.H.S 
1 1 1

2 2 2 1

3 3 3

ka kb kc

a b c ka

a b c

 
   
  

2 2 2 2 2 2
1 1

3 3 3 3 3 3

b c a c a b
kb kc

b c a c a b

     
      

     
 

= k 2 2
1

3 3

b c
a

b c
- b1 

2 2

3 3

a c

a c
2 2

3 3

a c

a b
+ c1 

2 2

3 3

a b

a b
 

 = k 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 
 
  

= R.H.S 

Similarly, we can verify the result when all the elements of any one column are multiplied by 
the same constant k. 

 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

ma mb mc a b c

na nb nc mnk a b c

ka kb kc a b c

   
       
      

 

(5)If the elements of any row (or column) of a determinant are multiplied in order by 
the cofactors of the corresponding elements or any other row (or column) then the sum of the 
products thus obtains is zero. 

 i.e. a1 A2 + b1 B₂+c1 C₂ = 0.  a2 A3 + b2 

B3+c2 C3 = 0 etc.  

and a1c2 B2 + a3 B3 =  0 etc.  

Proof: 

 Let Δ =
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 
 
  

 

and A1, B1, C1, A2, B2, C2, etc, are the cofactors of a1, b1, c1, a2, b2, c2, etc. respectively in Δ. 

 Then 

A2 = - 2 2

3 3

a c

a c
 =- (b1, c3- b3 c1) = b1 c3 + b3 c1 

B2 = + 2 2

3 3

a c

a c
 = a1 c3 - a3 c1 

C2 = - 2 2

3 3

a c

a c
 = - (a1 b3- a3 b1) = -a1 b3 + a3 b1 

 a1 A2 + b1 B2 + c1 C2 = a1 (-b1 c3 + b1 c1) 



 

77 
 

 + b1 (a1 c3 – a3 c1) 

 c1 (-a1 b3 + a3 b1)  

 =-a1 b1 c2+ a1 b3 c1 + a1 b1 c3– a3 b1 c1– a1 b3 c₁ + a3 b1 c1 = 0  

Similarly, we can prove the other results. 

 Cor: If the element of any row (or column) are multiplied in order by the corresponding 
co-factors of the same elements, then the sum of these products thus obtained is the 
determinant itself. 

 We have already proved the results 

a1 A1 + a1 b1 +c1 C1 = Δ 

a2 A₂+ b₂ B₂+ c₂ C₂ = Δ 

and 

 a3 A3+a3 B3+c3 C3 = Δ etc. 

 (6) If each element of any row (or column) is the sum of two numbers, then the 
determinant can be expressed as the sum of two determinants whose other rows (or columns) 
are not altered i.e. 

= 
1 1 1 1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

     
 
 
  

 = 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 
 
  

 

 + 
1 1 1

2 2 2

3 3 3

  
  
  

 
 
 
  

 

 Proof: 

 If A1, B1, C1, be the cofactors of the elements a1 +1, b1 + β₁, c1+1 of the first row of 
the determinant of the left side, then 

= 
1 1 1 1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

     
 
 
  

 = (a1 + 1)A1 + (b1+ β1) B1 +(c1+1) C1 

=(a1 A1 +b1 B1 + C1)+(α1 A1 + β1 β1 +1 C₁) 

= 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 
 
 
  

 + 
1 1 1

2 2 2

3 3 3

  
  
  

 
 
 
  

 

=R.H.S. 

 Similarly, we can verify the property when each element of any column is the sum of 
two numbers. 
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 (7) The value of a determinant remains unaltered if to all the elements of any row (or 
column) are added the same multiplies, of the corresponding elements of any numbers of the 
other rows (or columns) i.e. 

 
1 2 3 1 2 3 1 2 3

2 2 2

3 3 3

a ma na b mb nb c mc nc

a b c

a b c

      
 
 
  

 

  = 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 

 Proof: 

L.H.S. 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

+ 
2 2 2

2 2 2

3 3 3

ma mb mc

a b c

a b c

+  

  
3 3 3

2 2 2

3 3 3

na nb nc

a b c

a b c

 

  by property (6) 

1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 + m 
2 2 2

2 2 2

3 3 3

a b c

a b c

a b c

 +  n 
3 3 3

2 2 2

3 3 3

a b c

a b c

a b c

 

L.H.S. 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 + m × 0 + n × 0 

 =R.H.S. 

 The same property can be verified by taking columns instead of rows. 

 (8) If the elements of a determinant are polynomial in x and two rows (or columns) of a 
determinant become identical when x = a, then (x – a) is a factor of the determinant.  

Proof: 

 Let Δ be the determinant in which the elements are polynomial in x. Then after 
expansion Δ will also be a polynomial inx. 

 Let Δ = f(x) 

  Δ =0 when x=0 

(or columns) are identical] 

  f(a) = 0 
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Thus shows that (x – a) is a factor of Δ. 

Example 3 

Find the value of the determinant Δ without expanding where 

 Δ = 
o b c

b o a

c a o






 

Solution: 

 Δ = 
o b c

b o a

c a o






 

 Taking out (-1) common, each from R1, R2& R3 we get 

 = (-1)3

o b c

b o a

c a o






 

Interchanging rows & columns, we get 

 = (-1)3

o b c

b o a

c a o





= (-1) Δ = - Δ 

 = 2 Δ = 0  Δ = 0 

Example 4 

 Without expanding the determinant, show that (a +b+c) is a factor of the following 
determinant: 

 

a b c

b c a

c a b

 

Solution : 

 Let Δ = 

a b c

b c a

c a b

 

Applying c1 + c2+C3 

 =
a b c b c

a b c c a

a b c a b

 
 
 
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Putting a+b+c = 0 in the determinants  

 Δ = 

0

0

0

b c

c a

a b
 = 0 

each element of c1 is zero 

(a+b+c) is a factor of the determinant 

Example 5 

Show that 

1

1

1

a bc

b ca

c ab
 = (b - c) (c - a) (a - b) 

Solution: 

 Δ = 

1

1

1

a bc

b ca

c ab
=

1

0 ( )

0 ( )

a bc

b a c a b

c a b a c

 
 

 

  R2 - R1 

  R3 - R1 

 = (a - b) (c - a) 
1

1

c

b


= - (a - b) (c - a) b - c) 

 = (a - b) (b – c) (c – a) 

 Example 6 

Show that =  = a3 + b3 + c3 - 3abc 

 Solution: 

 
b c a b a

c a b c b

a b c a c

 
 
 

= 
a b c b a

c a b c b

a b c a c

 
 
 

 

 = (a + b + c) 

1

1

1

b a

c b

a c

 

 = (a + b + c) 1 1 1
c b b a b a

a c a c c b

 
  

 
 

 = (a+b+c) (a2 – b2+ c² – ab – bc – ca)  

=a3+b3c3 – 3abc 

Solution of system of linear equation 
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Determinants can be usefully employed to solve simultaneous linear equation in two or more 
unknowns and the method of solving simultaneous linear equation by determination is known 
as Crammer's rule. 

 Let us consider two linear equations in two unknowns x any y. 

  a1x + b1y=c₁ 

  a₂x + b₂y = c₂ 

Solving these two equations by ordinary rules, we get 

 x = 1 2 2 1

1 2 1 2

c b c b

a b a b




  y = 1 2 2 1

1 2 2 1

a c a c

a b a b




 (1) 

where a1 b2 – a2b10 

Using determinants of second order, we can write the solutions (1) in the form: 

 x = 

1 1

2 2

1 1

2 2

c b

c b
a b

a b

 1 and y





1 1

2 2 2

1 1

2 2

a c

a c
a b

a b





 

where Δ = 1

2 2

1a b

a b
Δ1 and Δ2 are 

obtained by from by replacing the first and second column by the column of numbers on the 
right side of the given equation (i.e. by the column of constants c1, c2) according as it is the 
value of x or y. 

Example 7 

 Solve by using determinants  

3x – 4y=12x – 7y=3 

Solution 

 The equations are  

3x – 4y= 1 and 2x – 7y=3 

Here Δ = 
3 4

2 7




= -21 + 8 = - 13  0 

The solution are 

x = 

1 4

7 12 53 7

13 13 13
and


  

 
  
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y = 

3 1

9 2 72 3
2

13 13 13

 
  

  
 

Hence the required solutions are  

 x = 5

13
  y = 7

13
  

Linear equations is three unknowns  

Let us consider the system of linear equation 

 a1x+b1y+c1z= d₁ 

 a₂x + b₂y + c₂z = d₂ 

a3x+b3y+c3z=d3 

where Δ = 
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 0 

Hence x = 1


 y = 2


 z = 3


 

where Δ1 = 
1 1 1

2 2 2

3 3 3

d b c

d b c

d b c

 Δ2 = 
1 1 1

2 2 2

3 3 3

a d c

a d c

a d c

 

 and Δ3 =  
1 1 1

2 2 2

3 3 3

a b c

a b c

a b c

 

We can this rule (Crammer Rule) of solving a system of linear equations only when Δ 0. 

Example 8 

Solve the following equations using determinants:  

2x – y+z=11,x+2y+3z=2, 3x+y – x=6. 

Solution 

The given system is 

2x – y+z=11  

x+2y+3z=2  

3x+y – z=6 
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Here Δ = 
2 1 1

1 2 3

3 1 1





 = 25  0 

Δ1 = 
11 1 1

2 2 3

6 1 1





= -85 

Δ2 = 
2 11 1

1 2 3

3 6 1

= 70 

Δ3 = 
2 1 11

1 2 2

3 1 6


= -35 

 x = 1 85 17

25 5

 
 

 
 

 y = 2 70 14

25 5


 

 
 

 z = 3 35 7

25 5

 
 

 
 

Hence the required solution are  

 x = 17

5
 y 14

5

   z = 7

5
 

SELF-CHECK EXERCISE 3.2 

Q1. Explain the various properties of determinant. 

Q2. Verify the following result  

  

2

2

2

1

1

1

a a

b b

c c

= (a - b) (b - c) (c - a) 

Q3. Evaluate the following determinants: 

 (i) 
3 5 2

8 9 17

3 6 3

 



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 (ii) 
2 3 30

5 4 54

6 1 42

 

3.5 SUMMARY 

 In this Unit, we were introduced to the concept of determinants. A determinant is a 
unique scalar quantity associated with each square matrix. In the last section of this unit we learnt 
about the different properties of determinants. 

3.6 GLOSSARY 

 1. Determinant : A unique scalar quantity associated with each square matrix. 

 2. Co-factor : The number Cij = (–1)i+j Mij is called the co-factor of element aij in A. 

 3. Minor : The minor of an element is the determinant of the sub-matrix obtained 
from a given matrix by deleting the row and the column containing that element in 
denoted by Mij.   

3.7 ANSWER TO SELF CHECK EXERCISES 

Self-check Exercise 3.1 

Ans. Q1. Refer to Section 3.3.1 

Ans. Q2. Solution 

 det A = 
1 18 72

2 40 96

2 45 75

 

 If you expend the determinant by using the elements of the first column, then you will get 

 
1 18 72

2 40 96

2 45 75

 
 
 
  

 = 1 
40 96

45 75
 -2 

18 72

45 72
 +2 

18 72

40 96
 

 = 1(3000 – 4320) –2(1350 – 3240) +2 (1728 – 2880) 

 = 1×(–1320) –2 × (-1890) +2 (-1152) 

 = –1320 + 3780 – 2304 

 = –3624 + 3780 = 156Ans. 

Self-check Exercise 3.2 

Ans. Q1. Refer to Section 3.4 

Ans. Q2. Applying row operation (Property 5) 
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 2 2 1

3 3 1

( 1)

( 1)

R R R

R R R

  
  

 

 the given determinant the determinant so obtained  

 

2

2 2

2 2

1

0

0

a a

b a b a

c a c a

 

 

 

 Expanding the new determinant by the elements of first column, you will get 

 
2 2

2 2

b a b a

c a c a

 

 
 = 

( )( )

( )( )

b a b a b a

c a c a c a

  
  

 

 Again performing row operations  

 2

1

( )
R R

b a



 

 3

1

( )
R R

c a



 

 You will have  

 (b – a) (c – a) 
1

1

b a

c a




 

 =  (b – a) (c – a){(c + a) – (b + a)} 

 = (b – a) (c – a)(c – b)  

 = (a – b) (b – c)(c – a) 

Ans. Q. (i) 
3 5 2

8 9 17

3 6 3

 




 

 Let Δ = 
3 5 2

8 9 17

3 6 3

 




 

 Operating C1 C1 + C2 + C3 

 Δ =  
3 2 2 5 2

8 9 17 9 17

3 6 3 6 3

   
  
  
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 =  
0 5 2

0 9 17

0 6 3






 = 0 

  all the element of C1 are zero, so using p. 7 

 (ii) Let Δ =  
2 3 30

5 4 54

6 1 42

 

  Taking 6 common from C3 

  Δ = 6  
2 3 5

5 4 9

6 1 7

 

  Operating C3 C3 – C1 – C2 

  Δ = 6  
2 3 0

5 4 0

6 1 0

= 6 (0) = 0 
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3.9 TERMINAL QUESTIONS 

Q.1 Expand the following determinants 

(i) 
1 2

1 2

a a

a a

 
 

 (ii) 
1 2 3

4 3 6

2 7 9




 

Q.2 Write cofactors of the elements of the second row of the determinant and hence evaluate 
the determinant. 

 
I a bc

I b ca

I c ac
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Q.3 Show that 

 

2

2

I a a

I b b

I c c

 = (a - b) (b - c) (c - a) 

Q.4 Solve the linear equations 

 x – 2y=4  

-3x+5y=-7  

Q. 5 Using Crammer's rule solve the following system equations. 

 2y – 3 z=0,x+3y=-4, 3x+4y=3. 
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Unit- 4 

SIMPLE DIFFERENTIATION 

STRUCTURE  

4.1 Introduction  

4.2 Learning Objective 

4.3 Differentiation  

4.3.1 Basic Theorems on Differentiation  

 4.3.1.1 Theorem 1. The derivative of a constant is 0 

 4.3.1.2 Theorem 2. d

dx
(cu) = c d

dx
(u), u being a function of x. 

 4.3.1.3 Theorem  3. d

dx
 (u+v) =  d

dx
 (u) + d

dx
(v) 

 4.3.1.4 Theorem 4. d

dx
 (u, v) = u d

dx
 (v) + v d

dx
 (u)  

 4.3.1.5 Theorem 5. If u and v are functions of x, then  d

dx

u

v
 
 
 

 = 2

du dv
v u

dx dx
v


 

Self-check Exercise 4.1 

4.4 Function of a function rule 

Self-check Exercise 4.2 

4.5 Parametric function 

Self-check Exercise 4.3 

4.6 Economic Application of Derivatives 

 4.6.1 Revenue Functions and Cost Functions 

Self-check Exercise 4.4 

4.7 Summary 

4.8 Glossary 

4.9 Answers to self check Exercises 

4.10 References/Suggested Readings 

4.11 Terminal Questions 
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4.1 INTRODUCTION 

 This unit introduces some of the basic techniques of calculus and their application to 
economic problems. We shall be concerned here with what is known as the differentiation. 

4.2 LEARNING OBJECTIVES  

 The objective of this unit is to make student learn : 

 The meaning of Differentiation 

 Different theorems on Differentiation  

 To explain parametric functions 

 To apply the derivates to solve economic problems 

4.3 DIFFERENTIATION 

Differentiation is a method used to find the slopeof a function at any point. Although 
this is a useful tool in itself, it also forms the basic for some very powerful techniques for 
solving optimization problems.The basic technique of differentiation is quite straight forward 
and easy to apply. Consider a simple function that has only one term 

y=2x2 

 To derive an expression for the slope of this function for any value of x the basic rule of 
differentiation requires you to: 

 a) multiply the whole term by the value of the power of x, and 

 b) deduct 1 from the power of x. 

 In the above mentioned example, there is a term in x2 and so the power of x is reduced 
from 2 to 1. Using the above rule the expression for the slope of this function therefore 
becomes 

 2 × 2x2-1 = 4x 

This is known as the derivative of y with respect to x, and is usually written as dy/dx. 

 In the study of most economic problems, we are confronted with the issue of finding out 
the effect of changes in certain economic variables on a certain economic phenomena. We are 
therefore, interested in knowing the direction and magnitude of change ina particular economic 
variable as a result of the change in the value of other related variables. It is eventually a 
problem of finding out the rate of change. It may be the rate of change in the dependent 
variable say, demand, with respect to the change in the explanatory variable say, price. 

 Another familiar example is the consumption function. 

Let 

 C=a+bγ 

 where C is consumption expenditure and y is income. When y is increased by a small 
increment ∆γ, C increases by A and we have 
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 C+∆C = a+b (γ+γ ∆) 

   =a+bγ+b ∆γ 

 ∆C  = –C+ a + bγ == b∆γ 

  
γ

C


 = b 

 i.e. for a small unit change of y (income) C (consumption) increases by the amount b. 

  
γ

C


= b 

 b is called the marginal propensity to consume.  

We shall now reconsider the derivate more rigorously and show it as a limit and also 
show it as a slope of a curve. 

Instead of using such functions as y = 4x or y = 2x², we may take a more rigorous 
approach and write it in the abstract form as follows: 

 Let y be a function of x i.e. y= f(x), then a change in y is due to a change in x and 
consequently the rate of change in y will depend on the rate of change in x. 

Thus
0

Lim y

x x


 

 = ( ) ( )f x x f x

x




   

 If it exists it is called the derivative or differential coefficient of y, w, r, t', x and is 
denoted by or y' (x) or DY or Y1 or y' 

 Thus dy

dx
= 

0

Lim y

x x


 

 = 
( ) ( )

0

Lim f x x f x

x x


 

 


 

Note 1: The notation dy

dx
is only an operational symbol. It is not ratio of dy to dx. It only stands 

for derivative of y, w, r, t, x. 

2.The derivative of f(x) will exist only if lim of thefunction exists. 

 It follows that the function may have derivative at some points and not at other points 
where limits do not exist. For example the derivative of y = |x|at x= 1 exists. 

  dy

dx
 =  

(1 ) (1)

0

Lim f h f

h h

 


 

 =  
(1 ) (1)

0

Lim h

h h

 


 = 
1 1

0

Lim h

h h

 


 

 = 
0

Lim h

h h
 
   

 = 
0

Lim

h 
 1 = 1 

But the derivative of y=|x| at x=0 does not exist  
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 dy

dx
 = 

(0 ) (0)

0

Lim f h f

h h

 


does not exist. 

3. The process of finding the differential coefficient of a function is called differentiation. 
Differentiation from abnitio or from first principle. When derivatives are obtained without 
making use of the standard theorems on differentiation, the technique of doing it is called 
differentiation from definition or from first principle or from abnitio. It involves the following 
five steps: 

 Step I:Let y = f(x) be the given function of x 

Step II: Let δ x be increment in x and  δ y thecorresponding in  δ y.  

 y+ δ y = f(x+ δ x)    ...(2) 

 Step III: Subtract (1) from (2) to get 

  (y+ δ y) – y = f(x+ δ x) –f(x)  

or δ y = f(x + δ x) –f(x)   ...(3) 

 Step IV: Divide both sides of (3) by  x we get  

  
y

x




 = 
( ) ( )f x x f x

x




 
   ...(4) 

 Step V: Proceed to the limit x → 0 to get 

  
dy

dx
=

0

Lim

x 

y

x




 = 
( ) ( )

0

Lim f x x f x

x x


 

 


  ...(5 

Example 1. Differentiate from first principle. 

  (a) y = x² (b) y = x  

Solution: (a) 1.y = x²  ...(1) 

II. Let x be an increment in x and y the corresponding increment in y. 

 y + δy = (x + δx)² = x² + 2x δx + (δx)²  .......(2) 

III. Subtracting (1) from (2), we get 

 (y+ δy) – y – (x² + 2xδx + (δx)² – x²  

or δy = δx (2x + δx)    .......(3) 

IV. Dividing both sides by x. we get 

 
y

x




 =  
(2 )x x x

x

 



 

 = 2x + δx 

V. Proceeding to the limit as δx→0, we get 
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dy

dx
 = 

0

Lim

x 

y

x




 =  
0

Lim

x 
 (2x+ δx) = 2x 

 Hence  
dy

dx
 = 

( )d y

dx
= 

d

dx
(x²) = 2x 

(b) 1. y = x    ...(1) 

II. Let x be an increment in x and by the corresponding increment in y. 

 y + δy = x  + δx   ...(2) 

III. Subtracting (1) from (2), we get 

 (y + δx) – y = x  + δx - x  

 or   =    x x x
x x x

x x x




 
  

 
 

  = 
( )x x x

x x x




 
 

 = 
x

x x x


 

 

IV. Dividing both sides by, δx, we get 

 
y

x




 = 
1

x x x 
× 

1

x
 

 or  
y

x




 = 
1

x x x 
 

V. Proceeding to the limit as δx 0, we → get 

 
y

x




 = 
0

Lim

x 

y

x




 

 =
0

Lim

x 
1

x x x 
 

 = 
1

x x
 = 

1

2 x
 

 Hence  
y

x




 = 
( )d y

dx
= 

( )d x

dx
 = 

1

2 x
 

4.3.1 BASIC THEOREMS ON DIFFERENTIATION 

4.3.1.1 Theorem 1. The derivative of a constant is 0  

Proof: Let y = c, then 
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 y +  δy = c 

  δy = c – c = 0 

 and  
y

x




 = 
0

x
 = 0   ...(4) 

 
dy

dx
 = 

0

Lim

x 

y

x




 = 
0

Lim

x 
 (0) = 0 ...(5) 

Examples :(i) 
d

dx
 (20) =0 (ii) 

d

dx
 (-36) =0 

4.3.1.2 Theorem 2. 

 
d

dx
 (cu) = c 

d

dx
(u), u being a function of x. 

 Proof: Let y = cu   ...(1) 

  then y + δy = c (u + δu) ...(2) 

 and  y + δy – y = cu + cδ u – cu 

 or δy = cδ u.   ...(3) 

 Dividing both sides by δx, we get 

 
y

x




  = c 
u

x




    ...(4) 

 Taking limits as δx → 0, we get 

 
0

Lim

x 

y

x




 = 
0

Lim

x 
u

x




 
 
 

 

  = c
0

Lim

x 
u

x




 
 
 

  ...(5) 

 Hence 
d

dx
 (cu) = c 

d

dx
(u)  ...(6) 

Examples :
d

dx
 (3x2) = 3 

d

dx
 (x2) = 3.2x = 6x. 

4.3.1.3 Theorem 3:
d

dx
(u+v) = 

d

dx
 (u) +

d

dx
 (v) 

 where u and v are (derivable function of x) 

 Proof: Let y = u + v    ...(1) 

  y +δy = [(u + δu) + (v + δv)]  ...(2) 
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 and  y + δy – y = [(u)  δu) + (v + δv)] – [u + v] 

 or  δy = δu + δv   ...(3) 

 Dividing both sides by δx, we get 

 
y

x




 = 
u

x




 + 
v

x




    ...(4) 

 Taking limits as δx → 0, we get 

 
0

Lim

x 

y

x




 = 
0

Lim

x 
y v

x x

 
 
   

 

 or  
dy

dx
 = 

du dv

dx dx
  

 Hence 
d

dx
(u+v) = 

d

dx
 (u) +

d

dx
 (v) 

Similarly 
d

dx
(u - v) = 

d

dx
 (u) - 

d

dx
 (v) 

Hence  
d

dx
(u+v) = 

d

dx
 (u) +

d

dx
 (v) 

In general, 
d

dx
(u1 + u2 + u3 + ....) 

 = 
d

dx
(u1) + 

d

dx
(u2) + 

d

dx
(u3 ) 

also  
d

dx
(u1 + u2 + u3 + ....) 

 = 
d

dx
(u1) - 

d

dx
(u2) - 

d

dx
(u3 ) 

 Note: Combining Theorem 2 and Theorem 3, we get 

 
d

dx
(au+by) + a 

d

dx
 (u) + b 

d

dx
 (v) where a and b are constant. 

4.3.1.4 Theorem 4.
d

dx
(u.v) = u

d

dx
 (v) +v

d

dx
 (u) 

 where u and v are functions of x. 

 Proof: Let y = u. v     ...(1) 

 Then y + δy = (u + δu) (v + δv)  ...(2) 
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 and y + δy – y = (u + δu) (v + δv) – uv   

 or δy = uv + u δ v + v δu + δuδv – uv 

or  δy = uδu + vδu + δuδv.  ...(3) 

 Dividing both sides by δx. we get 

 
y

x




 = u 
v

x




 + 
u

x




 + 
u

x




 .δv   ...(4) 

 Taking limits as δx → 0. we get 

 
0

Lim

x 

y

x




 = 
0

Lim

x 
u v u

u v v
x x x

   
  

    
 

 +
0

Lim

x 

u

x


 0

Lim

x 
.δv  

 or 
dv

dx
 = u. 

dv

dx
 + v. 

du

dx
 + 0 

 [as δx→0. δu→0. δv→0.] 

  = u. 
dv

dx
 (v) + (v).  

du

dx
 + u  ...(5) 

 Thus  
d

dx
 =  (u. v)  =  u.

d

dx
 + (v) + v.  

d

dx
u  

i.e. the derivative of the product of two functions = first function × derivative of the second + 
second functions × derivative of the first. 

Similarly. If y = uvw. 

then   
d

dx
 (u)  = 

d

dx
 (uvw) = 

d

dx
[(uv) . w]  

  = (uv)  
d

dx
 (w) + w 

d

dx
 (uv) 

= (uv)  
d

dx
 (w) + w ( ) ( )

du dv dv
u v v u

dx dx dx
   

 

= (uv)  
d

dx
 (w) + w u

d

dx
 (v) + wv

d

dx
 (u) 

 Then result can be generalizd for any number of derivable functions.  

4.3.1.5 Theorem 5. If u and v are functions of x, then 
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d

dx
u

v
 
 
 

 = 
2

du dv
v u

dx dx
v


 

 
d

dx
(quotient of two functions) = 

 

2

2

Denominator  (Numerator) - Numerator  (denominator)

Denominator

d d

dx dx
 

 

Proof : Let y = 
u

v
     ...(1) 

 then y + δy =  
u u

v v







   ...(2) 

 and  y + δy - y =  
u u

v v







- 
u

v
 

 δy =  
( )

uv v uv u u

v v v

 


  
  

δy =  
( )

u v u u

v v v

 





    ...(3) 

Dividing both sides by δx, we get 

 
y

x




 = 
. .( )

( )

u v u u u v u u
xx v v v

v v v

   
 


 




 

 
y

x




 =  
( )

u v
v u

d x
v v v

 
 






   ...(4) 

 Taking limits as δx→ 0, we get 

 
0

Lim

x 

y

x




 =   
0

Lim

x  ( )

u v
v u

d x
v v v

 
 






 

 or  
2.

u v u v
v u v udy d x x x

dx v v v

   
   

 
   

 Hence 
dy

dx
u

v
 
 
 

 = 
2

. ( )
d d

v u u y
dx dx

v


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Now we shall write the derivatives or some most important functions of x. All these results can 
be derived from the principles discussed earlier. These results along with the thermos discussed 
above will help to solve problems.  

(A) 1.  If y=xn 

  
1( )n ndy d

x nx
dx dx

   

 2. If y = eax 

  
dy d

dx dx
 (ax) = ax log a 

 3. If y = ex 

  
dy d

dx dx
  (ex) ex 

 4. If y = log x,  

  
dy d

dx dx
  (log x) = 1 

 5. (i) If y = sin x,  

   
dy d

dx dx
  (sin x) cos x 

  (ii) If y cos x 

   
dy d

dx dx
  (cos x ) = - sin x etc. 

(B) If instead of x, we have a function of x say a + bx, then 

 1. If y =  (a + bx)n 

   
dy d

dx dx
  (a + bx)n = n (a + bx)n-1 (b) 

 2. If y =  aa+bx 

   
dy d

dx dx
  (aa. bx) = aa - bx log a (b) 

 3. If y =  ea+bx 

   
dy d

dx dx
  (ea-bx) = ea-bx - (b) 

 4. If y =  log (a + bx), 
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dy d

dx dx
  [log (a + bx)] = 

1

a bx
 -(b) 

 5. If y =  sin (a + bx) 

   
dy d

dx dx
  [(sin(a + bx)] = cos (a + bx) – (b) 

 6. If y =  cos (a + bx) 

   
dy d

dx dx
  [cos (a + bx] = sin (a + bx) – (b) 

Note: In all such questions, we have to multiply by b i.e. coefficient of x.  

(C) If instead of x, we get u, which is any function of x i.e. u = u (x) then 

 1. If y = u, then  

   
dy d

dx dx
  (un) = n un-1 ×

du

dx
 

 2. If y = an, then  

   
dy d

dx dx
  (au) = au. log a ×

du

dx
 

 3. If y = e4, then  

   
dy d

dx dx
  (un) = (e4) = e4 ×

du

dx
 

 4. If y = log u, then  

   
dy d

dx dx
  (log u) = 

1

u
×

du

dx
 

 5. If y = sin u. then  

   
dy d

dx dx
  (sin u) = cos u ×

du

dx
 

If y = cos u, then  

   
dy d

dx dx
  (cos u) – sin u ×

du

dx
 

Note : In all such questions, we have to multiply by  

 
du

dx
 =  i.e. d.c. of u, w.r.t. x 

Example 1 : Differentiate w.r.t. x. 
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 (i) x5, 
1

8x , x, 3 5x , xe 

 (ii) (3x -4)5, (5 - 4x)7 5 2x  - 1 

 (iii) – 
1

2 1x
. 

1

3 4x
.

3/2

1

( )a bx
 

Solution :  

 (i) (x5) = 5x5-1 = 5x4 

  
d

dx

1

8x
 
  
 

= 
d

dx
(x8) = –8x-8-1 = –8x-9 

  
d

dx
( x ) = 

d

dx
(x12) =  

1
2 1

1

2
x   = 

1

2 x
 

  
d

dx  3 5x = 
d

dx
(x53) = 

5
3 1

5

3
x   =

2
3

5

3
x  

  
d

dx
 (xe) = e xe-1 

 (ii) 
d

dx
(3x -4)5 = 5(3x -4)5-1 (3) = 15(3x -4)4 

  
d

dx
(5x -4)7 = 7(5 -4x)7 (-4) = -28(5 -4x)6 

d

dx
3 2 1x  = 

d

dx
1

5(2 1)x    

= 
1

5
(2x - 1)1/5-1 (2) 

= 
2

5
(2x - 1)-4/5 

 (iii) 
d

dx

1

2 1x
 = 

d

dx
1(2 1)x     

  = -1(2x - 1)-1-1 (2) 

  = -2(2x - 1)-2 = 
2

2

(2 1)x 
 

  
d

dx
1

3 4x
 
  

 = 
d

dx
(3 – 4x)-1 
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  = -1(3 - 4x)-1-1 = -4 

  = 4(3 - 4x)-2 = 
2

4

(3 4 )x
 

 
d

dx 3
2

1

( )a bx

 
 

 
 = 

d

dx
[(a – bx)3-2] 

  = 
3

2
3

( )
2

a bx


 (-b) 

  = 
3

2


 (a - bx)-5/2 = 

5/2

3

2( )

b

a bx
 

Example 2. Differentiate w.r.t.x 

 (i) y = 
2 3

4

2 2 4x x

x

 
  (ii) y = 

1
x

x
  

Solution :  

 (i) y = 
2 3

4

2 3 4x x

x

 
 = 

2

4

2x

x
 - 

3

4

3x

x
 - 

4

4

x
 

  = 
2

2

x
 - 

3

x
+ 

7

4.

x
 

 
d

dx
(y) = 

d

dx 2 7

2 3 4

xx x

    
 

 
d

dx
(y) = 

2

2

x

 
 
 

–
d

dx
3

x
 
 
 

+
d

dx 7

4

x

 
 
 

 

 = 2
d

dx
(x-2) - 3 

d

dx
(x-1) + 4 

d

dx
(x-4) 

 = 2(-2) x-2-1 -3.(-1)x-1-1 +4(-4) x-4-1 

 = - 4 x-3 + 3x2 -16 x-5 

 = 
3

4

x 2

3

x 5

16

x
 

(ii) y = 
1

x
x

  = 1 1
2 2x x   

 
d

dx
(y) = 

d

dx
1 1

2 2x x    
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    1 1
2 2

d d
x x

dx dx
   

 
31

2 2
1 1

2 2
x x   

 
1

2 x
 – 

1

2 x
 

Example 3. Differentiate w.r.t.x. 

 (i) (5 – 2x) (2x3 + 3)  (ii) x (1+x) (1+2x) 

 (iii) 
1x

x


    (iv) 

1

1

x

x




 

 (v) 
1

1

x

x




 

Solution : (i) Let y = (5 – 2x) (2x3 + 3) 

 
d

dx
(y) = 

d

dx
 [(5 – 2x) (2x3 + 3)] 

applying u x v formula, we get 

 
d

dx
=(5 – 2x) 

d

dx
 (2x³+x)+(2x³+3)

d

dx
 (5 – 2x) 

 = (5 – 2x) [2.3x²+0] + (2x3+3). [ 0 – 2.1] 

 = (5 – 2x) x 6x² + (2x³+3) × (-2)  

= 30x2 – 12x3– x3 – 6 

 =30x2 – 16x3 – 6 

(ii) Let y=x (1+x) (1+2x)  


d

dx
(y) = 

d

dx
 [{x (1+x)} (1 +2x)}  

 Applying u.v. formula, we get 

 
d

dx
=[x (1+x)

d

dx
 (1+2x)+(1+2x) 

d

dx
  [x (1+x)]  

 =x(1+x)2+(1+2x) [x 
d

dx
(1+x)+(1+x) (x)] 

= 2x (1+x)+(1+2x) [x. 1+ (1+ x) 1] 

 = 2x (1+x)+(1+2x) (1 + 2x) 
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 = 2x (1+x) + (1 + 2x)² 

(iii) Let y =
1x

x


 

  
d

dx
(y) = 

d

dx
1x

x


 

Applying 
u

v
formula we get 

2

( 1) ( 1) ( )
dy d d

x x x x
dx dx dx

x

   

 

 =  
2

1
(1) ( 1)

2
x x

x

x

  
 

( 1)

2

x
x

x


  

= 
2. ( 1)

2 .

x x

x x

 
 = 

2 1

2

x x

x x

 
 

= 
1

2

x

x x


 

(iv) Let y = 
1

1

x

x




= 
1

2

1
2

(1 )

(1 )

x

x




 

 
dy

dx
=

dy

dx

1
2

1
2

(1 )

(1 )

x

x

 
   

 

 Applying 
u

v
 formula, we get 

 
dy

dx
 = 

1 1 1 1
2 2 2 2(1 ) (1 ) (1 ) (1 )

(1 )

d d
x x x x

dx dx
x

          


 

 

1 1 1 1

2 2 2 21 1
(1 ) (1 ) (1 ) (1 )

2 2
(1 )

x x x x

x

 
    


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 = 

1 1
2 2

1 1
2 2

1 (1 ) 1 (1 )
2 2(1 ) (1 )

(1 )

x x

x x
x

 


 


 

 = 
1 1

2 2

1 (1 ) (1 )
2 (1 ) (1 )

(1 )

x x

x x

x

   
  


 

 = 
1

2 1 1
2 2

1

(1 ) (1 ) (1 )x x x  
 = 31

2 2

1

(1 ) (1 )x x 
 

(v) Let y = 
1

1

x

x




 

dy

dx
=

d

dx
1

1

x

x

 
   

 

 Applying 
u

v
 formula, we get 

 
dy

dx
 = 

       
2

1 1 1 1

1

d d
x x x x

dx dx

x

     


 

 = 
   

2

1 1
1 1

2 2

1

x x
x x

x

   
     

   


 

  1

2

d
x

dx x

 
  
 

 

  = 

   
2

1 1

2 2

1

x x

x x

x

 



 

  = 1 
1

2 x
 . 

2

[1 1 ]

1

x x

x

  


 = - 

1 .

2 x  2

2

1 x
 

  = 
2

1

(1 )x x
 

Example 4. Find the derivative w.r.t.x.  

(i) xa+ax+a+ 2 a - 3 x + x ( )x ( )a e
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(ii) log 2x + sin (3-4x) +4e-2x 

Solution: 

(i) Let y = x² + ax + aª + 2 a - 3 x + x 

  (y) = [xa+ax+aa+2xa/2-3ax/2 + ee/2]  

 =  (xa) +  (ax) +  (aa) +  (xa/2) -3 (ax/2) +  (ex2) 

 = axa-1+ax log a +0+2.  xa/2-1 - 3ax/2 

  log a  + eex/2 . 

= axa-1 + ax log a + axa/2-1 - 3/2 log ax/2 + ex/2 

(ii) Let y = log 2x + sin (3-4x) + 4 e-2x] 

  (y)= [log 2x + sin (3 - 4x) + e-2x]  

=  [log 2x]+  [sin (3-4x)] 4 [e e-e2x] 

 =  [2] + cost (3-4x). (-4)+i.e-2x (-2) 

 = -4 cos (3-4x) - 8 e-²x 

Examples 5: Differentiate w.r.t.x. 

(i) xx+xlx (ii) x2  

(iii) log  

Solution: (i) Let y=xx+x1/x=u+v (say)  

so that  =  (u) +  (v) 

Now u = xx 

taking logarithm of both sides, we get 

 log u= log(xx)=xlog x 

Differentiating w.r.t.x, we get 

( )x ( )a e

d

dx

d

dx

d

dx

d

dx

d

dx

d

dx

d

dx

d

dx

2

a

1

2

1

2

d

dx

d

dx

d

dx

d

dx

d

dx

1

2x

1

x

2 1

1

x

x




ax b

cx d

 
  

dy

dx

d

dx

d

dx
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 (log u) = (x log x) = x (log x) + log x (x)  

or  = x  +log x (1)=1+ log x 

 or = u(1+log x) = xx (1 + log x) 

Also v = xl/x 

Taking logarithm of both sides, we get  

log v = log(x1/x)=x log x  

differentiating w.r.i.x, we get 

(log v) = = (log x) log x  

or   

or    =  -  =  

or  = v -  = x1/x  

  =  +  

 = xx (1+ log x) + x1/x  

(ii) Let y = x2 = = x2  

taking logarithm of both sides, we get 

 log y = log  

 = log x2 + log (2x - 1)1/2 -  log (x + 1) 

 = 2 log x +  log (2x - 1) -  log (x + 1) 

 (log y) = [2 log x +  log (2x - 1) -  log (x + 1) 

d

dx

d

dx

d

dx

d

dx

1
.
du

u dx
1

x
 
 
 

du

dx

d

dx

d

dx
1

log x
x

 
 
 

1

x

d

dx

d

dx
1

x
 
 
 

2

1 1 1
. log
dv

x
v dx x x

      
   

1 dv

v dx 2

1

x 2

1

x 2

log x

x 2

1 log x

x



dv

dx 2

1

x 2

1 log x

x


2

1 log x

x

 
 
 

dy

dx

du

dx

dv

dx

2

(1 log )x

x



2 1

1

x

x




1/2

1/2

(2 1)

( 1)

x

x




1/2

1/2

(2 1)

( 1)

x

x

 
  

1

2

1

2

1

2

d

dx

d

dx

d

dx

1

2
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  = 2  (log x) + [log(2x - 1)] - [log(x + 1)] 

 = 2.  + .    (2) .  

 =  +  -  

   = y  

 =  

(iii) Let y = log  

 or y=log (ax+b) - log (cx + d) 

Differentiating w.r.t.x, we get 

  = [log (ax + b) -  log (cx + d)]  

 =  [log (ax + b) -  log (cx + d)]  

 =   (a) -  (c) 

 =  -   

Derivative Implicit Functions  

If the function is given in the form f(x, y) = A, where 

A is a constant and we want to find (y), then we  

differentiate both sides w.r.tx and then solve for . 

Example 6: Find if  

(i) x³/2+y³/2 = a³/2 

(ii) ax²+2hxy+by2=0  

1

y

dy

dx

d

dx

1

2

d

dx

1

2

d

dx

1

x

1

2

1

2 1x 
1

2

1

1x 

2

x

1

2 1x   
1

2 1x 

dy

dx    
2 1 1

2 1 2 1x x x

 
     

2 1/2

1/2

(2 1)

( 1)

x x

x


    

2 1 1

2 1 2 1x x x

 
     

ax b

cx d

 
  

dy

dx

d

dx

d

dx

d

dx

d

dx

1

ax b
1 .

cx d

a

ax b
.c

cx d

dy

dx

dy

dx

dy

dx

dy

dx
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Solution: x3/2+y3/2 = a3/2 

Differentiating w.r.t. x, we get d  

 (x3/2+ y³/2) + (a3/2)  

or  x½ +  y½ = 0 

or  y½  = -  x½ 

or  = -  =  

(ii) ax2 + 2hxy + by2 = 0 

Differentiating w.r.t. x, we get  

  [ax2 + 2hxy + by2] =  (0) 

  [(ax2) +  (2hxy) +  (by2) = 0 

or a. 2x + 2h  (xy) + b  (by)2 = 0 

or a. 2x + 2h (x.  x + y.1) + b2y. = 0 

or  = [2hx + 2by] = - 2 ax - 2hy 

or  =  

or  =  

SELF-CHECK EXERCISE 4.1 

Q1. Differentiate w.r.t. x 

  (i)  (x3)  (ii) (xe) 

  (iii) (2x – 4)3  (iv)  (2 – 4x)5 

(v)  (7x – 8)4 (5x – 1)3 (vi) ex log x  

(vii)  

d

dx

d

dx

3

2

3

2

dy

dx

3

2

dy

dx

3

2

dy

dx

1
2

1
2

3 / 2

3 / 2

x

y

1
2

1
2

x

y

d

dx

d

dx

d

dx

d

dx

d

dx

d

dx

d

dx

d

dx

dy

dx

dy

dx

dy

dx

2[ ]

2[ ]

ax hy

hy by

 


dy

dx

2[ ]

2[ ]

ax hy

hy by

 


d

dx

d

dx

1 log

xx e

x



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4.4 FUNCTION OF A FUNCTION RULE 

(1) If y = f(u) is derivable at u and u= g(x) is derivable at x, then y is derivable at x and 

  =  ×  

(2) If y = f(u), u= g(z), z=h(x) then  

  =  . .  

Example 8: Find if 

(i) y=  (ii) y = (ax+b)n 

Solution: (i) y = 3x4+5)½ 

Put u = 3x4+5 so that 

 y= u½ 

  =  .  

Now =  (u½) = u½-1 = u½-1 ==  (3x4+ 5)-½ 

 =  [3x4 + 5] = 3.4x3 + 0 = 12x3 

  =  × 12x3 =  

OR. We could have directly written as  

  =  (3x4 + 5)½ 

 =  

 =  (3x4 + 5)½ [12x3 + 0] 

 =   

(ii) y = (ax + b)n. Put u = ax + b 

So that y = un 

  =  .  

dy

dx

dy

du

du

dx

dy

dx

dy

du

du

dz

dz

dx

dy

dx

43 5x 

dy

dx

dy

du

du

dx

dy

dx

d

du

1

2

1

2

1

2

dy

dx

d

du

dy

dx
1

22

1

2(3 5)x 
1

2

3

4

6

(3 5)

x

x 

dy

dx

d

dx

1
2 14 41

(3 5) (3 5)
2

d
x x

dx
          

. .
dy du

i e
dx dx

  
 

1

2

1
2

3

4

6

(3 5)

x

x 

dy

dx

dy

du

du

dx
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  = n un-1. and  = a 

  = n un-1. a = na. (ax + b)n-1 

Or Directly we could have written 

  =  (ax + b)n 

 = [n (ax + b)n-1]  

 = n (ax + b)n-1.a 

 = na (ax + b)n-1 

Example 9 : Differentiate w.r.t. x 

(i) + cos  (ii) sin (2 ) 

(iii) log (1+ )  

Solution : (i) + cos  

 = then  (y) = + cos ( ) 

 =  (cos x)½  

 =   (cos x)-½ .  (cos x) + - (sin )  ( ) 

 =  (cos x)-½ - (sin x) - (sin ).  

 =   sin x (cos x)½ -  sin  

=   -  –  sin  

(ii) Let y = sin (2 - x) 

  (y) =  sin (2 - x) 

dy

dx

du

dx

dy

dx

dy

dx

dy

dx

( )
d

ax b
dx
   

cos x x 3x

2 2e

cos x x

d

dx

d

dx
cos x x

d

dx

d

dx
 cos( )x

1

2
d

dx
x

d

dx
x

1

2
x

1

2( )x

 
 
 

1

2
1

2( )x
x

1

2
sin

cos

x

x

1

2( )x
x

1x

x



d

dx

d

dx

1x

x


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 = cos (2 - x).  sin (2 - x) 

= cos (2 - x))   

 = cos (2 - x)  

 = -  cos (2 - x) 

(iii) Let y = log  

   (y) = log  

 =  . log 

 

 =  .  

 =  

SELF-CHECK EXERCISE 4.2 

Q1. Differentiate w.r.t. x 

(i) y = (3x– 5)-1/3  

(ii) log [sin (2x + 5x2)] 

 

4.5 THEOREM : PARAMETRIC FUNCTIONS 

If x = f (t) and y = g (t), then 

  =  /  

u

v 2

( 1) ( 1) ( )
dy d d

x x x x
dx dx dx

x

   

2

1
(1) ( 1)

2
x x

x

x

  

( 1)

2

x
x

x




2. ( 1)

2 .

x x

x x

 

2 1

2

x x

x x

  1

2

x

x x



1

1

x

x




1
2

1
2

(1 )

(1 )

x

x




dy

dx

dy

dx

1
2

1
2

(1 )

(1 )

x

x

 
   

u

v

dy

dx

1 1 1 1
2 2 2 2(1 ) (1 ) (1 ) (1 )

(1 )

d d
x x x x

dx dx
x

          


1 1 1 1

2 2 2 21 1
(1 ) (1 ) (1 ) (1 )

2 2
(1 )

x x x x

x

 
    


1 1

2 2

1 1
2 2

1 (1 ) 1 (1 )

2 2(1 ) (1 )

(1 )

x x

x x

x

 


 


1 1
2 2

1 (1 ) (1 )

2 (1 ) (1 )

(1 )

x x

x x

x

  
 

  


1

2
1 1

2 2

1

(1 ) (1 ) (1 )x x x  
31

2 2

1

(1 ) (1 )x x 

1

1

x

x




dy

dx

dy

dt

dx

dt
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Example 10 : Find  if x = t et and y = 1 + log t 

Solution : x = t et 

 (x) = (t et) 

  = t (et) + et (1) 

  = et (t + 1) 

 y = 1 + log t  

 (y) = (1 + log t)  

  =  =  

  + et (t + 1) 

 =  

Miscellaneous Examples  

Example 11 : If y = log  find  

(ii) y  = log (x + ) show that 

 (x2 + 1)  + xy – 1 = 0 

 and (x2 + 1)   + dx  + y = 0 

Solution : (i) y = log (x + ) 

  (y) =  (x + ) 

 =  (x + ) 

 =  

 =  

dy

dx

d

dt

d

dt

d

dt

d

dt

1

t

dy

dx

dy

dt

dx

dt

1

t

1

( 1) tt t e

2 2x a dy

dx

2 1x  2 1x 

dy

dx

dy

dx

2 1x 

d

dx

d

dx
2 1x 

2 2

1

( )x x a 

d

dx
2 1x 

2 2

1

( )x x a 

1
22 21

1 ( ) .( )
2

x a x    

2 2

1

( )x x a 

2 2

2 2( )

x a x

x a

  
 
  
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 =  

(ii) y  = log (x + ) 

  [y   = log (x + ) 

or  y  [x2 +1)½ +  =  y. 

 =  (x + ) 

or  y  [x2 +1)-½ (2x+  =  

=    [1+ d (x2 +1)-½ (2x)] 

or   +  =  

or   +  =  

or   + -  

or xy + (x2+ 1)  = 1 

Differentiating again w.r.t. x, we get  

+  (xy) -  (1) =  (0) 

or   

    +  - 0 = 0 

or   (x2 + 1)  + . 2x + x + y = 0 

or   (x2 + 1)  +3x + x  + y = 0 

2

1

1x  

2 1x  2 1x 

d

dx
2 1x  d

dx
2 1x 

d

dx
2 1x  d

dx

2 2

1

( )x x a 

d

dx
2 1x 

1

2
2 1x  d

dx

2 2

1

( )x x a 

2 1

xy

x 
2 1x  dy

dx 2

1

1x x  2

1
1

2x

   

2 1

xy

x 
2 1x  dy

dx 2

1

1x x 

2

2

1

1

x x

x

 



2 1

xy

x 
2 1x  dy

dx 2

1

1x 

dy

dx

d

dx
2 1

dy
x

dx
   

d

dy

d

dy
d

dx

2 21 . ( 1)
dy dy dy d

x x
dx dx dx dx

      
  

. .1
dy

x y
dx

   

2

2

d y

dx

dy

dx

dy

dx

2

2

d y

dx

dy

dx



 

113 
 

Example 12 : If x y = a + bx show that  

 or   x  + 2  = 0 

Solution : xy = a + bx 

   (x y) =  (a + bx) 

or  x.  + y.1 = b 

Differentiating again w.r.t. x, we get 

 + y =  (b) = (0) 

or  +  (y) = (0) 

or  x  +  = (0) 

or  x  + + = 0    

or  x  + 2 = 0   

Hence the result. 

Example 13: Differentiate the following functions 

 (i) 7x2 + 2x 

 (ii) log (x2) 

Solution: (i) Let y = 7x2 + 2x 

Then  = 7z where Z = x2 + 2x 

 = 7z log e7 and  = 2x + 2.1 = 2x + 2 

 = .  

2. 7x2 + 2x – (x + 1) log e7 

(ii) Let y = log (x2) 

 then y = log z 

 where z = x2 

2

2

d y

dx

dy

dx

dy

dx

dy

dx

dy

dx

d

dx

dy
x

dx
 
  

d

dx

d

dx
2 dy

x
dx

 
  

d

dx

d dy

dx dx

  
  
  

dy

dx
 dy
x

dx
 
  

dy

dx

2

2

d y

dx

dy

dx

dy

dx

2

2

d dy d y

dx dx dx

  
  

  

2

2

d y

dx

dy

dx

dy

dx

dz

dx

dy

dx

dy

dz

dz

dx
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  =  

 =  x 2x 

 = =  

Example 14. Given that 

 y=(3x-1)² + (2x-1)3 

Find  and the points on the curve for which  = 0. 

So.We have y=(3x-1)2 + (2x-1)3 

 =2(3x-1) (3) + 3 (2x-1)² - (2) 

 = 18x-6+6 (2x-1)² 

if  = 0, then 18x-6+6(2x-1)² = 0  

or 3x-1+4x²-4x+1=0  

or 4x² - x = 0 

 or x (4x-1)=0 

0 or . 

SELF-CHECK EXERCISE 4.3 

Q1. Find 
ௗ௬

ௗ௫
, when  

(i) x = 4t2 + 3t +1, y = 7t - 1  

(ii) x = et log t, y = t log t 

4.6 Economic Application of Derivatives 

 We shall try to express some of the important concepts in economics in terms of 
derivatives and interpret the derivatives with reference to some economic relations. 

1.Ifp=f(q) is the demand curve then price elasticity of demand (ed) is given by 

 ed =  = 
.

 

 |ed | = 
.
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Thus by differentiating the demand function, we canget and then get ed 

Example 15: A demand function is given by q=bp-n Calculate price elasticity of demand. 
Hence discuss the case when n=1 

  (q) =  (b p-n) = b  (p-n) = b. - n p-n+1 

or  = - n p-n+1 

 ed = -  = -  (q = bpn+1) 

 = n.b   q = bp-n 

 = n  

 = n. 

 Thus the demand curve q=b.p-n has elasticity equal to n at all levels of prices.  

when n= 1., demand function is  

 q = b p-1 

and elasticity ed = 1 

 The curve q=b p-n is called the constant outlay curve and price elasticity of demand at 
any point is equal to unity. Such a demand curve is represented by rectangular hyperbola. 

4.6.1 Revenue Functions and Cost Functions  

(a) Marginal Revenue M.R. and Average Revenue Functions A.R. 

 Let R=pq be the total revenue function, then 

 MR =  (R) =  (pq) = p  (q) + q  (p) ........(1) 

 = q + q  

 A R =  = - p 

Since M P = P + . we get  

M R = P  

dq

dp

d

dp

d

dp

d

dp

dq

dp

p

q

dq

dp

p

q



p

q

d

dp

d

dp

d

dp

d

dp

dq

dp

R

q

dp

q

dq

dp

.
p q dp

q p dq

 
 

 
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 = p  

 = p  

 AR  

Thus (4) represent a relation between MR. AR and eq 

From (4) |eq| =  ......(5) 

which⇒ (i)If MR > 0, |eq|>1  

  (ii)If MR = 0, |eq|= 1 

  (iii)If MR < 0.1 eq<1 

(b) Cost Function 

Let total cost function be taken as 

 = aq² + bq+c, a, b, c being constants  

Example 16: Given the price equation p=100 – 2Qwhere q is quantity demanded, find 

(i) the marginal revenue 

(ii) point elasticity of demand when Q = 10  

(iii) nature of the commodity. 

Solution: (i) Since marginal revenue (MR) isobtained by differentiating the total revenue 
function with respect to output Q, we find out total revenue first, which is defined as 

 TR=AR x Q 

 TR = (100 – 2Q) Q 

  = 100Q – 2Q2 

 MR = 100 – 4Q 

(ii) Point elasticity of demand is obtained from the following relation. 

 |ed| =  when Q = 10 

 MR=100 – 4 x 10=60 

 P =AR=100 – 2 x 10= 80  

1 .
1

.
p dq

q dp

 
   
 
  

1 .
1

qe

   
  

1 .
1

qe

   
  

AR

AR MR

AR

AR MR
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 |ed| =  = 4 

Example 17: A consumer has a utility function u=u = (Q)β> 0; 0< β<1. 

Does the utility function display diminishing marginalutility? 

Solution: A utility function will display diminishingmarginal utility if the slope of marginal 
utility curve isnegative. 

Now marginal utility (Mv) is given by the derivative of the utility function 

 Mv = = β Q
β-1 

Now slope of Mv is given by 

(Mu) =  

 =  (β - 1) β Q (β – 1)-1 

=  (β - 1) β.Qβ-2 

Since |> β >0, (β -1) <0 

 < 0 and the utility function  

u= Qβ displays diminishing marginal utility.  

Example 18 : Given the consumption function  

C=C(y)=1000 -  

(i) Find marginal propensity to consume when y = 97.  

(ii) Find marginal propensity to save when y = 97. 

(iii) Determine whether MPC ans MPS move in thesame direction when y changes. 

Solution: MPC is given by the differentiation of the function C=1000-  with respect to y. 

 Now C=1000- 5000 (3 + y)-1 

MPC =  = 0 - 1 (-1)  

 =   =  = = 0.5 

(ii) Saving function is defined as 

80

80 60

du

dQ

d

dQ

2

2

d u

dQ

2

2

d U

dQ

5000

3 y

5000

3 y

dc

dy 2

5000

(3 )y

2

5000

(3 97) 2

5000

(100)

5000

10000
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 S = y - c 

 S = y - 1000 + 5000 (3 + y)-1 

MPS = = 1 – 0 + (-1)   

= 1 - 0.5 = 0.5 

(iii) In order to verify whether MPC and MPS move in the same direction or not, we are to 
find out the rate of growth of MPC and MPS. That means we are to find out the derivatives of 
MPC and MPS. 

Now   (MPS) =  = - (-2)  

since < 0 and    > 0, MPC and  

MPS Move in the opposite direction as y changes.  

Example 19: (i) Find the total revenue, marginal revenue at q=3. If the demand curve is p=

 

(ii) Find the Marginal cost, Average cost and their slopes if the total cost function is π = 
0.4q³-0.9q2 +10q+10. 

Solution: (i) Total revenue = px q=q (TR)  

Marginal Revenue = (TR)= [(10-2q)½] 

(MR) 

 = q + 10-2q½    (1) 

 =  

 =  

 =  

  TR at q = 3 is equal to 3.  = 3.  = 3.2 = 6 

 MR at q = 3 is equal to  = =  

(ii) Total Cost (TC) is given as  
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π = .04 q³-0.9q² + 10q = 10  

Marginal Cost (MC)=  (π) 

 = (0.4q3-0.9q2+10q+10) 

= .04 × 3q³ -0.9 x 2q + 10 

= 12q² - 1.8q+10 

Average Cost (AC) =  = (0.4q² -0.9q² + 10 + ) 

Slope of MC =  (MC)=  (.12q²-1.8q+10)  = 024.18 

Slope AC =  (AC) = (0.4q² -0.9q² + 10 + ) = 0.8a + 0.9-  

SELF-CHECK EXERCISE 4.4 

Q. 1 A demand function is given by q = ap-n calculate price elasticity of demand.  

Q. 2 Given the price equation p = 100 – 2Q where q is quantity demanded, find  

 (i) marginal revenue  

 (ii) point elasticity of demand when Q = 10 

4.7 SUMMARY 

 In this unit we studied the concept of differentiation. Then we have discussed various 
theorems of differentiation. Lastly the use of differentiation to find out the Marginal Revenue, 
Average Revenue, Average cost and Marginal cost was illustrated. 

4.8 GLOSSARY 

 1. Differentiation : Differentiation is a method used to fine the slope of function at 
any point. 

 2. Derivative : The derivative is the instantaneous rate of change of a function 
with respect to one of its variables. 

4.9 ANSWER TO SELF CHECK EXERCISE  

Self-check Exercise 4.1 

Ans. Q1. (i) 3x2 (ii)  exe-1 (iii)  6 (2x – 4)2 (iv) 20(2 – 4x)4 

    (v) (7x -8)3 (5x – 1)2 (245x – 148)    (vi) ex (vii)

 

Self-check Exercise 4.2 
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Ans. Q1. (i)    – (3x – 5) -4/3 (ii) 10.x    

Self-check Exercise 4.3 

Ans. Q1.  (i) 
଻

଼௧ାଷ
      (ii) 

௧(௖ା௟௢௚ ௧)

௘௧ (ଵ ା௧௟௢  ௧)
 

Self-check Exercise 4.4 

Ans  Q1.  Refer to Section 4.6 (Example 15) 

Q2. (i)  MR  = 100 – 4Q    (ii)  |ed| = 4 
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4.11 TERMINAL QUESTIONS  

 Q.1 Show that the demand curve qqa =b, where a and b are constants has constant 
elasticity equal to –a. 

 Q. 2 Find total Revenue (R). Marginal Revenue (R') at q = 0, q = 5 for the demand 
curve p = 100 – eq. 
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2

cos(2 5 )

sin(2 5 )

x
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Unit-5 

PARTIAL DERIVATIVES  & HOMOGENEOUS  

FUNCTIONS  

STRUCTURE  

5.1 Introduction  

5.2 Learning Objectives 

5.3 Partial Derivatives  

5.3.1 Technique of Obtaining Partial Derivatives  

Self-check Exercise 5.1  

5.4 Higher order Partial Derivatives  

Self-check Exercise 5.2 

5.5 Total Differential and total derivatives 

Self-check Exercise 5.3 

5.6 Application in Economics  

Self-check Exercise 5.4 

5.7 Homogeneous Functions  

 5.7.1 Euler's Theorem on Homogeneous Function  

Self-check Exercise 5.5 

5.8 Summary 

5.9 Glossary  

5.10 Answer to self check Exercises  

5.11 References/Suggested Readings 

5.12 Terminal Questions  

5.1 INTRODUCTION 

Till now we have considered functions of 4.1 one independent variable only viz. V = 
f(x). But in economics, we have relations involving more than one independent variables for 
example, the demand for ghee depends not only on the price of ghee but on the price of other 
related goods also. Consequently we define functions of more than one variable. Partial 
Derivatives. 
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5.2 LEARNING OBJECTIVES  

 After the completion of Unit, the student will learn  

 The meaning if Partial derivatives  

 To apply the techniques of obtaining partial derivatives  

 To explain higher order partial derivatives  

 To apply the derivatives to solve economic problem. 

5.3 PARTIAL DERIVATIVES   

Definition : Function of Two Variables. Let u be a symbol which has one definite value 
for every permissible pair of value of the independent variables x and y, then u is called a 
function of the two variables x and y and we write u = f(x, y).  

Similarly, we can define a function of the variables and write it is as u = f(x1, x2, ....... 
xn) where x₁, x₂...........xnare n independent variables. 

 Definition: Partial Derivative, Let u= f(x, y) be a function of two variables x and y, then 
the partial derivative of u w.r.t, x is defined to be the ordinary derivative at u w.r.t. x regarding 
y as constant. Similarly the partial derivative of u w.r.ty is the ordinary derivative of u w.r.t. y 
regarding x as constant and we write as 

  =   

 Thus while finding partial derivative of z= f(x, y) w.r.t. x at (x, y), we assume that y 
remains fixed and the change in the function is due to the change in x from x to x+ δx. This 
renders the function of two variables as the function of a single variable. 

Similarly the partial derivative of u= f(x, y) w.r.t. y at (x, y) defined as  

 =   

 Notation : Partial derivative of u = f (x, y) w.r.t. x is written as  

 or  or ux or fx or u1 or f1 

Partial derivative of u = f (x, y) w.r.t. y is written as  or  or uy or fy or u2 of f2 

It may be noted that at (x, y) does not depend on x only but depends upon both x 

and y. 

Similarly depends upon both x &y. 
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Actually means the relative change in u due to a small unit change in x, regarding y 

as constant and similarly means the relative change in u due to a small unit change in y, 

regarding x as constant. We shall explain this concept through an example.  

Let x be labour, y be land and u be wheat. If we have the functional relationship x, y 
and u. 

then u = f(x, y) 

i.e. Wheat production depends on land and labour. Our problems is to find the change in wheat 
(u). When there is a small unit change in the amount of labour (x) holding land (y) constant. 

 Similarly we want to find the change in wheat (u), when there is a small unit change in 
the amountof land (y) holding labour (x) constant. 

 The first problem is equivalent to the partial derivative of u w.r.t. x, regarding y as 
constant and the second problem is equivalent to finding the partial derivative of u w.r.t. y, 
regarding x as constant and in notations we would write: 

= partial derivative of u w.r.tx. 

 = change in u due to a small change in x regarding y as constant.  

 = partial derivative of u w.r.ty. 

 = change in u due to a small in y regarding x asconstant 

 Thus partial derivative of a function w.r.t. a variable represents the relative change in 
the function due to small change in that variable regarding all other variables as constant. 

5.3.1 TECHNIQUE OF OBTAINING PARTIAL DERIVATIVES 

While obtaining partial derivatives, the variable with which we are not directly 
concerned is to be regarded as constant. This makes the technique of partial derivative quite 
similar to that of ordinary partial derivative. Therefore, the rules for theorems used for finding 
partial derivatives are similar to those applied for finding derivatives. For example If u is a 
single-valued function of x and y, 

ie. u = f(x, y), then 

1.  (u)n = nu-1 ,  (u)n = nun-1  

2.  (au) = au log a. ,  (au) = aulog a.  

3.  (eu) = au  ,  (eu) = eu  
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4.  (log u) = ,  (log u) =  . 

SELF-CHECK EXERCISE 5.1 

 Q1. Differentiate Z = 6x3 + 5x2 + 10xy, partially with respect of x twice. 

 Q2. f (x, y) = x3 + y5 +4x2y4, find fxy and fyx 

5.4 HIGHER ORDER PARTIAL DERIVATIVES 

 The technique of obtaining higher order partial derivatives is the same as we applied for 

higher order derivatives.Ifu= f(x,y) then we have defined and  as the first order partial 

derivatives of u w.r.t x and y respectively. If we find the partial derivative of the firstorder 

partial derivative get second order partial derivatives.The partial derivative of  w.r.t. x is 

called thesecond order partial derivative of w.r.t. x andis written as 

 =  or  or uxxf xx 

Similarly order partial derivative of  w.r.t. of  y is calledthe second order partial 

derivative of u w.r.t. y and is written as 

=  or  or uyyfyy 

The partial derivative of w.r.ty and of  w.r.t. x are called the second order cross 

partial derivatives of u and are written as 

 = or  or uxyfxy 

 = or  or uyxfyx 

Thus we see that a function of two variables u = f(x, y) yields 

(i) Two first order partial derivatives viz. 

 fx and fy, and 

(ii) Four second order partial derivatives, viz 

 fxx, fyy, fyx, fyx, 

Example: 1 Find the first order and second order partial derivatives of 
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u = 2x2 + 4xy + 5y2 

Solution: u = 2x2 + 4xy + 5y2 

  =  (2x2 + 4xy + 5x2) 

 = 2   (x2) + 4y  (x) + 0 

 = 4x + 4y (  y is treated as constant) 

  =  (2x2 + 4xy + 5x2) 

 = 0 + 4x  (y) + 5  (y2) 

 = 4x + 10y 

 =  (4x + 4y) = 4 

 =  (4x + 10) = 10 

= =  (4x + 4y) = 4 

 =  (4x + 10y) = 4 

Example 2: Find all the first order and second order partial derivatives of the function 

 u = log (x2 + y2) 

Solution: u = log (x2 + y2) 

   =  [log (x2 + y2)] 

 =   (x2 + y2) 

 =  2x =  

 and  [log (x2 + y2)] 

 =   (x2 + y2) 
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 =  2y =  

 =  

 =  

 =   

 =   

 =   

 =  

 =  

 =   

 =  

 =  

Example 3: If u = 2 (ax + by)2 - (x2 + y2) show that  

  + =4 (a2 + b2) - 4  

Solution : u = 2 (ax = by)2 - (x2 + y2) 

   =  [2 (ax + by)2 - (x + y2) 
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=2.2 (ax+b)1,  (ax + by) - (x² + y²) 

 = 4 (ax + by) (a) – 2x 

 = (ax + by) - 2x 

 = =    =  [4(a2 + b2) -4] 

 =4a.a-2=4a2-2  

=  [2 (ax + by)² - (x² + y²)] 

 = 2.2 (ax + by) (ax + by - (x² + y²) 

 =4(ax+by). (b) - 2y 

 = 4b (ax + by) -2y 

 =2(ax+by)² - (x² + y²) 

 = =   =  [4(a2 + b2) -4] 

 = 4b.b - 2 

 = 4b2 - 2 

  + = 4a2 - 2 + 4b2 - 2 

 = 4a² + 4b² - 4 

 =4(a² + b²+) - 4 

Example 4: Find all the second order cross partial derivations for the function 

 u=x4-5xy³+6x² + 2xz² - xyz.  

Solution: Here u = f(x, y, z) 

the second order cross partial derivatives are given by 

 , , , , ,  

Since u = x4 - 5xy3 + 6x2 + 2xz2 - xyz 

  =  (x4 - 5xy3 + 6x2 + 2xz2 - xyz) 

  = 4x3  - 5y3 - 1 + 12x + 12z2 - yz 
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  =  (x4 - 5xy3 + 6x2 + 2xz2 - xyz) 

 = – 15xy2 - xy 

 =  (x4 - 5xy3 + 6x2 + 2xz2 - xyz) 

 = 4xz - xy 

 = =  (x4 - 5xy3 + 6x2 + 2xz2 - xyz) 

= - 15y2 - z 

= =  (x4 - 5xy3 + 6x2 + 2xz2 - xyz) 

= 4z - y 

= =  (x4 - 5xy3 + 6x2 + 2xz2 - xyz) 

= 4z - y 

= =  (-15xy4 - xy) = -x 

= 4z - y 

= =  (4xz - xy) 

= -x 

Change of order of Differentiation  

 If u = f (x, y) fx, f y, f xy, f yx, are all continuous at the point (x, y) then 

Example 5 : Verify that  

  =  if u  

Solution : u =  
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 =  

 =  

 =   

 =   

 =   

 =  

 =  

 =  

 =   

    =   

 =   
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 =  

 =  

 =   =  

 =  

   =   

 =  

 =  

 =  

 =  

 =   

  

 Hence    =  
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SELF-CHECK EXERCISE 5.2 

 Q1. f (x, x2) = log (x1
2 + x2

2). Find the second order partial derivatives. 

 Q2. f (x, y) = x2 + xy + y2. Find d2y 

 Q3. y = 4x5 + yx4 + 3x + 9, find third order derivative. 

5.5 Total Differential and total Derivative 

(a) Ifu= f(x, y) be a function of two variables, thendu 

 = total change in u due to change in x and y  

= (change in u due to change in x) +  

(change in u due to change in y)  

=(change in u due to a unit change in x ×  

change in x)+(change in u due to a unit 

change in y× change in y). 

 =  dx + . dy 

 du is called the total differential of u.  

(b)if u = f(x, y) be a function of two variables,  

x= (t) and y = (t) 

then  =  + .  

 is called the total derivative of u. Now we shall explain its meaning. We know that

is the change in u due to small unitchange in x holding y constant. Furthermore is the 

change in x due to small unit change in t. Thus .  is the amount of change in u due to a 

small unit change in t that is transmitted through x.Likewise .  is the amount of change 

in u due to a small unit Likewise . is the amount of change in udue to a small unit 

change is t that is transmitted through x.  

the change in u due toa small unit change in t will be the sum of these two effects, which we 
write as  

 =  +  
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 y =  (x), 

Note: If u = f (x, y) and y =  (x) then 

  = +   

 +   

and  x =  (x), 

Similarly if u = f (x, y) and x =  (y) then 

 = +   

= +  

Example 6: Find the total derivative of u w.r.t. t if u = x²+y², x=t, y=2t. Also find the total 
differential du.  

Solution: u= x²+y², x=1,y=2t 

We know that  = +   

Here (x2 + y2) = 2x 

 
=  (x)  (t) = 1. 

 = (u)  =  (x2 + y2) = 2y 

 =  (y)  (2t) = 2. 

   = 2x.1 + 2y.2 

 = 2x + 4y 

Total differential du is give by 

du = .dx +   

 = 2x. dx + 2y. dy. 
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SELF-CHECK EXERCISE 5.3 

Q1. Find the total differential of the function  

y = ax1
2 + 2hx1 x2 +bx2 

5.6 Application in Economics  

Example 7: Let u be utility and x and y be two goods. Then the utility function u = f(x, 

y) show that the marginal rate of substitution of y for x given by is equal in magnitudeto the 

ratio of the marginal utilities (M.U's) taken in reverse order.  

Solution: We assume u is constant because along an indifference curve different combinations 
of x and y give the same utility. 

Let: u= f(x, y) 

  = + .  

 = fx + fy.  

Since u is a constant, = 0 

 fx + fy.  = 0 

 or fy.  = -f x 

 or  =  

But fx = =  Marginal utility of x = Mux 

 fy =  =  Marginal utility of y = Muy 

 = = marginal arate of substitution = -  

Example 8: If f(x, y)=0 show that  

(i)  = -    ...(1) 

(ii)  =  
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Solution: We have already shown in the above example that if f(x) = c then 

  = -    (1) 

Here c = 0 but  (c) =  (0) 

 Result is the same. 

Now  =  

 =   

 =  

But  (fx) =  [fx )x, y)] 

 =  (f x)  +  (fx) 
 

 = fxx + fxy =  Applying formula  

for total derivative  

 = fxx + fxy =  

 =    ...(3) 

 (fy) =  [fx (x, y)] 

 =  (f y)  +  (fy) 
 

 
= fyx + fyy =  

 =     ...(4) 
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Putting these values in (2) we get  

  =  

 =  

 =  

    ( f xy = (fyx) 

which is the required result.  

Example 9: A consumer consumes two commodities x1 and x2 and the utility function is given 
byu = x²+3x1 x₂+5x2 , Find out marginal utilities of x1 and x2 

Solution: The marginal utility is the increase in total utility as a result of consumption of 
additional unit and is given by the derivative. Since the utility function involves two variables 
x1 and x2, the marginal utility of x1 and x2 will be given by the partial derivative of u with 
respect to x1 and x2 respectively.  

Marginal utility of x1 is given by 

 = 2x1 + 3x2 + 0 (since x2 is constant) 

 = 2x1 + 3x2 

Similarly, marginal utility of x2 is given by 

 = 0 + 3x1 + 5 (since x1 is constant) 

 = 3x1 + 5 

Example 10: Given a demand curve of Engel's curvetype 

D=AP Nβ 

where D is demand, P is price, N is income and A,, β are parameters. Find the partial 

derivatives  and  andalso interpret the value of & β. 

Solution: In the function D = A P Nβ, when we differentiate D with respect ot P, N is taken to 
be constant. 

   = (AP-1 Nβ 
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 or   = .  =   

Similarly  = β. APNβ-1 

 = β.  (since P is constant) 

 = β  

From the above partial derivatives  

  =  =   

= Proportionate change in demand 

Proportionate change in price  

=Price elasticity of demand 

Similarly,  

β =  =  

= Proportionate change in demand 

 Proportionate change income  

= Income elasticity of demand 

  and β represent price elasticity and incomeelasticity of demand respectsvely. 

Singns of Partial Derivatives 

 Ifu= f(x, y), then fx shows the rate of change of u w.r.t x treating y as constant and 
fxxshows the rate of change fx w.r.t x treating y as constant. 

 fxx shows whether the function is increasing at increasing rate, decreasing rate or 
constant rate, when x varies and y remains constant. Similarly fyy shows the rate of change of fy 
w.r.t y when x is treated as constant. 

(1)fx> 0 means that the function increases as x increases, treating y as constant. fx<0 means that 
the function decreases as x increase treating y and constant. 

(2)fxx>0 means that the rate of change of the function increases as x increases, treating y as 
constant. fxx<0means the function changes at a decreasing rate. 

Similarly we can interpret signs of fy and fyy 

(3) fxy =fyx<0 means that fx decreases as y increases and fy decreases as x increases. 

(4) fxy=fxy> 0 means that fx increase as y increase and fy increase as x increase. 
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(5)fxy =fyx=0 means that there is no interaction between the variables. 

Marginal Cost and Marginal Products 

(a) If the joint-cost function for producing the quantities x and y or two 
commodities is given by 

  c = f(x, y) 

  then the partial derivatives of c are the marginal cost functions. 

   is the marginal cost wr.t. y  

   is the marginal cost wr.t. x 

In most economic situations, marginal costs are positive. 

For example, If the joint-cost function for producing quantities x and y of two 
commodities is c = x log (5+y), then 

log (5+y) is the marginal cost w.r.t. x,  

 =  is the marginal cost w.r.t. y 

(b)  The production of most commodities requires the use of at least two factors of 
production, for example, labour, land, capital, machines, or materials. If the quantity u of a 
commodity is produced using the amounts x and y, respectively of two factors of production, 
then the production function u= f(x, y) gives the relationship between output u andinputs x and 

y. The partial derivative  ofu w.r.t. x holding y as constant is the marginal productivityof x 

or the marginal products of x and the partial derivative of u w.r.t. y holding x as constant is 

the marginal productivity of y or the marginal products of fy. It may be noted that the 
marginalproductivity of either input is the rate of increase of the total products as that input is 
increased, assuming that the amount of other input remains constant. For example, if the 
production function is 

 u = 4xy - x² - 3y² 

then  = marginal product of x = 4y - 2x  

 = marginal product of y = 4x - 6y 

It may be noted that 
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(i) > 0 for 2y > x or x <2y  

(ii)  = 0 for x =2y  

(iii) <0 for x>2y.  

Similarly and > 0 for y <3 x, =<0 for y =  x.  

and < 0 for y>  x. 

Thus the marginal productivities at first increase and then decrease as input increases. 

Example 11: Give the production function 

P=  

Find the marginal products of Labour and Capital. Also find dP. 

Solution: P=  =(u)-1/p ...(1) 

 where u =   ...(2) 

 = marginal product of labour 

 =   (u)-1/p 

 =  -  (u)1/p-1  

 =  -  (u)1/p-1 (α.pL-p-1) [From (2)] 

 =  αL-p-1(u)-1/p-1 

 = αL-p-1(βK-p + αL-p)-1/p .....(3) 

 = marginal product of C Capital 

 = (u)-1/p 

 =  -  (u)-1/p-1  
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 =  -  (u)1/p-1 (β.pK-p-1) [From (2)]  

 = βL-p-1 u-1/p-1   .....(4) 

 dP =  αL + .dP 

 = αL-p-1 (βK-p + αL-p)-pαL 

  +  (βK-p-1 + αL-p)-1/p dK 

 =  (βK-p + αL-p[αL-1-p + βK-p-1 . dK] 

SELF-CHECK EXERCISE 5.4 

Q1. The Average Cost (AC) of a firm is AC = q2 – 2q + 5. The maximum capacity of the firm 
is 30 units. Find the ranges of the output for which AC is decreasing and for which it is 
increasing. 

Q2. The total cost function is given by C = aebq (a, b are constant). Find the value of q for 
which marginal and average cost for this function is equal. 

 

5.7 HOMOGENEOUS FUNCTIONS 

 A function u= f(x, y) of two variables in x and y is said to be a homogeneous function 
of degree if 

 (a) f(tx, ty)=tnf(x, y) ...(1) 

where t is any positive real number  

or (b) f (x, y) = xn or yn  .....(2) 

 In other words a function is said to be homogeneous of degree n when each of the 
independent variables is multiplied by a positive constant t, the whole function gets multiplied 
by t". We note the following points. 

(i) Ifn<1, the function is homogeneous of degree less than one. In this case doubling of x 
and y will not double the value of function. In other words, the proportionate increase in the 
function will be less than the proportionate increase in the variables x and y or when x and y 
are increases by the factor t. the function will increase by less than the value of t. 

(ii) As a special we n = 0 so that  

f(tx, ty) = t0f(x, y) 

 This is a case of homogenous function of degree zero when x and y are increased by 
factor t, the function does not change at all. The most important example is of demand viz, a 
demand function is homogeneous of degree zero if a fixed proportinate increase in all prices 
and income leaves the demand unchanged. 
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(iii) Ifn=1, the function is homogenous of degree. In this case doubling of x and y will 
exactly double the value of the function. In other words, the proportionate increase in the 
function will be exactly equal to the proportionate increase in x andy. 

 This definition of homogeneous function holds good for more than two variables also.  

In the general case a function of the n variable x1, x2 ...... xn 

 If (a) f(tx1, tx2.....txn)=tnf(x1. x₂).... xn) 

t being a + ve real number 

or (b) f (x1, x2 - > xn) = x1n  

Example 12: (i) The function y = ax2+2hxy + by² is homogeneour of degree 2. 

Here f(x, y) = ax² + 2h xy + by² 

 =a (tx)²+2h (tx) (ty) + b (ty)² 

 = at²x²+2h t2xy + bt2y2  

 = t² (ax² + 2h xy + by²) 

 = t² f(x, y) 

which implies that the function is homogeneous of degree 2. 

(ii) The function y= is homogeneous of degree 0.  

Here f(x,y) =  

 = f (x, y) =  +  

 =   

 =  

 = t0f (x, y) 

which implies that the function is homogenous of degree 0.  

(iii) The function y = log (x + y) is not homogenous 

Here f(x, y) = log(x + y) 

 f(tx, ty) = log tx+ty) 

 = log [t (x + y)] 
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 tlog (x+y) 

Hence the function is not homogenous. 

5.7.1 Euler's Theorem on Homogeneous Function of degree n, then 

 Statement, If u= f(x, y) is a homogeneous function of degree n, then 

 x  + y  = n u. 

Proof: Since u= f(x, y) is a homogeneous function of degree n, by definition, we have 

 u=xn (y/x) 

  =  [xn (y/x)] 

 = xn  [ (y/x)] +  (y/x)  

 = xn1 (y/x)  +  (y/x) [n xn-1] 

 = xn1 (y/x)  + n (y/x) xn-1] 

 = -y.xn-21 (y/x) + n xn-1 (y/x). 

 or x = -yxn-1 1 (y/x) + n xn-1 (y/x). 

  [xn (y/x) 

 = xn  [ (y/x)] 

 = x1 1 (y/x)  

 = x1 1 (y/x)  

 = x1 1 (y/x) 

 or y = yxn-1 1 (y/x) Adding (2) and (3) we get 

 =  = -y xn-1 1 (y/x) + n xn-1 (y/x) yn-11(y/x)  
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 or  = n xn1 (y/x) = n u. [from (1)] 

Hence the result. 

Theorem: The partial derivatives of homogeneous function of degree n are homogeneous of 
degree (n- 1) 

Proof: Letu= f(x, y) be a homogenous function ofdegee n. 

then f(x, y)=xny/x  

(1) Differential partially w.r.t. x we have 

 fx = xn  +  (y/x)  

 = xn (y/x) +  +  (y/x). n xn-1 

 = xn (y/x) +  +  (y/x). n xn-1 

 =-y x-21 (y/x) + nxn-1(y/x) 

 =-xn-1[-y/x ¹ (y/x)+n (y/x)]. 

⇒fx is a homogeneous function of degree n-1.  

Similarly fy can be proved to be a homogeneous function of degree n - 1. 

Example 13: Verify Euler's Theorem for the following functions. 

(i) f(L. K)=ALαK-α, A.α are constants  

(ii) f(L.K)=(αL-α+ βK-p)-1/p α.β.p are constants.  

Solution :Here f (L.K) = A L α K¹-α 

 f(LtK) =  A(t L)α (tK)¹-α 

   = Atα Lαt1- α K)1-α 

   = tα+1-α (ALα K¹-α) 

   =t1f (L.K) 

which  that the function is homogeneous of degree 1. 

 By Euler's Theorem 

 =  = 1.u  ...(1) 

Since u= A Lα K¹-α   ...(2) 

  = (A K¹-α) Lα-1 = AKα-1  =  .u 
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or L   α.u    ...(3) 

  = (ALα) (1 – α) K1-α-1 

 = (1 – α) ALα = u  

or = (1 − α) u. 

Adding (3) and (4), we get 

L  + K  . u (1 – ) u = u ........(1) 

Hence the result 

(ii) Area ƒ (L, K)= [∞L-P+ βK-p]  

f (tL, tK) [ (tL)-p + β (tK)-p 

  = [ (tL)-p + β (tK)-p 

  = [t -p (L-p + K-p)]-1/p 

  = t 1 (L-p + βK-p)]-1/p 

  =  t1f (L, K) 

which⇒ that the function is homogeneous of degree 1. 

By Euler's theorem 

  = 1.u  .....(1)  

Since u (αL-p + βK)-1/p 

  = -  (α 1.-p + βK-p)-1/p-1 (-p α L-p-1) 

 = α L-p (αL-p + βK-p)-t/p-1 

or  = (αL.-p-1 (αL-p + βK-p)-1/p-1 ........(3) 

also  = - (αL.-p+ βK-p)-1/p-1(-p β K-p-1) 

 = β K-p-1 (αL.-p + βK-p)-1/p-1 

or K  = β K.-p (αL-p + βK-p)-1/p-1 .......(4) 

Adding (3) and (4) we get 
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L  + K  = (αL.-p + βK-p)-1/p-1 

 + β K-p (αL-p/-1 + βK-p)-1/p-1 

 =αL-p-1 + βK-p)-p (αL-p + βK-p) 

i.e. L  +   = (αL.-p + βK-p)-1/p-1= u. 

Hence the result 

Example 14: Show that the production function 

u=  

A. H. B. being constants is linear and homogeneous. 

So verify Euler's Theorem. 

Solution: u=  

oru= f(a, b) = (2Hab - Aa² - Bb2)½ 

f(ta, tb) = [2h(ta) (tb) - A (ta)² - B (tb)2]½ 

 =[t² (2Hab - Aa² - Bb2)]½ 

 = [(2Hab - Aa² - Bb2)½ 

 =t1f(a, b) 

which  that the function is homogeneous or degree 1 i.e. the function is linear and 
homogenous.  

By Euler's Theorem 

  1 . u ...(2) 

Here (2Hab - Aa²- Bb2)½ 

 (2Hab - Aα² - Bb²)½ (2 Hb - 2Aa)  

  = 2 (Hb - Aa) 

 =   ....(3) 

  =  (2Hab - Aa² - Bb2)½ 
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 =  (2Hab - Aa² - Bb2)½ (2 Hb – 2Aα) 

 =   

   =    ...(4) 

Adding (3) and (4) we get 

 =  = [Hab - Aa2 = Bb2] 

 =   

Hence the result, 

Example 15: u z = f (u) where u is a function of x and y show that  

(i)  =  if u = x + y 

(ii) x  = y  if u = xy 

(iii) x  = y  = 0  = x . 

Solution: (i) z = f (u) and u = x + y  

  =  [f (u)] = f (u)  = f (u) [from (1)] 

  =  [ f ' (u)] = f (u)  = f (u)  [from (1)] 

Hence  =   

(ii) α = f (u) and u = xy 

  =  [f ' (u) = f ' (u)  = f ' (u) [from (2)] 

 or x  = f ' (u) = xy   ...(3) 

  =  [ f ' (u)] = f' (u)  = f' (u). x  [from (2)] 
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 or y  = f ' (u) = xy   ...(4) 

 Hence from (3) and (4), we get 

 x = y  

(iii) x = f(u) and u =    ...(5) 

  =  [f ' (u) = f ' (u) f ' (u).  [from (5)] 

or x  =  [f ' (u). =   ...(6) 

 =  [f ' (u) = f ' (u) f ' (u).-  [from (5)] 

or   =  [f ' (u). =   ...(7) 

Adding (6) and (7) we get 

(1)  x  + y =  f ' (u) = f ' (u)  = 0 

Hence the result 

Example 16 : If U  = x²+ y²+z2 0 

show that  + y  =  0 

Solution: We have 

 = - (x²+ y²+z2)-3/2. 3x2 (x² + y²+z²)-5/2 

 = -1 (x²+ y²+z²)-3/2.  3x² (x² + y²+z²)-5/2 

Similarly 

=-(x²+ y²+z2)-3/2. 3x² (x² + y²+z²)-5/2 

=-(x² + y²+z²)-3/2. 3y² (x² + y²+z²)-5/2 
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Adding, we obtain the result. 

Example 17: Find of the function 

 ax3 + bx2y+cxy²+d=0 

Solution: Let f(x,y) = ax3 + bx² + cxy² + d  

fx=3ax²+2bxy + cy² 

  fy = bx² + 2cxy 

dy = - fx = -(3ax² + 2bxy + cy²)  

dx fy -bx² + 2cxy 

= -3ax²+2bxy + cy2 

-bx² + 2cxy 

SELF-CHECK EXERCISE 5.5 

Q1. Find the marginal products of the labour and capital for the production functions: 

(i) q=2L2K³ 

(ii) q=10L-L2+2 L K + 50k-2K2. 

(iii) q=5L0.6 K0.4. 

(iv) q=6L0.7 K0.8 

Q2. Verify whether the following functions are homogeneous. If so, verify Euler's 
Theorems. 

(i) u =  (ii) u =  (iii) u = (u/x) 

(iv) u = log  (v) u = AL3/4 K1/4 

Q3. IfU= f(q1. q2) where U is utility and q1 and q₂ are consumption amounts of two 
commodities, find dU. IfU is constant, find marginal rate of substitution in terms of 
marginal utilities. 

Q4. A production function is given by U = AL1/3 K1/3 

Show that total product is not exhausted if each factoris paid a price equal to its 
marginal product. 

  

dy

dx

2 2x y

x y




xy

2 2x y

x y

 
  



 

148 
 

5.8 SUMMARY 

 We have learnt the concept and techniques of obtaining partial derivatives. We have 
also discussed High Order Partial Derivatives. You have learned about the total differential and 
total derivatives. You have also gone through the concept of homogeneous function. Lastly, 
you have learned about how the derivative can be applied in economics. 

5.9 GLOSSARY 

 1. Partial derivative : Partial derivative of a function w.r.t. a variable represents 
the relative change in the function due to small change in that variable regarding all other 
variable as constant. 

 2. Higher Order Derivatives : The derivative is "the rate of change of function at 
a specific point". The derivative of the function f (x) with respect to x at the point x0 is the 
function f' (x0). The derivative other than the first derivative are called the higher order 
derivatives. 

 3. Total differential : Consider the function y = f (x1, x2). By its total differentia, 
we measure the total changing due to change in both x1 and x2 (where x1, x2 are assumed to be 
independent of each other). Thus  

 dy = f1dx1 + f2dx2 is called the total differential of the function y = f (x1, x2). 

 4. Total Derivative : Through total derivative, we measure the rate of change of 
the dependent variable owing to any change in variable on which it dependents, when now of 
the variable is assumed to be constant. 

 Let y = f (x1, x2), such that, x1 = g(t) and x2 = h(t) 

Then we can write  

  

 = f1  + f2  

 which is the total derivative of y with respect to t. 

 5. Homogeneous function : The function f (x1, x2) is said to be homogeneous of 
degree n if f (Kx1, Kx2) = Knf (x1, x2). The power of K is called the degree of homogeny.  

5.10 ANSWER TO SELF CHECK EXERCISES 

Self-check Exercise 5.1 

Ans. Q1. Zx = 18x2 + 10x + 10y 

  Zxx = 36x +10 

Ans. Q2.  f x = 3x2 + 8xy4 + 2y 

  f y = 5y4 + 16xy3 + 2x 

  f xy = 32xy3 + 2 

1 2

1 2

. .
dx dxdy y y
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Self-check Exercise 5.2 

Ans. Q1 f1 =  , f2 =  

  f11 =  

  f12 =  

  f 22 =  

Ans. Q2          =  

   =   

  =  

Ans. Q3.   = 20x4 + 28x3 + 3 

   =  = 80x3 + 84x2 

   =  = 240x2 + 168x 

Self-check Exercise 5.3 

Ans. Q1. y = ax1
2 + 2hx1x2 + bx2

2 

  dy = 2ax1dx1 + 2h(x1dx2 + x2 dx1) + 2bx2dx2 

  = 2(ax1 + hx2) dx1 + 2(bx2 + hx1) dx2. 

Self-check Exercise 5.4 

Ans.Q1. AC is decreasing when < 0 

  i.e. 2q – 2 < 0 i.e. q < 1 

  Thus, AC decreases for 0 < q < 1 
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  and AC increase for 1 < q < 30 

Ans. Q2.  MC = . There derive  shows that for continually right q, MC 

  falls, i.e. < 0  

5.11 SUGGESTED READING 

 1. Allen, R.G.D. (1998). Mathematical Analysis  for Economists, St. Martin's 
Press, New York. 

 2. Chiarg, A.C. (1974). Fundamental Methods of Mathematical Economics, 2nd 
edition, MC Grow-Hill Book Company, New York. 

 3. Henderson, J.M. and Quandt, R.E. (1980). Microeconomic Theory. MC Grow-
Hill Book Company, New York. 

5.12 TERMINAL QUESTIONS 

Q. 1 Find the first order and second order partial derivatives of the following 
function: 

  (i) u = x2 + 3xy + y2  (ii) u = ex2 + y2 

  (iii) u = exy    (iv) u = y2/z. 

 Q. 2 Verify the Euler's theorem for u = x2 log y/x. 

 Q. 3 Find the elasticity of total cost and Average Cost of the function x = 2x2 + 4x + 3 

 

  

dc

dq

dMc

dq

dMc

dq
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Unit-6 

MAXIMA AND MINIMA 

STRUCTURE  

6.1 Introduction 

6.2 Learning Objectives 

6.3 Increasing and Decreasing Function  

Self-Check Exercise 6.1 

6.4 Convexity of a Curve 

Self-Check Exercise 6.2 

6.5 Definition of Maximum & Minimum Value of a Function  

 6.5.1 Greatest and Least Value  

 6.5.2 Criteria for a Maxima or Minima at a Point  

 6.5.3 Point of Inflexion  

Self-Check Exercise 6.3 

6.6 Theorems on Maxima and Minima 

Self-Check Exercise 6.4 

6.7 Economic Applications 

 6.7.1 Cost Minimization  

 6.7.2 Profit Maximization  

Self-Check Exercise 6.5 

6.8 Summary 

6.9 Glossary 

6.10 Answer to self-check exercises  

6.11 References/Suggested Readings 

6.12 Terminal Questions  

6.1 INTRODUCTION 

Maxima and minima plays a very important role in almost all fields and specially in 
economics where a rational consumer always thinks in terms of maximum utility and producer 
always tries to maximise profits and for choosing the least cost combination. We shall develop 
this important technique and illustrate its application in economics. 
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6.2 LEARNING OBJECTIONS 

 After going through this Unit, you will be able to: 

 understand the identification process of maximum & minimum points 

 prove the necessary conditions for maximum & minimum for functions. 

 explain theorems on Maxims & Minima  

 apply the concept of maxima and minima to find out minimum cast and 
maximum profit.  

6.3 INCREASING AND DECREASING FUNCTION 

y=f(x) is said to be an increasing function of x at the point x=a if 

 at x = a > 0 i.e. > 0 

y= f(x) is said to be decreasing function of x at the points x=a if 

  at x = a > 0 i.e. > 0 

Note: 1.x is always supposed to increase, y may increase or decrease as x increases.  

2. The same function may be an increasingfunction in one interval and a decreasing 
function in another interval. 

 e.g. y = sin x is an increasing function as x varies from 0 to π/2 and a decreasing 
function as increases from π/2 to π. 

Example. Test y=20 – 6x+x2 for increasing or decreasing function at the points  

(i) x=0 (ii)  x= 2 (iii) x=4 

Solution: y=20 – 6x+x² 

  =-6+2x=2x – 6 

(i) at x=0 = 2.0-6 = 6<0 

The function or the curve is decreasing at thepoint x=0. 

(ii) at x=2=2.2 - 6 

 =4-6=-2<0  

The function or the curve is decreasing at thepoint x=2 

(iii) at x=4=2.4-6 = 8-6=2>0 

dy

dx x a

dy

dx 

 
 
 

dy

dx x a

dy

dx 

 
 
 

dy

dx

dy

dx

dy

dx

dy

dx



The function is increasing at the point x = 4

SELF-CHECK EXERCISE 6.1 

Q1.  Write down the sufficient condition for increasing function and decreasing function.

Q2. Test y=20 – 6x+x2 for increasing or decreasing function at the points 

(i)x=0 (ii)  x= 2 (iii) x=4 

6.4 CONVEXITY OF A CURVE

 In order to determine the convexity of the curve y= 

second order.If y-f(x) and >0 at x=a, then y has been defin

(a) But if  = f"(x)>0 we say that the functiony is increasing at an increasing rate i.e. the 

rate of change of y is increasing. The curve y = 
curve is concave upward or convex 

(b) Iff "(x) = 0 there will be no curvatureand the curve. 

y= f(x) will be a straight line.

(iii) If f ''(x) <0. then the curve will be cancave de dowanward or 

will be below the tagent. 

From these we conclude that  

1. If f"(a) > 0, the curve y = f

2. If f" (a) <0, the curve y = f

3. If f"(a)=0, the curve is straight line. These cases are illustrated diagrammatically belo

[convex from below 

dy

dx

2

2

d y

dx

2

2

d y

dx

2

2

d y

dx

 

153 

The function is increasing at the point x = 4 

 

Write down the sufficient condition for increasing function and decreasing function.

reasing or decreasing function at the points  

 

CONVEXITY OF A CURVE 

In order to determine the convexity of the curve y= f(x) we consider the derivative of 

>0 at x=a, then y has been defined as an increasing function of x.

(x)>0 we say that the functiony is increasing at an increasing rate i.e. the 

rate of change of y is increasing. The curve y = f(x) lies above the tangent and we say that the 
concave upward or convex dowanward. 

= 0 there will be no curvatureand the curve.  

(x) will be a straight line. 

<0. then the curve will be cancave de dowanward or convex upward and it 

f(x) is concave downward or convex downward at x = a. 

f (a) is concave downward or convex upward at x = a. 

"(a)=0, the curve is straight line. These cases are illustrated diagrammatically belo

 

f"(a)>0. f"(a)>0 

[convex from below fat x = aor concave from above at x=a] 

fig (i) 

Write down the sufficient condition for increasing function and decreasing function. 

(x) we consider the derivative of 

increasing function of x. 

(x)>0 we say that the functiony is increasing at an increasing rate i.e. the 

(x) lies above the tangent and we say that the 

convex upward and it 

(x) is concave downward or convex downward at x = a.  

ward or convex upward at x = a.  

"(a)=0, the curve is straight line. These cases are illustrated diagrammatically below. 



[convex from below 
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f" (a)>0. f"(a) <0 

[convex from below fat x = aor concave from above at x=a] 

fig (ii) 

 

f"(a) <0. f''(a)>0 

[convex from below fat x=a] 

fig (iii) 

 

f''(a) <0. f" (a) <0 

[convex from below fat x=a] 

fig (iv) 
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[f ''(a) = 0. ƒ"(a) > 0] 

fig. (v) 

 

[f ''(a)  > 0. ƒ"(a) < 0] 

fig. (vi) 

 

fig (vii) 



We shall explain these cases below.

Case I.f'(x) > 0 and f ''(x) > 0 

 The curve will have shape as given in Fig. (i) above. It is
concave upward or convex downward.

Since f'(x) > 0, the slope of the curve is positive and since 
tends to become steeper and steeper as x increases. 

Case II.f'(>0 and f''(x) <0. 

 The curve will have shape as given in Fig. (ii) above. It is concave from below i.e. 
concave downward or convex upward.

Since f'(x) > 0, the slope of the curve is positive and since 
on decreasing as x increases. 

Case III.f'(x) <0, and f''(x)>0 

 The curve will have shape as given in Fig. (iii) above. It is concave from above i.e. 
concave upward or convex downward.

Since f'(x) <0 the slope of the curve is negative and since 
on increasing as x increases. 

Case IV.f'(x) <0 and f''(x) <0 

Since f'(x) <0, the slope of the curve is negative and since 
on decreasing as x increases. 

 Thus with the help of second derivative, we have derived the rules to decide about 

rising and failing nature of the curve. But what happens when

above. Here we have to decide about maximum or minimum point ofthe curve, when = 0

Let us consider the following curve.

1. The curve is failing from A to B, from D to F and from H to J, and the corresponding 
function is decreasing. 
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We shall explain these cases below. 

The curve will have shape as given in Fig. (i) above. It is concave from above i.e. 
concave upward or convex downward. 

'(x) > 0, the slope of the curve is positive and since f' '(x) > 0, the slope of the curve 
tends to become steeper and steeper as x increases.  

have shape as given in Fig. (ii) above. It is concave from below i.e. 
concave downward or convex upward. 

'(x) > 0, the slope of the curve is positive and since f ''(x) <0, the slope of the curve goes 

The curve will have shape as given in Fig. (iii) above. It is concave from above i.e. 
concave upward or convex downward. 

'(x) <0 the slope of the curve is negative and since f ''(x)>0, the slope of the curve goes 

'(x) <0, the slope of the curve is negative and since f ''(x) <0, the slope of the curve goes 

Thus with the help of second derivative, we have derived the rules to decide about 

rising and failing nature of the curve. But what happens when = 0 as in Fig. (v) and Fig (v) 

above. Here we have to decide about maximum or minimum point ofthe curve, when = 0

Let us consider the following curve. 

 

The curve is failing from A to B, from D to F and from H to J, and the corresponding 

dy

dx

concave from above i.e. 

'(x) > 0, the slope of the curve 

have shape as given in Fig. (ii) above. It is concave from below i.e. 

'(x) <0, the slope of the curve goes 

The curve will have shape as given in Fig. (iii) above. It is concave from above i.e. 

'(x)>0, the slope of the curve goes 

'(x) <0, the slope of the curve goes 

Thus with the help of second derivative, we have derived the rules to decide about the 

= 0 as in Fig. (v) and Fig (v) 

above. Here we have to decide about maximum or minimum point ofthe curve, when = 0 

 

The curve is failing from A to B, from D to F and from H to J, and the corresponding 
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2. The curve is rising from B to D, from F to H and from J to K, and the corresponding 
function is increasing. 

3. If the curve rises to a certain position and then falls, such a position is called a 
Maximum Point of the curve. D and H are such points in the abovecurve. The ordinate 
that is the value of the function at such a point is called a Maximum value of the 
Function. 

4. If the curve falls to a certain position and then rises, such a position is called a 
Minimum point of the curve, B, F and J are such points. The ordinate, that is the value 
of the function at such points is called a Minimum Value of the Function. 

 Now we can define maximum and minimum values of a function at a point. 

SELF-CHECK EXERCISE 6.2 

Q1. How can be determined the convexity of curve? 

6.5 DEFINITION OF MAXIMUM & MINIMUM VALUE OF FUNCTION 

Maximum and Minimum Values of aFunction: 

(a) A function y = f(x) is said to have a maximum value f(a) at x = a if f(a) ceases to 
increase at x = a and begins to decrease as x increases beyond a. Thus, when x is slightly less 

than a, is positive and when x is slightly greater than a, both f(a-h) and f(a + h). In this way, 

we can also say that a function y = f(x) is maximum at x=aif f(a) >f(x) for all x (xa) lying in 
the interval (a-h, a + h) 

(b) A function y = f(x) is said to have a minimum value f(a) x = a and begins to increase as 

x beyond a. Thus, when x is slightly less than a, is negative and when x is slightly greater 

than a is positive. Also for h>0. f(a) is less than both f(a- h) and f(a + h). In this way, we 

can also say that afunction y = f(x) is minimum at x=a if  

f(a) <f(x) for all x (xa) lying in the interval (a -h, a + h) 

6.5.1 GREATEST AND LEAST VALUES 

 The greatest and least values of a functionare always considered in a certain finite 
interval. The greatest value g= f(d1) means the greatest of all the values of f(x) in the given 
interval (b.c) whereas the least values If(d2) means the least of all the values of f(x) in the 
interval (b.c). 

 It may be also be noted the maximum and minimum values are not always equal to the 
greatest and least values respectively. The distinction between the greatest value f(d1) and the 
maximum value f(a) of a function f(x) in an interval (b.c) is that f(d1) is the greatest of all 
values of f(x) in the small neighborhood of the point a viz. (a – h.a+h). Similar is the distinction 
between the least value of f(x) in (a.b) and a minimum value of f(x) at a point in (a.b) 

 Thus we note that a maximum value of a function f(x) in (a. b) may be less than several 
other values of f(x) in (a.b) may be greater than several other values of f(x) in a.b) may be 

dy

dx

dy

dx
dy

dx
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greater than several other values of f(x) in (a.b). In fact a function may have several maxims 
and minima in an interval and a maximum value may even be less than a minimum value in the 
interval (a.b) 

If a continuous function has a single maximum or single minimum value in an interval, 
then that is also the greatest r the least value of the function in that interval. The maximum 
and minimum values of a function taken together, are called its extreme values and the points at 
which the function attains these extreme values are called the turning points of the function. 

6.5.2 CRITERIA FOR A MAXIMA OR MINIMA AT A POINT 

f(x) if y = f(x) is maximum at x = a, then 

 is+ve of x <a 

and  is - ve of x > a 

Now changes sign from +ve to-ve as x passes through the value a. This change of 

sign can takeplace only when  = 0 at x=a. Thus 

1. y = f(x) is maximum at x = a if  

(i) = 0 at x = a. and  

(ii)  changes sign from+ve to = ve as x passes through the valuea. 

Again since  changes sign from+ve to -ve whilepassing through a, the point of 

maxima. is a decreasing function of x at x=a and its derivative  = is negative, 

Hence we get anotherrule for maxima as follows. 

II. y = f(x) is maximum at x = a if 

(i) = 0 at x=a. 

(ii) is negative at x=a. 

(B) If y = f(x) is minimum at x=a, then is-ve for x, a and is +ve for x> a. 

Now change sign from -ve to +ve as x passes through the value a. This change of 

sign can take place only when =0 at x=a. Thus  

dy

dx

dy

dx

dy

dx
dy

dx

dy

dx

dy

dx

dy

dx

d

dx

dy

dx
 
 
 

2

2

d y

dx

dy

dx

2

2

d y

dx

dy

dx

dy

dx

dy

dx
dy
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I. y= f(x) is minimum at x=a if

(i)  0 at x=a 

(ii) changes sign from-ve to+ve as x passesthrough the value a

Again since change sign from

minima, therefore is an increasing function of x at x=a and its derivative

positive. Hence we getanother rule for minima as follows. 

II. y= f(x) is maximum at x= a if

(i) =0 at x=a. 

(ii) is positive at x = a. 

6.5.3 POINTS OF INFLEXION

1. The maximum and minimum values of a function are together called its 

2. The values of y = f(x) at the points where 

function. 

3. Points of Inflextion. For y = 

at that point. But if = 0 point. But if 

a maximum or minimum value at x=a.

dy

dx

dy

dx

dy

dx

dy

dx

dy

dx

2

2

d y

dx

dy

dx
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(x) is minimum at x=a if 

ve to+ve as x passesthrough the value a. 

change sign from-ve to +ve while passing through, a the point of 

is an increasing function of x at x=a and its derivative

another rule for minima as follows.  

if 

POINTS OF INFLEXION 

he maximum and minimum values of a function are together called its extreme values

) at the points where  = 0 are called statianary values of the 

extion. For y = f(x) to have a maximum or minimum value at 

= 0 point. But if dy = 0 at x = a, it is not necessary that y 

a maximum or minimum value at x=a. 

 

fig. (i) 

d

dx

dy

dx

ve to +ve while passing through, a the point of 

 = is 

extreme values. 

statianary values of the 

(x) to have a maximum or minimum value at x=a. =0 

it is not necessary that y f(x) may have 

d

dx

dy

dx
 
 
 

2

2

d y

dx

dy

dx



It may happen that inspect of 

Fig. (i) below or decreasing as in Fig. (ii) below as x passes througha.

The function does not change from an 
Thus dy/dx does not change sign while passing through a. Hence at such a point, the function 
cannot have a maximum or minimum value. Such points are called the points of inflexion of 
the curve. 

SELF-CHECK EXERCISE 6.3 

Q1. Find the maxima and minima for the following function 

y = 3x4 – 10x3 +6x2 +5 

Q2. Find the point of inflection for the function.

 f (x) = 3x3 + x2 + x + 1  

Q3. Find the stationery values and test whether they are maximum or minimum for 

 Z = 3x2 + 6xy + 7y2 

6.6 THEOREMS ON MAXIMA A

1. If c is a constant, then any value of 
makes f(x)+ca maximum or a minimum and conversely. 

2. If c is a positive constant, then any value of x which makes 
minimum also makes c f(x) 

3. Ifc is negative constant, then any value of
minimumand any value of x which makes 
conversely. 

4. Any value of x which makes 

 (i) [f(x)]n a maximum or a minimum.

 (ii) Log f(x) a maximum or a minimum and conversely.
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It may happen that inspect of  = 0 at x = 0, the function may go on increasing as in 

Fig. (i) below or decreasing as in Fig. (ii) below as x passes througha. 

 
The function does not change from an increasing to a decreasing function or vice versa. 

does not change sign while passing through a. Hence at such a point, the function 
cannot have a maximum or minimum value. Such points are called the points of inflexion of 

 

Q1. Find the maxima and minima for the following function  

Q2. Find the point of inflection for the function. 

Q3. Find the stationery values and test whether they are maximum or minimum for 

THEOREMS ON MAXIMA AND MINIMA 

is a constant, then any value of x which makes f(x) a maximum or a minimum also 
)+ca maximum or a minimum and conversely.  

If c is a positive constant, then any value of x which makes f(x) a maximum or a 
(x) a maximum or a minimum and conversely 

is negative constant, then any value ofx whichmakes f(x) a maximum makes c 
and any value of x which makes f(x) a minimummakes c f(x) a maximum and 

Any value of x which makes f(x) positive and amaximum or a minimum also makes

a maximum or a minimum. 

(x) a maximum or a minimum and conversely. 

dy

dx
0, the function may go on increasing as in 

increasing to a decreasing function or vice versa. 
does not change sign while passing through a. Hence at such a point, the function 

cannot have a maximum or minimum value. Such points are called the points of inflexion of 

Q3. Find the stationery values and test whether they are maximum or minimum for  

) a maximum or a minimum also 

(x) a maximum or a 

(x) a maximum makes c f(x) a 
(x) a maximum and 

(x) positive and amaximum or a minimum also makes 
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5. Any value of x which makes f(x) finite, no-zero and a maximum makes 1/f(x) a 
minimum and any value of x which makes f(x) finite, non-zero and a minimum makes 
1/f(x) a maximum.  

6. If f(x) possesses continuous derivatives up tothen the order in a certain neighborhood of 
the pointa and if  

(i) f(a)=0 f"(a) but f"(a)  0, then 

 (ii) f(a) is a maximum value of f(x) if n is ever anfn (c) < 0. 

(iii) f(a) is neither a-maximum nor a minimumvalue of f(x) if n is odd working rule 
finding the Is maximum and minimum values of a function. 

First Method 

1. Lety = f(x) be the given function. 

1. Find  and equate it to zero and then solve theequation for real values of x.  

Let these values be x1, x2, x3, ....... 

2. Consider the value of x slightly less than a and slightly greater that a. 

3. If changes sign from -ve to + ve, then f(x) is maximum at x=a. 

 If changes sign from - ve to+ve, then f(x) is minimum at x=a. 

4. If does not change sign, then x=a is a point of inflexion. 

Similarly we can discuss maxima or minima at other values or x. 

Second Method 

Ley y = f(x) be the given function. 

1. Find and equate it to zero and then solve this equation for real values of x. Let these 

values be x1, x2,x3. ...... 

2. Find  and calculate  at these pointsseparately 

3. If is-ve when x = x1, then f (x) is maximum at x=x1 and the corresponding 

maximum value of f(x) is f(x1) 

If  is+ve when x=x1, then f(x) is minimum at x = x1and the corresponding maximum 

value of f(x) is f(x1) 

dy

dx

dy

dx

dy

dx

dy
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If =0 at x=x1, then f(x) and calculate its value at x=x1, If it is not zero, then 

x=x1 is a point of inflexion.Similarly we can discuss maxima or minima for other values of x. 

Note: First method may be preferred if the process of finding becomes tedious. 

Example 1. Find the extreme values, if any, of the functions y=2x²-x³ 

Let y = 2x²-x³ 

 =4x-3x²= x (4 – 3x) 

For maxima or minima. 

 = 0 

  x (4 - 3x) = 0 

which either x = 0 or 4 - 3x = 0 

i.e x = 0 or 4-3x= 4/3 

So we have to discuss maxima or minima at these points viz. 

 x = 0 and x = 3/4 

(i) Let us take the point x=0 

When x is slightly<0. 

   = (–) (+) = – 

When x is slightly >0. 

   = (+) (+) = + 

So  changes sign from (-) ve to)+) ve as passesthrough the point a. Hence it gives a 

minimum value and the minimum value is given by 

 f(0)=2(0)2-(0)3 = 0 

(ii) Take the point x =  

When x is slightly < . 

= (+) (+) = + 

2

2

d y

dx

3

3
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dx
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dx
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dy

dx

4

3

4

3

dy

dx



 

163 
 

When x is slightly<  

  = (+) (–) = – 

So changes from (+) ve to (-) ve as x passesthrough the point  

Hence it gives a maximum value at x=  and the maximum value is given by  

f(4/3) =2 _  

 = 
_

 

 =  

Second Method 

Let y = 2x2 - x3 

 =4x-3x²=x (4- 3x)  

For maxima or minima. 

  = 0 

 x (4 - 3x) = 0 

which ⇒ either x  = 0 or 4-3x=0  

i.e. x = 0 or x = 4/3 

(1) Take the point x=0 

 =  

 At =(4x-3x²)=4-6x) 

x=0.  -4-6.0 = 4>0  

Hence x = 0 gives a minimum value and the minimum value is given by  

f(0) = 0 
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(ii) Taking the point x =  

   = 4-6x 

 At x =  

  = 4 - 6 x  = 4 - 8 = - 4 < 0 

Hence x= gives a maximum value and the maximum value is given by f(4/3)=  

Example 2. Find the maximum and minimum valueof 

 x3+2x-4x-8  

Solution. Let y=x3+2x²-4x-8 

  = 3x²+4x-4 

For maxima or minima, 

  = 0 

i.e. 3x²+4x-4=0  

 x =  

 =  =   or -2 

So we have to discuss the maxima or minima at these, two points x=  and x-2 

  = 6x + 4 

At x =   

 = 6  + 4 = 4 + 4 = 8 > 0  

 y is minimum t x =  and the minimum value is given by 

f  =  + 2  -  - 8 
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 =  +   +   -   

 =   

 = -  

(ii) At x = - 2,  

=6(-2)+4=-8<0 

 y is maximum at x=-2 and the maximum valueis given by 

f(-2) = (-2)+2(-2)² - 4 (-2) - 8  

=-8+8+8-8  

= 0 

Example 3. Find the maximum and minimum valuesofy = (x-1)³ (x + 1)² 

Solution. y = (x-1)³ (x + 1)² 

 = (x-1)3 (x + 1)²+(x+1)² (x + 1)3 

=(x-1)³2 (x + 1) + (x + 1)². 3(x-1)²  

=(x-1)2(x + 1) [2 (x-1)+3(x + 1)] 

 = (x - 1)2(x+1)  (5x+1) 

   = 0 

 (x - 1)2 (x+1)  (5x+1)=0 

which gives x = 1,-1,-1/5  

we now discuss maxima or minima at thesepoints  

(i) Atx=1. 

When x is slightly <1.  

  = (+) (+) (+) = + ve 

When x is slightly> 1 

  = (+) (+) (+) = + ve 

 does not change sign as x passes through 1. 

8

27

8

9

8

3

8

1

8 27 72 216

27

  

256

27

2

2

d y

dx

dy

dx

dy
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dx

dy

dx

dy

dx
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Hence x = 1 is a point of inflexion and gives neither a maximum nor minimum value. 

(ii)At x= –1 

When x is slightly <-1 

  = (+) (–) (–) = + ve 

When x is slightly>-1 

  = (+) (+) (–) = – ve 

 changes sign from + ve to- ve as x passes through 1. 

Hence y is maximum at x=-1 and the maximumvalue is given by  

f(-1)=(-1-1)³ (-1 + 1)² = 0 

(iii) Atx=-1/5 

When x is slightly>-1/5 

  = (+) (+) (–) = – ve 

When x is slightly>-1/5 

  = (+) (+) (+) = + ve 

  change from - ve to+ve as x passesthrough -1/5. 

Hence y is minimum at x=-1/5 and the minimum value is given by 

f(-1/5) = (-1/5)3 (-1/5 + 1)² 

  

 =   

Example 4. Find the maximum and minimum values  

Solution. Let y=  

 log y = log  = log x  

 =x log (x-1)= -x log x 

dy

dx

dy

dx

dy

dx

dy

dx
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dx
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and  (log y) =  [-x log x]   

or  = - [x.  + log x. 1]   

or  = - [1 + log x.]   

or   = -y [1 + log x] 

 -  (1 + log x]  

  = 0 

  (1 + log x] 

Which gives 1+ logx = 0 

or log x=-1-log e-loge-¹= log  

 x =  

Now we have to discuss maxima or minima at x=  

When x is slightly<  (or logx <- 1) 

  = (–) (+) (–) = + ve 

When x is slightly> (or logx>-1) 

  = (–) (+) (+) = + ve 

 change sign from+ve to -ve as x passes through the point x = l/e 

Hence y is maximum at x =l/e and the maximum value is given by  

f(l/e)= = el/e 

dy

dx
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Example 5. Find the maximum and minimum valuesof y=x+  

Solution. y=x+  

  = 1 -  

For maxima or minima. 

  = 0 

 1- = 0 

or x²-1 = 0 

or x² = 1 

or x = +1.-1 

So we have to discuss maxima and minima at thesetwo points 

 =   

 = 
 =  

(i) At x = 1 

 
=  = 2 > 0

 

y is minimum at x=1 and the minimum value isgiven by 

 f (1) = 1 +  = 1 + 1 = 2 

(ii) At x = -1 

 =  

  = -2 < 0 

 y is maximum at x=-1 and the maximum value is given by 

f(-1) =-1+  

1
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 = - 1 - 1 = -2 

Note: In this question we find that maximum value is less than the minimum value. Actually it 
is 4 less than the minimum value.  

Example 6. Find the maximum value of 

  in 0 < x < 

Solution Let y=  

  =  

=  

=  

For maxima or minima 

  = 0 

i.e.  = 0 

or 1-log x=0 

or log x=1=log e⇒x=e 

Now we have to discuss maxima or minima only atthe point viz  

When x is slightly<e (i.e. logx<1) 

  =  = + ve. 

When x is slightly>e (i.e. log cx> 1) 

  =  = + ve. 

 changes sign from+ve to -ve as x passesthrough e. 

Hence y is maximum at x=e and the maximumvalue is given by 

 f(e)  =   

log x

x

log x

x

dy

dx

   
2

. log log
d d

x x x x
dx dx
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
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1 log x
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
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Example 7:Show that the maximum value of is (e)1/e 

Solution Lety=  

 log y=-x log x 

  = -(-1+log x) 

 (1+log x)  

  = 0 1 +log x = 0  x = e1 

Again  = = (1 + log x)2

 

At x = e1 

 
 = e (e)-1/e< 0

 
y has maximum for x = e-l 

and minimum value is (e)1/e 

SELF-CHECK EXERCISE 6.4 

Q1. Find the maximum and minimum valuesofy = (x-1)³ (x + 1)² 

Q2. Find the maximum and minimum values  

Q3. Show that the maximum value of is (e)1/e 

6.7 ECONOMIC APPLICATIONS 

6.7.1. COST MINIMIZATION: 

One of the basic problems of a producer is to find out the level of output at which the average 
cost of production is minimum or the average variable cost of production is mini- mum. We 
can apply the conditions of minimization to solve such a problem. Let us consider a total cost 
function  

TC  =  aQ2 + bQ + C  .....(1) 

where Q is the quantity and C is the total fixed cost and all parameters are positive  
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The average cost is given by 

AC =  = aQ + b +   ....(2) 

To find out the output at which the average cost (AC) will be minimum, we have to 
satisfy the following first order and second order condition such that 

 = 0 and > 0 

Now  = a + 0 - = 0 

 Q2 =  

 Q = +  

= either +  or -  

Now   = 0 - (-2) CQ-2-1 =  ....(3) 

when Q = ,  = > 0 

Since a> 0 and C > 0 

when Q = ,  = > 0 

the average cost will be minimum at Q = , if theaverage Cost is given by the function.  

AC=aQ²+bQ+C  ...(4) 

 (a>0; b<0; C>0)  

Then the determination of output ot which the average cost (AC) will be minimum requires that 

 = 0 and  (AC ) > 0 

Now  = 2aQ + b = 0 

 Q = -  

TC

Q

C

Q

( )d AC

dQ

2

2

( )d AC

dQ
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dQ 2
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2

( )d AC

dQ 3

2C
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2
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dQ 3
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dQ 3

2C

Q
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( )d AC

dQ

2d

dQ

( )d AC

dQ

2

b

a



and  = 2a> 0 as a> 0 

Thus the average cost will be minimum when theoutput is

 It may be noted that marginal cost curve cuts the average cost curve at the minimum 
point of AC curveas shown in figure below. We take the total cost function (1). The marginal 
cost is given by  

MC = =2aQ+b .....(5) 

Thus at minimum cost, AC=MC  

aQ + b +  = 2aQ + b 

or  = a Q 

or Q2 =  

Q = +   

Since output cannot be negative, therefore the 

. This N is the same value of output we derived using first and second order conditions 
of minimization. 

6.6.2 PROFIT MAXIMIZATION:

2
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( )d AC

dQ

 d TC
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Thus the average cost will be minimum when theoutput is  

It may be noted that marginal cost curve cuts the average cost curve at the minimum 
as shown in figure below. We take the total cost function (1). The marginal 

 

Fig. (i) 

 

Since output cannot be negative, therefore the average cost will be minimum when

. This N is the same value of output we derived using first and second order conditions 

PROFIT MAXIMIZATION: 

2

b

a



It may be noted that marginal cost curve cuts the average cost curve at the minimum 
as shown in figure below. We take the total cost function (1). The marginal 

average cost will be minimum when Q = 

. This N is the same value of output we derived using first and second order conditions 
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In the theory of firm, the basic problem is to choose the combination of price and 
quantity in order to maximize profits. The optimum level of output which maximizes profit of a 
firm is arrived at when 

a) Marginal revenue equals marginal cost and b(marginal cost curve cuts marginal revenue 
from below. 

 Let us now define profit (IT) as the differencebetween total revenue (R) and total cost 
(C). Since cost of production and revenue vary with the level of output, we can assume that 
total revenue and total cost are of output (q) such that R= R(q) and C=C(q). So profit can be 
expressed as 

 П=R-C 

  or II = R(q) – C(q) 

so final profit (IT) is also a function of quantity (q) 

 In order to obtain the level of output at which the profit will be maximum, we follow 
the procedure of maximizing a function in which the first derivative is zero and the second 
derivative in negative. Thus 

Thus  = 0 gives  

 = R' (q) = C' (q) = 0 

 or R' (q) = C' (q)  

or  MR = MC 

The second order condition states 

 = R"(q)-C'' (q)<0 

 or R'' (q)<C" (q) 

or slope of MR < slope of MC 

 Both these conditions imply that for profit-maximization, MRMC and MC should cut 
MR from below. The first order and second order conditions of profit maximization under 
imperfect competition as well as under perfect competition can be more clearly seen from the 
figures belows. 

d

dq
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d
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2

d

dq
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Fig. (ii) 

 

Fig. (iii) 

 

Fig. (iv) 
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Fig. (v) 

 

Fig. (vi) 

 

Fig. (vii) 
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Figures (ii), (iii) and (iv) show that at equilibrium output q, gap between total revenue 
and total cost in maximum and so the profit function attains the highest point of the profit curve 
and MC = MR with MC cutting MR from below. At output q1, total cost over total revenue is 
maximum and so the profit attains the minimum profit with MR-MC but MC cuts MR from 
above. The same is the condition under perfect competition as shown in figures (v), (vi) and 
(vii).  

Example 8: Show that the function ƒ defined byf(x)=xp (1-x)q x  R  

Where p, q are positive integers has a maximum 

value for x= , + or all p. q 

Solution: 

We have 

f' (x) xp(1 - x)q 

f(x) = pxp-1 (1-x)q- qxp(1-x)q-1 

= xq-1 (1-x)q-1[p - x (p + q)] 

f'(x) = 0 x=0, 1,  

Again 

f '' (x) = (p-1)xp-2 (1-x)q-1[p-x(p + q)] 

 = (q -1)xp-1 (1-x)q-2[p-x(p + q)]  

 - (p = q)xp-1 (1 + x)]q-1 

f "  = - (p + q) < 0 

where p and q are integers 

Thus the function has a max, value at x=  for all integers p and q and the max value is

 

Example 9: If the demand function is p= find at what level of output x, the Total 

Revenue(TR) will be maximum Also find TR. 

Solution TR =p ×x 

 =   

 = x (9 – x)½ 
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TR is maximum when 

 MR=0 

But MR= (TR) 

 =  [x (9 – x)]½ 

= x  (9-x)½ + (9 - x)½  (x) 

= x. (9-x)½ (-1) + (9 - x)½ 

= x  

 

=   

But MR = 0 gives 18-3x=0  

Maximum TR is given by 

 = pˣxatx=6 

At x = 6 

 p =  =  

 TR =p xx = 6x  = 6  

Example 10. (1) The total cost (TC) function for producing a commodity x is TC-60-12x+2x². 
Findthe level of output at which TC is minimum. 

(ii) Find the AC function and the level of output atwhich this function is minimum.  

(iii) Then verify that at the low point of the AC curve. 

 MC = AC. 

Solution: (i) Let 

 y = TC 

= 60-12x + 2x² 

 =  -12 + 4x 

d

dx

d

dx

d

dx

d

dx
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 =4>0 

For maxima or minima 

  = 0 

 -12+4x=0 

or x=3. 

 We discuss maxima or minima at x=3 

Since 4>0 

 Y is minimum at x=3 and the minimum value isgiven by 

 f(3) 60-12x3+2(3)2 

 = 60-36+18 = 

 = 42. 

 The level of output at which TC is minimum isx=3 and miminum TC is 42. 

(ii) let z = AC=  

 =  -12x-2x2 

 =  -12+2x 

  =  + 2 

For maxima or minima 

  = 0 

  + 2 = 0 

or 2x2 = 60 

or x2 = 30 

or x2 = +  

Since output can't be negative,  we reject  
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 x = –  

and consequently x= –  

and we discuss maxima or minima at 

 x =  

  =   

At x =  

Hence z gives a minimum at 

 x =  

and the minimum value is given by 

f( ) =  - 12 + 2   

 = 2  - 12 + 2  

 = 4  = 12 

(iii) MC = (TC)  

= (y) = 4x-12 

At x =  

MC 4 -12 

At x =  

 AC = 4 -12 

Hence at the minimum point of AC curve 

 AC = MC =4 -12. 

Example 11. The demand function faced by a firmsis p = 500-0.2x and its cost function is C = 
25x+ 10000 (p) = price, x = output and C = cost). Find the output at which the prifits of the 
firm are maximum. Also find the price will charge. 

Solution. TC = 25x+10000 

  TR=p×x 

30
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2
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30 30
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   = (500 -0.2x) x 

   =500x-0.2x2 

Condition for maximum profits is 

 MR = MC 

 MR= (TR) 

   (500x-0.2x²) 

  = 500 - 0.4x 

 MC=  (TC) 

  =  (25x+1000) = 25 

 MR = MC gives 500 -0.4x=25 

or 0.4x=475 

 x =  = 1187.50 

Profit maximising level of output 

 =1187.50 units 

and price at this level of output 

 = 500-0.2 (1187.50) 

 =500-337.50 

 =262.50 

Note: We could also have proceeded as follows: 

 π =Profits = TR – TC  

and make π maximum profits. 

  = 0 

or   (TR – TC) = 0 

i.e. MR = M. C 

Se we get the same result.  

d
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Example 12. A monoplist produces x sets per dayat the total cost of Rs. . Show 

that if the demand curve is x=75-3p is price set, he will produce about 30 sets. What is the 
monopoly price? 

Solution: Let x be the number of sets whichmaximises the net revenue of the monoplist. 

 TC for x sets =  + 3x + 100 

 MC= (TC)= +3 

Demand functions x=75-3p. 

 TC for x sets = p x x 

 =  x x =  

 MR = (TC)= [75 - 2x] 

 = 25 -   x 

Net revenue will be maximum at the level of output where 

 MC = RC 

 25 – x=  + 3 

or  x +  x = 25 - 3 

or  x = 22 

or x =  

 =   = 30 approx.  

Since p =  

 At x = 30 

 p =  = 15 Rs. 
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Hence net revenue is maximum when about 30 sets are produced per day and the 
monopoly is Rs. 15 per set. 

 So far we have applied the techniques of maximum and minimum without any 
constraints as discussed in this unit, to a variety of economic problems. But when we have an 
objective function to be maximized or minimized subject to the satisfaction of an equality 
constraint, Lagrange multiplier method seeks to convert the constrained extremeproblem into a 
form to which the first order and second order conditions of unconstrained extremism can still 
be applied. The Lagrange multiplier method would be given in the later unit, after we have 
discussed the concept of matrices. 

SELF-CHECK EXERCISE 6.5 

Q1.  The Demand function faced by a firm is p = 500 – 0.2x and its cost function is  
c = 36x + 10000 (p = Price, x = Output  and c = Cost). Find the output at which the 
profits of the firm are maximum. Also find the price at this level of output. 

Q2. The Total Cost (TC) function for producing a commodity x is  
TC = 52 – 10x +2x2. Find the level of output at which TC is minimum. 

6.8 SUMMARY  

 In this Unit, we have discussed the extreme of a function and the condition under which 
it attains extreme. We have also discussed about the points of inflexion. Lastly the economic 
application of maxima and minima were dealt. 

6.9 GLOSSARY 

1. Maximum value :  A function y = f (x) is said to have a maximum value f (a)  
at x = a if f (a) lease to increase at x = a and begins to decrease as x increase 
beyond a. 

2. Minimum value : A function y = f (y) is to have a minimum  value of f (a) x = a 
and begins to increase as x beyond a. 

3. Extreme values : The maximum and minimum value of a function are extreme 
value. 

4. Stationary points : The points, at which first order derivatives are zero, are 
called stationary points. 

5. Points of inflexion  : The point of inflexion is defined as a point at which a 
curve changes its curvature. The sufficient question for a point of inflexion of f ' 

(x) = 0 and f" (x)  0 

6.10 ANSWER TO SELF CHECK EXERCISES 
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Self-check Exercise 6.1 

Ans. Q1. Refer to Section 6.3 

Ans. Q2. Refers to Section 6.3 

Self-check Exercise 6.2 

Ans. Q1. Refer to Section 6.4 

Self-check Exercise 6.3 

Ans. Q1. First order condition  

 12x3 – 30x2 + 12x = 0  or 3x (4x – 2) (x – 2) = 0 

 either, x = 0 or x = 2 or x = 1/2 

 Second order condition  

 At x = 0,  f " (x)  = 12 > 0 

 At x = 2,  f " (x)  = – 9 <  0 

 Hence the function attains maximum at x =  and win at x = 0 and x = 2 

Ans. Q2 x = –1/3 is point of inflexion. 

Ans. Q3  Here f (x)  = 6x + 6y, f y = 6x + 14y 

 f (x) (x) = 6, fxy = 6, fyy = 14 

  a function requires fx = fy = 0 i.e. 

 6x + 6y = 0 ---------- (i) 

 6x + 14y = 0 -------- (ii) 

 solving (i) and (ii) for x and y we get, x = y = 0. 

 The given function reaches its minimum value at the stationary point and its minimum 
value is zero. this is because  

 fxx ,  fyy  

1

2

0

0
6 0

x

y




 

0

0
14 0

x

y
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 
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 Also, f xx . f yy – (fxy)2  

 = 84 – 36 = 48 > 0 

Self-Check Exercise 6.4 

Ans. Q1. Refer to Section 6.6 (Example 3) 

Ans. Q2. Refer to Section 6.6 (Example 4) 

Ans. Q1. Refer to Section 6.6 (Example 7) 

Self-Check Exercise 6.5 

Ans. Q1. TC  = 36x + 10000 

 TR  = P× x 

  = (500 – 0.2x)x 

  = 500x – 0.2x2 

 Condition for maximum profits is  

 MR  =MC   MR =   (TR) =  (500x – 0.2x2)  

  = 500 – 0.4x 

 MC =  (TC)   (36 + 10000) = 36 

 MR = MC 

 500 – 0.4x = 36 

 or 0.4x =464 

 x =  = 1160 

 Profit maximising level of output = 1160 units 

and price at this level of output 

 = 500 – 0.2 (1160) 

 = 500 – 232 

 = 268 

Ans. Q2. Let y = TC = 50 – 10x + 2x2  = -10 + 4x 

 = 4 > 0 

 For maxima or minima 
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   = 0    – 10 + 4x = 0 or x = . 2/5 

 since  4 > 0  y is min at x =  2/5 and the min value is given by  

f  =  50 –  + 2  

 = 50 – 4 +  =   

 = 46.32 

6.11 REFERENCES/SUGGESTED READINGS 
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 2. Chiang, A.C. (1974), Fundamental Methods of Mathematical Economics, 2nd 
edition, MC Grow-Hill Book Company, New York. 
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6.12 TERMINAL QUESTIONS. 

Q. 1 Find the profit maximizing output given that  

 Q = 200 – 10p and AC = 10 + Q125  
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Unit 7 

CONSTRAINED OPTIMISATION OF FUNCTIONS 

STRUCTURE 

7.1 Introduction 

7.2 Learning Objectives 

7.3 Lagrange Multiplier 

 7.3.1 First Order Condition  

 7.3.2 Second Order Condition 

Self-Check Exercise 7.1 

7.4 Least - Cost Combination of Inputs 

 7.4.1 First Order Condition  

 7.4.2 Second Order Condition 

Self-Check Exercise 7.2 

7.5 Summary 

7.6 Glossary 

7.7 Answer to Self Check Exercise  

7.8 References/Suggested Readings 

7.9 Terminal Questions 

7.1 INTRODUCTION 

So far we have confined ourselves to the extreme value of function assuming that 
variable of the given function can take any values.For example, for a hypothetical utility 
function of two variables U= f(x, y) to get maximized, we took it for granted implicitly that the 
consumer could purchase an infinite amount of both the goods. But such an assumption has to 
have relevance in reality because the consumption of two goods also depends on the purchasing 
power (income of the consumer). As such that we need to find is that how much of x and y 
should the consumer purchase duly with the given purchasing power to maximize his utility. 
We also know that with the given purchasing power if the consumer buys more ofx, he will 
have to buy less of y or vice versa and, therefore, the amount of x and y are not independent of 
each other. Most of the economic problems concerning maxima and minima are of this nature. 
There is always a constraint on the variables and as such the variables x and y are not 
independent. 
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7.2 LEARNING OBJECTIVES  

 After studying this unit, you will be able tosolve the basis optimisation problems with 
equality as well as inequality constraint by using Lagrange method. 

7.3 LAGRANGE MULTIPLIER : 

This method can be explained in the form of twoconditions: 

7.3.1 FIRST ORDER CONDITION: 

 We combine the given function and the constraint through a new variable in a way such 
that first order condition can still be applied. 

 For example Given utility function 

 U=4xy – y² 

 and constant: 2x+y – 6=0 

 Combining both through new variable λ knownas Langrange's multiplier, we get  

Z= f(x, y) +λ (2x+y-6)  or 

 Z=4xy-y²+λ (2x+y-6) 

 Treating λ as an additional variable, we have Z as a quadratic in variables x, y and λ. 

 Applying first order condition which  

states:fx=fy=fλ =0, we get 

 fx= = 4y+2λ=0 

 fy = =4y-2λ +λ =0 

 fz = = 2x+y-6=0 

 Solving three equations, we get x=2,y=2 and Z=-4. The first order condition gives us 
the point where the given function has either maximumor minimum values.  

7.3.2 SECOND ORDER CONDITION 

 According to second order condition for minimum value, d2z>0 and maximum value 
d²z<0.  

But d2z will have positive sign, if all the principal minors (begining from second) of 
Bordered Hessian determinant. 

z

x
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z
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z
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= are negative 

 and d2z will have negative sign, if the principal minors (begining from second) of 

Bordered Hessian determineant  possesses alternative sign, thefirst being negtive and the 

second being positive.  

Example 1. If x and y are positive, show that maximum value of U=xy subject to the constrant 

x²+y2=a² occures when x=y= . Given U= xy, subject to ψ(x + y) = x²+y2-a2 consider fz = U 

+λψ = xy+λ (x²+y2-a2) where λ is Lagrange's Multiplier. 

First Order Condition 

 f1=fx=y+2λx=0 ... ... (i)  

 f2= fy = x+2λy=0 ... ... (ii) 

 f3 = x² + y²-a² = 0 ... ... (iii) 

 Solving (i) and (ii) 

 y=-2λ x, x = -2λy 

 further we get 

 x = , y =  and λ =   

 U can be maximum or minimum 

 at  

Second Order condition 

 In this case Bordered Hessian determinant is 

  = =  

 Now calculating the value of  at x =  

Y =  and λ =  
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  =  

 =  

 = 0 –  a (-2  a) 

 +  a (2  a) 

 = 8a2> 0. 

 As > 0 

 U will be maximum at x = y =  

and Max value of U = xy = .-  =  

Example 2. Determine the point which maximisesor minimises the function 

 U= x²+xy + y²+3z2 

 Subject to x+2y+4z=60. 

 Incorporating Lagranger's multiplier variable λ, we have z = x² + xy + y²+3z2+λ 
(x+2y+4z-60) 

First Order Condition: 

 fx=2x+y+λ=0 

 fy = x+2y+2λ = 0 

 fz = 6z+4λ =0 

 fλ = x+2y+4z-60 = 0  

solving the equations, we get x=0, 

 y = , z =  and λ = –  

i.e. these are the point of maxima or minima forthe given function.  

Second Order Condition: 

  =  

H

0 2a 2a

2a -1 1

2a 1 -1

zH

2 2
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zH

2
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The principal minors: 

  = <  0 and  

  = <  0 

As all the principal minors are <0, d²z will have positive value, In other words, the 
given function will have minimum value at the point 0.90/7, 60/7 and the value of the function 
will be 

 = (0)2 + 0  + + 3  

 = +  =  

Example 3. A firm production function is Q = 5L0.7, K0.3. The price of labour is Re. 1 per unit 
and the price of capital is Rs. 2 per unit. Find the minimum cost combination of capital and 
labour for an output of 20. 

 The cost equation: C=L+2K  

Production function Q = 5L0.7, K0.3 

First order condition gives: 

(i)  = 1-3.5λ.L-0.3K0.3=11-3.5λ =0 

(ii) =2- 1.5λ.L0.7K0.7 = 2-1.5λ = 0 

(iii) =20-5L0.7, K0.3 = 0 

 3.5 =  

 i.e.  =  ........... (iv) 

Equation (iii) gives : L0.7, K0.3 = 4 

 i.e. L.   = 4 {Substituting from (iv)} 
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  L = 4  = 4.(4.6)0.3 

 K =  = 0.86 (4.6)0.3 

 In other words, the firm should use 

  and  units of labour and  

capital respectively for an output rate of 20.This will cause the firm to incur minimum cost 
(andbring maximum profit) 

Example 4. Given a cost function C = r1 × 1 + r2 + F  

and a production which serves as a constant q + f(x1+x2). Find the first and second-order 
conditions for minimum cost  

First order Condition 

 Set the cost function asC= r1x1+ r2x2+F=h (x1, X₂)  

Then by the Lagrange multiplier method  

Z = h(x1,x2)+λ{q-f(x1, x2)} 

  = r1 + λ(-f1) = 0  

  = r2 + λ(-f2) = 0  

  = q - f (x1, x2) = 0  

  expresses the first order. 

 Conditions, which is the law of equal-marginalproductivity. 

 Second Order Condition 

Using the differential method this is d2c < 0 subject to dϕ (x1, x2)=0 

 where ϕ (x1,x2) = q-f(x1, x2)=0  

Calculations will show that 

 d2c = r1d
2x1 

d2ϕ = - f1d
2x2-f11 f12 - f22 dx2

2- 2f12 dx1dx2 = 0  
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 From d2ϕ we find d2x1 and substituting this d2x1 in to d2ϕ we find d2x1 and substituting 
this d2x1 in to d2c gives us 

 d2c= [f11 dx1
2+f22 dx2

2+2f12 dx1 dx2] >0 

 Sincer1>0 and f1>0 we need  

f11dx1
2+f22 dx2

2+2f12 dx1 dx2<0.  

for d2c<0, v.c. for C to be minimum. 

SELF-CHECK EXERCISE 7.1  

Q1. Use the method of Largeuge multipliers to find the minimum value of the function 
f (x, y, z) = x + y + z subject to the constraint x2 + y2 + z2 = 1 

Q2.  A consumer's utility function is given by U = 5q2
1 + 2q₂2 + 3q1,q2 and his total budget is 

Rs. 50. The market price ofq1 and q2 is Rs. 4 and Rs. 5 per unit respectively.Find the 
optimum of this consumer.  

7.4 LEAST-COST COMBINATION OF INPUTS 

 As another example of constrained optimization, let us discus the problem of finding the 
least-cost input combination for the production of a specified level of output Q0 representing 
say, a customer'sspecial order. 

7.4.1 FIRST ORDER CONDITION 

 Assuming a production function with two variable inputs, Q = Q(a, b) where Qa, Qb>0 
in the relevant subset of the domain and assuming both input prices to be exogenous, we may 
formulate the problem as one of minimizing the cost. 

 C=apa+bPb 

 Subject to the output constraint 

 Q (a, b) = Q0 

Hence the Lagrangean function is 

Z = aPa+bPb + µ[Q0-Q (a, b)]  

To satisfy the first-order condition for a minimumC, the input levels (the choice 
variables) must satisfy the following simultaneous equations: 

Zµ = Q0- Q(a. b) = 0 

Za = Pa - µQa = 0 

Zb=Pb-μ Qb = 0 

 The first equation in this set is merely the constraint restated, and the last two imply the 
conditions. 

1

1

r

f





  =  = µ .......... (i) 

 At the point of optimal input combination, the input
be the same for input. Since this ratio measures the amount of outlay per unit of m
product of the input in question, the unit of marginal product of the input in question, the 
Largrange multiplier u can be given the interpretation of the marginal cost of production in the 
optimum state. 

Equation (i) can be alternatively written 

 =  

 Presented in this form, this order condition can be explained in terms of isoquants and 
isocosts. The Qa/Qb ratio is the negative of the slope of an isoquant, that is it is a measure of the 
marginal rate of technical substation of a for b (MRTS
is specified at Q0, thus only one isopuant is involved, as shown in figure.

 The Pa/Pb ratio, on the other hand, represents the negative of the slo
isocosts, defined as the locus of the input combinations that entail, the same total cost, is 
expressionable by the linear equation.

 Cn = apa + bPb 

or B =   = a 

where C0 stands for a (parametric) cost figure. When plotted in the ab plane as Fig. 1 therefore 
it yields a family of straight lines slope P
two ratios therefore amounts to the equality of 
Since we are compelled to stay on the given isoquant, this condition leads us to the point of 

tangency E and the input combination
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At the point of optimal input combination, the input-price-marginal-product ratios must 
be the same for input. Since this ratio measures the amount of outlay per unit of m
product of the input in question, the unit of marginal product of the input in question, the 
Largrange multiplier u can be given the interpretation of the marginal cost of production in the 

Equation (i) can be alternatively written in the form 

Presented in this form, this order condition can be explained in terms of isoquants and 
ratio is the negative of the slope of an isoquant, that is it is a measure of the 

marginal rate of technical substation of a for b (MRTSab). In the present model, the output level 
, thus only one isopuant is involved, as shown in figure. 

 

Figure - 1 

ratio, on the other hand, represents the negative of the slope of isocosts. An 
fined as the locus of the input combinations that entail, the same total cost, is 

expressionable by the linear equation. 

stands for a (parametric) cost figure. When plotted in the ab plane as Fig. 1 therefore 
it yields a family of straight lines slope Pa/Pb and vertical intercept C0/Pb. The equality of the 
two ratios therefore amounts to the equality of the slopes of the isoquant and a selected isocost. 
Since we are compelled to stay on the given isoquant, this condition leads us to the point of 

tangency E and the input combination   . .a b

product ratios must 
be the same for input. Since this ratio measures the amount of outlay per unit of marginal 
product of the input in question, the unit of marginal product of the input in question, the 
Largrange multiplier u can be given the interpretation of the marginal cost of production in the 

Presented in this form, this order condition can be explained in terms of isoquants and 
ratio is the negative of the slope of an isoquant, that is it is a measure of the 

). In the present model, the output level 

pe of isocosts. An 
fined as the locus of the input combinations that entail, the same total cost, is 

stands for a (parametric) cost figure. When plotted in the ab plane as Fig. 1 therefore 
The equality of the 

the slopes of the isoquant and a selected isocost. 
Since we are compelled to stay on the given isoquant, this condition leads us to the point of 
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7.4.2 SECOND ORDER CONDITION 

To assure a minimum cost, it is sufficient (after the first-order condition is met) to have 
a negative Bordered Hessian, i.e. to have 

 =  

= µ (Qaa Q
2b - 2Qab Qa Qb + Qbb Q

2a) < 0. 

 Since the optimal value of µ (marginal cost) is positive, this reduces to the condition 
that the expression in parenthesis be negative. 

 The curvature of an isoquant is represented by the second derivative. 

 (QabQb
2-2Qab QaQb + Qbb Qa²) 

 When the isoquant is strictly converted at the point of tangency, we have the inequality 
a2|da2>0, which implies - since Qb (marginal product of b) is positive that the expression in 
parentheses is negative. Thusthe strict convexity of the isoquant of fig. 1 at the point of its 
tangency with an isocost which guarantee the satisfaction of the second order condition stated 
above. Conversely, if the second-order condition is satisfied, then the isoquant must be strictly 
convex at the point of tangency.  

Example 5. Given a cost functionC = r1x1 + r2x2 + Fand a production function which serves as 
a constraintq= f(x1,x₂)find the first and second order conditions for minimum cost. 

First order Condition 

 Set the cost function as 

 C= r1x1+ r2x2+F= h (x1, x₂) 

 Then by the Lagrange multiplier method 

 Z=h(x1, x2)+ [q-f(x1, x2)] 

 = r1 +  (-f1) = 0  

 = r2 +  (-f2) = 0  

 = q - f (x1 - x2) = 0  

  =  =  

 Express the first order conditions, which is the law of equimarginal productivity. 
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Second Order Conditions 

Using the differential method, this is  

d2c <0.  

subject to d (x1, x2)=0  

where  (x1, x2)=q-f(x1, x1)=0  

Calculations will show that 

d2c=r1d
2 x1 

d²= -f1d²x1 - f1 f1² - f22 dx2² - 2f₁₂ dx1 dx1 = 0  

From d2, we find d2x1, and substituting this d²x1 into d2c give us 

d2c =– [f11 dx1
2 + f22 dx2² - 2f12 dx1 dx2]> 

Since r1>0 and f1> 0, we need  

f11 dx1
2+f22dx2

2+2f₁₂dx1 dx2<0 

for d2c<0, i.e. for C to be minimum. 

SELF-CHECK EXERCISE 7.2  

Q1. A firm production function is Q = 5 L0.7 K0.3. The price of labour in Rs. 1 per unit end the 
price of capital is Rs. 2 per unit. Find the minimum cost combination of capital and 
labour for an output of 20. 

Q2.  Given a cost function C = p1x1 + p2x2 + OH and a production function which serves as a 
constraint q = f (x1, x2). Find the first and second order condition for minimum cost. 

7.5 SUMMARY 

 In this unit, we emphasise the basic theory of constrained optimisation, constrained 
optimisation in case of quality constraints applied Lagrangean method to solve those problems. 

7.6 GLOSSARY 

 Lagrange Multiplier : The Lagrange multipliers is strategy for finding the local 
maxima and minima of a function subject to equality constraints. 

7.7 ANSWER TO SELF CHECK EXERCISES 

Self-Check Exercise 7.1 

Ans. Q1. Refer to Section 7.3  

Ans. Q2. Solution 

 The Lagranzian Function,  

 L= 5q1 +2q₂² + 3q1q2 + λ (50 - 4q1 -5q2)  

Differentiate L w.r.t. q1, q2 and setting the derivatives equal to zero. 
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f
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 =10q1 + 3q2 + 4λ = 0 

 = 4q₂ + 3q1 + 5λ = 0 

 = 50 - 4q1 - 5q2 = 0 

Solving for q1 from the following 

  =  

 We get q1 = ,  q2 =  

 The 2nd order condition, 

  = >  0 

for maximum, but it appears U11> 0, hence the result is not conclusive. The main assumption of 
cardinal theory is U11< 0, U12< 0 which is not fulfilled. 

Self-Check Exercise 7.2 

Ans. Q1. The cost equation: C=L+2K  

Production function Q = 5L0.7 K0.3 

First order condition gives 

(i)  = 1-3.5λ.L-0.3K0.3=11-3.5λ =0 

(ii) =2- 1.5λ.L0.7K0.7 = 2-1.5λ = 0 

(iii) =20-5L0.7, K0.3 = 0 

 3.5 =  

 i.e.  =  ........... (i) 
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 L.   = 4 {Substituting from (i)} 

  L = 4  = 4.(4.6)0.3 

 K =  = 0.86 (4.6)0.3 

Ans. Q2. Refer to Section 7.4 (Example 5) 
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7.9 TERMINAL QUESTIONS 

 Q. 1 Use the method of Lagrange multipliers to find the minimum value of  

  f (x, y) = x2 + 4y2 – 2x + 8y subject to constraint x + 2 y = 7. 

 Q. 2 Use the method of Lagrange multiplier to find the maximum value of  

  f (x, y) = 9x2 + 36xy – 4y2 – 18x – 8y subject to the constraint 3x + 4y = 32. 
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Unit 8 

DIFFERENCE EQATIONS 

STRUCTURE 

8.1 Introduction 

8.2 Learning Objectives 

8.3 Difference Equations   

 8.3.1 Order of the Difference Equations 

 8.3.2 Change of Notation 

 8.3.3 Solution of Difference Equations 

Self-check Exercise 8.1 

8.4 Homogeneous Linear Difference Equations with Constant Coefficient 

Self-check Exercise 8.2 

8.5 Geometrical Interpretation of Solution  

 8.5.1 Particular Solutions of Non-homogeneous Linear Equation 

Self-check Exercise 8.3 
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8.1 INTRODUCTION 

The calculus of finite differences, in its broad meaning, deals with the changes that take 
place in the value of the function, the dependent variable, due to finite changes in the 
independent variable. It is a study of the relations that exists between the values assumed by the 
function whenever the independent variable changes by finite jumps whether equal or unequal. 
In infinitesimal calculus we study, on the other hand, those changes which occur when the 
independent variable changes continuously in a given interval. 

 The variable time in various economic data is usually treated discretely, time is divided 
up into units value of a variable in one period is assumed to be determined by, amongst other 
things, its value in the previous period, the one before that and so on. This may be because 
decisions are taken only at discrete intervals, because data is available only at certainties, or for 
various other reason. So the difference equation frequently express economic relationships 
more adequately than differential equations. For example, in planning models, the companions 
in between the initial base year and the terminal year and change in investment over the period 
is orelated to change in time over a period. Both the changes are said to be discrete. 



 Consider a function y = f(x) an in Fig. 1. The derivative of f(x) is defined as

 lim  f(x + x - f

 (  x0)  ( + x) - x

Instead of taking a limiting process we will now let x be finite quantity and write.

f(x+ x) – f( x)=y(x+ x)

 is a symbol denoting that we are operating any in the above fashion and is called a 
difference operator. The finite quantity is called the difference interval.

 Thus, we have a relationship

 y(x)=y(x+ x)−y(x)………………..

 which means that we take a difference in
difference between the two values of y at the point x and x + 

 In the present case when we are dealing with finite difference, the distance between any 
two successive points in the domain are
not only will two successive points be a finite distance a part, but this will also be a constant. 
Thus, if we have one point x, we can specify the succeeding points by letting 

 x, x+h, x+2h, x+3h,.... 

 The points have formed a sequence which will have the chara
progression. 

Once it is decided that the difference interval 
matters further by changing the scale of the x
starting from x will be  

x, x +1, x+2, x+3,..... 

 y of equation (1) is called the first differ

  [ y (x)]=  [y (x+ h) –



  

  



 



  

 

199 

(x) an in Fig. 1. The derivative of f(x) is defined as
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Instead of taking a limiting process we will now let x be finite quantity and write.

 

Fig. 1 

x) – y(x) y(x)  

is a symbol denoting that we are operating any in the above fashion and is called a 
difference operator. The finite quantity is called the difference interval. 

Thus, we have a relationship 

……………….. (1) 

take a difference interval x from the point x and find the 
es of y at the point x and x + x. 

In the present case when we are dealing with finite difference, the distance between any 
two successive points in the domain are a finite distance a part. For our subsequent discussions, 
not only will two successive points be a finite distance a part, but this will also be a constant. 
Thus, if we have one point x, we can specify the succeeding points by letting x=h, so that

The points have formed a sequence which will have the characteristics of an arithmetic 

Once it is decided that the difference interval x = h will a constant, we can simplify 
by changing the scale of the x–axis so that h =1. Then, successive points 

(1) is called the first difference. By repeating process, we get, 

– y(x)] 



 










(x) an in Fig. 1. The derivative of f(x) is defined as 

Instead of taking a limiting process we will now let x be finite quantity and write. 

is a symbol denoting that we are operating any in the above fashion and is called a 

x from the point x and find the 

In the present case when we are dealing with finite difference, the distance between any 
a finite distance a part. For our subsequent discussions, 

not only will two successive points be a finite distance a part, but this will also be a constant. 
x=h, so that 

cteristics of an arithmetic 

h will a constant, we can simplify 
xis so that h =1. Then, successive points 

epeating process, we get,  
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  = y(x+ h) - y(x0  

which is called the second difference. Thisis written as 

 2y (x) = y (x+h) - y (x). 

 = [y(x+2h) – y(x+ h)]–{y(x+h) – y (x)] 

 = y(x+2h) –2y(x+h)+y(x)  

Reputing this process, we have 

 [ 2y (x)] = 2[y(x+h) – y(x)]= 2y (x+h) - 2 y (x) 

= [y(x+3h) – 2y (x+2)+y (x+h) 

 -[y (x+2h) – 2y (x+h)+y(x)]  

or ly (x)=y(x+3h) – 3y (x+ 2h) + 3y (x + h) – y(x). 

 By repeating this process,, we can obtainthe general formula. 

 n y(x) = (-1)0 C0
n y (x + xh) + (-1)1 C1

n y [x + (x – 1) h] + ........  

+ 1)n-1 nen-1 y (x +h) + (-1)n y (x) 

 where cn
m =  

8.2 LEARNING OBJECTIVES 

After going through this Unit, you will be able to : 

 Solve Difference Equations 

 Find out the order of Difference Equations 

 Explain the change of Notation 

 Give solution of Difference Equations 

8.3 DIFFERENCE EQUATIONS 

 Def: An equation that relates the independent variable x, the dependent variable y and 
its finite difference is called a difference equation, i.e. 

 I (x, y, y, 2y,......) = 0 

is a difference equation.  

8.3.1 ORDER OF THE DIFFERENCE EQUATION 

 The order of the difference equation is that of the highest difference contained in the 
equation.For example, consider the following three differenceequation. 

(i) y (x)=5 y (x)+4 2y (x)+ 3y (x)=x   (2) 

(ii) y(x+3)+y(x+2) – y(x – 1)=x    (3) 

(iii) y (x+x) – y(x+1)=0      (4) 

 

  

    





0. 1. 0 1
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8.3.2 CHANGE OF NOTATION 

 For convenience, we shall now change ournotation as follows. 

 y(x+2)=yx +2 

 y (n+x)= yn+x 

and so forth. 

 Thus, the equation (3) and (4) above canbe written on 

 yx-3 + yx+2 – yx = x       (5) 

 yx + x – y x + 1 = 0       (6)  

the first difference equation involves successive differences of the dependent variable y while 
the second equation involves the successive values of the dependent variable. In practice it will 
be found more convenient to deal with differences equations involving successive values of the 
dependent variables andnot successive differences. A differences equation not involving 
successive value of yx greater than y₂+n is said to be order of x. The order of the equation (2) is 
3. It is the difference between the largest and smallest arguements x appearing is an equation. 
Then equation (5) is a difference equation of order is 3 and the order of equation (6) is n-1.  

8.3.3 SOLUTION OF DIFFERENCE EQUATION 

 A solution of a difference equation over a set S is a relation between the independent 
variable and the dependent variable which satisfies the equation or is an identity over S. Such a 
relation on substitution is the equation that makes the left hand and right hand number 
identically.  

An equation over a set S of the form 

 Yx+n+ A1yn+1-1 +..... Anyn = R(x)  

where A1 's and R (x) are functions of x or constants defined for all values ofx in the set is 
called a linear difference equation over S of order x. If R(x) =0, the equation is called linear 
homogeneous otherwise it is called linear non-homogeneous equation. 

SELF-CHECK EXERCISE 8.1  

Q1. Find the solution of the equation un = 3un-1 + 4 given u0 = 2 

Q2. Find the general solution of the difference equation un = un-1 + 4, N > 1 

Q3.  Find the first difference of the following function at x=2. 

 (a) Y (x)=3x²+2x 

 (b) y(x)=x(x – 1) 

8.4 HOMOGENEOUS LINEAR DIFFERENCE EQUATION WITH CONSTANT 
COEFFICIENT 

The general equation of a homogeneous linear difference equation with constant 
coefficients of order n is of the form 
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Yn+x + A1 Yx+n-l + ......... +Ax-1 yx+1 Any₁ = 0 (7) 

where A1 's are constants. 

 The general solution of similar type of differential equation was found by first obtaining 
an auxiliarly equation. It was done by setting 

 y=emx  

 In the case of difference equation, we will be 

 yx = βx 

where β is a constant. Then equation (7) becomes  

(βx+A1b
n-1+ ......+An) β

x=0 

Thus, we have 

 βn+ A1 b
n-1 + .... An = 0  

and we call this equation the auxiliary or characteristic equation. The roots of this equation will 
be solutions of (7). The general solution is 

 Yx = c1β1
x+......... + Cn βn

x 

Case 1 

Linear Homogeneous Difference Equation with constant co-efficiency of the First Order 

Consider 

 yn+1 = A1 yn = 0 

Let y₁ = βn, then 

 βx+1 – A1β
x = 0 

 βx (β – A) = 0 

  βx = A1 

Thus the solution of the difference equation is 

 yx =C1 A1 

Example 1 

 Find the solution of first order linear homogeneous difference equation 

  

Solution 

  

1

3
0

2n ny y  

1

3
0

2n xy y  
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 Let yn = βx 

On substitution, we obtain the characteristic equation  

  

  

  

Thus, the solution is 

 yx = C1β
x = C1   

Case 2 

Linear Homogeneous Difference Equation with constant coefficients of order 2 

 Consider the equation 

yx+2+A1yx+1+ A1 yx=0 

which is of order 2. 

Letyx= βx Then the auxiliary equation is  

βx+2 +A1β
x+1 + A2β

x = 0  

βx (β2 + A1β + A2)=0  

In this case we have three different situations. 

(a) When the two roots β1 and β2 are real and distinct, the solution is given by 

 yx = Cx β₁x + C₂β2
x 

Example 2: Solve 

 Yx – 5yx-1 +6yx-2=0 

 Let yx = βx be the solution of the aboveequation. Then the auxiliary equation is 

 (βx– 5βx-1 + y βx-2) = 0 

or βx-2 (β2 -5 β+6)=0  

or β2 -5β +6=0 

 β1= 2, β₂ = 3 

The general solution is 

 yx =C1 2
x+C2 3

x 

It is given that y0 =3, y₁ =5 

1 3
0

2
x x   

3
0

2
b    
 

3

2
 

3

2

x
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y0=C12
0+ C23

0 = 3 i.e.  C₁ + C₂ = 3 

and y0 C12¹+C23
0 = 5 i.e.  2C1 +3C₂ = 5 

We find from these two equations 

 C₁ = 4 and C₂ = -1 

 The solution is 

 Yx = 4.2x=3x 

(b) When the two roots are equal 

When the two roots of auxiliary equationsare equal i.e. 

 β1 = β2 = β 

The general solution is 

 yx=C1β
x + C₂x βx 

Example 3: Solve and check the solution 

 yx+2–6yx+1+9yx=0  

Solution: The equation 

 yx+2–6yx+1+9yx =0  

is linear homogeneous difference equation of order two with constant coefficients 

 The auxiliary equation of the above equation is 

 β1 -6 β+9=0 

or (β-3)2=0 

i.e.  β1 = β₂ = 3 

  yx = C₁ 3x+ C₂ x 3x 

 For checking the solution, consider left side 2 difference equation 

L.H.S. = yx+2 – 6yx+1+9yx 

= C13
x+2+ C₂ (x+2) 3x+2– 6 [C13

x+1+C₂ (x + 1) 3+x+ 1]+9)C
1 3

x + C₂x 3x) 

Ifyx= C1 3x+C2 x 3x is a solution, it must satisfy the differential equation. 

 =9 C1 3
x+9 C₂ x3x+ 18 C₂ 3+x–18 C1 x³ – 18 C2 3

x – 18 C23
x+9 C1 3

x+ 9C2 x3x 

 =0 

 = R.H.S. 

(c) When the roots are conjugate complex numbers 

 Let the roots be 

 β1 = a+ib=p (Cos θ + i sin θ)  (8) 
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β2 =a+ib=p (Cos θ + i sin θ) (9) 

 On multiplying equation (8) and (9) we get  

a2+b₂ = p² (Cos2θ - i2 sin θ) p² (Cos2θ +Sin2θ) = p² 

 

and on equating real and imaginary parts in equation(8), we get 

 a=p Cos θ, b=p Sin θ 

 tan θ= or θ = tan-1ba 

The solution is 

 y× = d1β1
× + d2β2

×  

where yx need to be real numbers, But if β2 and β1 are complex numbers while d1 and d2 are 
not, yn may be a complex number, To avoid this, we shall assumed, and d2 are complex 
conjugates. We can do this because d1 and d2 are arbitrary. Thus, let us set 

 d1=m+in. d2 = m – in. 

 To avoid complex number, let us show one solution in terms of polar coordinates. We 
have 

d1β₁x =d1 p
x (Cos θ + i sin θ)x 

= d1 p
x(Cos θ + i sin θ)x 

d2β2
x = d2 p

x(Cos θ + i sin θ)x 

because of de Moivae's Theorems. Thus  

yx=px [(d1+d2) Cos θ x+i (d1 – d2) Sin θ x] 

yx=px (C1 Cos θ x + C2 Sin θ x)  

where C1= d1+d2=(m+in)+(m – in) = 2m  

C2i (d1– d2) = i (2 in) = -2n  

Thus C1 and C2 are real numbers and the yx we have obtained is a real number. 

The solution is sometimes shown in the following form which is easier to interpret 
when discussing business cycles or economic growth. Let 

 d1 = m+in = k (Cos B+i Sin B) 

 where  

Then 

 C₁ =d1 + d2 = 2 k cos B  

C2i (d1 – d2)= – 2k sin B 

2 2p a b 

a

b

2 2 1, tan
n

K m n B
m

 



 

206 
 

Substituting these into the solution, we get  

yn=px [2k Cos B Cos θ x = 2k Sin B Sine x}  

which can be written as 

 yn =2kpx [Cos B Cos qx – sin B sin qx]  

= A xCos (θx+B) 

( Cos (A+B) = Cos A Cos B – Sin A Sin B)  

where A = 2k 

 Then, for example, if yn is income, pn shows the amplitude and θ x shows the period of 
oscillations of yx. 

 Example 4: Solve the differential equation 

 yn+2 – yn+1 + yn = 0 

The auxiliary equation becomes 

 β2 - β + 1 = 0 

  

  

Here  

 and θ = tan-1 = tan-1  

 The solution of the given equation is by 

 yx p
x [C1 Cos θ x + C₂ Sin θ x]  

= 1 [C1 Cos x  x + C2 Sin  x]  

= C1 Cos  x + C2 Sin x  

 Here amplitude is 1. and period=  

SELF-CHECK EXERCISE 8.2 

Q1. Find the solution of first order liner homogeneous difference equation. 

  y n +  1 yn = 0 

1

1 1 4 1 3

2 2

i   
 

1 2

1 1 3 1 3

2 2

i i
and   



23 1 31 ; , 22 2 4 4a b thus p a b      

b

a

3 3
1



3


3



3


3



3

2
6






5

3





Q2.  Solve and check the solution 

  yx+2 – 2yx+1 + 4yx = 0

Q3.  Solve the difference equation

  4x – 3yx-1 + 4yx-1 =0

8.5 GEOMETRICAL INTERPRE

The solution when β1 β2 and real was

 yx - C1 β1
x + C2 β2

x 

Since C1 and C2 are constant, the main influence on y
and β2. When β1 β2, the larger one will eventually
the larger root in absolute terms the dominant root and assume for the
form the cases for different value of C

(i) When C1>0, β1>1:yx = C1β

(ii) When C > 0, 1 >β1,> 0, then we Range the curve shown in Fig. 2.

(iii) When C1>0,0> β>-1, then wehave the curve show in Fig. 3.
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Solve and check the solution  

+ 4yx = 0 

difference equation 

=0 

GEOMETRICAL INTERPRETATION OF SOLUTION 

and real was 

are constant, the main influence on yx when x→∞ will be values of 
, the larger one will eventually determine the behaviour of y

the larger root in absolute terms the dominant root and assume for the moment it is 
form the cases for different value of C1 and β1. Letting x = 0, 1, 2, ............., we consider

β1
x would graphic as in Fig. 1. 

 

,> 0, then we Range the curve shown in Fig. 2. 

 

1, then wehave the curve show in Fig. 3. 

→∞ will be values of β1 
determine the behaviour of yx. Let us call 

moment it is β1. We shall 
we consider 



(iv) When C1>0,-1>β, then we have the curve shown in Fig. 4.

 Sinceyx=C1 β
x+C2β

x, this will be a com

yx= ρ x (C1 Cos θ x + C2 sin

 = A ρ x Cos (θ x+ β) 

where ρ x will give the magnituder of the oscillation while 

(v) When ρ  >1, we get explosive oscillations, curve is shown in Fig. 5

(vi) When ρ  = 1, we get simple harmonic,the curve is shown in Fig. 6.
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, then we have the curve shown in Fig. 4. 

, this will be a combination of any of the above situations.

 
sin θ x) 

will give the magnituder of the oscillation while θ x will determine the periodicity. 

>1, we get explosive oscillations, curve is shown in Fig. 5 

 

= 1, we get simple harmonic,the curve is shown in Fig. 6. 

bination of any of the above situations. 

x will determine the periodicity.  



 ρ  < 1, we get damped oscillations, curve is shown in Fig. 7.

8.5.1 Particular Solutions of Non

 For showing differential equation, we shall study the method of undetermined 
coefficient to obtain the particular solution for diffe
equation case, the solution is expressed as general solution = (solution of homogeneous 
equation)+(particular solution) 

 The method of undermined coefficients is useful in finding the particular solution of the 
complete equation when R (x) is of special type. We se up a trial solution which consists of the 
number of unknown constant coefficients, corresponding to each term present in R(x). The 
constant coefficients are to be determined by substitution in the differe

Special type of R(x) and its Trial solution

Special type 

SL No.  of R(x)  Trial solution

1.  axf(x)  ax (A

2.  axSin bx or  ax(A Sin bx+b Cos bx)

3.  ax  A. a
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< 1, we get damped oscillations, curve is shown in Fig. 7. 

 

Particular Solutions of Non-Homogenous Linear Equations 

For showing differential equation, we shall study the method of undetermined 
coefficient to obtain the particular solution for differential equations. As in the differential 
equation case, the solution is expressed as general solution = (solution of homogeneous 

The method of undermined coefficients is useful in finding the particular solution of the 
plete equation when R (x) is of special type. We se up a trial solution which consists of the 

number of unknown constant coefficients, corresponding to each term present in R(x). The 
constant coefficients are to be determined by substitution in the difference equation.

Special type of R(x) and its Trial solution 

Trial solution 

(A0 + A1 x+.....+Anx
n)  

(A Sin bx+b Cos bx) ax cos bx 

A. ax 

For showing differential equation, we shall study the method of undetermined 
rential equations. As in the differential 

equation case, the solution is expressed as general solution = (solution of homogeneous 

The method of undermined coefficients is useful in finding the particular solution of the 
plete equation when R (x) is of special type. We se up a trial solution which consists of the 

number of unknown constant coefficients, corresponding to each term present in R(x). The 
nce equation. 
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4. Sin bx or cos bx A Sin bx + β cos bx 

5. Constant  

We shall discuss the solution of 

(i) linear first-order differential equations with constant coefficients, and 

(ii) linear second order differential equations withconstant coefficients.  

(i) Linear First-order Differential Equations 

 Suppose after adjusting the equation it is inthe form 

 yx+1=Ayx+B 

where A and B are constant and the coefficients of Уx+1 is unity. Then the homogeneous 
solution can be obtained by letting B=0. 

Thus 

Yx+1 = Ayx 

For the difference equation of the present kind, weset 

 yx = Bx 

Substituting this into our equation we obtain, 

 βx-1=Aβx 

 β = A 

Thus, the homogeneous solution will be 

 Yx = CAx 

where C is a constant  

the particular solution in this case is 

  

Thus, the general solution will be 

  

where x = 0, 1,2,3.... 

Example 5: Solve yt+1+3y1= 4 when y0= 4  

1
1

1

1

xA
B when A

A

Bx when A

 
 

 
  

1
1

1

1

x

x

A
B when A

y A

Bx when A

 
   

  

1
, 1

1

1

x

x

A
CA B when A

y A

X Bx A

 
    

   
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Solution: Here the difference equation is 

 yt+1 + 3yt= 4 or yt + -3yt +4  

The general solution will be 

 yt=CAt+B  when A 1 

Given that y0=4 

 4 = C(-3)0+1 – (-3)0 

or C=4 

General solution becomes 

 yt= 4(-3)t+1 – (-3)t 

  = 3(-3)t+1 

Example 6: Solve the differential equation  

3yx+1 = 6yx+9x = 0, 1, 2, 3, when y0= 7 

Solution 

The general solution will be of the form  

yt=CAt+B  when A 1 of  

the differential equation yx+1 = ayx+B  

The above differential equation can be written 

 Yx+1= 2yx +3 

Here A=2 and B=3 

  y₁ = C(2)x + 3  

Given y0= 7 

 7 = C(2)02[1-(2)0] 

C=7 

Thus, the general solution becomes 

 yx=72x+3 = 7.2x-3+32 

 = 10.2x – 3 

  

1

1

tA

A




1

1

tA

A




1 2

1 2

x


1 2

1 2

x

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Example 7: Solve yx = 7, given y0 = 14  

Solution: Given yx = 7 

or yx+1–yx=7 

 yx – yx-1=7 

 yx-1 – yx-2=7 

 y₂– y₁= 7 

 y1 – y0 = 7  

Adding, we get 

 yx+1 – y0 = (x+1) 7 

 yx+1 = y0 +7x+7 + (yx+1 – yx) 

or yx = y0+7x 

 yx 14 +7x 

Example 8: Solve yx =-6yx 

Solution: Given yx =-6yx 

yx+1 – yx = -6yx 

yx+1=-5yx 

 yx+1 =-5yx Putting x = 0 

 y₂ = -5y₁ = -5 (-5y0)= )-5)² y0 

 yx=(-5)xy0 

Hence the required solution is yx = (-5)x y0 

Linear Second-Order Difference Equation with Constant Coefficients 

Let the equation be 

 yx+2 + A₁ yx+2+A₂yx+2 = R(x) 

here the function R (x) may be constant or a function of x and A1, A2 are constant 

 Several cases of particular interest are considered 

Case I 

 When R(x) = Ax where A is constant, we 

try as particular solution 

 yx = CAx 

Example 9: Solve 

 yx+2 – 4yx+1+3yx=5x 






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Solution: The second order linear difference equation is 

 yx+2– 4yx+1+3yx = 5x 

(10) 

The homogeneous equation of the above equationis 

 yx+2 – 4yx+2+3yx=0 

Its auxiliary equation is 

 β² – 4 β +3=0 

or (β – 1) (β – 3)=0 

 β₁ = 1, β₂ = 3 are two roots. 

 Thus the solution of homogeneous equationof complementary function of equation (10) 
is 

 C.F. = C1 1
x+C₂3x 

For the particular solution, let 

 yx=C. 5x 

Substituting this into the equation (10), we shall get 

 C.5x+5 – 4C.5x+1+3.C.5x = 5x 

or 5x (C.52 – 4C.5+ 3C) = 5x 

or (25 – 20 + 3) 

 8C=1 

or C = 1/8 

Thus the particular solution is yx = 1/8 5x 

General solution is 

 yx=C1+C23
x+1/8. 5x 

Example 10. Solve 

 yx+2– 4yx+2+3yx=3x 

Solution: The homogeneous solution is the same & above, viz. 

 yx = C₁ + C₂ 3x 

We notice the part of the homogenous solution is the same as the function Rx i.e. 3x. In such a 
casewhere the homogenous solution includes a term similar to the function R(x), we multiply 
the particular solution we are trying by x. Thus we shall try 

 yx = Cx 3
x 

On putting this solution into original equation, we get 
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C(x+2) 3x+2 – 4C (x + 1) 3x+1+3 Cx 3x=3x  

C [9x 3x+183x– 12x.3x+3x3x] = 3x 

or C[6] = 1 

  

The particular solution becomes 

  

 General solution is 

 yx = C₁ + C₂ 3x +  x 3x 

Example 11.: Solve 

 yx+2–6Yx+1+9yx=3x (11) 

Solution 

 The equation yx+2 – 6yx+19yx=3x 

is a second order non-homogeneous equation with constant coefficient  

In this case, its homogeneous equation is 

 yx+2 – 6yx+1+9yx=0 

The auxiliary equation is 

 βx– 6β +9=0 

 βx – 6β + 9 = 0 

or (β - 3)2 = 0 

i.e β1 = β2 = 3  

The homogeneous solution is 

 yx = C1 3
x+C1 x 3x 

To find the particular solution, we try yx =C3x 

 But, the terms in the homogeneous solution include 3x, we multiply by x and set 
yx=C3x. But there is still term in homogeneous solution which is same as the particular solution 
we propose to tryCx 3x, i.e. 

 yx Cx2 3x 

Now, there is no term in the homogeneous solution similar to this. On substitution in equation 
(11) we get 

 C(x+2)2 3x+2 – 6 C(x+1)2 3x+1+9cx2 3x = 3x 

1

6
C 

1
3

6
xyx x

1

6
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C[9(x²+4x+4) –18 (x²+2x+1)+9x²] 3x = 3x 

18C=1  

C=  

The particular solution is 

  

General solution is 

 yx = C₁+3x+C₂ x3x+  

Case II 

When R(x)=xn, we try, as a particular  

yx=A0 +A1x+A₂x₂+.... + Anx
n 

The method for finding the solution is the same as in Casel. We first find the 
homogeneous solution say 

 yx = C1β1
xC₂β₂x 

 if it is a second order equation. Then we check to find if the particular solution has any 
terms similar to the terms in the homogeneous solution. If has, we multiply with x just as in 
case.  

Example 12: Solve the differential equation 

yx+2 – 4yx+1+3yx= x² 

Solution: The differential equation is  

yx+2 – 4yx+1+3yx= x²  (12) 

The homogeneous equation of equation (12) is 

 yx+2 – 4yx+1+3yx=0  

The auxiliary equation is 

 β₂ – 4+3=0 

or (β– 1) (β– 3)=0 

or β1 = 1 β2 = 3 

  yn=C1= C₂ 3x 

The particular solution we assume is 

 yn=A0+A1 x+A₂ x² 

1

18

2

3
18

x
x

x
y x

2

3
18

xx
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This solution has a constant Ao. The homogeneous solution has a constant C. Thus, we 
have multiply the solution by x to have to different term in the solution and on multiplying the 
above solutionby x, we get 

 yx=A0x+A1x²+A₂x³ 

 so that there is no similar terms in the homogeneous and particular solution. On 
substitutingthis in the equation (12), we get 

A0 (x+2)+A1 (x+2)²+ A₂ (x+2)³ 

-4 [A0 (x+1)+A1 (x+1)2 A₂ (x+1)³] + 3 [A0x+ A1 x²+Ax³] = x² 

or 

A0 (x+2)+ A1 (x²+4x+4)+ A₂ (x³8 +6x2 +12x) 

-4[A0 (x+1)+A1 (x2+2x+1)+ A₂ (x³ +1+3x²+3x)] 

+3 [A0x+A1 x²+A₂x³] 

or 

A0 (A₂ – 4 A₂+3A2)x
3+ (A1 + 6A2–4A 1 – 3A2)x

2 

or -6A2 x2+(-4A1)x+(-2Ao +4A2) = x2  

Equation coefficients, we get 

 -6A2=1 A₂  

 - 4A1=0 A₁=0 

 -2A0+ cA₂ =0 

 A0=2A2 

 = 2  

 i.e. A0 = - –  

So we have A0 =  A1 = 0, A2 =  

Then the particular solution is 

 

General solution is 

 yx=C1 +C₂ 3x -  

  

1

6



1

6
 
 
 

1

3

1

3

 1

16



31 1

3 6xy x x
 

 

31 1

3 6
x x



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Case III 

 When R(x) = constant, let a particular be gien by yx=y for all x. 

Putting yx=y is 

yx+A1yx-1+A2 yx-2+ .......... + Axyx– x = R 

 y + A1y + A2y + .............. + An y = R 

or (1 + A1 + A2 + ............ + An) y = R 

But when 1+ A1+ A₂ ..........+An = 0, then this procedure fails then we take particular solution 
yx = xy. If this also fails, we then try the particular solution yx=x²y and so on.  

Example 13: Solve the equation 

 yn – 2yn-1+ yn-2=1, y0 = 2 and y₁ = 5.5  

Solution: The difference equation is 

 yn – 2yn-1+ yn-2=1 (13)  

The homogeneous equation to the aboveequation is 

 yx – 2yx+ yx-2= 0  

The auxiliary equation is  

β² - 2β + 1 = 0 

(β -1)2=0 

 β₁ = β₂ = 1  

The complementary function of (13) is 

 yx = (C1 + C2 x) βx 

  =  (C1 + C2 x) 1x 

 = C1 + C2 x 

For particular solution, let yx =y for all x, 

and on substituting it is equation (13) we get 

 y – 2y+y=1 

i.e. 0=1, which is not possible, 

Now substitute, yx=x²y is equation (13), we get  

x2y – 2(2-1)2y+(x – 2)² y=0 

i.e. x2y – 2(x²+1 – 2x) y + (x2 – 4x+4) y = 1  

or x2y – 2x2y – 2y+4xy + x2y – 4xy+4y=1 

 2y=1ory =  1
2
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The particular solution of equation (13) is 

   

General solution equation (13) is 

 yx = C₁+C₂x + x² 

Note: If R= Ax+ Bxn 

 Then in this case, case I and case II are used simultaneously. 

Example 14: Solve 

 yx+2-4 yx+1+3yx=5x+2x 

Solution: The difference equation is 

 yx+2 – 4 yx+1+3yx=5x+2x  

The homogeneous equation of the above equationis 

 yx+2–4yx+1+3yx=0  

The auxiliary equation is  

β₂ – 4β +3=0  

or (β-3) (β-1)=0  

β₁ =1, β₂ = 3 

The homogeneous solution is  

yx =C1+C2 3
x 

The particular solution for R = 5x is 

 yx = C.5x 

The particular solution for R=2x is 

 yx = A0 + A1x 

 Here constant term A0 and also a constantterm in the homogeneous solution, viz., C1 we 
multiply by x and get 

 yx = A0x+Ax² 

Thus, the combined particular solution is 

 yx =A0+A1x²+C.5x 

Substituting this value of yx in equation (14), we get 

 A0 (x+2)+A1 (x+2)+C5x+2 

 -4 pA0 (x+1)+A1 (x+1) 2 c.5x + 1] 

21

2xy x

1

2
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 +3[A0x+A1x₂+C.4x]=5x+2x 

or A0 (x+2)+A1 (x₂+4x-4)+ 25 C.5x 

 -4 [A0 (x+1)+A1(x2+2x+1)+4 C.5x0  

+3[A0 x+A1x₂+C.5x] =5x+2x 

or 2A0 +4A1 – 4A0 – 4A1 +(A0 + 4A1– 4 A0 

–8A1 +3A0)x=5x+2x 

 +(A1 – 4A1– 3A1) x²+C (25 – 20+3) 5x 

or -2A0 – 4A1x+9 C5x 5x+2x 

Equating coefficients, we get 

 -2A0=0  A0 = 0 

 -4A1 = 2  A1 = -1/2 

 8 C=1  C=  

Thus, the particular solution is 

  

and the general solution is 

  

SELF-CHECK EXERCISE 8.3 

Q1. Solve yt+1+3y1= 4 when y0 = 4  

Q2. Solve the differential equation  

3yx+1 = 6yx+9x = 0, 1, 2, 3, when y0= 7 

8.6 SUMMARY 

 In this unit we learnt about the difference equation. An equation that relates the 
independent variable x1 the dependent variable y and its finite difference is called a difference 
equation. In the next section we learnt about the order of the difference equation. Further we 
discussed about the change of notation. We have also studied about the homogeneous linear 
difference equation with constant coefficient of order 1 and order 2. In the next section of the 
unit, we learnt about the geometrical interpretation of the solution. 

8.7 GLOSSARY 

 1. Difference Equation : An equation that relates the independent variable x1 the 
dependent variable y and its finite difference is called a difference equation. 

1

8

21 1
5

2 8xy x x 

2
1 2

1 1
3 5

2 8
x

xy C C x x  
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 2. Homogeneous Difference Equation : A difference equation is homogeneous is 
the constant term b is zero. 

 3. Linear Difference Equation : A difference equation is linear if (i) the 
dependent variable y is not raised to any power and (ii) there are no product 
terms. 

 4. Non-homogeneous difference equation : A difference equation is non-
homogeneous is the constant term b is non-zero. 

 5. Order of a Difference Equation : It is determined by the maximum number of 
periods lagged.    

8.8 ANSWER TO SELF CHECK EXERCISES 

Self-check Exercise 8.1 

Ans. 1 Solution 

un  = 3un-1 + 4 Given uo = 2 

 un  = 3n × 2 + 2 (3n – 1) 

  = 2 × 3n + 2 × 3n – 2 

  = 4 × 3n – 2 

Particular solution of the difference equation has been found. 

Ans. 2 u0 = u0 + 4n. 

Ans. Q3. Solution 

(a) y (x)=3x²+ 2x 

 y(x) =  y (x+1) – y(x)=y(3) – y (2)  

= (3.32+2.3) – (3.22 +2.2) 

= 27+6 – 12 – 4 = 17 

(b) y (x)=x(x – 1) 

 = x² – x 

 y (x) = y (x+1) – (x)=(3) – y (2)  

= (32–3) – (22–2) 

  = 6 – 2 = 4 

Self-check Exercise 8.2 

Ans. Q1. Solution 

  

 Let yn = βx 





1

5
0

2n xy y  
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On substitution, we obtain the characteristic equation  

  

  

  

Thus, the solution is 

 yx = C1β
x = C1   

Ans. Q2.  Solution 

The equation yx+2–2yx+1+ 4yx =0  

is linear homogeneous difference equation of order two with constant coefficients 

 The auxiliary equation of the above equation is 

 β1 - 2 β+ 4 =0 

or (β- 2)2=0 

i.e.  β1 = β₂ = 2 

  yx = C₁2x+ C₂ x 2x 

 For checking the solution, consider left side 2 difference equation 

L.H.S. = yx+2 – 2yx+1+ 4yx 

= C12
x+2+ C₂ (x+2) 2x+2– 4 [C1 2

x+1+C₂ (x + 1) 2 +x+ 1]+4)C
12

x + C₂× 3x) 

Ifyx= C1 2x+C2 x 2x is a solution, it must satisfy the differential equation. 

 = 4 C12
x+ 4 C₂× 2x+ 8 C₂2 +x–8 C1 x³ – 8 C22

x – 8 C2 2
x+ 4 C12

x+ 4C2× 2x 

 =0 

 = R.H.S. 

Ans. Q3. Refer to Section 8.4 (Example 2) 

Self-Check Exercise 8.3 

Ans. Q1. Refer to Section 8.5 (Example 6) 

Ans. Q2. Refer to Section 8.5 (Example 7) 
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8.10 TERMINAL QUESTIONS  

Q.1 Find the first difference of  

 y(x) = 3x2  

Q.2 Find the first and second difference of 

 y(x)=3x²+2x 

Q.3 Solve 

  

Q.4 Solve 

 yx + 2 – 10yx + 1 + 25yx = 0 

Q.5 Solve and check the solution of difference equation 

yx+2 – 10yx+1+25yx=0 

Q.6 Solve the difference equation 

 2 yx + 1 = 6yx – 4 when yn = 2 

Q.7 Solve 

 yx + 1 = 4yx + 4, ye = 2 

Q.8 Solve  

 yx + 2 + 5yx + 1 – 6yx = 2x 

  

1

7
0

4x xy y



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Unit - 9 

DIFFERENTIAL EQUATIONS: INTRODUCTION AND 
SOLUTION OF FIRST ORDER AND FIRST DEGREE 

EQUATIONS 

STRUCTURE 

9.1 Introduction  

9.2 Learning Objectives 

9.3 Differential Equation and its Types 

9.3.1  Ordinary Differential Equation  

9.3.2  Partial Differential Equation 

9.3.3  Order of Differential Equation  

9.3.4  Degree of Differential Equation 

9.3.5  Liner Differential Equation 

9.3.6  Non-Liner Differential Equation 

Self-check Exercise 9.1 

9.4 Solution of a Differential Equation 

Self-check Exercise 9.2 

9.5 Solution of Non-liner Differential Equation 

Self-check Exercise 9.3 

9.6 Summary 

9.7 Glossary 

9.8 Answer to Self-Check Exercises 

9.9 References/Suggested Readings 

9.10 Terminal Questions 

9.1 INTRODUCTION  

 A difference equation is used to solve the values of an unknown function y(x) for 
different discrete value of x. In this Unit, we introduced to the concept of differential equations.  

9.2 LEARNING OBJECTIVES  

 After studying this Unit, you will be able to : 
 solve Differential Equation 
 know the order of Differential Equation 
 identify the degree of Differential Equation 
 solve the exact Differential Equation 
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9.3 DIFFERENTIAL EQUATION 

Def: An equation involving derivations of one or more dependent variables with respect to one 
or more independent variables is called oa differential equation 

For Example  = 0  (1) 

 + 3x = sin t    (2) 

 = v     (3) 

 = 0    (4) 

The equations (1) to (4) are differential equations. The differential equations are 
classified according to whether threr is one or more than one independent variable in the 
equation. 

9.3.1 ORDINARY DIFFERENTIAL EQUATION 

 Def: A differential equation involving ordinary derivative of one or more dependent 
variables with respect to a single independent variable is called an ordinary differential 
equation. 

 Equation (1) & (2) are ordinary differential equations. In equation (1) the variable x is 
the single independent variable, and y is a dependent variable & in equation (2) the 
independent variable is t. 

9.3.2  PARTIAL DIFFERENTIAL EQUATION 

 Def: A differential equation involving partial derivatives of one or more dependent 
variables with respect to partial differential equation. 

 Equations (3) and (4) are partial differential equations. In Equation (3) the variables & t 
are independent variables and v is a dependent variables. In equation (4) there are three 
independent variables x, y and z, in this equation u is dependent. 

 We further classify differential equations, both ordinary and partial, according to the 
order of the highest derivative appearing in the equation. For this purpose we define the order 
of an equation. 

9.3.3 ORDER OF DIFFERENTIAL EQUATION 

Def: The order of the highest order derivative involved in a differential equation is 
called the order of the differential equation. 

 The ordinary differential equation (1) is of the second order, since the highest derivative 
involved is a second derivative. Equation (2) is an ordinary differential equation of the fourth 

22
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order. The partial differential equations (3) and (4) are of the first and second orders, 
respectively.  

9.3.4 DEGREE OF A DIFFERENTIAL EQUATION 

 The degree of a differential equation is the degree of the highest derivative when the 
equation has been made free from the redicals and negative inedices as far as the derivatives 
are concerned.  

For example y =  on simplifying, 

we obtain y² = 1 +  

The highest derivative is  The order of equation is 2. 

Highest degree of this highest differential is 1, hence the degree of equation is 1. 

In equation  +  + y = 0 highest derivatives is y is 2. So the degree of the 

aboveequation is 2. 

9.3.5 LINEAR DIFFERENTIAL EQUATION 

Def: A differential equation of order in the dependent variable y and the independent 
variable x, when expressed in the form 

a0(x)  

where a, is not indetically zero is said to be linear equation because here (i) the dependet 
variable y and its various derivatives occur to the first degree only, (ii) that no products of y 
and or any of its derivatives are present, and (iii) that no transcendental fucntion of y and/or its 
derivative occur. 

For example, 

  + 5 + 6y = 0 

xex one linear differential equation. 

9.3.6 NON-LINEAR DIFFERENTIAL EQUATION  

A non-linear ordinary differential equationis an ordinary differential equation thath is 
not linear. For example 
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  + 5 + 6y2 = 0  

  + 5 + 6y = 0 

  + 5 + 6y = 0 

are all non linear differential equations.  

Self-check Exercise 9.1 

Q1. Define Differential Equation .  

Q2. What is meant by Partial Differential Equation. 

Q3. What do you understand by  Non-Liner Differential Equation. 

9.4 SOLUTION OF A DIFFERENTIAL EQUATION 

 A solution of a differential equation is a function which satisfies the equation and does 
not involve and derivative or differential. 

For example, consider a differential equation 

 = 3x2  (5) 

Integrating both sides w.r.t. x, we get y x3+c  (6) 

 (where C is a constant of integration)  

is a solution of the differential equation (5) and this value of y in equation (6) satisfies the 
differential equation. The definition implies that a differential equation differential and other 
algebric process of elimination, etc. For this reason, the solution of a differential equation is 
also called its primitive.  

General Solution (or Complete Primitive or Complete Intergal) 

 The general solutions of a differential equation must contain as many arbitary constants 
as theorder of the equation.  

Particular solution 

 The solutions deduced from the general solution by giving particular values to the 
arbitary constants are called particular solutions of the equation.  

Singular Solution 

 A singular solution of a differential equation is that solution which satisfies the equation 
but cannot be derived from its general solution. 

Now, we will classify differential equations which are in the syllabus. 

1. Non linear differential equations of the first order and first degree. 

2
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(a) Variables are separable 

(b) Homogeneous differential equations exact differential equation. 

2. Linear differential equation of first order. 

3. Linear differential equation of the second order with constant coefficients. 

Self-check Exercise 9.2 

Q1. Solve  = ex-y + x2e-4 

Q2. Solve   = e4-x + 1 

9.5 SOLUTION OF NON-LINEAR DIFFERENTIAL EQUATION OF THE FIRST 
ORDER AND FIRST DEGREE 

(a) When variables are separable: 

If the differential equation 

 = f (x, y)     (7) 

can be put in the form f1(x) dx = f2(y) dy   (8) 

where with dx we associate a function f1(x) which is only a function of x and with dy we 
associate a function f2(y) which is only a function of y, we have the variable separable case, 
Such equations are solved by integrating both sides of (8) and adding an arbitrary constant of 
integration to any one of the two sides. Thus solution of equation (7) is 

    (9) 

The constant of C can be selected in any suitable form, for example, logC, SinC, CosC, 
ec etc. 

Example 1: Solve =ex-y + x² e-y 

Solution: =ex-y+x² e-y 

 = e-y (ex+x2) 

or  = (ex + x2) dx 

or ey dy = (ex+x2) dx 

On integrating both sides, we get ey=  + C 

(where c is a constant integration) is the required solution. 

dy

dx

dy

dx

dy

dx
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(i) Equations reducible to variable separable 

:-Equation fo the form 

=f(ax+by+c) or = f(ax+by)  

can be reduced to an equation in which variables can be separated. For this purpose we use the 
substitution ax+by+c=vorax+by=v.  

Example 2: Solve (x + y) (dx – dy)= dx + dy.  

Solution: (x+y) (dx – dy) = dx + dy (x+y-1) dx = (x+y+1) dy 

or =  (1) 

Let x = y = v 

1 + =   (2) 

or =   (3) 

Equation (1) with the help of (2) & (3) becomes 

– 1 =  

 = + 1 =  

 2sz = dv 

On Integrating, we get  

2x+c=v+log v 

2x+c=x+y+log (x+y)  

x-y+c = log (x+y) 

Example 3: Solve = ex-y+1 

Solution:  = ex-y + 1 

Putx-y=z 

1 –  =  

dy

dx

dy

dx

dy

dx

1

1

x y
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 
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Equation (1) can be written as 

 1 – = ez +1 

or  = ez 

 = dx 

On integrating, we get 

  = x + c 

or ey-x = x - c 

or x = ey + c 

is the required general solution of the given differential equation. 

(b) Homogeneous Differential Equation:- Adifferential equation of first oreder and first 
degree is said to be homogeneous if it can be put in the 

from 

  

To solve such an equation, we put y=vx, where vis a function of x. 

 Then  

Equation (1) can be written as v+x+  = f(v) 

or x  = f (v) – v 

separating the variables, we get 

or  

on integration, we get logx+c=  

where C is a constant of integration. 

After integration, replacing v by  

dy

dx

dy

dx
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Example 4 

Solve: (x²+ y²) dx - 2xy dy = 0 

Solution: (x²+ y²) dx-2xy dy =0 

or  

Put y = vx, then  

Equation (1) can be written as 

 

– v  

 

 

 

On integrating, we get 

-log (1-v2) log |x| -logC  

(Where c is a constant of integration)  

log |1-v2| = log|x|+ log c  

log (1-v2) x| = log C  

or (1-y²) x=C 

or  x = C 

or x2 - y2 = Cx 

Example 5 

Solve: x y (log y - log x + 1) 

Solution: or  

2 2

2

dy x y

dx xy




dy
v x

dx
 

dv

dx

2 2 2 2

2

1

22

dv x u x v
v x

dx vx v

 
  

21

2

dv v
x

dx v




2 2 21 2 1

2 2

v v v

v v

  
 

2

2

1

v dx
dv

dxv




2

2

1

v dx
dv

dxv

 
  

 

2

2
1

y

x

 
 

 

dy

dx
  
 

1
dv y y

log
dx x x

   
 



 

231 
 

Putting y=vx, we have = v + x  

From equation (1), we get 

v + x  = v (og v + 1) 

or  

On integrating, we get 

log x+log C = log v 

or cx=log v 

v=eex 

or yx=eex 

or y=xex 

(ii) Equation reducible to homogeneous form: 

The equations of the form 

where can be reduced to homogeneous form. 

Let x = X + h&y= Y + k where h and k arecontants 

Here dx=dX & dy = dY. 

The given equation (1) can be written as 

  

  (2) 

In order to make equation (2) homogeneous, choosehand k such that 

 ah+bk+c=0 (3) 

and  a'h+b'k+c=0 (4) 

Solving equation (3) & (4) for h & h, we get 

  (5) 

It is given to us that  ab' –a'b  0 

dy

dx

dv

dx

dv

dx

1
.

dx dy vdv

x vlog v log v
 

' '

dy ax by c

dx a x b y c

 


  1 1

a b

a b


( ) ( )

'( ) '( )

dY a X h b Y k c

dX a X h b Y k c

   


   

' ' ' '

a X by ah bk c

a X b y a h b k c

   


   

' ' ' '
&

' '

dc bc ca ca
h k

ab ab ab ab

 
 

 

1

a b

a b

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Hence h and k are given by the equation (5) willexist.  

Eqution (2) can be written as 

  

which being homogeneous in X and Y and can be Y solved by putting  = van usual. After 

getting solution is terms of X and Y, we remove X and Y by putting X = x- hand Y = y = k.  

Example 6 

Solve:  

Solution:  

Here a1 = 1, b1 = 2, a2 = 2, & b2 = 1 

  

  

Put x = X+h and y = Y+k 

dx=dX and dy = dy 

  

  

Choose H and k such that h+2k-3=0 and 2h+k=0 

  (2) 

  (3) 

  (4) 

is an homogeneous equation 

' '
' '

Y
a b

dY aX bY X
YdX a X b Y

a b
X

      
    

 

Y

X
 
 
 

2 3

2 3

dy x y

dx x y

 


 

2 3

2 3

dy x y

dx x y

 


 

1 1

2 2

1 2
& 2

2 1

a b

a b
  

1 1

2 2

a b

a b


( ) 2( ) 3

2( ) ( ) 3

dy X h Y k

dx X h Y k

   


   

2 ( 2 3)

2 (2 3)

X Y H k

X h H k

   


   

1

6 3 6 3 1 4

h k
 

    

1

3 3 3

h k
 

  

2

2

dY X Y

dX X Y





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Put Y=vX, so  

Equation (3) can be written as  

  

 or  

   

(1) dv 

(Resolving partial functions) 

 

On integrating, we get  

log X + logC= [log (1 + v) - 3 log (1 - v)] 

2log Cx = log  

or C²X² =  

 

C² (X-Y)=X+Y 

C2[(x-1)-(y-1)]²=x-1+y-1  

or C2 (x-y)2= x+y-2 

Case of failure 

In the differential equation 

where  

(say) 

dY dY
v X

dX dX
 

1 2 .

2

dv v
v X

dX v


 



1 2 .

2
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X v

dX v


 



21 .

2

v

v




2 .

(2 )(1 )

dv v

dX v v




 

1 1 3 1

2 1 2 1

dx
dv

X v v

    
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1
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v
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1
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


3
2 2 1 1

Y Y
C X

X X
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1 1 1

2 2 2

a b y cdy
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 a2=ma1& b₂ = mb₂ 

The given equation reduces to 

  

Put a1x+b1y=z 

  

 

or  

  

   

In the above equation used for variables are separable and can be solved. 

Example 7 

Solve: (3y+4x+4) dx - (4x+6y+5)=0 

Solution: (3y+4x+4)-(4x+6y+5)=0 

 or  

Here a1 = 2, b1 = 3, & a₂ = 4, b₂ = 6  

  

  

Let 2x + 3y = z 

Differentiating the above equation 

 2 + 3  =  

1 1 1

1 1 2( )

a b y cdy

dx m a x b y c

 


 

1
1

1 1
1

dz
adzdy dy dxa b or

dx dx dx b


  

1
1

1 2

1 z cdz
a

b dx mz c

      

1 1
1

2

( )b z cdz
a

dx mz c


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

1 1 1 2

2

( ) ( )b z c a mz c

mz c

  
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

1 1 1 1 1 2( )

mz c

z b a m b c a c


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dz dx

4 3 4

4 6 5
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   

The given equation reduces to 

  

  

  

or  dz = dx (Variables seperable) 

On Integrating both sides w.r.t. 

 or  

 

or  

or  

14z - 9 log (7z + 22) = 49x + 49c 

14 (2x + 3y) - 9 log (14x + 21y + 22) = 49x + 49c 

21 x - 42y + 9 log (14x + 21y + 22) = -49c 

or 7x - 14y + 3 log (14x + 21y + 22) + c = 0 

Differentiating Of The Equation 

The differential equation of the function f(x, y) is  

  

or df = M(x, y) dx + N(x, y) dy = 0  

where M and N have continuous first partial derivatives 

1
2
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dy dz

dx dx
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3 2 4
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t f

df dx dy
x y
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If the differential equation is exact if  

  

The solution of equation (1) is given by  

 

Example 8: Solve the equation 

(3x² + 4xy) dx + (2x²+2y) dy = 0  

Solution: First Method 

The equation is 

 (3x² + 4xy) dx + (2x²+2y) dy = 0 …..(1) 

First, we want to find whether the above equation is exact or nor. Here 

M(x, y) = 3x²+4xy, N (x, y) = 2x²+2y  

  

So the equation (1) is exact equation. Thus we must find f(x, y) such that 

 M (x, y) = 3x2 = 4xy  ….. (2) 

  N (x, y) = 2x2 = 2y ……..(3) 

Integrating equation (2) w.r.t. x 

f(x, y) =  

[where (y) is constant integration] 

 

 = x3 + 2x2 +  (y) 

then  

Substituting the value of from equation (3) 

,
f f

M N
x y

 
 
 

( , ) ( , )
,

M x y N x y

x y

 


 

( , )
( , ) ( , ) ( , )

M x y
f x y M x y dx N x y dx d

y

 
      

( , ) ( , )
4 , 4

M x y N x y
x x

y y

 
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

( , )f x y

x
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( , ) ( )M x y dx y
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2

f x y d y
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f dy
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( , )f x y

f


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 or  = 2y 

 or  (y) = y2+ C0 where C0 is an arbitary conduct  

f(x, y) = x² + 2x²y + y²+C0 

Hence a one-parameter family of solution is f(x, y)= c₁ 

 or x3+2x2y+ y²C0= C1 

 or x3+2x²y + y²= C  

(where C=C1 -C0 is arbitary constant differential equation is exact is given by 

  

 Here 

  

  

  

 = x²+2x²y + y²+C 

 = x²+2x2y+ y²+C is the sol. 

Linear Differential equation of first order 

 A first order ordinary differential equation is linear in the dependent variable y and the 
independent variable x if it is, or can be, written in the form 

 + P(x) y = Q(x) 

For example 

or +(x+1) y=x3 

or  

is a first orders linear differential equation.  

A one-parameter family of solution of this equation is 

y =e  

  

( )dp y

dy

( , )
( , ) ( , ) ( , )

M x y
f x y M x y dx N x y dx d

y

 
      

 2 2 2( , ) (3 ,4 ) (2 , ) 3 4f x y x xy dx x y x xy dx d
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3 2 2 22 (2 , 2 ) (2 ,2 ) 4x x y x y x y xdx d      
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y x
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( )( ) ( ) )p x dxP x dx e Q x dx c   
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Example 9: Solve 

  y = e2x 

Solution:  y = e2x 

Here P(x)= and Q=e-2x 

y=e-p(x) dx  

 

 

 

 

 

 

Example 10 

Solve:- (x2 + 1) + 2xy = 4x2 

Solution:-(x2 + 1) + 2xy = 4x2 

 +  

Here P(x) =  

y  

2 1dy x

dx x

  
 

2 1dy x
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= y (x2 +) = is the required solutions. 

(b) Equations reducible to linear 

 We now consider a rather special type of equation that can be reduced to a linear 

equation by an appropriate transformation. An equation of the form + P(x) y = Q(x) yn 

is called a Bernulli differential equation. We observe that ifn=0 or 1, then the Bernoulli 
equation is actually a linear equation and is therefore readily solvable as such. However, in the 
general case in which n0 or, then the transformation v=y1-n reduces the Bernoulli equation to a 
linear equation in v. 

Example 11 

Solve the equation  

Solution:-  

Dividing by y6 

y-6  

Put y-5 = v 

-5 y-6  

or y-6  

 –  

2 1 2 1 2
2 1

2

4

1

x x
dx dx

x x x
e e dx C

x

 
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
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or  

Here P = -  and Q = 5x2 

The solution of equation (2) is given by 

v  

 

 

 

 

 

+ Cx5 is the required solutions. 

Example 12 

Solve + y=xy³ 

Solution:- This is Bernoulli differential equation, where n=3. We first multiply the equation 
through by y³, thereby expressing it in the equivalent 

 form y³ + y²=x 

If we let v=y1-n, then 

 

The preceding differential equation is transformedinto the linear equation 

 

or -2v=-2x is a linear equation in v where  

P=-2, Q=2x. 

25
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  
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The between of this equation is 

v  

 

 

 

 

 

 is the required solutions. 

Self-check Exercise 9.3 

Q1. (x2 + y2) dx – 4xy dy = 0 

Q2. Solve the equation (2x2 + 4xy) dx + (2x2 + 4y) dy = 0 

Q3. Solve  = x2y6 

9.6 SUMMARY 

 In this unit, we studied about the differential equations. We also, learnt about the order 
and the degree of differential equation. In the succession section we studied about the liner and, 
non-liner differential equation. In the last section we learnt about the exact differential 
equation. 

9.7 GLOSSARY  

 1. Differential Equation : An equation involving derivations of one or more 
dependent variables with respect to one or more independent variables is called a 
differential equation. 

 2. Partial Differential Equation : A differential equation involving partial derivatives 
of one, or more, dependents variable with respect to partial differential equation. 

 3. Order or Differential Equation : The order of the highest order derivative 
involved in a differential equation is called the order of the differential equation. 

 4. Degree of Differential Equation : The degree of a differential equation is the 
degree of the highest derivative when the equation has been made free from, the 
radicals and negative indices us for the derivatives are concerned.  

( ) ( )
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2 2
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
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 5. Singular Solution : A, singular solution of a differential equation is that solution 
which satisfies the equation but cannot be derived from its general solution. 

9.8 ANSWER TO SELF CHECK EXERCISES 

Self-check Exercise 9.1 

Ans. Q1. Refer to Section 9.3 

Ans. Q2. Refer to Section 9.3.2  

Ans. Q3. Refer to Section 9.3.6  

 

Self-check Exercise 9.2 

Ans. Q1. =ex-y+x² e-y 

   = e-y (ex+x2) 

or  = (ex + x2) dx 

or ey dy = (ex+x2) dx 

On integrating both sides, we get ey=  + C 

(where c is a constant integration) is the required solution. 

Ans. Q2.  Put y – x = z 

  1–  =   

   equation (1) can be written as 

  1 –  = ez + 1 or  = ez or  = dx 

  on integrating, we get x – y 

   = x – c or e = –x + c or x  = ey + c Ans 

Self-check Exercise 9.3 

Ans. Q1. (x²+ y²) dx – 4xy dy =0 

or  

Put y = vx, then  

dy

dx

y

dy

e

3

3

x

dy

dx

zd

dx

dy

dx

dy

dx z

zd

e

z

1

e



2 2

4

dy x y

dx xy




dy
v x

dx
 

dv

dx
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Equation (1) can be written as 

 

– v  

 

=  

=  

On integrating, we get 

-log (1-v2) log |x| -logC  

(Where c is a constant of integration)  

log |1-v2| = log|x|+ log c  

log (1-v2) x| = log C  

or (1-y²) x=C 

or x = C 

or x2 - y2 = Cx 

Ans. Q2. Refer to Example 8 

Ans. Q3. Refer to Example 11 

9.9 REFERENCES/SUGGESTED READINGS 

1. Allen, R.G.C. (2015). Mathematical Analysis for Economists. MacMillan, India 
Limited, Delhi. 

2. Bose, D. (2018). An Introduction to Mathematical Economical. Himalaya 
Publishing House, Bombay.  

3. Budrick, F. (2017). Applied Mathematics for Business, Economics and Social 
Sciences, MC Grew-Hill Book Company, London. 

4. Chiang. A.C. and Wainwright, K. (2017). Fundamental Methods of 
Mathematical Economics. MCGraw-Hill Book Company, London. 

5. Mukherji, B. and Pandit, V. (1982). Mathematical Methods for Economic 
Analysis, Allied Publishers Pvt. Ltd., New Delhi. 

2 2 2 2

2

1

44

dv x u x v
v x

dx vx v

 
  

21

4

dv v
x

dx v




2 2 21 2 1

4 4

v v v

v v

  
 

2

4

1

v dx
dv

dxv




2

4

1

v dx
dv

dxv

 
  

 

2

2
1

y

x

 
 

 



 

244 
 

9.10 TERMINAL QUESTIONS  

1. Solve (1-y) x +(1+x)y=0 

2. Solve  

3. Solve  

4. Solve  

5. Solve (2x + 4y + 3)  = (x + 2y + 1) 

6. Solve (9x + hy + g) dx = (hx + by + f) dy = 0 

7. Solve (x2 - 4xy - 2y2) dx + (y2 - 4xy - 2x2) 

  

dy

dx

dy
y x

dx
 

2 2

2

dy x y

dx xy




2 9 20

6 2 10

dy x y

dx x y

 


 

dy

dx
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Unit-10 

LINEAR DIFFERENTIAL EQUATION OF SECOND ORDER 
WITH CONSTANT COEFFICIENT 

STRUCTURE  

10.1 Introduction 

10.2 Learning Objectives 

10.3 Higher-order Linear Differential Equation 

10.3.1 Homogeneous Liner Equation with Constant Coefficient 

Self-check Exercise 10.1 

10.3.2 Non-Homogeneous Equation with Constant Coefficient 

Self-check Exercise 10.2 

10.4 Variation of Parameter 

Self-check Exercise 10.3 

10.5 Summary 

10.6 Glossary 

10.7 Answer to Self-Check Exercise 

10.8 Suggested Reading 

10.9 Terminal Questions 

10.1 INTRODUCTION  

 In the last unit, we have studied about the first order differential equation. In this unit, 
we will study about the higher-order differential equations. 

10.2 LEARNING OBJECTIVES 

 After going through this Unit, you will be able to : 

 solve higher order differential equation 

 solve homogeneous linear equation with constant coefficient  

 solve non-homogeneous equation with constant coefficient 

10.3 HIGHER-ORDER LINEAR DIFFERENTIAL EQUATION 

 Higher-order linear differential equation are equations having a great variety of 
important applications. In particular, second-order linear differential equations with constant 
coefficients have numerous applications. 
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Consider the second order (non homogeneous) linear differential equation 

  a2 y = 1 (x) (1) 

and the corresponding homogeneous equation 

 a2 y = 0  (2) 

where a0, a1 and a2 are contents. 

 The solution is obtained in two steps. 

First Step 

 The general solution of (2) is called the complementary function of equation (1). We 
shall denote this by y0. 

Second Step 

 Any particular solution of (1) involving no arbitrary contents is called a particular 
integral of yc. We shall denote this by yp. 

 The solution yc+yp, where I is the complementary function and yp is a particular integral 
of (1), is called the general solution (1) 

Thus to find the general solution of (1), we merelyfind: 

(i) The complementary function, i.e., a "general linear combination of a linearly 
independent solutions of the corresponding homogeneous equation (2). The method we will be 
using dependson the following result which we give without proof. By linearly independent 
solutions we mean there are two arbitrary constant d, and d, such that d1f1 + d2 f2 =0, which 
implies that d1 = d2 =0. Since equation (2) is a second order equation, we expect the solution to 
have two arbitrary constants. 

(ii) A particular integral, i.e., any particular solution of (1) involving no arbitrary constants. 

 The linearly independence of solutions of second order (or nth order) can also be found 
from the theorem which's states. 

 The two solutions f1 and f2 of the second order homogeneous linear differential equation 
are linearly independent on a <x<b if the Wronskian off1 and f2 is different from zero for some 
x on the interval a < x < b. 

i.e.  

W[f1 (x), f1 2(x0] or W[f1f2)=  = f1f2 - f1f2 0 

2
0 1

2

d y dy
a a

dx dx


2
0 2

2

d y dy
a a

dx dx


1 2

1 2

f f

f f



 

247 
 

In case the non homogeneous member F(x) of the linear differential equation (1) is expressed 
as a linear combination of two or more functions, then the following theorem may often be 
used to advantage in finding a particular integral 

(i) Let f1 be a particular integral; of 

 a2y = F1 (x) 

(ii) Let f be a particular integral of 

  a2y =F₂ (x) 

Then k1f+k2 f2 is a particular integral of 

 a2 y=F1 (x)=k1F₂ (x)+k₂F₂(x) 

where k1 and k2 are constants. 

 In the remaining section of this unit, we shall proceed to study methods of obtaining the 
two constituent parts of the general solution. 

10.3.1 HOMOGENEOUS LINEAR EQUATION WITH CONSTANT COEFFICIENT 

 Let us consider the second order homogeneous linear differential equation in which all 
the coefficients are real constants. That is, we shall be concerned with the equation (2) which is 

 a2y=0 (2) 

where a0, a1 and a2 are real constants. We shall show that the general solution can be found 
explicitly. 

 Thus we seek solutions of above equation of the form y=emx (because we need a 
function such that its derivative are constant multiplies of itself), where the constant m will be 
chosen such that el does satisfy the equation (2) assuming then that 

 y = emx 

is a solution for certain m, we have 

  

  

Substituting in (2) we obtain 

 a0 m² emx+a1 memx + a² emx = 0 

or emx (a0 m² +a1 m+a₂)=0  

2
0 1

2

d y dy
a a

dx dx


2
0 1

2

d y dy
a a

dx dx


2
0 1

2

d y dy
a a

dx dx


2
0 1

2

d y dy
a a

dx dx


0
mxdy

a m e
dx



2
2

2
mxd y

m e
dx


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Since emx 0, we obtain the polynomial equation is the unknown m: 

 a0 m² + a1m+a2 =0  

This equation is called the auxiliary equation or the characteristic equation of the given 
differential equation (2). If y=emx is a solution of (2) then we see that the constant m must 
satisfy (3). Hence to solve (2), we write the auxiliary equation (3) and solve itform. Three cases 
arises, according as the roots of (3) are real and distinct, real and repeated, or complex. 

First case : Distinct Real Roots 

Suppose the roots of (3) are two distinct real numbers m and m Then em1x, and em²x 
are two distinct solutions of (2). Further, using the Wronskian determinant one may show that 
these two solutions are linearly independent. Thus we have the following result. 

It the auxiliary equation (3) has two distinct real root m, and m, then the general solutions of 
second order homogeneous linear differential equation (2) with constant coefficients is 

 Y=C1 em1x+ c2 em2 x. 

where c1 and c2 are arbitrary constant.  

Example 1. Find the general solution of 

  

Solution: 

  

The auxiliary equation is 

 M² – 5m+6=0  

Hence (m – 2) (m – 3)=0 

or m₁ = 2, m₂ = 3 

The roots are real and distinct. Thus e2x and e³x are solution and the general solution may be 
written  

Y = c1e²x + c₂ e³x 

To verify that the solution e2x and e³x are linearly independent we have to show that their 
Wronskain is not zero it. 

 

Thus we are assured of their linear independence.  

 

 

2

2
5 6 0

d y dy
y

dxdx
  

2

2
5 6 0

d y dy
y

dxdx
  

3 3
2 3 5 5 5

3 3 3
, 3 2 0

3 3

x x
x x x x x

x x x

e xe
w e e e e e

e e xe
       
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Example 2. Find the general solution of the differential equation 

  

Solution: We have 

  

The auxillary equation is 

 M² – 3m+2=0 

Hence (m – 1) (m–2) = 0. m1= 1, m2= 2. 

The roots are real and distinct. Thus ex and e2x are solution and the general solution is 

 Y = c1 e
x+c2 e

2x 

 To verify that ex and e2x are linearly independent solution, we shall that their Wronskian 
is not zero 

i.e. 

  

 Hence we conclude that the solutions ex and e2x are linearly independent solution. 

Example 3: Find the general solution of the differential equation. 

 

Solution: 

  

The auxiliary equation is 

 4m² – 12m+5=0 

 or 4m² – 10m – 2m+5=0  

or 2m (2m – 5) – (2m – 5)=0 

  (2m – 1) (2m – 5) = 0, m1= ½m2 = 5/2 

The roots are real and distinct. Thus e1/2x ande5/2x are solution and the general solution is 

 Y = C1 e
½x + C2e

5/2x 

The Wronskian of this solution is 

2

2
3 2 0

d y dy
y

dxdx
  

2

2
3 2 0

d y dy
y

dxdx
  

2 3
2 3 3

2 3
, 0

2 3

x x
x x x

x x

e e
w e e e

e e
     

2

2
4 12 5 0

d y dy
y

dxdx
  

2

2
4 12 5 0

d y dy
y

dxdx
  
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Hence we conclude that the solutions are linearlyindependent solutions.  

Second Case 

We consider a simple example first, let 

  

The auxiliary equation is  

m2–4m+4=0 

 or (m – 2)²=0 

  The roots of this equations are  

  m1 = 2, m2 =2 

(real but not distinct) 

Corresponding to the root m1, we have the solutions e2x and corresponding to m2 we 
have the same solution e2x. The linear combination C1 e²x+ C2e

2x of these 'two' solutions is 
clearly not the general solution the differential equation (4), for it is not a linear combination of 
two linearly independent solutions. Indeed we may write the combination C1e

2xC2e
2x as simply 

c0 e
2x, where C0 = C1 + C₂, and clearly y = C0 e

2x, involving one arbitrary constant, is not the 
general solution of the given second order equation. 

 We must find a linearly independent solution, we already know the one solution e²x, we 
will reduce the order of the equation and let 

 y = e2xv 

where v is to be determined. Then we can show 

 y = x e2x 

is also the solution of equation (4). Thus we find the linearly independent solution e2x and xe2x 
of equation (4). Thus the general solution of equation (4) may be written 

 y=C1 e
2x +C2 xe2x 

y= (C₁ + C₂x) e²x 

Example 4. Find the general solution of the differential equation  

  

Solution: The equation 

5
2 22 5/2 3

/2 5
2

5, 251
2 2

x x

x x x
x x

e e
w e e e

e e
   

3 31
2 0

2
x xe e  

2

2
4 4 0

d y dy
y

dxdx
  

2

2
6 9 0

d y dy
y

dxdx
  
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is 2nd order homogeneous equation with constantcoefficient. 

 The auxiliary equation is  

m² – 6m+9=0 

 or (m – 3)2=0 

 The roots of this equation are real but not distincthere 

 m₁ =3,m2=3 

The general solution of equation is  

 y = (C1 + C2x) e3x 

The solution e3x and xe3x are clearly linearly independent soutions because 

 

Example 5. Solve that equation 

  

Solution: The equation 

  

is 2nd order homogeneous equation with constant coefficient. 

 The auxiliary equation is 

 m² – 8m+16=0 

 or (m – 4)2=0  

m1 = 4,m2 = 4 

 The roots are real, equal. The general solution of the above equation is 

 y=(C1+C2x) e4x 

Third Case 

Let the auxiliary equation has the complex number a+bi (a, b real, 1 =________ b  0) 
as a non repeated root. Then, since the coefficient are real the conjugate complex number a – 
bx is also a non repeated root. The corresponding part of the general solution is 

 k1 e
(a+bi)x + k2 e

(a-b)x 

2

2
6 9 0

d y dy
y

dxdx
  

 
3 3

3 3 6 6 6

3 3 3
, 3 3

3 3

x x
x x x x x

x x x

e xe
w e e x e xe xe

e e xe
    


6 0xe 

2

2
8 16 0

d y dy
y

dxdx
  

2

2
8 16 0

d y dy
y

dxdx
  
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 where k1 and k2 are arbitary constants. The solutions defined by e(a+bi)x and e(a-bi)x are 
complex functions of the real variable x. It is desirable to replace these by two real linearly 
independent solutions. This can be accomplished by using Euler's formula 

 e0=Cos+Sin 

 which holds for all real. Using this we have  

K1e
(a+bi)x+k2e

(a-b)x = k1 e
ax ebix+k2 e

ax e-bix 

   = eax (k1 e
ibx+k2 e

-bix 

   =eax [k1 (Cos bx +iSin bx) 

   +k2 (Cos bx = i Sin bx)]  

= eax [(k1 + k₂) Cos bx +i(k1– k2)  

Sin bx  

=eax[C1 Cos bx+C2 Sin bx] 

 where C1= (k1+k2), C2 (I (k1 – k2) are two new arbitrary constants. Thus the part of the 
general solution corresponding to the nonrepeated conjugate complex roots a+bi is 

 eax[C1 Sin bx+C2 Cos bx] 

Note: Since we are confining our discussion tothe 2nd order homogeneous linear 
differential equation we shall not uncounted repeated roots. 

Example 6. Solve the differential equation 

  

Solution: We have 

  

is a 2nd order homogeneous differential equation. 

The auxiliary equation is 

 m²+2m+10=0 

Solving it, we find 

 

= -1 + 3i 

Here a = -1, b = 3 the roots are conjugate complex numbers a + bi. The general solution is  

 Y = ex (C1 Sin 3x+C2 Cos 3x) 

  

2

2
2 10 0

d y dy
y

dxdx
  

2

2
2 10 0

d y dy
y

dxdx
  

2 4 40 2 36 2 6

2 2 2

i
m

       
  
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Example 7. Solve 

  

Solution: The equation is 

  

The auxiliary equation is 

 m² – 5m+7=0 

 

Here  

The general solution may be written  

 

Initial and Boundary Value Problem 

In the application of both first and higher order differential equations one or more 
supplementary conditions which the solution of the given differential equation must satisfy. If 
all the associated supplementary conditions relate to one x value, the problem is called an 
initialvalue proble, (or one point boundary-value problem). If the conditions relate to two 
different x values, the problem is called a two point boundary value problem (or simply a 
boundary value problem) 

An Initial-Value Problem 

 We now apply the results concerning the general solution of a homogeneous linear 
equation with constant coefficients to an initial value problem involving such an equation 

Example 8. Solve the initial value problem, 

 12 = 0, y (0) = 3, y(0) = 5 

Solution: The equation 

 12 y = 0 

is the homogeneous linear equation with constantcoefficients. 

 The auxiliary equation is 

2

2
5 7 0

d y dy
y

dxdx
  

2

2
5 7 0

d y dy
y

dxdx
  

5 25 28 5 3 5 3

2 2 2 2
m i

    
   

2

5 3 5 3
,

2 2 2 2
m i m i   

1 23 3

2 2

x
y C Cos C Sin

 
  
  

2d y dy

dx dx
 

2d y dy

dx dx
 
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 m² – m – 12 = 0 

 (m – 4) (m+3) = 0, m1= 4,m2 = –3.  

The general solution is 

 y = C1 e
4x + C2 e-3x.  (6) 

We shall now find the particular solution of the differential equation that satisfies the 
two initial conditions y (0) = 3 y'(0) = 5. It is given that at x= 0, y = 3. Substituting these values 
in equation (6), we get 

 3=C1 e
0+ C1 e

0 or C1 + C₂ =3 (7)  

Now differentiating equation (6) w.r.t. x. 

= 4 C1 e
4x - 3 C₂ e-3x  (8) 

It is given that at x=0, y= 5. On substitutingthese values in equation 8, we get.  

5=4C1 e
0–3C2 e

-3xor 4C1– 3C2=5 (9) 

 We have to find the values of C1 and C2 from equation (7) and (9). Multiplying equation 
(7) by 4 and on subtracting equation (9) from it, we get 

 7C2 = 7, C₂ = 1 

 C1 = 3 – C2  C1 = z  

The general solution (6) can be written as 

 y=2e4x+e-3x 

is the unique solution of the given initial value problem  

Self-check Exercise 10.1 

Q1. Find the general solution of  

   =  0 

Q2. Find the general solution of differential equation. 

   =  0 

10.3.2 NON-HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENT 

 Consider the non homogeneous differential equation 

  (10)  

where a0,a1, a2, are constants but where non homogeneous term Fis (in general) a non constant 
function of x. The general solution of (10) may be written as 

dy

dx

2

2
6 8

d y dy
y

dxdx
 

2

2
6 13 5

d y dy
y

dxdx
 

2

0 1 2 ( )
d y dy

a a a y F x
dx dx

  
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 Y = Ye + Yp 

where Ye is the complementary function, that is, the general solution of the corresponding 
homogeneous. 

  (11) 

and Yp is a particular integral, that is, any solutions of (10) containing no arbitrary constants. 
We know how to find the complementary function. Now we consider methods of determining a 
particular integral. The method of finding particular integral is given in the tabular form where 
yp set will be a function of itself and all linearly independent function of which successive 
derivate of F(x) and either constant multiples or linear combination. Then, if will be a set of  

F(x) Yp 

1. Xn {xn xn-1, xn-2,....x,1} 

2. ean {ean} 

3. Sin (bx + c) or [Sin (bx + c), Cos (bx + c)] Cos (bx + c)] Cos (bx + c) 

4. Xn ean {Xn ean, Xn-1 ean, Xn-2 ean ........ xeen, eax 

5.xn Sin (bx + c) or (xn Sin (bx + c), xn Cos (bx+ c) 

xn Cos (bx+c) xn-1 Sin (bx – c), xn–1Cos (bx + c)  

x Sin (bx +c), x Cos (bx + c),  

Sin (bx+c), x Cos (bx + c),  

Sin (bx + c), Cos (b+c)  

6.ean Sin (bx+c) or {eax sm (bx + c) eax as (bx + c)} 

 eax Cos (bx + c) 

Note: In case yp set include one or more members which are solutions of the corresponding 
homogeneous differential equation. Then we multiply the members of yp set by the lowest 
positive integral power of x so that the resulting revised set of yp contain no members that are 
solutions of the corresponding homogeneous differential equations. 

 Now form a linear combination of all the sets of these two categories, with unknown 
constant coefficients. (Undetermined coefficients.) Determine these unknown coefficients by 
substituting the linear combination into the differential equation and demanding that it 
identically satisfy the differential equation (that is, that it be a particular solution). 

Example 9. Solve 

 6y=e4x 

Solution: The differential equation 

2

0 1 2 0( )
d y dy

a a a y x
dx dx

  

2

2
5

d y dy

dxdx
 
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  6y = e4x  (12) 

is a 2nd order non homogeneous equation with constant coefficient. The solution will consists 
of yp and yc. To findy, consider its homogeneous equation is 

 6y=0  (13) 

The auxiliary equation is 

 m² – 5m+6=0 

or (m-2) (m-3)=0, m₁ = 2, m2 = 3  

The auxiliary equation is 

The auxiliary equation (13) or complementaryfunction is 

 Yc = C1 e²x + C₂ e³x  (14) 

To find the particular solution yp let us put 

 Yp = Ac4x   (15) 

because here the exponent of e on R.H.S. is 4 which is not a root of auxiliary the equation. 
From equation (15), we obtain 

 Y'p = 4 Ae4x 

Y"π = 16 A e4x 

These values of y' p and y'' p must satisfy the equation (12). Since we have assumed yp= Ae4x is 
a particular solution of equation (12) 

 16 Ae4x – 20 Ae4x+6 Ae4x = e4x 

 or 2A = 1 

 or 1=½ 

  y = ½ e4x  (16) 

The solution of equation 

 Y=ye +Yp 

= C1 e
2x+C2e

4x(from equation (14) and (16)  

Example 10. Solve 

 6y=(x-2) ex 

Solution: The differential equation is 

  6y = (x - 2) ex  (17) 

2

2
5

d y dy

dxdx
 

2

2
5

d y dy

dxdx
 

2

2
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d y dy

dxdx
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2
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 
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is a non homogeneous second order linear differential equation with constant coefficient. The 
generalsolution will be of the form. 

 Y=Ye+Yp  (18) 

where Ye is the complementary function and Yp is the particular integral of the equation 
(17). To find Ye, we consider, the homogeneous equation of equation (17) which is 

 ey=0  (19) 

The auxiliary equation is 

 m² – 7m+6=0 

 or (m – 6) (m – 1)=0 orm1=6, m2 = 1 

The complementary function is 

 Ye = C1 e
x + C2 e

6x  (20)  

To find the particular integral, we observe thatthe R.H.S. of equation has a term e which is one 
ofthe root of the auxiliary equation, i.e., one root isrepeated. So 

 Yp = x (Ax+B)ex 

  = x² ex A+xex B 

 Y'p =2xexAx2exA+exB+xexB 

  =(Ax²+xB) ex+(2xA+B)ex 

 Y"p= [2x A+B+Ax²+xB+2A+2xA+B)ex 

The equation (17) becomes 

[2xA+B+Ax²+xB+2A+2xA+B] ex– 7 (Ax²+xB) 

ex – 7 (2x A+B) ex+6x2 ex A+6xex B=(x – 2)ex 

Cancelling ex from both sides and on simplifying,we get 

 -10xA-5B+2A=x – 2 

On comparing the coefficient of x and constant term, we get 

 -10A = 1 and 2A – 5B = -2 

 A = -1/10 and 2A – 5B = -2 

 2A – 5B = -2 

 2  -5B -2 

 -5B = -2 +  

2

2
7

d y dy

dxdx
 

1

10

 
 
 

1

5


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 -5B =  

or B =  

  Yp = x -  

Complete genera solution is  

 Y = Yc + Yp =C1e
x + c2e

6x + x  

Self-check Exercise 10.2 

Q1. Solve the equation 

   + 16y = 0 

Q2. Solve 

   + 7y =0 

10.4 VARIATION OF PARAMETER 

While the process of carrying out the method ofundetermined coefficient is actually 
quite straight forward, the method applies in general to a rather small class of problems. For 
example, it would not apply to the apparently simple equation. 

=tan x 

We thus seek a method of finding a particular integral that applies in all cases (which 
incident also applies to variable coefficients) in which the complementary function is known. 

Consider second order linear differential equation with constant coefficients 

   (21) 

where a0, a1 and a2 are constants.  

Suppose that y1 and y2 are linearly independent solutions of the corresponding homogeneous 
equation. 

   (22) 

Then the complementary function of equation (21) is 
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 C₁y1 (x) + C₂y₂ (x). 

where y1 and y2 are linearly independent solutions of (2) and C1 and C2 are arbitrary constants. 
The procedure in the method of variation of parameters is to replace the arbitrary constants C1 
and C2 in complementary function by respective function v1 and v₂. which will be determined 
so that the resulting function, which is defined by 

 v1 (x)y2 (x)+v₂ (x) y₂ (x).   (23) 

will be a particular integral of equation 91) (hence the name, variation of parameters). 

 We have at our disposed the two functions V₁ and v₂ with which to satisfy the one 
condition that (23) b a solution of (21). Since we have two functions but only one conditions on 
them, we are thus free to impose a second condition, provided this second conditions does not 
violate the first one. 

 We thus assume a solution of the form (23) and write 

Yp (x)=v1(x)y1(x)+v₂(x) y₂(x)   (24) 

On differentiating (24), we get 

 Y'p(x)=v1(x)y'1 (x)+v₂(x) y′₂ (x)+v′1 (x) y1(x) + v'2 (x) y2 (x) (25) 

At this point we impose the second condition,we simplify yp by demanding that 

 v'1(x) y1(x)+v'2 (x)y₂(x)=0   (26) 

With this condition (25) reduces to  

Y'P (x)=v1(x) y'1 (x)+v₂(x)y'₂(x)   (27) 

On differencing (27), we get 

Y"P(x)= v1(x)y'1 (x)+v₂(x) y'₂(x)+v'1 (x) y'1 (x) – v'₂(x)y'₂(x) 

We now impose the basic condition that (24) be a solution equation (21) and obtain the identity 

onsubstituting values y,  and  in (21).  

 a0 [v1(x)y1 "(x)+v₂(x) y2" (x)+v1' (x) y1 '(x)+v₂'(x) y₂'(x)]+a1 [v1(x)y1'(x)+v₂(x) 
y₂'(x)+a₂ [v₁(x) y1(x)+v₂(x) y₂(x)] = F(x)  

This can be written as 

 v1(x) [a0 y1 "(x)+a1y1'(x)+a2y1(x)] = v₂(x) {ay₂"(x)+a1 y₂"(x) + a₂ y₂(x)] + a0 [v1'(x) 
y1'(x) + v₂'(x) y₂'(x)] = F(x) 

Since y1 and y2 are solutions of the corresponding homogeneous differential equation 
(22), the expressions in the first two brackets in (29) are identically zero. The leaves merely 

v1'(x) y1(x)+v₂'(x) y₂'(x) =    (30) 

This is actually what the basic condition demands. Thus the two imposed conditions require 
that the function v1 and v2 be closed such that the system of equation. 

dy

dx
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2

d y

dx

0

( )F x

a
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 y1(x) v1' (x)+y₂(x) v₂'(x)=0 

y1 '(x) v1'(x)+y2 '(x) v2'(x)=  

is satisfied. The determined of coefficients of this system is precisely. 

   

Since y1 and y2 are linearly independent solution of the corresponding homogeneous 
differential equation (22), we know that W[y1(x). y2(x)] 0. Hence the system has a unique 
solution. On solving this system, we obtain 

  

 

 

Thus we obtain the function v1 and v2 defined y  

 v1 (x) = – dt 

 v2 (x) = – dt 

Therefore a particular integral yp of equation (21)is defined by 

 Yp(x)=v1(x) y1(x)+v₂(x) y₂(x).  

where v1 and v2 are defined by (31) 

Example 11. Solve the differential equation 

  y = tan x 
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Solution: The differential equation is  

 y = tan x     (32) 

The auxiliary equation is 

 m²+1=0 

 m²=-1, m =i, - i 

The complementary function is given by  

yc (x)=C1 Sin x + C₂ Cos x 

We assume 

Yp(x)=v1(x) Sinx+v₂(x) Cos x   (33) 

where v1(x) and v₂(x) will be determined such that this is a particular integral of the 
differential equation (32). Thus 

 Yp'(x)=v1(x)Cosx−v2(x) Sin(x)+v1'(x) Sinx+v'2(x) Cos x 

We impose the condition 

 v1'(x) Sinx+v₂'(x) Cos x=0   (34) 

leaving 

 yp '(x)=v1(x)Cosx−y2(x) Sin x 

 yp"(x)=v1(x) Sinx−v2(x) Cosx+v1 '(x)Cosx – v2'(x) Sinx  (35) 

Substituting the values of yp "(x) and yp(x) from(35) and (33) into (32), we get  

or v1'(x) Cosx – v1'(x) Sin x = tan x  

Thus we have two equation (34) and (36) from which to determine v1'(x) & v2'(x). On solving, 
weget 

  

  

  

Integrating, we find 
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 v1(x)=cosx+C3, v2(x)=sinx – log |secx+tanx| + C4 

Substituting (37) in (33) 

 yp(x)=(-cosx+C3)sinx+(sinx+(sinx−log|sec x + tan x + C4) Cos x 

 = - sin x cos x + C3 sin x – log | sec x + tax x| cos x 

 =C3 sin x + C4 cos x – cos x (log) secx+tan x|).  

Since a particular integral is a solution free of arbitary constants, we may assign any particular 
values A and B to C3 and C4, respectively, and result will be particular integral 

 A sin x+B cosx – (cos x) log 1| secx+ tan x |) 

 Thus y=yc+yp 

 =C1 sinx+C2 cosx+ASinx+B cosx+(cosx) (tan) 

 =C1' sin x + C₂ cos x – (cos x) (log | secx+tan x|) 

where C1' = C1+A, C₂ = C₂+B 

This is the general solution of the differential, equation (32)  

Self-check Exercise 10.3 

Q1. Solve + 6y – (x – 2) ex 

10.5 SUMMARY 

 In the first section of this unit, we learnt about the higher order differential equations. In 
the next section of the unit we learnt about the Homogeneous linear equation with constant 
function. In the successiding section we discussed Non-homogeneous equation with constant 
coefficient. In the last section of unit, we studied about variation of parameter. 

10.6 GLOSSARY  

 1.  Higher order liner differential equation : If contains only one independent 
variable and one or more of its derivative with respect to the variable. 

 2.Complementary function : Consider the second order linear differential equation 
(non-homogeneous) 

   a0 + a1 a2 y = 1 (x) .................. (1) 

  and the corresponding homogeneous equation  

   a0 + a1 a2 y = 0 ......................... (2) 

  where a0, a1 and a2 are contents 

 The General solution of (2) is called the complementary function of equation (1). 
Dentoted by y0. 
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 3.  Particular Integral : An particular solution of (1) involving no arbitrary contents is 
called particular integral of yc. We shall denote by yp.  

 4.  General solution : The solution yc + yp, where 1 is the complementary function and 
yp is a particular integral of (1), is called the general solution (1). 

10.7 ANSWER TO SELF CHECK EXERCISES 

Self-check Exercise 10.1 

AnsQ1. The equation 

  

 The auxiliary equation is  

M² – 6m+ 8 =0 

 Hence (m – 4) (m – 2) = 0 

 or m1 = 4, m2 =  2 

 The roots are real and distinct. Thus e4x and e2x are solution and the general solution 
may be written. 

 y =  C1 e
4x + C2 e

2x 

To verify that the solution e4x and e2x are linearly independent  we have to show that 
their wrouskain is not zero it. 

 

Ans. Q2. Solution  

  

The auxiliary equation is 

  6m² – 13m+5=0 

 or  6m² – 10m – 3m+5=0  

or  2m (3m – 5) –1 (3m – 5)=0 

  (2m – 1) (3m – 5) = 0, m1= m2 =  

The roots are real and distinct. Thus e1/2x ande5/3x are solution and the general solution is 

 Y = C1 e
½x + C2e

5/3x 

The Wronskian of this solution is 
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Self-check Exercise 10.2 

Ans.Q1. The equation 

  

 The auxiliary equation is  

M² – 8m+ 16 =0 

 or  (m – 4)2 = 0 

 or m1 = 4, m2 =  2 

 The roots are real, equal. The general solution of the above equation is  

 y =  (C1 + C2 x) e4x 

Ans.Q2. The equation is  

  The auxiliary equation is 

  m² – 5m+7=0 

 

Here  

The general solution may be written  

 

Self-check Exercise 10.3 

Ans. Q1. The differential equation is 

  6y = (x - 2) ex   (1) 

is a non-homogeneous second order linear differential equation with constant coefficient. The 
generalsolution will be of the form. 

 Y=Ye+Yp     (2) 
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where Ye is the complementary function and Yp is the particular integral of the equation 
(17). To find Ye, we consider, the homogeneous equation of equation (17) which is 

 ey=0   (3) 

The auxiliary equation is 

  m² – 7m+6=0 

 or (m – 6) (m – 1)=0 orm1=6, m2 = 1 

The complementary function is 

 Ye = C1 e
x + C2 e

6x    (4)  

To find the particular integral, we observe thatthe R.H.S. of equation has a term e which 
is one ofthe root of the auxiliary equation, i.e., one root isrepeated. So 

 Yp = x (Ax+B)ex 

  = x² ex A+xex B 

 Y'p =2xexAx2exA+exB+xexB 

  =(Ax²+xB) ex+(2xA+B)ex 

The equation (1) becomes 

[2xA+B+Ax²+xB+2A+2xA+B] ex– 7 (Ax²+xB) 

ex – 7 (2x A+B) ex+6x2 ex A+6xex B=(x – 2)ex 

Cancelling ex from both sides and on simplifying,we get 

 -10xA-5B+2A=x – 2 

On comparing the coefficient of x and constant term, we get 

 -10A = 1 and 2A – 5B = -2 

 A = -1/10 and 2A – 5B = -2 

 2A – 5B = -2 

 2  -5B -2 

 -5B = -2 +  

 -5B = or  B =   Yp = x -  

Complete general solution is  

 Y = Yc + Yp =C1e
x + c2e

6x + x ex Ans. 
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10.9 TERMINAL QUESTIONS  

Q.1 Find the general solution of each of the following equations. 

(i)  

(ii)  

(iii)  

(iv)  

Q.2 Solve the initial value problem 

(i)  

(ii) Solve the initial value problem. 

   

Q.3 Solve the differential equation. 

(i)  

(ii) Solve the differential equation. 
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Unit - 11 

APPLICATIONS OF DIFFERENTIAL AND DIFFERENCE 
EQUATIONS IN ECONOMIC MODELS 

STRUCTURE  

11.1 Introduction 

11.2 Learning Objectives 

11.3 Variable 

Self-check Exercise 11.1 

11.4  Applications of differential and difference equations 

11.4.1  Model of Price Determination 

11.4.2 Dynamic Analysis  

11.4.3 Dynamic Model of the Market 

11.4.4  Domar Growth Model 

11.4.5 Solow Growth Model 

11.4.6 The Cobweb Model  

Self-check Exercise 11.2 

11.5 Summary 

11.6 Glossary 

11.7 Answer to Self Check Exercises 

11.8 Suggested Reading 

11.9 Terminal Questions 

11.1 INTRODUCTION 
In the last units, we have studied the first and second order differential equations and 

known about differnrent types of differential equations. In this unit, we will learn to solve 
different economic problem with the help of Difference and Differential equations. 

 
11.2 LEARNING OBJECTIVES 

After studying this Unit, you will be able to solve different economic problem with the help of 
Difference and Differential equation. 

11.3 VARIABLE 

A variable is something whose magnitude can change i.e. something that can take on 
different values. Variables frequently used in economics include price, profit, revenue, cost, 
national income, consumption, investment, imports, exports and so on. Since each variable can 
assume various values, it must be represented by a symbol instead of a specific number. For 
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example, we represent price by P, profit by , revenue by R, cost by C, national income by , 
and so forth. Properly constructed, an economic model can be solved to give us the solution 
values of a certain set of variables. Such variables, whose solution values we seek from the 
model, are known an endogenous variables (originating from within). However, the model may 
also contain variables which are assumed to be determined by forces external to model and 
whose magnitude, are accepted as go data only. Such variables are called exogenous 
(originating from side). It may so happen that a variable that is endogenous to one model may 
very well be exogenous to another.  

Self-Check Exercise 11.1 

Q1. What is meant by the term ‘variable’? 

11.4  APPLICATIONS OF DIFFERENTIAL AND DIFFERENCE EQUATIONS 

Differential and Difference equations find wide applications in all branches of 
economics. Before we take the application to various economic models, let us first understand 
what we do mean by economic models. Any economic theory is necessarily an abstraction from 
the real world. The immense complexity of the real economy makes it impossible to understand 
all the inter relationships at once, nor, for that matter, all the inter relationships are important. 
The sensible approach is to pick those primary factors and relationships that are relevant to 
problem. Such a deliberately simplified analytical framework is called an economic model, An 
economic model is usually a theoretical and there is no inherent reason why it must be 
mathematical. If the model is mathematical, however, it will usually consist of a set of 
equations designed to describe the structure of the model. By relating a number of variables to 
one another in certain ways, these equation give mathematical form to the set of analytical 
assumptions adopted. Then, through application of the relevant mathematical operations to 
these equations, we seek to derive a set of conclusions which logically follow from those 
assumptions.  

11.4.1 MODEL OF PRICE DETERMINATION 

 Let us consider a "partial equilibrium market model" i.e. a model of price determination 
in an isolated market. Since only one commodity is being considered. It is necessary to include 
only three variables in the model: the quantity demanded of the commodity (Qd) the quantity 
supplied of the commodity (Qs) and its price (P). Now we have to make certain assumptions 
regarding the working of the market. In the equilibrium model, the standard assumption is that 
equilibrium is obtained in the market if and only if the excess demand is zero (Qd – Qs= 0), that 
is, if the market is cleared. We also assume that Qd is a decreasing linear function of P (as P 
increases, Qd decreases). On the other hand, Qs is postulated to be an increasing linear function 
of P (as P increases, so does Qs) with the provision that no quantity is supplied unless the price 
exceeds aparticular level. In all, then, the model will contain one equilibrium condition plus 
two behavioral equations which govern the demand and supply sides of the market, 
respectively. 

 The model in the mathematical form can bewritten as 

 Qd – Qs = 0 

 Qd – a – bP (a.b>0) 



 Qs= - c+dp (c.d>0) 

 Four parameters, a, b, c and d, appear in the two linear functions and all of them are 
assumed to be positive. When the demand function is graphed as in figure. Its vertical intercept 
is at a and its slope is–b. which is negative, as required. The supply function also has the 
required type of slope, d being positive, but its vertical intercept is negative, at
we force the supply curveto have a positive horizontal intercept at P
provision that supply will not be forthcoming unless the price is positive and sufficiently high.

 The solution values of the three endogenous variables. 

values to be denoted by  

simultaneously. Since , however, they can be replaced by a single variable Q. An 

equilibrium solution can be denoted by an ordered for (
unique, several ordered pairs may each satisfy the system of sim

 By substituting the second and third equa

  

 is positive-as a price should be because all the four parameters are positive by model 
specifications. 

 The equilibrium quantity 

  

Since the denominator is positive the positively of Q requires that the numerator (ad
be) be positive as well. Hence, to be economically meaningful, the presen
contain the additional restriction that ad>bc.

The meaning of this restriction will be clear
market model may be determined graphically at the intersection of demand and supply curves. 
To have >o is to require the intersection point to be located above the horizonted axis in 
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Four parameters, a, b, c and d, appear in the two linear functions and all of them are 
assumed to be positive. When the demand function is graphed as in figure. Its vertical intercept 

b. which is negative, as required. The supply function also has the 
required type of slope, d being positive, but its vertical intercept is negative, at–
we force the supply curveto have a positive horizontal intercept at P1 there by satisfying the 
provision that supply will not be forthcoming unless the price is positive and sufficiently high.

 

The solution values of the three endogenous variables.  and P. T

 and P are those values that satisfy the three equations 

however, they can be replaced by a single variable Q. An 

equilibrium solution can be denoted by an ordered for ( ). In case the solution is not 
unique, several ordered pairs may each satisfy the system of simultaneous equations.

uting the second and third equation into the first, we get 

as a price should be because all the four parameters are positive by model 

(= ) is givenby 

denominator is positive the positively of Q requires that the numerator (ad
be) be positive as well. Hence, to be economically meaningful, the present model should 

tional restriction that ad>bc. 

The meaning of this restriction will be clear from the figure. The ordered pair (
market model may be determined graphically at the intersection of demand and supply curves. 

>o is to require the intersection point to be located above the horizonted axis in 

.d sQ Q

.P Q

Q d sQ Q

Four parameters, a, b, c and d, appear in the two linear functions and all of them are 
assumed to be positive. When the demand function is graphed as in figure. Its vertical intercept 

b. which is negative, as required. The supply function also has the 
–c. By this way 

e by satisfying the 
provision that supply will not be forthcoming unless the price is positive and sufficiently high. 

and P. The solution 

fy the three equations 

however, they can be replaced by a single variable Q. An 

). In case the solution is not 
ultaneous equations. 

as a price should be because all the four parameters are positive by model 

denominator is positive the positively of Q requires that the numerator (ad–
t model should 

from the figure. The ordered pair ( ) of a 
market model may be determined graphically at the intersection of demand and supply curves. 

>o is to require the intersection point to be located above the horizonted axis in 

.P Q



 

270 
 

figure, which in turn requires the slope and vertical intercepts of the two curves to fulfill a 
certain restriction on their relative magnitudes. That restriction, is ad> bc, given that b and d 
are positive. 

11.4.2 DYNAMIC ANALYSIS 

 In a static equilibrium we confine ourselves to the determination of position and to a 
comparison of two positions of equilibrium before and after a parameter shift. This is the 
method of comparativestatic. In using this method we ignore the question of time path that 
variables may follow as these variables move from one equilibrium position to another, and the 
associated question whether or not a system that starts out of equilibrium (because, say, of 
some parameter shift) will ever move back into equilibrium. Dynamic analysis is not to be 
regarded as just a sophisticated frill added to a fully satisfactory static model. We live in a 
world in which many magnitudes are changing continuously. Economic growth, trade cycles 
and inflation are all dynamic phenomena. So are all the processes of adjustment to 
disequilibrium, whether the adjustment is to be made by the changing of a price or by the 
migration of people from one part of the world to another. An important idea in dynamic is 
that, since it is concerned with the behaviour of variables over time, variables must be made 
functions of time. 

11.4.3 DYNAMIC MODEL OF THE MARKET 

Suppose for the particular commodity, thedemand and supply functions are as follows: 

 Qd = a – bP (a, b>0)  …………..(1) 

 Qs=-c+dP (C, d>0)..………….(2) 

For equilibrium condition, we have  

 = some positive constant.  

 If it happens that the initial price P(o) is precisely at the level of P, the market will 
clearly be in equilibrium instantly, and no dynamic analysis at all will be needed. In the more 
likely case of P(o) P, however, P is attainable (if ever) only after a due process of adjustment, 
during which not only will price change over time but Qd& Qs, being functions of P must 
change over time as well. It is in thiscontext that the price and quantity variables can be taken 
as functions of time. 

 Our interest is to find for given sufficient time for the adjustment process to work itself 
out, does it tend to bring price to the equilibrium level or mathematically does the time path 
P(t) tend to converge to  as t→∞?  

 So we must find the time path P(t). But that, in turn, requires a specific pattern of price 
change to be prescribed In general, price changes governed by the relative strength of the 
demand and supply forces is the market. Let us assume, for the sake of simplicity, that the rate 
of price changes (with respect to time) at any moment is always, directly proportional to the 
excess demand (Qd – Qs) prevailing at that moment. Such a pattern of change can be expressed 
symbolically as 

a c
P

b d






P

P
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  = (Qd-Qs) (α> 0) ……………..(3) 

where a represents a (constant) adjustment coefficient. With this pattern of change, we can 
have 

  =  0 and only if Qd Qs 

We can write equation (3) by substituting the values of Qd& Qs from equation (2) and (3) 

 = 0 and only if Qd Qs 

We can write equation (3) by substituting the values of Qd& Qs from equation (2) and (3) 

 =  (a - bP + c - dP) 

 =  (a + c) -  (b + d) P 

or  =  (b + d) P =  (a + c) 

 (complementary form is formed from homogeneous equation) 

 Complementary if yc = e(b+d)t 

Particular integral sol. yp  

 (The particular integral is simply any particular sol. Of the P=some constant 

   

  t) = A e-(+d)t +  

At t = 0, P (o) = A +  A = p(o) -  

 p(t) = [P(o) - ]e-kt +  

 = [P (o) – ) e-kt +     ……………(4) 

 Now the question originally posed, whether P(t)→Past→∞, amount to the question of 
whether the first term on the right of equation (4) will tend to zero as t→ ∞. Since P(o) and P 
are both constants, the key factor will be the exponential expression e-kt. In fact k>0, the 
expression does tend to zero as t→ ∞. Consequently, with the assumptions of our model, the 
time path will indeed lead the price toward the equilibrium position. In a situation of this sort, 
where the time path of the relevant variable P(t) converges to the level  – interpreted here in 

dP

dt

dP

dt

dP

dt

dP

dt

dP

dt

a c
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its role as the intertemporal (rather that market
dynamically stable. 

The concept of dynamic stability is an important one. Let us examine it further by a 
more detailed analysis of equation (4). Depending on the relative magnitudes of P(o) and 
the solution of equation (4) really encompasses three possible cases. The first
which implies P(t) = . In that event, the time path of price can be drawn as the horizontal 
straight line as in adjoining figure. The attainment of equilibrium is in this case immediate. 
Second, we may have P(o)> . In this case, the first ter
will decrease as the increase in t lowers the value of e
equilibrium level  from above, as illustrated by the top curve in figure. Third, in the opposite 
case of P(o)< , the equilibrium level 
bottom curve in the same figure. In general, to have dynamic stability, the deviation of the time 
path from equilibrium must either be identically zero (as in case 1) or steadily de
time (as in cases 2 and 3) 

 The term  is nothing but the particular integral y
(definitive) complementary function y
and yp. yprepresents the intertemporal equilibrium level of relevant variable., and y
deviation from equilibrium. Dynamic stability amounts, therefore asymptotic varnishing of the 
complementary function as t becomes infinite.

In this mode, the particular integral is a con
the intertemporal sense, we may interpret it as a moving equilibrium

Example 1. Demand and supply function for tea aregiven by

 xd = [120-2p+5 ] kg. per week, 

xs = [3p - 30 + 50 ] kg. per week,

where p is the price at time t.  

If the initial price is Rs. 36 per kg. find the timepath of price.

Solution : 

P

P

P

P

P

dp

dt

dp

dt
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The concept of dynamic stability is an important one. Let us examine it further by a 
more detailed analysis of equation (4). Depending on the relative magnitudes of P(o) and 
the solution of equation (4) really encompasses three possible cases. The first
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At equilibrium xd = xs 

120-2p+5  =3p-30+50  

45 +5p-150 = 0  

 +  

p(c)=30, p = Ae1/t where A is constant  

p(t)=30+ A (e-1/9t+) 

At to = o, p(o)=30+AA = p(o) – 30 

 p(t)=30+[p(o) – 30] e-1/9 

 p(t)=30+(36-30)e-1/9 

p(t)=30+6 e-1/9 

price after 10 weeks 

 p(10)=30+6e-10/9 

11.4.4 DOMAR GROWTH MODEL 

It is a well known growth model of Professor E. D. Domar. In this model the idea is to 
stipulate the type of time path required to prevail if a certain equilibrium condition of the 
economy is to be satisfied. 

The basic premises of the Domar model are asfollows. 

(i) Any change in the rate of investment flow per year I(t) will produce a dual 
effect: it will effect the aggregate demand as well as the productive capacity of 
the economy. 

(ii) The demand effect of a change in I(t) through multiplier process, so that an 
increase in I(t) will raise the rate of income flow per year Y (t) by a multiple of 
the investment in I(t). The multiplier is k=where s stands for the given (constant 
marginal propensity to save. On the assumption that I(t) is the only (para metric) 
flow that influences the rate of income flow, we can then state that 

   (1) 

(iii) The capacity effect of investment is to be measured by the change in the rate of 
potential out-put the economy is capable of producing. Assuming a constant 
capacity-capital ratio, we can write 

dp

dt

dp

dt

dp

dt

dp

dt
30 10

9 9 9
p  

1dY dI

dt dt s

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  j ( = a constant) 

 where  stand for capacity or potential output flow per year, and denoted the given 
capacity-capital ratio. This implies, of course that with a capital stock K(t) the economy is 
potentially capable of production an annual product or income amount in to k dollars. 
Note that from k (the production function) It follows that d =  dk. & 

 d= =1 

In Domar's model equilibrium is defined to be a situation in which productive capacity 
is fully utilized. To have equilibrium is, therefore, to require the aggregate demand to be 
exactly equal to the potential output producible in a year :that is, Y=. If we start initially from 
an equilibrium situation, however, the requirement will reduce to the balancing of therespective 
changes 

  

The time path of investment I(t) which satisfies this equilibrium condition at all times 
can be calculated if we substitute (1) and (2) into the equilibrium condition (3) and we get 

  

  = s dt 

On integrating, 

 |I| =  st + C 

 |I| = e st+c = e st ec = Ae stst where A = ec 

if we take investment to be positive, then |I|= Iand at t=0, we get 

 I(o) = Ae0=A 

  The required investment path – as 

  I(t)=I (o) e st 

where I(o) denotes the initial rate of investment. This result has a some what disquieting 
economic meaning. In over to maintain the balance between capacity and demand over time, 
the rate of investment flow must grow precisely at the exponential rate of s, along a path as 
illustrated in figure. 

K



dK

dt

dY d

dt dt




1
.

dI
I

dt s


dI

I



Obviously, larger the required rate of growth investment, the larger will bethe capacity
capital ratio and marginal propensity of save. But a
known, the required growth path of investment becomes vary rigidly set.

 It is now to be seen what will happen if the actual rate of growth of investment
rate r= differs from the required rate 

 Domar's approach is to define a coefficient ofutilization.

 u=  (u=1 means fullutilizationcapacity)

 and show that  so that u

In other words, if there is a discrepancy between the actual and required rates (r
then we will find in the end 
capacity (u<1), depending on whe

 The capacity shortage and surplus really applies at any time t, not only as 
growth rate of1 implies that 

 I(t)=I (o) e and  = r I (O) e

 By (1) & (2), we have 

  

 I (t) = I (0) en 

  

( )

( )t

Y t
It

t

r
u

s


( )as t

1
. ( )

dy r
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Obviously, larger the required rate of growth investment, the larger will bethe capacity
al propensity of save. But at any rate, once the values of 

known, the required growth path of investment becomes vary rigidly set. 

It is now to be seen what will happen if the actual rate of growth of investment
required rate s. 

Domar's approach is to define a coefficient ofutilization. 

(u=1 means fullutilizationcapacity) 

so that u 1 as r s. 

In other words, if there is a discrepancy between the actual and required rates (r
either a shortage of capacity (u> 1) or a surplus of 

capacity (u<1), depending on whether r is greater or less than s. 

The capacity shortage and surplus really applies at any time t, not only as 

) e 







( )as t

Obviously, larger the required rate of growth investment, the larger will bethe capacity–
t any rate, once the values of & s are 

It is now to be seen what will happen if the actual rate of growth of investment-call the 

In other words, if there is a discrepancy between the actual and required rates (rs), 
either a shortage of capacity (u> 1) or a surplus of 

The capacity shortage and surplus really applies at any time t, not only as . For a t
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the ration make it clear the relative magnitudes of the demand-creating effect and the capacity 
generating effect of investment at any time t, under the actual growth rate of r. Ifr (the actual 
rate) exceeds s (the required rate), then, and the demand effect 

will out out strip the capacity  

effect, causing a shortage of capacity. Conversely, ifr<s, then there will be a deficiency in 
aggregate demand and, hence, a surplus of capacity. 

 The curious thing about this conclusion is that if investment actually grows at a faster 
rate than required (r>s), the end result will be a shortage rather than actual growth of 
investment lags behind the required rate r<s), we will encounter a capacity surplus rather 
than shortage. Indeed, because of such paradoxical results, if we now allow the entrepreneurs 
to adjust the actual growth rate r (hither to be taken a constant) according to the prevailing 
capacity situation, they will most certainly make the "wrong" kind of adjustment. In the case of 
r>s, for instance, the emergent capacity shortage will motivate an even faster rate of 
investment. But this would mean an increase in r, instead of the reduction called for under the 
circumstances. Consequently, the discrepancy between the two rates of growth would be 
intensified rather than reduced. 

The upshot is that, given the parametric constants and s, the only way to avoid both 
shortage and surplus of productive capacity is to guide the investment flow ever so carefully 
along the equilibrium path with a growth rate r= s. And, any deviation from such a "razor's 
edge" time path will bring about a persistent failure to satisfy the norm of full utilization which 
Domar envisaged in this model. This is perhaps not too joyful a prospect to contemplate. 
Fortunately, more flexible result become possible when certain assumption of the Domar model 
are modified, as is done in the growth model of Professor Solow. 

11.4.5 SOLOW GROWTH MODEL 

 In a Domar model, output is explicitly stated as a function of capital alone: = K (the 
productive capacity, or potential output, is a constant multiple of the stock of capital). The 
absence of a labor input in the production function carries the implication that labor is always 
combined with capital in a fixed proportion, so that it is necessary to consider explicitly only 
one of these factors of production. Solow, in contrast, seeks to analyze the case where capital 
and labour can be combined in varying proportions. 

 (The Domar model assumes fixed output-capital ratio and the production function is 
simple. The Neo Classical Model does away with the assumption of fixed output capital ratio, 
if the output-capital ratio to vary continuously. In the long run, capital & labour inputs are 
substitutable & the ratio in which two in- puts are used may change. A purely capitalist 
economy can choose from these infinitely available ratios, only one of which will ensure a 
steady state growth which is warranted as well s natural rate of growth. The basic assumptions 
of Solow model include perfect foresight for all individuals, and smooth adjustment in goods, 
labour and capital markets.) Thus his production function appears in the form 

 Q = f(K.L) (K.L>0) 

,
dy d

dt dt



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 where Q is outpur (net of depreciation), K is capital, and L is labor force–all being used 
in macro sense. It is assumed that fk and fL are positive (positive marginal products.) and fkkand 
fLL are negative (diminishing returns to each input). Furthermore, the production fn.f is taken to 
be linearly homogeneous (constant returns to scale), consequently, it is possible to write 

Q = L f  = L (K*) where K*  K* is the new variable, to stand for the ratio of 

capital to labour. (1) 

In view of the assumed signs of fk, and fkk, the newly introduced  function (which, has 
only a single argument, K*) must be characterized by a positive first derivative and a negative 
second derivative. 

We have Q = 1   (K*) where K* =  

 

 

=  

&  

=  

=  

=  (K*) – K*' (K*) 

which shows that both & are functions  are K*alone 

So we have  

fk = ' (K*)  

and hence fk> implies (k*)>0 Then, since 

 fkk =  =  ' (K*) = .  = "(K*)  

the assumption fkk<0 leads directly to the result " (k*)<0. Thus the  function is one 
that increases with k* at a decreasing. 
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Given that Q depends on K and L, we shall be finding how the two variables on 
determined. Solow's assumption are 

 K  =  SQ    (2) 

(constant proportion of Q is invested) 

There is a single commodity in the economy, and its annual rate of output is given by 
Y(t) (here Q). A fractions, of this output is saved and the rest, 1-s is consumed. The society's 
stock of capital, K, is merely the accumulated stock of single commodity (1), that has been 
saved in the past. This allows us to say that current saving determines the rate of growth of 
such society's capital. We write this 

K= s Y 

or 

K = s Q 

L=L0 e
λt 

(λ >0) (Labour force grows exponentially)  

We now assume that the labour force is growing at a constant rate, λ. Thus labour is a 
function of time t, & we can write L=L0 e

λtwhere L(t) is the labour force at time t, L0 is the 
initial labour force at time t0& λ is its rate of growth. 

The symbol s represents a (constant) marginal propensity to save, and L0 and λ are, 
respectively, the initial labor force & the rate or growth of labor. 

 Equation (2) is 

K* = s Q 

= s L (K*) 

= s L0 e
λt (K*) from equation…………….. (3) 

We want to find out if the capital labour ratio can always be such as to ensure full 
employment no matter how fast the labour force may be growing. We also wish to know, if this 
ratio will approach some stable equilibrium level. To investigate further we assume that the 
labour force is fully employed. Given this assumption we identify L(t) with the amount of 
labour input in the production function. This allow us to substitute (3) into (2). 

This is a differential equation    ……….(4) 

Now we have K = K*LK* L0 e
λt 

K =  L0 e
λt (K*)+K*  (L0 eλt) 

=  L0 e
λt(K*)+K*L0λ eλt   …………….(5) 

From  = m (4) & (5) 

k

k

 
  

d

dt

d

dt



  K*+K*λ  = s(k*) 

K* = s (K*

This differential equation, with two param
Solow model and is a equation with the capital labour ratio K,

L(t) = L0 e
λt where L(t) is of the labour force at time t, L

time &λ, is its ratio or growth. 

Equation (6) being in a general
available. Nevertheless, we can analyse it qualitatively. To this end, we should plot a phase 
line, with k' on the vertical axis and k

Since (6) contains two terms on the right, however, let us first plot these as two separate 
curve. 

Obtain the line λ K* we set s
the negative sign. S line, which has a slope of λ, tells us how fast the capital:
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*) – λ  k*   ……….(6) 

ential equation, with two parameterss &λ, is the fundamental equation of the 
Solow model and is a equation with the capital labour ratio K, as its only variable.

where L(t) is of the labour force at time t, L0 is the initial labour force at 

Equation (6) being in a general-function form, no specific quantitati
, we can analyse it qualitatively. To this end, we should plot a phase 

line, with k' on the vertical axis and k* on the horizontal. 

Since (6) contains two terms on the right, however, let us first plot these as two separate 

 

 

we set s (k*) = 0 and plot the relation between K*
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, is the fundamental equation of the 
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function form, no specific quantitative solution is 
, we can analyse it qualitatively. To this end, we should plot a phase 

Since (6) contains two terms on the right, however, let us first plot these as two separate 
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output ratio would be declining for a given rate of growth of the labour force if savings were 
zero. The term, a linear function of K
a zero vertical intercept and a slope equal to 
the relation between & K* by K*= 
be growing as a result of capital accumulation if the labour force were not changing. If both s 
& λ are non zero, then the actual f K
difference is represented by the ver
other hand, will plot a curve that increases at a decreasing rate, like 
merely a constant fraction of the 
production, we must start the s 
and thus K*=o, Q must also be zero, as will be 
actually drawn also reflects the implicit assumption that there exists a set 
which s (K*) exceeds λ K*, so that the two curve interact at some positive value of K
K*. 

It remains to consider the shape of the curve s
interpreted as the total product curve with labour input 
the variable factor. In this case 

K* equals, K Since = K. The term s

that is saved and invested per worker. The assumption of dimin
sufficient to ensure theslope of  

Based upon these two curves, the value of K
vertical distance between the two curves. Ploting the value of K
yield the phase line we need. Note that, since the two curves in diagram intersect when the 
capital labour ratio is K*, the phase line in diagram b must cross the horizontal axis at K
marks K* as the (inter temporal) equilibrium ca

In as much as the phase line has a negative slope at K
identified as a stable one, given any (positive) initial value of K
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output ratio would be declining for a given rate of growth of the labour force if savings were 
term, a linear function of K*, will obviously show in figure (a) as a straight li

cept and a slope equal to λ. To obtain the lines, we let λK* be zero and plot 
= s (K*). This line tells us how fast capital: output ratio would 

be growing as a result of capital accumulation if the labour force were not changing. If both s 
& λ are non zero, then the actual f K* will be the difference between λK* and s 
difference is represented by the vertical distance between the two lines. The s
other hand, will plot a curve that increases at a decreasing rate, like (K*), since s

(K*) curve. If we consider K to be an indispensable factor of 
 (K*) curve from the point of origin, this is because if K = 

, Q must also be zero, as will be  (K*) and s  (K*). The way the curve is 
actually drawn also reflects the implicit assumption that there exists a set of K

, so that the two curve interact at some positive value of K

It remains to consider the shape of the curve s (K*). The expression 
interpreted as the total product curve with labour input held constant at one unit and capital as 

= K. The term s (K*) 1 shows the amount of this total output 

worker. The assumption of diminishing returns to one factor is 
 (k) and thus s (K*) must be declining as K*is increased.

Based upon these two curves, the value of K* for each value of can be measured by the 
vertical distance between the two curves. Ploting the value of K* against k as in 
yield the phase line we need. Note that, since the two curves in diagram intersect when the 

, the phase line in diagram b must cross the horizontal axis at K
as the (inter temporal) equilibrium capital-labour ratio. 

In as much as the phase line has a negative slope at K*, the equilibrium is readily 
identified as a stable one, given any (positive) initial value of K*, the dynamic movement of the 
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model must lead us convergent y to the level of K*. The significant point is that once this 
equilibrium is attained and thus the capital-labor ratio is (by definition) unvarying over time-
capital must there after simply, in turn that net investment must grow at the rate λ. Note, 
however, "must" is used here not in sense of requirement, but with the implication of 
automatcity. Thus, what the Solow model serves to show is that, given a rate of growth of labor 
λ, the economy by itself, and without the delicate balancing a Domar, can eventually reach a 
state of steady growth in which investment will grow at the rate λ, the same as K and L. 
Moreover, in order to satisfy (1), Q must grow at the same rate as well as because  (K*) is a 
constant when the capital labor ratio remains unvarying at the level of K*. Such a situation in 
which the relevant variables all grow at the identical rate is called a steady state - a generation 
of the concept of stationary state, in which the relevant variables all remain constant, or in 
other words all grow at the zero rate. 

11.4.6 THE COBWEB MODEL 

A famous illustration of difference equation arises in the case of a single market 
equilibrium in which supply depends (with a one-period lag) on last periods price. Once the 
supply is in the market, however, the price depends on current demand. 

Usually farmers decide on the basis of this year's price for a particular commodity the 
acreage they will plant with that crop. Anticipating that the price level will be maintained. If 
the price is high one year, farmers tend to plant heavily. The following year, when the crop is 
harvested and brought to the market, the supply exceeds the demand, price fail and farmers cut 
acreage devoted to this particular commodity. When the next year crop is harvested, supply 
may be below demand, prices increase, farmers plant more, next years crop exceeds demand, 
price fall. In this manner this cycle is repeated again and again. 

Q = Production is output net of depreciation  

Let us assume that the output decision in period t is based on then-prevailing price Pt. 
Since this output will not be available for sale until period 0 t+1, however, Pt, will determine 
not Qst but Qst+1. Thus we now have a "lagged" supply function. We are making the implicit 
assumption here that the entire output of a period will be placed on the market, with no part of 
it held in storage. Such an assumption is appropriate when the commodity in question is 
perishable or when no inventory is ever kept. 

Qs.t+1 = S(Pt) or equivalently Qst = S (Pt)<i.e. price supply curve relates the supply in any 
period with the price one period before. When such a sup- ply function interacts with a demand 
function of the form 

Qdt = D (Pt)i.e.  

interesting dynamic price patterns will result.  

To simplify the mathematical analysis of theproblem in hand, we take (suppose) supply 
(lagged) and demand (unlagged) as a linear functions or in other words, the price-demand and 

price demand is specified in which 

quantity demanded is determined by 

the price at the time of purchase

 
 
 
  
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price supply curves are straight lines. Also assuming that in each time period the market is 
always set at a level which clears the market (i.e. the market price is determined by the 
available supply, transaction according at which the quantity demanded & the quantity sup- 
plied are equal or Pt is determined on the solution of the equation. 

 Qdt = Qst  (1) 

 Qdt = a – β Pt  (2) (, β > 0) 

 Qst = – Γ+ δ Pt-1 (3) (> 0 

where -β and a are the slope and D- intercept for demand curve and δ and of Γ are slope and S 
intercept for the supply curve. The slop of the demand curve is taten to be–ve and that of 
supply curve positive. The reason for these considerations lies in the fact that an increase of 
one unit price produces a decrease of β unit is demand but on increase of δ units in supply. 

By substituting the last two equations into the first, however, the model can be reduced 
to a single first-order difference equation as follows. 

β Pt +  δPt-1 =  + Γ 

Pt +  Pt-1 =  

In order to solve this equation, it is desirable first or normalize it and shift the time 
subscripts ahead by on period (after to t+ 1. etc.) the result. 

 Pt-1 +   Pt =  

To find solution of diff. = equation 

Let a =  and C = &y=P 

In as much as δ&β are both + ve. it followsthat a-1 

So we are seeking sol. of equation yt+1+ayt=e where a & c are two constants.  

The solution of this well known difference equations 

Pt=  

where P0 represents the initial price.  

Three points may be observed in regard to this time path 

(i) In the first place, the expression whichconstitutesthe particular integral of the 

difference = n can be taken as the intermporal equilibrium price of the model. 













 






 

0P
  
   

     
      

r
 





 

283 
 

As far as the market-clearing sense of equilibrium is concerned the price reached in 
cash period is in equilibrium price, because we have assumed that Qdt = Qst for every t. 

  

which is a constant and which is the equilibrium price of the model and this is a 
stationary equilibrium. 

Pt (P0) - ) +P 

(ii) This leads us to second point namely,the significance of the expression (P0- ) 
which is constant and it depicts the scale effect. Its sign will bear on the question of whether 
time path will commence above or below the equilibrium (mirror effect), whereas its 
magnitude will decide how far above or below P0 the time path starts (scale effect) If (P0–P)>0, 
the time path, as said above, will blow up. If (P0 – P)<0, the time path will start from below the 
equilibrium price. 

(iii) Lastly, in the expression where β, δ > 0. 

we have an oscillatory time path where – β and δ are slopes of the demand and supply curve 
respectively. It is this fact which gives rise to the Cobwebphenomenon. 

 will always be - ve here  β . d>0. 

There can β ofcourse, arise there possible varieties of patterns in the model. The 
oscillations will be. 

(i)  explosive if δ > β  

(ii)  uniform if δ = β  

(iii)  damped if δ < β 

In order to visualize the Cobwebs, let us depict the model (1), (2) and (3) in figures. The 
equation (2) plots as a downward-sloping linear curve, with its slope numerically equal to β. 
Similarly, a linear supply curve with a slope equal to β can be drawn from the equation (3). If 
we let the Q axis represent in this instance a lagged quantity supplied. The intersection of D & 
S will yield the intertemporal equilibrium price P. 

(i) When δ > β (S steeper than D) 

In this case demand and supply will produce an explosive price. Given an initial price 
P0 (here assumed above P), we can follow the arrow- head and read off on the S curve that the 
quantity supplied in the next period (period 1) will be Q₁. 

r
P


 





P
t




 
 
 

P




 
 
 




 
 
 



In order to clear the market, the quantity 

demanded in period, must also be Q

(see downwardarrow). Now, via the S curve, the price P
supplied in period 2, and to clear the market in the latter period, price must be set at the level of 
P2 according to the demand curve. Repeating this reasoning, we can trace out the price and 
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In order to clear the market, the quantity  

 
demanded in period, must also be Q1, which is possible if price is set at the level P

 

(see downwardarrow). Now, via the S curve, the price P1 will lead to Q2 
supplied in period 2, and to clear the market in the latter period, price must be set at the level of 

to the demand curve. Repeating this reasoning, we can trace out the price and 

which is possible if price is set at the level P1 

 as the quantity 
supplied in period 2, and to clear the market in the latter period, price must be set at the level of 

to the demand curve. Repeating this reasoning, we can trace out the price and 



quantities in subsequent periods by simply following the arrowheads in the diagram, there by 
spinning a "cobwed" around the demand and supply curves. By comparing the price level
P1, P2 ..... we observe in this case not only an oscillatory pattern of change but also a tendency 
for price to widen its deviation from P as time goes by, with the cobweb being spun form inside 
out, the time path is divergent and the oscillation ex

(ii) When δ < β (S flatter than D)

In this case a similar spinning process will create a cobweb which is centre
From P0, if we follow the arrowheads, we shall be led ever closer to the intersection of the 
demand & supply curves, where P is while still oscillatory, this price path is convergent.

(iii) when δ = β 

In this case cobweb consists of one square endlessly repeated, price oscillating finitely 
between just two values and there will be regular oscillations.
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quantities in subsequent periods by simply following the arrowheads in the diagram, there by 
spinning a "cobwed" around the demand and supply curves. By comparing the price level

..... we observe in this case not only an oscillatory pattern of change but also a tendency 
for price to widen its deviation from P as time goes by, with the cobweb being spun form inside 
out, the time path is divergent and the oscillation explosive. 

 

 

(S flatter than D) 

In this case a similar spinning process will create a cobweb which is centre
if we follow the arrowheads, we shall be led ever closer to the intersection of the 

where P is while still oscillatory, this price path is convergent.

In this case cobweb consists of one square endlessly repeated, price oscillating finitely 
between just two values and there will be regular oscillations. 

quantities in subsequent periods by simply following the arrowheads in the diagram, there by 
spinning a "cobwed" around the demand and supply curves. By comparing the price levels, P0, 

..... we observe in this case not only an oscillatory pattern of change but also a tendency 
for price to widen its deviation from P as time goes by, with the cobweb being spun form inside 

In this case a similar spinning process will create a cobweb which is centre-oriented. 
if we follow the arrowheads, we shall be led ever closer to the intersection of the 

where P is while still oscillatory, this price path is convergent. 

In this case cobweb consists of one square endlessly repeated, price oscillating finitely 



Thus the dynamic equilibrium can only be obtained in the (ii) case when 
demand curve is steeper than the supply curve. The disequilibrium price P, therefore oscillates 
over successive periods around the equilibrium price P and converge to P if 
steeper than S around the point of intersection.

Example 2.Examine the path represented by

Sol: Here =  or  

 δ<β 

i.e. oscillation is damped. Therefore the time pathconverges to the equilibrium level 3. 

Self-check Exercise 11.2 

Q1. Demand and supply function, for tea are given by 

 xd = 100 – p +  million kg. per week

 x3 = - 50 + 2p + 10   million kg. per week 

Find the time path of p for dynamic equilibrium if the initial price is given to be Rs. 10 Kg. 
What will be the price at time t = 10?

Q2.  How do you characterize the time path 

 yt = 3t + 1 ? 

Q3. Linear demand and supply for the cobweb model as follows, find the inter temporal 
equilibrium price and determine whether equilibrium is stable




 1

10





dp

dt

dp

dt
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equilibrium can only be obtained in the (ii) case when 
demand curve is steeper than the supply curve. The disequilibrium price P, therefore oscillates 
over successive periods around the equilibrium price P and converge to P if δ 
steeper than S around the point of intersection. 

Examine the path represented by1 : 5 +3 

 =  

i.e. oscillation is damped. Therefore the time pathconverges to the equilibrium level 3. 

Demand and supply function, for tea are given by  

million kg. per week 

million kg. per week  

Find the time path of p for dynamic equilibrium if the initial price is given to be Rs. 10 Kg. 
time t = 10? 

How do you characterize the time path  

Linear demand and supply for the cobweb model as follows, find the inter temporal 
equilibrium price and determine whether equilibrium is stable 

1

10
  
 




1

10

equilibrium can only be obtained in the (ii) case when δ > β or when 
demand curve is steeper than the supply curve. The disequilibrium price P, therefore oscillates 

δ < β or if D is 

i.e. oscillation is damped. Therefore the time pathconverges to the equilibrium level 3.  

Find the time path of p for dynamic equilibrium if the initial price is given to be Rs. 10 Kg. 

Linear demand and supply for the cobweb model as follows, find the inter temporal 
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 (a) Qdt = 18 – 3 Pt Qst = 3 + Pt-1 

 (b) Qdt = 19 – 6 Pt Qst = – 6 + Pt-1–5 

Q4.  The demand and supply, when p is the price, Qd quantity demanded and Qs, the quantity 
supplied are given as 

 Qd = a – bp  (a, b > 0)  -  (1)  

 Qs = –c + dp  (c, d > 0)  -  (2) 

  = x (Qd –Qs)  (x> 0)   -  (3)  

 Find the time path of price. 

11.5 SUMMARY 

 In the last units, we learned about the difference and differential equations. This unit 
was dedicated to the application of these equation to share economic problems.  

11.6 GLOSSARY 

 (i) Variable : A variable is something whose magnitude can change i.e. something 
that can take on different values. 

 (ii) Cobweb Model : A model where production or supply responds to price with 
one period lag. This model is after used to analyse the demand supply 
mechanism for markets of agricultural commodities. 

 (iii) Linear Difference Equation : A difference equation is linear if (i) the 
dependent variable y is not raised to any power and there are no product terms. 

11.7 ANSWER TO SELF CHECK EXERCISES  

Self-check Exercise 11.1 

Ans. Q1. Refer to Section 11.3 

Self-check Exercise 11.2 

Ans.Q1. Refer to Section 11.4.3 (Example 1) 

Ans.Q2. Hint Here  – =  = 3   

 ∂  > β 

 i.e. the time path will explode and will diverge from the equilibrium level  

Ans. Q3. Solution  

 We have Qdt = x - β Pt   Qst =  – Γ + Pt-1 

 P1 =  +  

dp

dt




3

1

0P



  
 
 




 
 
 


 
 

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 = (P0 – P + ) 

 Where    =   

 Here  = 18     β = 3      Γ = 3     δ = 4 

  = equilibrium price =   =  =  = 3 

 and –  = –  δ > β 

 There will be explosive ascillutions and equilibrium will be stable. 

 (b) Where   = 19     β = 6      Γ = 5     δ = 6 

  = equilibrium price =   =  =  = 2 

 and –  = –   = 1  

i.e.  δ  =  β 

There will be regular ascillutions and equilibrium will be unstable. 

Ans. Q4. Hint equation (3) implies that change in price w.r.t. time (t) is directly 
proportional to the excess of demand over supply (= Qd – Qs)  

= x (3) with held of us (1) & (2) can be written as  

=  (a – bp + c – dp)  

=  (b + d) p =  (a + c) 

Hence yc = Ae (b + d) t 

yp =   =  =   (say) 

The complete Sol. Therefore is ye + yp 

 i.e. Pt =   + A– (b + d) t 

 =  + (P0 – )e where P =  

Now as t →  

t



 
 
 

P

P

 



P

 



18 3

3 4




21

7




4
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
 
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19 5

6 6



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12




6

6

dp

dt

dp

dt

( )

( )

a c

b d
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




c

b d

 


P

a c

b d



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
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So t →  P =  + 0 =  

In other words, in the long run, price will courage to the equilibrium price (P) and in 
this way the dynamic stability will be obtained. 

In the above case, yp which depicts the particular integral gives the equilibrium price 
while, Yc the complementary function, gives the deviation from the equilibrium. 
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11.9 TERMINAL QUESTIONS  

Q. 1 Investigate the behavaiam  of price in a market, i.e., the stability of a system with 
demand and supply function : 

 a) Dt = 86 – 0.8 Pt  

  St = –10 + 0.8 Pt-1 

Q. 2 Find the time path represented by the equation yt = 2  t + 9. 

Q. 3 Find the solution of the equation yt+1 +  yt = 5 for y0 = 2 

Q. 4 The demand and supply for cobweb model is given as  

Qdt = 19 – 6Pt and Qst = 6Pt-1 – 5. Find the intertanporal equilibrium price and comment 
on the stability of the equilibrium. 

------- 
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   12.3.4.2.2 Slope - Intercept Form 
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Self-check Exercise 12.1 

12.4 Isoprofit and Isocost Lines for Two Products 
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Self-check Exercise 12.4 

12.7 Summary 

12.8 Glossary  
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12.11 Terminal Questions 

  



12.1 INTRODUCTION  

 The French Philosopher 
realise the geometrical ideas can be translated into algebraic relations. This enabled him to 
write his book La Geometric (1637) in which geometry was studied 
algebra. The combination of algebra and plane geometry came to known as Co
Geometry. The name co-ordinate geometry or analytic geometry, was given because of the fact 
that number (called co-ordinates) which are associated w
are employed in this study. In this unit,
three-dimension. Also, the formula for the equation of a straight line passing through two 
points both in two and three dimension, have been derived.

12.1 LEARNING OBJECTIVES

 After reading this Unit, you should be able to:

 Locate the position of a point in a plan or in a space;

 Determine the distance between two points;

 Divide a line in any given ratio;

 Find the equation of a straight line;

 Apply the concept of straight line to solve the economic problems.

12.3 TWO DIMENSIONAL COOR

A point is known by its position. A FrenchMathematician and Philosopher Rene 
Desartes was the first to perceive that a point could be
pair of real numbers, say (a, b) with the help of two axes and the law of algebra could then the 
applied to the solution of geometrical problems. We shall now define Cartesian Co
a point on the plane with reference to two mutually perpendicular straight lines lying on the 
plane. 

 To find the position of a point, say P in a plane, we take two fixed straight lines X' OX' 
and Y'OY intersecting at right angles at O in the plane. These two lines are called the
reference or the axes of co-ordinates. X' O X is called the x
termed as the origin.Let PM and PN perpendicular to X'OX and Y' OY respectively and let NP 
=x and MP = y. Then OM = NP = 
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The French Philosopher - Mathematician Rene Descartos (1596-1650) was the first 
realise the geometrical ideas can be translated into algebraic relations. This enabled him to 
write his book La Geometric (1637) in which geometry was studied systematically by using 
algebra. The combination of algebra and plane geometry came to known as Co

ordinate geometry or analytic geometry, was given because of the fact 
ordinates) which are associated with points of some "plane" or "space" 

. In this unit, we have introduced co-ordinate system in bath two and 
dimension. Also, the formula for the equation of a straight line passing through two 

mension, have been derived. 

OBJECTIVES 

Unit, you should be able to: 

Locate the position of a point in a plan or in a space; 

Determine the distance between two points; 

Divide a line in any given ratio; 

a straight line; 

Apply the concept of straight line to solve the economic problems. 

TWO DIMENSIONAL COORDINATE SYSTEM 

A point is known by its position. A FrenchMathematician and Philosopher Rene 
Desartes was the first to perceive that a point could be represented in the plane by an ordered 
pair of real numbers, say (a, b) with the help of two axes and the law of algebra could then the 
applied to the solution of geometrical problems. We shall now define Cartesian Co

h reference to two mutually perpendicular straight lines lying on the 

To find the position of a point, say P in a plane, we take two fixed straight lines X' OX' 
and Y'OY intersecting at right angles at O in the plane. These two lines are called the

ordinates. X' O X is called the x-axis, Y' o Y the y
termed as the origin.Let PM and PN perpendicular to X'OX and Y' OY respectively and let NP 

. Then OM = NP = x and On = MP = y. 

 

1650) was the first 
realise the geometrical ideas can be translated into algebraic relations. This enabled him to 

systematically by using 
algebra. The combination of algebra and plane geometry came to known as Co-ordinate 

ordinate geometry or analytic geometry, was given because of the fact 
ith points of some "plane" or "space" 

ordinate system in bath two and 
dimension. Also, the formula for the equation of a straight line passing through two 

A point is known by its position. A FrenchMathematician and Philosopher Rene 
represented in the plane by an ordered 

pair of real numbers, say (a, b) with the help of two axes and the law of algebra could then the 
applied to the solution of geometrical problems. We shall now define Cartesian Co-ordinates of 

h reference to two mutually perpendicular straight lines lying on the 

To find the position of a point, say P in a plane, we take two fixed straight lines X' OX' 
and Y'OY intersecting at right angles at O in the plane. These two lines are called the axes of 

axis, Y' o Y the y-axis and O is 
termed as the origin.Let PM and PN perpendicular to X'OX and Y' OY respectively and let NP 



When we know the distances OM and MP and the directions in which they are drawn, 
we know the position of the point P. OM is taken positive when drawn to the right from O and 
negative when drawn to the left from O, and MP is taken positive or negative when 
upwards or downwards respectively from M.

 The co-ordinates of point P are OM and MP with their proper signs. OM in known as 
the abscissa or the x co-ordinate and MP the ordinate or the y co
and MP, i.e. if abscissa and ordinate of P are 'x' units of length and 'y' units of length 
respectively, then x and y are the rectangular cartesian co
(x, y) 

 The two axes divide the whole plane into four sections called quadrants. For any point 
in the first quardrant XOY, both the abscissa x and ordi
YOX'x is negative and y is positive, in the 3
quadrant Y' O X,x is positive and y is negative. Thus if the p
determine its co-ordinates and conversely if the co
position can be determined by measuring 'x' units of length

along the x-axis then measuring 'y' units of length parallel to
proper directions indicated by the signs of x and y.

12.3.1 Distance between two points

 Let P (x1 y1) and Q (x2, y2

OX and then draw PR parallel to OX to meet QM

 Then PR = NM – ON = X2

 and RQ=MQ – MR=MQ –

 Now from the right-angled trianglePQR

 |PQ|2|PR|2+ |RQ|2 

 |PQ|2 = (x2 – x1)+(y₂ – y₁)²
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When we know the distances OM and MP and the directions in which they are drawn, 
the position of the point P. OM is taken positive when drawn to the right from O and 

negative when drawn to the left from O, and MP is taken positive or negative when 
upwards or downwards respectively from M. 

ordinates of point P are OM and MP with their proper signs. OM in known as 
ordinate and MP the ordinate or the y co-ordinate of the point P. If OM 

ordinate of P are 'x' units of length and 'y' units of length 
respectively, then x and y are the rectangular cartesian co-ordinates of P which are written as 

The two axes divide the whole plane into four sections called quadrants. For any point 
the abscissa x and ordinate y are positive, in the 2

YOX'x is negative and y is positive, in the 3rd quadrant X' OY' both x and y are negative, in 4
quadrant Y' O X,x is positive and y is negative. Thus if the position of a point be give

nates and conversely if the co-ordinates (x, y) of a point are given, its 
position can be determined by measuring 'x' units of length 

 

axis then measuring 'y' units of length parallel to y-axis, both being measured in the 
proper directions indicated by the signs of x and y. 

Distance between two points 

2) be the two given points. Draw PN and QM perpendicular to 
OX and then draw PR parallel to OX to meet QM in R. 

2 Y2 
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ordinates of point P are OM and MP with their proper signs. OM in known as 
ordinate of the point P. If OM 

ordinate of P are 'x' units of length and 'y' units of length 
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The two axes divide the whole plane into four sections called quadrants. For any point 
nate y are positive, in the 2nd quardrant 

quadrant X' OY' both x and y are negative, in 4th 
osition of a point be given, we can 

ordinates (x, y) of a point are given, its 

axis, both being measured in the 

) be the two given points. Draw PN and QM perpendicular to 



Hence |PQ| = 

Cor: The distance of the point P (h, k) from the orgin 0 (

  |OP|=  

Example 1. Find the distance between the points(

Sol. The required distance between the points(

 =  

 =   

 =  

 =  

 = 2  units. 

Example 2. Prove that the points (7,9), (3, 
isosceles triangle. 

 Sol. Let the vertices of the triangle be A, B, C whose co
(–3,3) respectively. 

Then AB2 = (3 – 7)2 + (-7 –9)2=272 

2 2
2 2 1( ) ( )x x y y  

2 2h k

2 2
2 2 1( ) ( )x x y y  

2 2[3 ( 5)] (1 3)   

2 2(8) ( 2) 

64 4

17
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The distance of the point P (h, k) from the orgin 0 (o, o) is given by

Find the distance between the points(-5, 3) and (3.1) 

The required distance between the points(-5.3) and (3.1) 

Prove that the points (7,9), (3, –7) and (–3, 3) are the vertices of a right angle

Let the vertices of the triangle be A, B, C whose co-ordinates are (7, 9), (3,

 

=272  

2 2
2 2 1( ) ( )x x y y  

) is given by 

3, 3) are the vertices of a right angled 

ordinates are (7, 9), (3, –7) and 
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BC2=(–3 –3)2+ [3–(–7)]² = 136 

 CA²= [7–(–3)]2+ (9 – 3)²= 136 

We see that BC2+ CA² = 136+136=272=AB2 

and BC2=CA2 

or BC=CA 

Hence ABC is a night-angled isosceles triangle.  

12.3.2.  Section formula 

Division of a finite line in a given ratio 

Case I. The co-ordinates of a point R whichdivides the line segment joining (x1, y1) and 
(x2, y₂) internally in the ratio m:n are 

  

Case II. The co-ordinates of a point R which divides the line segment joining and (x1. y1) 
and (x2 y2) externally in the ratio m:n are 

  

Cor. If m = n in case I. i.e. R becomes the midpoint of PQ, its co-ordinates become 

  

Example 3. Find the co-ordinates of the point which divides the join of the points (2, 4) and 
(6,8) externally in the ratio 5:3. 

Sol. The required co-ordinates of the point which divides the join of (2, 4) and (6, 8) externally 
in the ratio 5:3 are 

   

  
 

 (ii) (2, 4) and (8, 10) externally in the ratio 7 : 5 

12.3.3 Gradient or slope of a line 

 If a line is not parallel to a co-ordinate axis.It is inclined at an θ angel to the x–axis OX. 
The angle θ may be acute or obtuse. Let P (x1, y1) and Q(x2, y2) be two points on the line. Then 
the quantities x2 – x1 be two points on the line. Then the quantities x2 – x1 = (PL) and y₂ – y1 = 
(LQ) are called run and rise respectively. 

When x2 –x1 0, the number in defined by 

2 1 2 1mx nx my ny

m n m n

  
   

2 1 2 1mx nx my ny

m n m n

  
   

1
2 1 2,

2 2

x x y y  
 
 

2 1mx nx

m n




2 1my ny

m n




5 6 3 2

5 3

  


5 8 3 4

5 3

  




 m =  

is called the gradient for the slope) of the line joining P 

Again from figure a, we see that 

 m=tan θ =  =  

where θ= inclination of the line to the x
which is not parallel to the y–axis is defined by 

m=tan θ 

when the inclination of line to the x
or negative according to the position of the line.

 If θis acute (Figure a), the slope of the line is positive ife is 
slope is negative. 

 If the line is parallel to the x
y–axis (or perpendicular to x–axis), x
is not defined. 

Note: This definition cannot be used if the scales on the two axes are not the same. In Co
ordinate Geometry, we shall always assume the same scale on both the axes.

  

1

2 1

2

y y rise

x x run






LQ

PL
1

2 1

2

y y

x x



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is called the gradient for the slope) of the line joining P (x1, y1) and Q (x2, y2) 

 

= inclination of the line to the x–axis = < LPQ. Thus the gradient (or slope) of a line 
axis is defined by  

 

Fig. a 

 

when the inclination of line to the x–axis may be acute or obtuse and hence it may be positive 
tive according to the position of the line. 

is acute (Figure a), the slope of the line is positive ife is obtuse (as in Figure b), the 

If the line is parallel to the x–axis, θ = o and hence m = o. But if the lines parallel to the 
axis), x2 – x1 = 0 and in this case, the slope or gradient of the line 

This definition cannot be used if the scales on the two axes are not the same. In Co
ordinate Geometry, we shall always assume the same scale on both the axes. 

axis = < LPQ. Thus the gradient (or slope) of a line 

ence it may be positive 

obtuse (as in Figure b), the 

and hence m = o. But if the lines parallel to the 
= 0 and in this case, the slope or gradient of the line 

This definition cannot be used if the scales on the two axes are not the same. In Co-



Example 4. Find the slope of the line passing through the points (0,

  

 =  = –1 

Condition for parallel and perpendicular lines 

Case I If the two lines AB and CD i.e. parallel (none being parallel to y
inclinations to the x–axis are the same and hence their slopes m

Conversely, if m1 = m2, then the inclinations of the two straight lines to the 
the same and hence the two lines AB and CD are parallel. Hence the condition for two straight 
lines having slopes m1 and m2 to be parallel is 

Case II Let AB and CD be the two perpendicular straight lines (none being parallel to y
IF AB makes an θ angle with the x
with OX according as θ is acute or obtuse.

 The slopes m1, m2 of AB and CD aregiven by

 m1 =tan θ and m2 =tan (θ ±90)=

 [ tan (θ +90) = –cot θ and tan (

 m1 m2= tan θ (-cot θ) = 

 i.e. m1 m2 =–1. 

1

2 1

2

y y

x x




2 ( 4)

6 0

 
 
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Find the slope of the line passing through the points (0,–4) and (–6, 2)

Condition for parallel and perpendicular lines  

If the two lines AB and CD i.e. parallel (none being parallel to y–axis), then their 
axis are the same and hence their slopes m1 and m2 are equal i.e. m

 

, then the inclinations of the two straight lines to the 
the same and hence the two lines AB and CD are parallel. Hence the condition for two straight 

to be parallel is m₁ = m₂. 

and CD be the two perpendicular straight lines (none being parallel to y
angle with the x–axis OX, then CD will make an angle θ +90

is acute or obtuse. 

of AB and CD aregiven by 

±90)= – cote θ 

and tan (θ – 90) = –tan (90 – θ) = – cot θ]  

) = –1 

6, 2) 

axis), then their 
are equal i.e. m₁ = m₂. 

, then the inclinations of the two straight lines to the x–axis are 
the same and hence the two lines AB and CD are parallel. Hence the condition for two straight 

and CD be the two perpendicular straight lines (none being parallel to y–axis). 
+90o or θ – 90o 



Conversely, if m1, m2= –1 and m1

or tan θ2 = –  = -cot θ1 = tan θ1

  θ2 = θ1 + 900 or θ1 – 900

 This shows that the line AB is perpendicular to the line CD.

Hence the condition for two lines having slopes 
other is m₁, m₂= –1. 

 Example 5:- Show that the points A (6, 6), B (2, 3) and C (4, 7) are the vertices of a 
right-angled triangle. 

Sol. m1 = slope of AB = = 3/4

 m2 = slope of BC =  

and m3 = slope of AC=  = 

 m2, m3 = 2 x  = –1 

1

tan

3 6

2 6




7 6

4 6




7 6

4 6




1

2
  
 
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Fig. 

1 = tan θ, and m2 =tan θ2, then tan θ1, tan θ2 = –1

1 (θ1+ 90) 

0 

This shows that the line AB is perpendicular to the line CD. 

Hence the condition for two lines having slopes m₁, m₂ to be perpendicular to each 

Show that the points A (6, 6), B (2, 3) and C (4, 7) are the vertices of a 

= 3/4 

 = –2 

= –  
1

2

1 

to be perpendicular to each 

Show that the points A (6, 6), B (2, 3) and C (4, 7) are the vertices of a 



This show that BC is perpendiculur to AC.

Hence ABC is a right-angled triangle. 

Example 6 Show that the points A (1, 

Sol. m1 = slope of AB = 

 m2 = slope of BC =  

 m1= m2 = 

AB is parallel to BC and B is common to boththe lines AB and BC. 

Hence the points A (1, –2), B (3, 4) and C (4,7) are collinear.

12.3.4 Equations of straight lines.

12.3.4.1Straight lines parallel to the co

(i) The equation of a straight line parallel to the y

Because all points on the line parallel to th
same x coordinate h. Hence for any point P (x, y) on the line x =

Conversely, an equation x=h represents only those points which are at equal distances h from 
the y–axis. 

Hence these points lie on locus x=h which is a lineparallel to the y

(ii) The equation of a straight line parallel to the x

Proof is exactly similar to as above.

(iii) Any point on the x–axis has its y co
x-axis is y = 0. 

Similarly, the equation of the 

12.3.4.2Equation of a straight lines:

(i) Point–slope Forms 

 y –y₁ = m (x – x₁) 

4 ( 2) 6

3 1

  


7 4

4 3



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This show that BC is perpendiculur to AC. 

angled triangle.  

Show that the points A (1, –2), B (3, 4) and C(4, 7) are collinear. 

= 3 

 = 3 

AB is parallel to BC and B is common to boththe lines AB and BC.  

2), B (3, 4) and C (4,7) are collinear. 

Equations of straight lines. 

Straight lines parallel to the co-ordinate axes 

The equation of a straight line parallel to the y–axis and at a distance h from it is x = h. 

all points on the line parallel to the y–axis and at distance h from it have the 
same x coordinate h. Hence for any point P (x, y) on the line x = h. 

Conversely, an equation x=h represents only those points which are at equal distances h from 

ence these points lie on locus x=h which is a lineparallel to the y–axis. 

 

The equation of a straight line parallel to the x–axis and at a distance k from it is y=k.

Proof is exactly similar to as above. 

axis has its y co-ordinate equal to zero and hence the equation of the 

Similarly, the equation of the y–axis is x= o.  

Equation of a straight lines: Standard Forms 

4 ( 2) 6

3 1

  


axis and at a distance h from it is x = h.  

axis and at distance h from it have the 

Conversely, an equation x=h represents only those points which are at equal distances h from 

 

axis and at a distance k from it is y=k. 

inate equal to zero and hence the equation of the 



To show that the equation of the straight line
having a givenslope m is y – y₁ = m (x

Proof: Let A be the given point 
line AP.  

 

But the slope of the line AP is given to be m.

  = m 

or  y – y₁ = m (x – x1) (1) 

This is the relation which is satisfied by the co
is not satisfied by the co-ordinates of any point outside the line.

Hence equation (1) is the required equation of the line. 
the line a parallel to the y–axis and hence (1) cannot be used if the line through A (x
parallel to the y–axis. In this case, the equat
is x = x1. 

12.3.4.2Slope-intercept form (or Gradient form)

y – mx + c 

To show that the equation of the straight line having a slope m and making a given intercept c 
on the y–axis is y = mx + c  

Proof: Let the line cut the y–axis at C, so that OC= C

1

1

y y

x x




1

1

y y

x x



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To show that the equation of the straight line passing through a given point (x
= m (x – x1)  

Let A be the given point (x1, y2) and let Abe any point on the line. Then the slope of 

But the slope of the line AP is given to be m. 

 

This is the relation which is satisfied by the co-ordinates of any point on the line and it 
ordinates of any point outside the line. 

Hence equation (1) is the required equation of the line. Note: The slope m is undefined when 
axis and hence (1) cannot be used if the line through A (x

axis. In this case, the equation of the line through A(x1, y1) parallel to y

(or Gradient form) 

To show that the equation of the straight line having a slope m and making a given intercept c 

axis at C, so that OC= C 

 

passing through a given point (x1, y2) 

and let Abe any point on the line. Then the slope of 

ordinates of any point on the line and it 

s undefined when 
axis and hence (1) cannot be used if the line through A (x1, y1) is 

) parallel to y–axis 

To show that the equation of the straight line having a slope m and making a given intercept c 



 The co-ordinates of C are (o, c). Let P(x, y
line CP is  

  

But the gradient of the line is given to be  m

  = m 

or y = mx + c  (2) 

 This is the relation with is satisfied by the co ordinates of any point on the line and it is 
not satisfied by the co-ordinates of any point outside the line. Hence this the required equation 
on the line. 

Cor. The equation of a starlight line having a gradier m and passing through the origin (in 
this case = 0) is y = mx 

12.3.4.2.3. Intercept Form 

  + 1 

 To show that the equation of a straight line which cuts off given intercepts a and b from 
the axis is  

  = 1 

Proof: Let a straight line cut the x
intercepts on the axes are a and b.

Let P (x, y) be any point on the line. 

The slope of AP =  

and the slope of AB =  

Since AP and AB are on the same line and in the same direction from A to B.

0

y c y c

x x

 




y c

x



x y

a a


x y

a a


0

0

y

x




0

0

b

a



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ordinates of C are (o, c). Let P(x, y) any point on the line. Then the gradient of 

But the gradient of the line is given to be  m 

This is the relation with is satisfied by the co ordinates of any point on the line and it is 
ordinates of any point outside the line. Hence this the required equation 

The equation of a starlight line having a gradier m and passing through the origin (in 

To show that the equation of a straight line which cuts off given intercepts a and b from 

Let a straight line cut the x–axis at A (a, o) and the y–axis at B (o, b) so that the 
intercepts on the axes are a and b. 

ny point on the line.  

 

Since AP and AB are on the same line and in the same direction from A to B. 

) any point on the line. Then the gradient of 

This is the relation with is satisfied by the co ordinates of any point on the line and it is 
ordinates of any point outside the line. Hence this the required equation 

The equation of a starlight line having a gradier m and passing through the origin (in 

To show that the equation of a straight line which cuts off given intercepts a and b from 

axis at B (o, b) so that the 



  =  or  = 

or bx – ab = –ay 

 bx + ay = ab 

Dividing both sides by ab 

 +  = 1 which is the required equat

The slope of this line is  = –

12.3.4.2.4Two points form 

 y - y1 = (x – x1) 

To show that the equation of the straight line passing through two given points A (x
(x2, y2) is 

y - y1 =  (x – x1) 

Proof: Let P (x, y) be any point on the line other than A and B. Clearly, slope of line segment 
AP= slope of the line segement BA because AP and AB are on the line i.e.

which is the required equation of a line. Condition of collinearity of three points

  =  

or y - y1 =  (x – x1) 

which is the required equation of a line.

0y

x a




0

0

b

a




y

x a 

x

a

x

b

1

1
a

b


b

a

2 1

2 1

y y

x x




1

1

y y

x x




1

1

y y

x x




2 1

2 1

y y

x x




2 1

2 1

y y
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

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= 1 which is the required equation of the line. 

 

To show that the equation of the straight line passing through two given points A (x

Let P (x, y) be any point on the line other than A and B. Clearly, slope of line segment 
AP= slope of the line segement BA because AP and AB are on the line i.e. 

which is the required equation of a line. Condition of collinearity of three points

 

which is the required equation of a line. 

b

a

b

a

To show that the equation of the straight line passing through two given points A (x1, y1) and B 

Let P (x, y) be any point on the line other than A and B. Clearly, slope of line segment 

which is the required equation of a line. Condition of collinearity of three points 
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12.3.5 Condition of collinearity of three points  

Let the three points be (x1, y1), (x1, y2) and (x3, y3). The equation of the line joining the 
points (x1, y1) and (x2, y2) is 

 y - y1 =  (x – x1)    (1) 

If the third point (x3. y3) also lies on this line, the co-ordinates will satisfy the equation (1) 

 y3 - y1 =  (x – x1) 

or (y3 – y₁) (x2 – x1)=(y₂ − y₁) (x3 − x₁) 

or x2y3 – x2y₁ – x1y3 + x₁y₁ = x3y₂ – x3y3 – x3 y1 

–x1 y2 + x1 y1 

or x1 (y₂ – y3) + x2 (y3 – y₁)+x3 (y1 −y₂)=0  

which is the required condition of collinearity of threepoints. 

Example 7. 

Find the equation of a line parallel to Y – axis (or per pendicular to X – axis) at a distance 

(i) 4 units to the right (ii) 4 units to the left. 

Sol. The equation of any line parallel to Y–axisis x=h 

(i) Here h= 4 

 the equation of the line is x = 4 

or x – 4=0 

(ii) Here h= –4 

the equation of the line isx = –4 

or x+4=0. 

Example 8 

Find the equation of the joining the points (2, 3) and(2, –4).  

Sol 

Since the x co-ordinates of the points (2,3) and (2, -4) are equal, therefore, the line joining 
them is vertical i.e. parallel to Y–axis at a distance 2 units from it. Hence the equation of the 
line joining the points(2, 3) and (2,-4) is x = 2. 

Example 

Show that the three points (1, 4), (3, –2), are collinear. Find also the equation of the line on 
whichthey lie. 

Sol. The equation of the line joining the points (1,4), (3,-2) is 

2 1

2 1

y y

x x




2 1

2 1

y y

x x



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y – 4 =  (x – 1)  

= –3(x – 1) 

 = –3x+3  

 3x+y – 7=0  (1) 

Substituting the co-ordinates of third point (4,-5) in(1) we get 

 3(4) – 5 – 7 – 0 

 12 – 12 – 0, which is true. 

Thus the third point satisfies the equation (1) of the line joining the first two points.  

Hence three given points are collinear and the equation of the line on which they lie is 3x+y – 
7=0. 

Example 10 

Find the equation of line which passes through the point (-2, 3) and whose intercepts on the 
axes are equal in magnitude and both positive.  

Sol: 

Since the line makes equal intercepts on the axes and both are positive. 

let the intercepts be a. a  

Then the equation of the line in the intercept form is 

  +  = 1 

or x+y=a 

It passes through (-2, 3)  

-2+3=a or a = 1 

Substituting this value of a in (1); we get 

 x + y = 1 

which is the required equation. 

SELF-CHECK EXERCISE 12.1 

Q1.  Find the distance between the points 

 (i) (–7, 5) and (5, 3) 

 (ii) (–3, 1) and (2, 1) 

Q2.  Find the Co-ordinates of the point which divides the join of the points  

(i) (4, 6) and (8, 10) externally in the ratio 5 : 3 

2 4

3 1

 


2 1
1

2 1

( )
y y

y y x x
x x

 
    

x

a

y

a
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(ii) (2, 4) and (8, 10) externally in the ratio 7 : 5 

Q3. Show that the points A (6, 6), B (2, 3) and C (4, 7) are the vertices of a right-angled 
triangle. 

Q4. Show that the points A (1, –2), B (3, 4) and C(4, 7) are collinear. 

Q5. Find the equation of the joining the points (2, 3) and (2, –4).  

12.4 ISOPROFIT AND ISOCOST LINES FOR TWO PRODUCTS 

An isoprofit line shows different combination of two productsx1,x2 which will yield 
same total profit. Ifx1 and x2 are the quantities of the two products, the profit function 
describing the isoprofit line is given by 

 π = a1x₁ + a₂x2 

where П is profit and a1a2 are known values.  

The slope of the profit line is found by fixing the value of π say at π1 thus 

a2x2 = π– a1x1 or x2 = – x1 +  

The slope is – . The intercept on t the x–axis isx1 + that on the x-axis is x2=x2 +  

A family of iso-profit lines Can be drawn by assigning different values to the profit 
constant.The slopes of all isoprofit lines for a given problem are equal. 

An isocost line shows different combinations of twoproducts X1, X2 which will involve the 
same totalcost. The total cost function is given by 

 C=b1x1 + b₂x2 

where b1, b2 are constants. If C = C1 the slope is – 

– since x2 = –  x1 +  

A family of isocost lines can be drawn by assigningdifferent values to the cost. 

SELF-CHECK EXERCISE 12.2 

Q1. What are Iso-profit Lines? 

Q2. What are Iso-cost Lines?  

12.5 CHANGE OF ORIGIN: TRANSLATION OF AXES  

If the coordinates axes are changed, the coordinates of a point would change. The point 
remains in the same place.Suppose the coordinates of a point P in the old coordinate system 
(OX, OY) are (x, y). Let the new coordinate system be (O'X', O'Y') with the new origin O' (h, 
k). 

1

2

a

a
1

2a



1

2

a

a
1

1a

 1

2

x

a

1

2

b

b
1

2

b

b
1

2

C

b



There is a shift or change of origin from O to O'. In other words, there is a translation 
a new point O' (h, k)  

This means that 

x = OA =h+x' 

 y= OB = k+y' 

Thus if the new origin is O' (h, k), the new coordi

 x' = x – h 

 y' = y – k 

If in a problem, new coordinates are known we can return to the old coordinate 

 x = x +h 

 y = y + k 

Example 11 (a). If the origin is shifted to (
reference to new axes can be found as follows. 

Here (h, k) =(-5, 1); 

(x, y) = (–5, 10) 

 x' =x – h = -5 (–5)= 0  

y' =y – k= 1 – 10=9 = 

Thus (x', y') = (0,9) 

(b) If by a change of origin, p (3, 
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There is a shift or change of origin from O to O'. In other words, there is a translation 

in is O' (h, k), the new coordinates of P are given by 

If in a problem, new coordinates are known we can return to the old coordinate system by using

If the origin is shifted to (-5, 1), the coordinates of a point P (
reference to new axes can be found as follows.  

 

If by a change of origin, p (3, -5) becomes (4, 2), find the new origin. 

There is a shift or change of origin from O to O'. In other words, there is a translation of axes to 

system by using 

), the coordinates of a point P (-5, 10) with 



 x'=x – h h=x – x'=3 – 4= –

 y' =y – k k=y – y= –5 – 2=

(c) If there is a change of the coordinate system from O to O' (
P(x', y') then 

 x = x' +  

 y = y' + β 

(old in terms of new) 

or x' = x – 

y' =y – β 

(new in terms of old) 

The line ax+by+C=0, by shifting the origin to O' becomes

 a (x' + )+b (y' + β) + C = 0 

ax' + by' + (a + bβ + C) = 0

(d) If the new axes are perpendicular and are throughthe same origin but at an angle 

 x=x' cos θ– y' sin θ 

 y=x' sin θ+y' cos θ 

or x' = x cos θ + y sin θ 

 y' =-x sin θ+ cos θ 

Example 12. 

In some cases it is possible to find an appropriate origin O (h, k) such that the 
assumes a simple form. If in the equation.

 (x – 3)²+(y+4)² = 36  

the origin is shifted to (3, –4), the new equation becomes 

x² + y² = 36 

Example 13. (a) Show that by shifting the origin suitably the equation y
takes the new form y'2=20x'. 
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–1 

2= –7 

If there is a change of the coordinate system from O to O' (, β) and P(x, y) 

x+by+C=0, by shifting the origin to O' becomes 

) + C = 0  

+ C) = 0 

 

are perpendicular and are throughthe same origin but at an angle 

In some cases it is possible to find an appropriate origin O (h, k) such that the 
assumes a simple form. If in the equation. 

4), the new equation becomes  

(a) Show that by shifting the origin suitably the equation y2 – 20x 

) and P(x, y) becomes 

are perpendicular and are throughthe same origin but at an angle θ then 

In some cases it is possible to find an appropriate origin O (h, k) such that the new equation 

20x – 6y+149 = 0 
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Sol:- If we factorize the equation, we get (y – 3)²=20(x – 7). Now shift the origin to (7,3).  

(b)  Show that by shifting the origin suitably the equation x2 – 4x – 16y = 14 takes the form 
x'2= 16'y  

(Do it yourself) 

(c)  If we shift the origin to (-2, 3) what form does the equation x2+y2+4x – 16 y = 12 take? 

(Ans. x'2+y'2=25) 

The first degree equation in x and y represent a straight line. The graphs of second 
degree equations are called conic sections. We can easily use the rectangular coordinate system 
to study the geometry of the conic section: the circle, the parabola, the ellipse, and the 
hyperbola which we are going to discuss in the nextunit. 

Self-check Exercise 12.3 

Q1. If the origin is shifted to (-5, 1), the coordinates of a point P (-5, 10) with reference to new 
axes, find the new origin. 

Q2. If by a change of origin, p (3, -5) becomes (4, 2), find the new origin. 

12.6 APPLICATION IN ECONOMICS OF STRAIGHT LINE 
 We consider such special cases where demand and supply curves are linear. The 
assumption that the functions are linear may look rather restrictive and unlikely to be satisfied 
in the real world. We see that we can learn a good deal of general nature even on this simple 
assumption, and besides a straight line may be sufficiently close to a curved one over some 
range that for small changes at least, the treatment of the curve through it where a straight line 
leads to acceptable approximation to the correct answer. Our simplest case in that in which 
both demand and supply curves are straight lines, described by the linear function 

 Qd=a+bP  …………….(1) 

 Qs=c+dp  …………….(2) 

where Qd denotes the quantity demanded & Qs the quantity supplied. These are behavioral 
equationsm : they state assumptions about market behaviour. Since there is no economic 
meaning in this modelfor a negative Q, and since there are no subsidies that could create a 
negative price, we confine both the range and domain of these function to non-negative value 
of P and Q.  

To complete the theory of competitive price determination we add the equilibrium condition. 

 Qd = Qs       ……………….(3) 

Now we can study an important and fascinating topic frequently referred to as qualitative 
economics. In practice, we frequently do not know parameter values, but only restrictions such 
as the demand curve slopes down. Hence we are interested in the question of what, if any. We 
can discover about the solution of the model and its properties on the basis of qualitative 
restrictions on the parameters. By "qualitative restrictions' we mean (for the moment) such 
simple and general notations as the demand curves slopes down & supply curves slope up. 
Evidently if restrictions like these prove to be sufficient to establish some property or result, 
without need for numbers, we have general results. In the present case we can do quite a lot 
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qualitatively (which is not possible in more complicated models). We now list one qualitative 
assumption: 

 (i) b<0, i.e. the demand curve slopes down. 

 (ii) d>0, i.e. the supply curve slopes up; 

 (iii) a>0, the demand curve must have a positive intercept. 

(iv) c<a, because if this were not true, supply would exceed demand at zero price  
and the good in question would not be an economic good, its price would be 
zero. 

Usually it is assumed that c<o so that the supply curve has a positive intercept on the price axis 
indicating that nothing is supplied below some minimum positive price. But all that is required 
for present purposes is c<a. 

The above linear model can be written as 

Qd = Qs = Q 

Qd = a – bp (a.b>o) 

Qs = -c + dP (c.d>o) 

(ii) The cost curve is a linear function of output. The graph of a cost curve is a straight line 
given by the equation C=a+bq where C = total cost, q=units of output and a, b are positive 
constant. The slope of this line is marginal cost which remains constant at every level of 
output. When no output is produced i.e. when q=o, then total cost a, which shows us that a is 
fixed cost for overhead cost, a is also the y–intercept of cost-line. The variable cost is c = bq. 

(iii) In consumer's equilibrium analysis, budget line isa straight line and it expressed 

 xPx + y Py=M 

where M = level of given income 

 Px = price per unit of commodity X, 

Py = price per unit of commodity Y, 

x=no. of units produced of commodity X,  

y=no. of units produced of commodity Y. 

The equation (1) can be written as 

  = 1 

Intercept on x–axis= ,which shows number ofunits purchased of X commodity if the 

consumerspends whole of his income on the commodity X. 

Intercept on y–axis = , which shows number of units purchased of Y commodity if the 

consumer spends whole of his income on the commodity Y. 

x yP P

x y

M M


x

M

P

x

M

P
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Also slope of budged line =  

which implyies that slope of budged line is negative and is equal to ratio of prices of X and Y 
commodities. 

(iv) The aggregate consumption in a country may be linearly related to its aggregate 
disposable income. The consumption function is a straight line given bythe equation. 

 C=a+bY 

where C = aggregate consumption  

Y = disposable income 

and a, b are positive constants.  

Here the slope is b which is the marginal propensity to consume. The intercept on y–axis is a 
which means that the level of autonomous expenditure is a. So a is the level of consumption 
when income is zero. The long run consumption function is also a straight line expressed by the 
equation C=bY. The average and marginal propensity to consume are same. 

Example 11 

(a) When the price is Rs.80 per watch, 10 watches are sold, 20 watches are sold when the 
price is Rs.60. Find the linear demand function. 

(b) When the price is Rs.100 no watches are sold. (c) When watches are free, 50 are 
demanded. Find the linear demand function. 

(c) When the price is Rs. 50 there are 50 watches of brand XX available for market. When 
the price is Rs.70 there are 100 watches available for market. 

What is the linear supply function.  

Sol. 

(a) The demand curve passes through points whose co-ordinates are (10, 80) & (20, 60)  

where x – coordinate = demand is units and y – coordinate = price in rupees. 

The linear demand curve is 

y – y1 =  (x – x1) 

y – 80 =  (x – 10) 

or 2x+y=100 is the reqd, linear demand curve. 

(b) When x = o, y = 100, where x demand in units and y = price. 

So linear demand curve through (0, 100) & (50,0) is 

 y – 100 =  (x – 0) 

x

y

P

P

2 1

2 1

y y

x x




60 80

20 10




0 100

50 0



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2x + y = 100 

(c) Linear supply function through (50, 50) and (100,70) is 

 y – 50 =  (x – 50) 

where x = no. of watches, y–price rupees 

2x – 5y+150 = o is the required supply curve. 

Example 12 

A firm invests Rs.10,000/- in a business which has a net return of Rs.500/- per years, 
investment of Rs.20,000/- would yields an income of Rs.2000/- per year. What is the linear 
relationship between investment and annual income. What would be the annual return on an 
investment of Rs.12,000/-? 

Sol. 

Let investment be denoted by x and incomeby y. The income is a linear function of investment. 

 y = mx + c    ……………………(1) 

when x = 10,000, y = 500.  

when x=20,000, y = 2000 

  500 = 10,000 m + c     …………….(2) 

 2000 = 20,000 m + c              ………………(3) 

Solving equation (2) and (3), we get 

  m =  and c= –1000 

 Equation (1) can be written as 

  20 y = 3x – 20,000 

Which is the linear relationship between investment and annual income 

 When x = 12,000 then from equation (4),we have 

 20 y = 3 × 12,000 – 20,000 

  = 16,000 

 y = 800. 

Hence when the investment is Rs. 12,000/- = the income is Rs. 800/-.  

  

70 50

100 50




3
20
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Self-check Exercise 12.4 

Q. 1 When the price is Rs. 75 per watch, 15 watches are sold, 30 watches are sold 
when the price is Rs. 60. Find the linear demand function. 

EXERCISE 

1. Show that the point (1, 1), (–3, –1) and(–4, 1) form a right angled triangle. 

2. Show that the points (2, 3), (6, 1), (–1, –4) and (–5, –2) are comers of a parallelogram.  

3. (i) If the point (9,2) dividesthe segment of a line from P, (6, 8) to P₂ (x2, y2) in the 
ration 3, 7 find the coordinates of P2, 

(ii) The middle point of a straight lineAB, has co-ordinates (a, b) and the co-
ordinates of A are (c, d). Find the co-ordinates of B. 

4. Prove that the points (2a, 4a), (2a, 6a)and (2a+  a. 5a) are the vertices of an 
equilateral triangle whose side is 2a. 

5. What is the slope of the line perpendicular to the line passing through the points (3, 5) 
and(4,2) 

6. A line passes through the points A(2, –3) and B(6,3). Find the slope of the line which 
are (i) parallel to AB (ii) perpendicular to AB. 

7. Find the equation of a straight line parallel to y axis and passing through the point (4, –
3).  

8. Without using Pythagoras theorem, showthat (4,4), (3, 5) and (–1, –1) are vertices of 
right triangle  

(1) Find the equation of the line joining thepoints (a t2
2, 2at1) and (a t2

2, 2at2) (t1t2). 

(2) The point (2, 3) is the foot of the perpendicular from the origin on a line. Find the 
equation of the line. 

(3) Find the equation of line which passesthrough the point (–2, 3) and whose intercepts on 
the axes are equal in magnitude but opposite in sign. 

(4) The cost of production of a certain insign. 

 Production Total cost 

100 units Rs. 520 

 150 units Rs. 670 

Assuming a linear cost curve, find the slope.What is the fixed cost? 

12.7 SUMMARY 

 In this unit we have discussed the following points. 

1. The position of a point in a plane can be determined by an ordered pair of 
number (x, y) called its coordinates. 

3
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 2. The distance between two points P (x, y) and Q (x2y2) is  

 3. The coordinates of the point R ( , ) dividing PQ in the ratio m : n are 

   =  =  

  and if R divides PQ externally, then  

   =  =  

 4. An equation of the form ax + by + c = 0 represents a straight line its slope is 
given by m = b/a 

 5. The angle between two line having slopes m1 and m2 is tan θ =  

12.8 GLOSSARY 

 1. Gradient or slope of a line : If a line is not parallel to a co-ordinates units. It is 
inclined at an angle to the x-axis ox. the angle θ may be acute or obtuse. Let P 
(x1, y1) and Q (x2, y2) be two points on the line. Then the quantities x2 – x1 be two 
points on the lines. Then the quantities x2 – x1 = (PL) and y2 – y1 = (LQ) are 
called run and rise respectively. 

  When x2 – x1 0, the number is defined by  

  m =   =  

  is called the gradient for the slope. 

 2. Isoprofit : An isoprofit line shows different combination of two products x1, x2 
which will yield same total profit. 

 3. Isoprofit line : An isocost line shows different combination of two products x1, 
x2 which will involve the same total cost. 

12.9 ANSWER TO SELF CHECK EXERCISES  

Self-check Exercise 12.1 

Ans. Q1. (i) The required distance between the points (–7, 5) and (5, 3) 

  =  =  

  =  =  =  = 4 Ans. 

       Q2. (ii) The required distance between the points (–3, 1) and (2, 1) 

  =  =  

  =  =  =  Ans. 

2 1

2 1

( )

( )

x x

y y




x y

x 2 1mx nx

m n




y 2 1my nx

m n




x 2 1mx nx

m n




y 2 1my nx

m n




1 2

21 ,

m m

m m




2 1

2 1

y y

x x




rise

run

2 2
2 1 2 1( ) ( )x x y y   2 2[5 ( 7)] (3 5)   

2 2(12) ( 2)  144 4 148 37

2 2
2 1 2 1( ) ( )x x y y   2 2[1 ( 3)] (1 2)   

2 2(4) ( 1)  16 1 17
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Ans. 2 (i) The required co-ordinates of the point which divides the joint of the points (4, 6) 
and (8, 10) externally in the ratio 5 : 3 are 

      

  =     

  =  (14, 16) Ans. 

 (ii) The required co-ordinates of the point which divides the joint of the point (2, 4) 
and (8, 10) externally in the ratio 7 : 5 are 

      

  =     

  =  (23, 25) Ans. 

Ans. Q3. Refer to Section 12.3.3 (Example 5) 

Ans. Q4. Refer to Section 12.3.3 (Example 6)  

Ans. Q5. Refer to Section 12.3.5 (Example 8) 

Self-check Exercise 12.2 

Ans. Q1. Refer to Section 12.4 

Ans. Q2. Refer to Section 12.4 

Self-check Exercise 12.3 

Ans. Q1. Refer to Section 12.5 (Example 11) 

Ans. Q2. Refer to Section 12.5 (Example 11) 

Self-check Exercise 12.4 

Ans. Q1. The demand curve passes through points whose co-ordinates are (15, 75) and 
(30, 60). Where x - coordinate = demand is units and y - coordinates  = price in rupees 

  The linear demand curve is  

  y – y1 =  (x – x1) 

  y – 75 =   (x – 15) 

  y = –1 (x – 15) + 75 

     = – x + 15 +75 

 y + x = 90 is the required linear demand curve. 

2 1mx nx

m n




2 1my ny

m n




5 8 3 4

5 3

  


5 10 3 6

5 3

  


2 1mx nx

m n




2 1my ny

m n




7 8 5 2

7 5

  


7 10 5 4

7 5

  


2 1

2 1

x y

x x




60 75

30 15



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12.11 TERMINAL QUESTIONS. 

Q1. Find the equation of the line joining the points (a t1
2, 2at1) and (a t2

2, 2at2) (t1 
t2). 

Q2. The point (2, 3) is the foot of the perpendicular from the origin on a line. Find 
the equation of the line.  

Q3. Find the equation of line which passes through the point (–2, 3) and whose 
intercepts on the axes are equal in magnitude but opposite in sign. 

Q4. The cost of production of a certain in sign. 

 Production   Total Cost 

 100 units  Rs. 520 

 150 units  Rs. 670 

 Assuming a linear cost curve, find the slope. What is the fixed cost? 
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Unit - 13 

CIRCLE, PARABOLA AND HYPERBOLA 

STRUCTURE  

13.1 Introduction  

13.2 Objectives 

13.3 Circle 

 13.3.1 Equation of a Circle in Different Forms 

  13.3.1.1 Equation of a Circle whose Centre is at the Origin and Radius r. 

  13.3.1.2 Equation of Circle with a given Centre and Radius 

  13.3.1.3 General Equation of Circle   

 13.3.2 Concentric Circles 

Self-check Exercise 13.1 

13.4 Parabola  

 13.4.1 Equation of the Parabola in Standard Form 

 13.4.2 Shape of the Parabola 

 13.4.3 Point of Intersection of a Line and a Parabola 

 13.4.4 Condition of Tangency  

Self-check Exercise 13.2 

13.5 Rectangular Hyperbola 

 13.5.1 Application of Rectangular Hyperbola 

Self-check Exercise 13.3 

13.6 Summary 

13.7 Glossary 

13.8 Answer to Self-Check Exercise  

13.9 References/Suggested Readings 

13.10 Terminal Questions 

13.1 INTRODUCTION  

 In this Unit, we will study about the circles, learn to derive the equation of circle in 
different form the next section will deal with parabola and we will also go through the different 
form of equation if Parabola. In the cost section will learn about the hyperbola and its 
application in the economics.  

  



13.2  LEARNIG OBJECTIVES 

 After studying this Unit, you should be able to

 Derive the equation of a circle in different forms.

 Derive the points of 

 Find the equation of the parabola in standard form.

 Explain the Hyperbola

 Apply the concept of hyperbola.

13.3 CIRCLE 

 Def. A circle is the locus of a point which moves on a plane is such a way that it is 
always at a constant distance from a fixed point. The fixed point is called the centre and the 
constant distance the radius of the circle.

13.3.1 EQUATION OF A CIRCLE IN DIFFERENT FORMS 

13.3.1.1  Equation of a circle whose centre is at theorigin and radius r.

 Let P(x, y) be any point on the circle, Let O be the origin and r be the radius. Then 
OP=ror OP²= r² or x²+ y²=r². 

This relation holds for any point P(x, y) on the circle but does not hold for any other 
point out. 

Example 1: 

Find the equation of a circle whose centre lies onthe origin and is of radius 4. 

Sol. Equation of a circle 

 x²+y² = r² 

 x²+ y²=(4)²= 16 
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OBJECTIVES  

After studying this Unit, you should be able to 

Derive the equation of a circle in different forms. 

Derive the points of intersection of a line and a parabola 

Find the equation of the parabola in standard form. 

Explain the Hyperbola 

Apply the concept of hyperbola. 

Def. A circle is the locus of a point which moves on a plane is such a way that it is 
onstant distance from a fixed point. The fixed point is called the centre and the 

the circle. 

EQUATION OF A CIRCLE IN DIFFERENT FORMS  

Equation of a circle whose centre is at theorigin and radius r. 

P(x, y) be any point on the circle, Let O be the origin and r be the radius. Then 

 

This relation holds for any point P(x, y) on the circle but does not hold for any other 

whose centre lies onthe origin and is of radius 4.  

Def. A circle is the locus of a point which moves on a plane is such a way that it is 
onstant distance from a fixed point. The fixed point is called the centre and the 

P(x, y) be any point on the circle, Let O be the origin and r be the radius. Then 

This relation holds for any point P(x, y) on the circle but does not hold for any other 



 x2 + y2 = 16  

13.3.1.2 Equation of a circle with a given centre andradius

Let C(h, k) be the centre and r the radius of thecircle.

 Let P (x, y) be any point on the circle. Then CP=r or CP

or (x – h)²+(y – k)²= r² 

This equation is satisfied by any point P(x, y) or the circle, but by no other point lying outside 
the circle. Hence this is the equation of the circle having centre a
= r. 

Example 2. Find the equation of the circle whose centre is (

Sol. The general equation of circle is

 (x – h)²+(y – k)²= r² 

Here co-ordinates of centre is (-2, 

 [x² –(–2)]²+(y – 4)2 = 16

i.e. x²+ y²+ 4x – 8y – 16 = 0 

13.2.1.3 General Equation of a C

The equation of a circle can be expressed in the general form.

 x²+ y²+2 gx + 2 fy+c=0 

where g, f, c are fixed constants for a particular circle.

The equation of the circle whose centre is (h, k) and radius ris.

 (x – h)²+(y – k)2= r2 

or x²+y2 – 2 hx – 2 ky + (h² + k²

which is of the form x²+y2+2 gx+2 fy+c=0

where g= –h, f = –k and c = h²+k²

Conversely, given an equation of the form

 x²+2gx+g²+y22 fy+f²=g2+f
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Equation of a circle with a given centre andradius 

Let C(h, k) be the centre and r the radius of thecircle. 

any point on the circle. Then CP=r or CP2 r2 

 

This equation is satisfied by any point P(x, y) or the circle, but by no other point lying outside 
the circle. Hence this is the equation of the circle having centre at the point C (h, k) and radius 

Find the equation of the circle whose centre is (-2, 4) and radius 6. 

The general equation of circle is 

2, -4) & radius is6. 

= 16 

General Equation of a Circle 

The equation of a circle can be expressed in the general form. 

  (1) 

where g, f, c are fixed constants for a particular circle. 

centre is (h, k) and radius ris. 

2 ky + (h² + k² – r²)=0  

+2 gx+2 fy+c=0 

h²+k² – r²  

Conversely, given an equation of the form 

+f2 – c 

This equation is satisfied by any point P(x, y) or the circle, but by no other point lying outside 
t the point C (h, k) and radius 
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or (x + g)² + (y + g)²=  

This represents a circle whose centre is (–g, –1) and radius is  provided 

g²+f2>c.  

Note: From the general equation (1), we observe that 

 (i) the equation of a circle must be a second degree in x and y: 

 (ii) the coefficient of x2=the coefficient ofy2 and  

(iii) The equation has no term containing x y.  

Example 3. 

Find the radius and the co-ordinates of the centre ofthe circle.  

x²+y² – 8x – 16 y+78=0 

Sol. 

The given equation is x2+y2 – 8x – 16y+78=0 

(1) 

Comparing it with x2 + y2 + 2 gx + 2 fy + c - 0 we have 

 g =  (coeff, of x) =  (–8) = –4 

 f =  (coeff, of y) =  (–16) = –8 

and c = constant term = 78 

the centre is (–g, –f) is [–(–4), –(–8)] i.e. (4,8) 

and radius =  =   

Note: Since the equation x²+y2+2 gx+fy+c= 0 contains three arbitrary constants therefore 
weneed three conditions to find a circle. 

13.3.2 Concentric Circles 

Def. Circles having the same centre and different radius called concentric with the circle e.g. 
equation of any circle with the circle.  

x²+y2+2gx+2 fy+c = 0 isx²+y2+2gx+2 fy+k + o where k is any arbitrary constant. 

Example 4 

Find the equation of the circle which is concentric to the circle x²+y² – 6x+12y+15=0 and 
radius of double its size. 

Sol. 

 2
2 2g f c 

 2
2 2g f c 

1

2

1

2

1

2

1

2

 2
2 2g f c  2 2( 4) ( 8) 78 2    
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The equation of the given circle is  

x²+ y² – 6x+12 y +15=0 

(1) 

Its radius =  =  

Equation of any circle concentric with the circle (1) is 

x2+y² – 6x+12y+k = 0 

Its radius =  

By the given condition 

  

or k= –75 

Substituting this value of k in (2), we get 

x²+y₂ – 6x+12y – 75=0 

which is the required equation of circle 

Example 5. 

Find the equation of the circle through the points (4, 1) and (6, 5) and 'D' its centralizes on the 
line 4x+y=16. 

Sol. 

Let the required equation of the circle be 

x²+y²+2 gx +2 fy+c= 0      (1) 

(1) passes through the points (4, 1) and (6, 5)  

16+1+8g+2f+c=o 8g+2f+c+17=0   (2)  

and 36+25+ 12 g+10 f+c=0 12 g + 10 f +c+61=0 (3) 

Also centre (–g, –f) of the circle (i) lies on 

 4x + y = 16       (4) 

 –4g –f – 16 = 0 

or 4g+f+16=0 

Subtracting (2) from (3), and get 

 4g+81 +44 =0  

g+21+11 = 0  

Solving (4) and (5) by the method of cross-multiplication, we have 

2 2(3) (6) 15  30

2 2(3) (6) 45k k   

 45 2 30k 







 

or g= –3&f=

Substituting these values in (2), we get

 –24 – 8+c+17=0 c=15  

Substituting the value of g, f, c, C in (1), we get 

x²+ y² – 6x – 8y+15=0 

Which is the required equation of the circle.

Equation of circle with (x1, y1) and (x

Let A (x1, y1) and B(x2, y2) be the extremities of diameter. Let P (x, y) be any point on the 
circle. Join AP and BP 

Then 

 APB =  90o 

 AP is perpendicular to BP 

Slope of AP =  

and slope of BP =  

Since AP is perpendicular of BP, we have

 ×  = –1 

or (x – x1) (x – x₂)+(y – y₁) (y

1

11 32 16 44 8 1

q f
 

  

1

21 28 7

q f
 

 






1

1

y y

x x




2

2

y y

x x




1

1

y y

x x




2

2

y y

x x



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3&f= –4  

Substituting these values in (2), we get 

 

Substituting the value of g, f, c, C in (1), we get  

Which is the required equation of the circle. 

) and (x2, y2) asthe extremities of a diameter  

) be the extremities of diameter. Let P (x, y) be any point on the 

 

 

Since AP is perpendicular of BP, we have 

) (y – y₂)=0 

) be the extremities of diameter. Let P (x, y) be any point on the 
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which is the required equation of the circle in termsof the co-ordinates of the extremities of a 
diameter. 

Example 6 

Find the center, the radius and the equation of the circle drawn on the line joining the points (–
1,2) and (3, –4) as diameter. 

Sol. 

The equation of the circle with A(–1, 2) and B(3, 4) as the ends of a diameter is 

 (x – x1) (x – x₂)+(y – y₁) (y – y₂)=0  

or (x + 1) (x – 3)+(y – 2) (y+4)=0 

or X2 – 2x – 3+ y²+2y – 8=0  

or x²+y2 – 2x+2y – 11 =0 

which is the required equation of a circle. The centre of the circle is the mid-point of the 
diameter AB. 

 The coordinates of the centre are  

  = (1, – 1) 

AB =   

Radius of the circle = × =  

SELF-CHECK EXERCISE 13.1  

Q1. Find the equation of circle whose  

 (i) Centre is (0, 0) and radius is 3 units 

 (ii) Centre is (–3, 4) and radius is 6 units 

 

Q2.  Find the radius and the co-ordinates of the centre of the circle.  

x² + y² – 8x – 16 y + 78 = 0 

Q3.  Find the equation of the circle which is concentric to the circle  
x² + y² – 6x + 12y + 15 = 0 and radius of double its size. 

13.4 PARABOLA 

Def. A parabola is defined as the locus of a point which moves in a plane is such a way 
that its distance from a fixed point S (called focus) is always equal to its perpendicular distance 
from is a fixed straight line (called directrix) in the plane. 

1 3 2 4

2 2

   
 
 

2 2(3 1) ( 4 2) 16 36 2 13      

1

2
13



The distance from a fixed point on the plane bears a constant ratio to its perpendicular 
distance from a fixed straight line on the plane, the constant ratio is known as e
in case of parabola this constant ratio is 1 i

13.4.1 Equation of the Parabola in 

Let S be the locus and ZM the directrix of the parabola. Let SZ be perpendicular to the 
diretrix ZM. Then the mid-point A of the segment SZ lies on the parabola, because AS = AZ. 
The point A is called the vertex and the line
parabola. 

Refer to A as origin, ASX as x
axis, let P(x, y) be any point on th
are (a, o). Draw PN and PM perpendicular to AX and the directrix ZM respectively. Then by 
definition of parabola. SP= PM or SP

i.e. (x – a)²+(y – 0)2 = 

i.e. x² = 2ax+a²+  y² = 

y2 = 4 ax 

(1) 

This is the standard equation of the parabola.

Some properties of the parabola y

(i) The co-ordinates of the vertex A (i.e.the origin) are (0,0):

 (ii) The co-ordinate of focus S are (a, o);

 (iii) The equation of the directrix is x=

(iv) If y is replaced by 
parabola is symmetrical about the x

(v) If LL be the focal chord (i.e. segment of a line through the focus S intercepted 
by the parabola) perpendicular to the x 
of the parabola. Clearly,

  SL=LK =  ZS+2a= SL
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distance from a fixed point on the plane bears a constant ratio to its perpendicular 
distance from a fixed straight line on the plane, the constant ratio is known as eccentricity e and 

rabola this constant ratio is 1 i.e.e=1 

arabola in Standard Form  

Let S be the locus and ZM the directrix of the parabola. Let SZ be perpendicular to the 
point A of the segment SZ lies on the parabola, because AS = AZ. 

The point A is called the vertex and the line ZAS (produced both ways) is called the axis of the 

Refer to A as origin, ASX as x–axis and the line through A perpendicular to AS as y
axis, let P(x, y) be any point on the parabola. Let AS = a, then AX = a and the co

Draw PN and PM perpendicular to AX and the directrix ZM respectively. Then by 
definition of parabola. SP= PM or SP2 = PM² = ZN³ = (ZA+AN)2 

 (a + x)2 

 a²+2ax+x²  

the parabola. 

Some properties of the parabola y2= 4 ax 

ordinates of the vertex A (i.e.the origin) are (0,0): 

ordinate of focus S are (a, o); 

The equation of the directrix is x= –a or x+a=0: 

If y is replaced by –y, the equation remains unchanged. This shows that the 
ola is symmetrical about the x–axis: 

If LL be the focal chord (i.e. segment of a line through the focus S intercepted 
by the parabola) perpendicular to the x -axis, then LL is called the latus rectum
of the parabola. Clearly, 

ZS+2a= SL 

distance from a fixed point on the plane bears a constant ratio to its perpendicular 
ccentricity e and 

Let S be the locus and ZM the directrix of the parabola. Let SZ be perpendicular to the 
point A of the segment SZ lies on the parabola, because AS = AZ. 

ZAS (produced both ways) is called the axis of the 

axis and the line through A perpendicular to AS as y–
a and the co-ordinates of S 

Draw PN and PM perpendicular to AX and the directrix ZM respectively. Then by 

equation remains unchanged. This shows that the 

If LL be the focal chord (i.e. segment of a line through the focus S intercepted 
axis, then LL is called the latus rectum 



Hence the length of the latus rectum 

     

     

(vi) When x=0, we get two equal values of y as zero, showing that the y
tangent to the curve at the vertex.

 (vii) If x is negative, y is imaginary, hence

there is no point of the parabola to theleft of y

Equation of parabola with its axis as x

 Let S be the focus, OM the directrix and OAS the axis of the parabola. OAS is 
perpendicular to OM at O. 

Referred to O as origin, OX as x
parabola. 

Let AS = a, then OA =a and OS = a + a = 2a. 

co-ordinates of the focus S are (2a, o).

Draw PN and PM perpendicular to OX and OM. 

SP = PM or SP2 = PM² = (ON)²

(x – 2a)²+ (y – o)² = (x)²  

 x² – 4ax +4a² + y² = x²  

y2 4a (x – a).  

This is the required equation of the parabola.

Cor. The co-ordinates of the vertex A are (a, o). Ifwe transfer the origin to the vertex A
then from (1) replacing x by x+a and y by y+o, we get 

(y+o)² = 4a (x + a – a)  

or y2= 4ax  
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Hence the length of the latus rectum  = LL 

  = SL+ SL  

= 2a +2a 

  = 4a: 

When x=0, we get two equal values of y as zero, showing that the y
tangent to the curve at the vertex. 

x is negative, y is imaginary, hence 

there is no point of the parabola to theleft of y–axis. 

Equation of parabola with its axis as x–axis the directrix as y–axis–axis 

Let S be the focus, OM the directrix and OAS the axis of the parabola. OAS is 

 

Referred to O as origin, OX as x–axis and OM as y–axis let P(x, y) be any point on the 

AS = a, then OA =a and OS = a + a = 2a.  

ordinates of the focus S are (2a, o). 

Draw PN and PM perpendicular to OX and OM. Then by definition. 

SP = PM or SP2 = PM² = (ON)² 

This is the required equation of the parabola. 

ordinates of the vertex A are (a, o). Ifwe transfer the origin to the vertex A
then from (1) replacing x by x+a and y by y+o, we get  

When x=0, we get two equal values of y as zero, showing that the y–axis is a 

Let S be the focus, OM the directrix and OAS the axis of the parabola. OAS is 

axis let P(x, y) be any point on the 

ordinates of the vertex A are (a, o). Ifwe transfer the origin to the vertex A (a, o) 



which is the standard equation of the parabola

13.4.2 Shape of the Parabola 

 (i) y² = 4ax 

This is the standard equation of a parabola whose vertex is the 
and the tangent at the vertex is the y
equation of the directrix is x + a=

 (ii) y² = –4ax 

 (ii) y² = –4ax 

This is the equation of a parabola whose focus S is the point (
the line x – a=o. Here the direction from the vertex A to the focus S is negati
the origin (o, o), the axis of the parabola is y
length of the latus rectum is 4a. The concavity of the curve is tow
x–axis. 
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which is the standard equation of the parabola 

 

This is the standard equation of a parabola whose vertex is the origin, axis the x
and the tangent at the vertex is the y–axis. The co-ordinates of the focus S and (a, o) and the 
equation of the directrix is x + a= o 

 
This is the equation of a parabola whose focus S is the point (–a, o) and directrix ZM is 

a=o. Here the direction from the vertex A to the focus S is negative. The vertex A is 
), the axis of the parabola is y – o, the tangent at the vertex is x = o

The concavity of the curve is towards the negative side of the 

origin, axis the x–axis 
ordinates of the focus S and (a, o) and the 

a, o) and directrix ZM is 
ve. The vertex A is 

e tangent at the vertex is x = o and the 
ards the negative side of the 



This is the equation of a parabola whose vertex is the origin (o, o) focus is (o, a) the 
tangent AX at the vertex is the x
equation of the directrix is y= –
concavity is towards positive side of the y

(iv) x²= –4ay 

This is the equation of a parabola whose vertex isthe origin (o, o) focus S is the point (o, 
–a) and thedirectrix is the line y=a or y

The tangent at the vertex A is the x
side of the y–axis. The length of the latus rectum is 4a. 
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This is the equation of a parabola whose vertex is the origin (o, o) focus is (o, a) the 
tangent AX at the vertex is the x–axis and the axis AY of the parabola is the y

–a, or y+a= o and the length of the latus rectum is 4a.
concavity is towards positive side of the y–axis. 

 

This is the equation of a parabola whose vertex isthe origin (o, o) focus S is the point (o, 
hedirectrix is the line y=a or y – a= o.  

The tangent at the vertex A is the x–axis and the concavity of the curve is towards the negative 
axis. The length of the latus rectum is 4a.  

This is the equation of a parabola whose vertex is the origin (o, o) focus is (o, a) the 
xis AY of the parabola is the y–axis. The 

and the length of the latus rectum is 4a. The 

This is the equation of a parabola whose vertex isthe origin (o, o) focus S is the point (o, 

ards the negative 
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Equation of the parabola in a parallel translation of co-ordinate axes 

(i) When the equation of parabola is y² = 4 ax   (1)  

If we transfer the origin to the point (h, k) withoutchanging the direction of the axes, the 
equation istransferred to 

 (y+k²)=4a (x + h)  (replacing x by x + h and y  by y + k) 

or y2+2 ky+k² – 4ax+4ah 

or x =  

(k² – 4ah) 

which is of the form x = Ay²+BC+C  

This is a parabola with its axis parallel to the x–axis. 

(ii) When the equation of parabola is x² = 4ay   (2) 

If we transfer the origin from the vertex to the point(h, k) without changing the original 
direction of the axes, then the equation (2) is transformed to 

 (x+h)2 = 4a (Y+k) 

or x²+2hx+h2=4ay + 4 ak  

or 4ay=x2 + 2hx + h2 – 4 ak 

or y = 
 

(h2 – 1ak) 

which is of the form y = Ax²+ bx+C. 

13.4.3 Point of Intersection of a Line and a Parabola 

To find the points of intersection of the line y=mx+c with the parabola y² 4ax  

y = mx + c    (1) 

 y² = 4ax    (2) 

Substituting the value of the from (1) in equation (2). 

(mx+c)²=4ax  

m²x²+c²+2 mcs  = 4ax 

or m²x²+2x (mc – 2a)+c²= 0   (3) 

Which is a quadratic equation in x and it gives two values of x. On substituting the two 
values of x oneby one in (1), we get the corresponding values of y. These corresponding values 
x and y are the co-ordinates of the required points of intersection.  

Thus the straight line cut the parabola at two points. 

13.4.4 Condition of Tangency 

2 2
22 4 1 1

4 4 2 4

y ky k ah k
y y

a a a a

  
  

2 2
22 4 1 1

4 4 2 4

x hx h ah h
x x

a a a a

  
  
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If the line (1) touches the parabola (2), then the two values of x given by equation (3) must be 
equal (ie discriment = o) 

ie. [2(mc – 2a)]2 – 4m²c² = 0  

or 4(m²c²+4a² – 4mac) – 4m²c² = 0 

or  a² = mac 

or  c =  

Example 7 

Find the co-ordinates of the focus, vertices and equation of the directrices of the 
following parabolas. 

 (i) y= –8x (ii) 2x² = –7y. 

Sol. 

(i) The equation of the parabola is y2= –8x.  

Clearly it is a left handed parabola and comparing it with y2= –4ax, we have 

 4a=8 or a=2 

Co-ordinates of focus are (–a, o)= (–2, o)  

Co-ordinates of the vertex are (o, o) 

Equation of its directrix is x–aie.x=2 or x – 2 – o. 

(ii) The given equation of the parabola can be written as 

 x2 = y  

Clearly it is a downward parabola and comparing itwith x2= –4ay, we have 4a = or a=  

Co-ordinates of the focus are (o, –a)= (o, – ) 

Co-ordinates of the vertex are (o, o) Equation of the directrix is 

Y = a ie y =  or 8y – 7 = o. 

Example 8 

Find the focus, the equation to the directrix and the length of the latus rectum of the parabola 

 y²+12=4x+4y 

Sol. 

We have y2+12=4x+4y 

c

m

7

2

7

2

7

8

7

8

7

8
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or y² – 4y+ 4 = 4x – 8  

or (y – 2)2= 4(x – 2) 

which is of the form y2=4a× where X = x – 2. Y=y – 2 and 

 4a=4, a = 1 

For the focus X = a, Y=o 

i.e. x – 2 = 1 and y – 2 – 0 or x – 3 and y=2 

The co-ordinates of the focus are (3,2) 

The equation of the directrix is  

X + a = o or x – 1 = 0 

The length of the lactus rectum = 4a=4 units. 

Example 9 

The demand curve is p = a – bx, show that total revenue curve is a parabola with axis 
vertical and opening downward. At what output is the total revenue maximum. 

Sol. The demand curve is p=a – bx 

 Total revenue is R = p.x. 

  = (a – bx) x = ax – bx2 

The equation of total revenue curve is 

 R = ax – bx2   

 = –bx² + ax 

 = –b  

 = –b  +  (completing the square) 

or R –  = – b  

or  = –  (R– ) 

Put X = x – , Y = R –  

X2 = – Y 

which is a downward parabola. 

Total revenue curve is a parabola. 
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Its axis is X=0 i.e. x –  

axis of the parabola is x =  = 0 

Vertex is given by X= o,Y= o  i.e. 

x –  = 0, R =  = 0 

i.e. x –  =, R =  

 Vertex is  

R is maximum at the vertex of the parabola as the opens downward. 

R is maximum when x = and max, value of  

R =  

Note:- Te second degree terms, in the equation of a parabola, always form a perfect square. 

SELF-CHECK EXERCISE 13.2  

Q1.  Find the focus, the equation to the directrix and the length of the latus rectum of the 
parabola   

 y2 + 16 = 4x + 4y 

13.5 Rectangular Hyperbola or (Equilateral Hyperbola) 

Def.: A rectangular hyperbola is defined as the locus of a point which moves such that the 
product of its distance from fixed perpendicular line is a positive constant say c².The fixed lines 
perpendicular to each other are called asymptotes and there point of intersection is called the 
centre of rectangular hyperbola.Take the simplest case when the origin is the centre of the 
curve, i.e. when the axes are the asymptotes. The one portion of rectangular hyperbola lies in 
first quadrant and second lies in third quadrant. 
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Let p be any point on the curve in first quadrant. Draw PL and PK perpendicular to x
axis. As P moves to the right of the curve, the perpendicular distance PL decreases and PK 
increase in such way that product PL 
(say). In third quadrant the point P moves along the portion of the curve in such a way that 
product of perpendicular distance from horizontal and vertical asymptotes (i.e. P'L'
area OL'P'K' is equal to constant c². If the co
where c² is constant 

i.e. xy=c²  

which is the required equation of rectangular hyper

When the asymptotes of the rectangular hyperbola are parallel to axes a
b), then equation of rectangular hyperbola becomes.

 (x – a) (y – b) = c² 

Example 10 

Show that y = , for all value of the constant (s

hyperbola. 

Sol. The given equation is y =

 sxy+ty = mx + n 

or xy –  x + y  =  

or xy –  x + y –  = 

mx n

sx t




mx n

m

s

t

s

n

s
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s
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Let p be any point on the curve in first quadrant. Draw PL and PK perpendicular to x
axis. As P moves to the right of the curve, the perpendicular distance PL decreases and PK 

duct PL × PK i.e. the area of rectangle OLPK remains constant c² 
(say). In third quadrant the point P moves along the portion of the curve in such a way that 
product of perpendicular distance from horizontal and vertical asymptotes (i.e. P'L'

a OL'P'K' is equal to constant c². If the co-ordinates of point P be (x, y). We have PL 

equation of rectangular hyperbola. 

When the asymptotes of the rectangular hyperbola are parallel to axes and centre be (a, 
b), then equation of rectangular hyperbola becomes. 

for all value of the constant (so), represents a rectangular 

 

 –  

mx n

sx t




n

s 2

mt

s

Let p be any point on the curve in first quadrant. Draw PL and PK perpendicular to x-
axis. As P moves to the right of the curve, the perpendicular distance PL decreases and PK 

PK i.e. the area of rectangle OLPK remains constant c² 
(say). In third quadrant the point P moves along the portion of the curve in such a way that 
product of perpendicular distance from horizontal and vertical asymptotes (i.e. P'L'× P'K') or 

ordinates of point P be (x, y). We have PL ×PK c² 

nd centre be (a, 

o), represents a rectangular 



 

331 
 

or x(y – ) +  (y – ) =  –  

  (x + (y – ) =  

which is of the form (x – a) (y – b)=c².  

Therefore the above equation represents a rectangular hyperbola where a= – , b=  

Centre of rectangular hyperbola is (– , ) 

and asymptotes are parallel the axes. 

13.5.1 Application of Rectangular Hyperbola 

The rectangular hyperbola has many application in economics. Average fixed cost 
which is defined as the ratios of fixed cost to output is represented by the rectangular 
hyperbola. In this case, the outputaxis and cost axis are the asymptotes and the product of the 
distance of any point on average fixed cost curve from the two axes in always equal to fixed 
cost and hence is a positive constant. Also the demand curve or the average revenue curve has a 
shape of rectangular hyperbola. Rectangular hyperbola demand curve shows that the total 
expenditure incurred by a consumer remains constant at all prices. Therefore, the elasticity of 
demand at any point on such a demand curve is constant and is equal to unity. That is why such 
a demand curve is also called unitary elastic demand curve. In such a case, the marginal 
revenue at all level of output is zero, and therefore marginal revenue curve coincides with x–
axis. We can also express demand curve for money in the shape of rectangular hyperbola. 

The quantity theory of money says that a change in stock of money M implies an proportionate 

change in the value of money  opposite side, wherep represents the price level. 

 M = c2 x P 

or M×  = c2 

which is a rectangular hyperbola. 

Example 11 

Find the centre and asymptotes of rectangular hyperbola xy – 2x – y – 1=0 

Sol. Given equation is xy – 2x – y – 1=0 

or xy – 2x – y+2 – 2 – 1=0 

or x (y – 2) –(y – 2) – 3=0 

or (x – 10 (y – 2)=3 
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which is a of a rectangular hyperbola. The centre of rectangular hyperbola is (1,2) The equation 
of asymptotes are 

x – 1=0,y – 2=0 

Example 12 

A point moves in R2 so that the difference of its distance from the fixed points (α, α) and (–α, –
α) is always 2, α. α >o. Derive the equation of the curve described this point. 

Sol. Let P(x, y) be the moving point and A(α, α) and B(–α, –α) be given points. 

Given PA – PB = 2α 

i.e. PA+PB + 2α 

or   + 2α 

or (x – α)²+(y – α)²= (x + α)²=(y + α)² + 4α2 + 

 4α  

or –  = x + y + α 

or x²+ y²+2αx +2αy+2α2=x2 = x²+ y²+α²+ 2xy + 2αx + 2α 

which is a rectangular hyperbola. 

SELF-CHECK EXERCISE 13.3  

Q1.  Show that y= , for all value of the constant (so), represents a rectangular 

hyperbola. 

Q2.  Find the centre and asymptotes of rectangular hyperbola xy – 2x – y – 1=0 

EXERCISE 

1. Find the equation of circle whose 

 (i) Centre is (0,0) and radius is 3 units. 

 (ii) centre is (–3, 4) and radius is 6 units. 

2. Find the co-ordinates of the centre and the radius of the circle 

 2(x²+y²)=4x+6y+43 

3. Find the equation of the circle concentric with the circle x²+ y² 6x+4y – 3=0 of radius 
5 units. 

4. Find the equation of the circle passing through the points (5, 7) (6, 6) and (2, –2). Find 
the co-ordinates of its centre and the length of its radius.  

5. Find the co-ordinates of the vertex, the focus, the equation of the axis and directrix of 
the parabola x² +6x+2y=0. 

       2 2 2
x y x y         

   2
x y   

   2
x t   

mx n

sx t



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13.6 SUMMARY 

 In this unit, we learn about circle, parabola and hyperbola. In the first we studied about 
circle and the equation of a circle in a different forms. In the next section we studied about 
parabola equation of a parabola in standard forms we also learnt about the shape of parabola. In 
the last part of this section we learnt about the condition of Tangency. In the last section we 
learnt about the Rectangular hyperbola. We also learnt about the application part of rectangular 
hyperbola to solve economic problem. 

13.7 GLOSSARY 

 1. Circle : A circle is the locus of a point which moves on a plane in such a way that 
it is always at a court distance from a fixed point. 

 2. Centre and radius of a circle : The fixed point is called the centre and constant 
distance from a fixed point is called the radium of the circle. 

 3.  General equation of a circle : The equation of a circle can be expressed in the 
general form as x2 + y2 + 2yx + 2fy + c =0 

 4. Concentric circles : Circles having the same centre and different radium are called 
concentric with the circle. 

 5. Parabola : A parabola is defined as the locus of a point which moves in a plane in 
such a way that its distance from a fixed point called focus is always equal to its 
perpendicular distance from a fixed straight line (called directrix) in the plane. 

 6. Rectangular hyperbola : A rectangular hyperbola is defined as the locus of a 
point which moves such that the product of its distance from fixed perpendicular 
line is a positive constant.  

13.8 ANSWER TO SELF CHECK EXERCISES  

Self-check Exercise 13.1 

Ans. 1(i) The general equation of circle is  

  (x – h)2 + (y – R)2 = r2 

  [x2 – (o)]2 + (y – 0)2 = (3)2 

  or  x2 + y2 – 9 = 0 Ans.  

 (ii) The general equation of circle is  

  (x – h)2 + (y – R)2 = r2 

  Here co-ordinates of centre is (–3, 4) and radius is 6 level 

[x2 – (–3)]2 + (y – 4)2 = (6)2 

  i.e.   x2 + y2 + 6x – 8y – 11 = 0 Ans.  

Ans. Q2. Refer to Section 13.3.1.3 Example 3 

Ans. Q2. Refer to Section 13.3.2 Example 4 
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Self-check Exercise 13.2  

Ans. Q1. Refer to Section 13.4 (Example 8) 

Self-check Exercise 13.3  

Ans. Q1. Refer to Section 13.5 (Example 10) 

Ans. Q1. Refer to Section 13.5 (Example 11) 
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13.10 TERMINAL QUESTIONS 

Q1. Find the Co-ordinates of the Vertese, the focus, the equation of the axis and directrix of 
the parable  x2 + 6x + 2y = 0 

Q2. Find the equation of the circle passing through the points (5, 7) (6, 6) and (2,– 2). Find 
the Co-ordinates of its centre and the length of its radius. 
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Unit - 14 

INTEGRATION 
STRUCTURE  

14.1 Introduction  

14.2 Learning Objectives 

14.3 Definite and Indefinite Integrals  

 14.3.1 General Rules of Integration  

 14.3.2 Fundamental Integrals  

Self-check Exercise 14.1 

14.4 Integration of Substitution  

Self-check Exercise 14.2 

14.5 Integration by Parts 

Self-check Exercise 14.3 

14.6 Definite Integral 

 14.6.1 Definite Integral as the limit of a runs  

 14.6.2 Definite Integral as area 

 14.6.3 Transformation of Definite Integral by Substitution. 

Self-check Exercise 14.4 

14.7 Area Under the Curve  

Self-check Exercise 14.5 

14.8 Summary 

14.9 Glossary 

14.10 Answer to Self-check Exercise 

14.11 References/Suggested Readings 

14.11 Terminal Questions 

14.1 INTRODUCTION 

In this Unit, a major new concept, the integral of a function and a major new technique, 
that of integration will be introduced. Only the function of one variable will be considered. The 
concept of an integral of a function has two distinct aspects. In its first aspect, the integral 
refers to an area. It measures the area enclosed by the graph of a function f(x) over some range 
of x values. To obtain, this measure we need to discover the definite integral of the function. In 
its second aspect, the integral rises from reversing the process of differentiation. Consider an 
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economic example. We know how to derive the marginal cost function if we are given the total 
cost function. 

 TC = C(q) 

 MC = C' (a) =  c (q) 

But what if we only know the marginal cost function? Can we use it to derive the total 
cost function? Evidently this requires that we reverse the process of differentiation whereby the 
MC function was derived from the TC function. To do this we require what is called the 
indefinite integral of the function in question.  

14.2 LEARNING OBJECTIVES 

 After going through this Unit, you should be able to : 

 Define integration  

 Define the indefinite integral of function 

 Use the method of substitution of simply and evaluates certain integrals 

 Integrate by parts a product of two functions.    

14.3 DEFINITE AND INDEFINITE INTEGRALS  

The definite and the indefinite integrals are closely related concepts. We could start 
with either and then derive the other. If we start with the concept of the definite integral as an 
area under a curve and then go on to develop the concept of the indefinite integral as the 
reverse of the process of differentiation.  

Definite Integral as the Limit of a Process of Summation 

Suppose we have some function f(x) that is continuous and smooth. We suppose, for the 
moment, that f(x) is also a positive over the interval with which we are concerned. An example 
of such a function is shown in figure. Let a and b be particular value of x and suppose that we 
wish to find the area bounded by f(x), the x–axis and the perpendiculars at x = a and x = b. Fist 
let us sub-divide the interval between a and b into n equal sub-intervals. Erecting a 
perpendicular atthe end point of each sub-interval divides the area in which we are interested 
into n strips of equal width. We pick a single arbitrary value x within each interval and 
calculate the value of the function f(x) at the arbitrarily chosen value of x. We let 1 stand for 
the value of x chosen arbitrarily within the first sub-interval, where f(1) is the value of the 
function at that point and so on up to n and f (n). This defines xrectangles, each with a width 

of th the interval from a and each with a height of f(1) (1 = 1,....., n) 

 

d

dq

1

n



The sum of the areas of the rectangles =

each interval. The area of all n rectangles is obtained by summa

We how define the definite integral of the function 
limit, as n ∞, of all the sum of areas of n rectangles each of equal with and each of height 
given by f (1) for an 1 arbitrarily chosen from written each of the x sub
this 

 x = 

where x = . The symbol indicates thelimit of the process of su

on the left hand side of the identity sign. The symbols a and b attached to the 
the lower and upper limits of integration and tell us the range of x, value from a to b in this 

case-over which we have integrated the function 

the definite integral of the function 
called the integrand and variable on which it is defined, x in this case, is called the variable of 
integration. The process of finding the integral is called the integration.

Def. If f(x) is continuous in [a, b] and

indefiniteintegral (or primitive of antidervative of F(x) and iswritten as

F(x) dx = f(x)+C 

14.3.1 General rules of Integration 

(i)  {u(x)+ v(x)} dx = 

 (ii) kf(x) dx = k f(x) dx where k is a real number.

 (iii) f' {g(x)} g'(x) dx=



n
LT


1
1

( )
n

i

f


  ( )
b

a

f x dx


b a

n





 


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The sum of the areas of the rectangles = x where i stands for the width of 

rectangles is obtained by summation. 

We how define the definite integral of the function f(x) within the interval from a t
∞, of all the sum of areas of n rectangles each of equal with and each of height 

arbitrarily chosen from written each of the x sub-intervals. We write 

 

The symbol indicates thelimit of the process of summation defined 

on the left hand side of the identity sign. The symbols a and b attached to the 
the lower and upper limits of integration and tell us the range of x, value from a to b in this 

over which we have integrated the function f (x). The whole expression

the definite integral of the function f(x). The function to be integrated, f(x) in this case, is 
called the integrand and variable on which it is defined, x in this case, is called the variable of 
integration. The process of finding the integral is called the integration. 

(x) is continuous in [a, b] and differentiablein (a, b) and f(x), then f(x) is said to be 

indefiniteintegral (or primitive of antidervative of F(x) and iswritten as 

General rules of Integration  

= u(x) dx + v (x) dx 

(x) dx where k is a real number. 

g'(x) dx=f {g(x)}. 

1
1

( )
n

i

f


 

( )f x dx

b

a

f x dx

d

dx

 

stands for the width of 

(x) within the interval from a to b as the 
∞, of all the sum of areas of n rectangles each of equal with and each of height 

intervals. We write 

mmation defined 

sign are called 
the lower and upper limits of integration and tell us the range of x, value from a to b in this 

 is called 

to be integrated, f(x) in this case, is 
called the integrand and variable on which it is defined, x in this case, is called the variable of 

f(x) is said to be 



( )
b

a

f x dx
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14.3.2 Fundamental Integral 

 (i) xn dx = +c where n –1 and c is aconstant of integration. 

Proof: consider  (xn+1) 

  =   (n + 1)xn 

 One of the value of xn dx=  +c 

Example 1.Evaluate (3x² – ) dx 

Sol. (3x² – ) dx = 3 x2 dx –  x1/2 dx 

 = 3  –  + C 

 = x3 – x3/2 + c 

(ii)  dx = log |x| + c 

Proof. ifx>0, logex is real and 

  (log x) = 

  dx = log x when x > 0 

If x < 0, then –x > o and log (–x) is real  

Also  {log (–x) = × (–1) =   

  dx = log |x| + c 

  (| x | = x if n > 0 = – x if x < 0) 

  


1

1

xx

n





d

dx

1 1

1 1

xx

n n

 
 

  

d

dx

1

1n 


1

1

nn

n





1

2
x

 1

2
x  1

2


3

3

x 1

2

1/ 2 1

21 1

x 



1

3

 1

x

d

dx

 1

x

d

dx

1

x
1

x

 1

x
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Example 2 

 Integrate  

Sol. 

  dx =   

 =   

 = a  + b log | x | cx+ c' 

 = –  + b log | x | + cx + c' 

where c' is the constant of intergration. 

 (i)   

 (ii)  

Proof : (a)  (ex) = ex 

  

 (b)  =  (emn) 

 emn dx =  + c 

Example 3. Evaluate  (5x4  – 3e3x + e–x) dx 

Sol.  (5x4  – 3e3x + e–x) dx 

 = 5  x4 dx – 3  e3x dx +  e-x dx 

 = 5.  

 = x5 – e3x – ex + c 

(iv) (a) ax dx =  + c  (a > 0) 

2

2

a bx cx

x

 


2

2

a bx cx

x

 


2

2 2 2

a bx cx
dx

x x x

 
  

 


2

a bx
dx dx c dx

xx
  

2 1

2 1

x 

 

a

x

.x xe dx e c 

.
mn

mn e
e dx c

m
 

d

dx

.x xe dx e c 
d

dx

mne

m

 
 
 

1
.

m

d

dx

mne

m

4 1 3

3.
4 1 3 1

x xx e e
c

 

  
 

log

x

a
e

a
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 (b) amx dx =  + c 

Proof : We have 

  =  (ax) = × ax  = ax 

 &  =  × m anm  = amx 

 ax dx =   + c 

& amn dx =  + c 

Example 4. Evaluate 

  (e3a log x + e3x log a) dx 

Sol.  (e3a log x + e3x log a) dx 

  (e3a log x + e3x log a) dx 

 =  

 =   

 =  +  + c 

Example 5. Evaluate dx 

Sol. dx = 

 =  dx 

 = dx 

 =   – – 3  + 3  

log

mx

a
e

a

m

d

dx log

x

a
e

a 
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 
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 =  + 3  – 2x  + 6  + c 

 In the last article we integrated some simple (or standard) functions by inspection and 
by using the definition of integration as Ant derivative. But often the given function f(x) is 
neither in the simple form nor it can be integrated by mere inspection. In such a case, we use 
any one or more of the following methods to evaluate the given integral. 

 (i) Integration by substitution,  

 (ii) Integration by parts. 

SELF-CHECK EXERCISE 14.1 

Q1. Evaluate 

 (i) dx 

 (ii) (2 + 3 sin x + 4ex)dx 

Q2. Evaluate  

 (a) x4 (b) 4x-2 (c) 1 – 2x + x2 (d)  

Q3. Evaluate the following definite integrals  

 (a)  

 (b)  

 (c)  

 (d)  

14.4 INTEGRATION BY SUBSTITUTION 

 Consider the integral I = f(x) dx  

and let us put x = 0 (z) 

 Then by definition,  - f (x) & ' = (z) 

  =  .  = f (x) ' (z) 

2

5

1
2x

1
2x

1
2x

1
2x

3
1

x
x

  
 



2
1
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x
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 
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.x dx
2

2
1

1 x
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

24
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1
x dx

x
  
 
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0

( 1)x dx
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dx

dx

dz
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dz
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 By definition 

 I = f (x) '  () d z.....  

In the method of substitution, it we put x =  (z),  

then we get  = ' (z), 

which is usually written as dx = '(z) dz.... 

Thus, in short. I=f(x) dx (Put x=(z) 

dx = '(z) dz) 

=f{ (z)} ' (z) dz. 

Some Important Integrals 

(a) Prove that ƒ (ax+b) dx = f (z) dx 

Proof: I=f (ax+b) dxPut ax + b = z  

= f(z) dz a dx=dz 

 dx =  

Note: For integrals of the types (ax + b)n dx: 

 and   suitable 

 substitution is ax + b = z 

Example 6. 

(a) Evaluate the integrals dx 

Sol. dx =  dz... (put 3x + 5 = z) 

 =  dz...   3dx = dz 

 =  dx =) 

 =  

 = (3x + 5)4/3 + c 

dx

dz

1

a

1

a

dz

a

n ax b dx   n

dx

a bx

3 3 5x 
3 3 5x  3 1

3
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3

1/3
z
1

3 11
13 13

z
c




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4
31

4 z c

1
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(b) Prove that  dx = log | f (x) | + c 

Proof:  dx =  Put f (x) = z 

 = log | z | + c  f' (x) dx = dz = 1 

 = log | f (x) | + c 

Example 7. Evaluate  dx 

Sol. Let I =  dx 

Put x²+2x – 3=t  

i.e. (2x+2) dx = dt 

or 2(x + 1) dx = dt 

 I =  log | t | + c 

 =   log |x²+2x – 3| + c 

(c) Prove that [f(x)n] f(x) dx = + c 

 when n–1 (Putf (x)=z then 

Proof: [f (x)n] f' (x) dx =  zn dz 

  f(x) dx = dz) 

 =  

 = + c, where n  –1 and c is asbitrary constant 

Ifn= –1, the integral becomes  {f(x)}-1f (x) dx  

 =  dx 

which is the same as the integral discussed in part (b) 
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Example 8. Evaluate  dx 

Sol. Let I =  dx 

Put x2 – 4x + 5 = z 

 (2x – 4) dx = dz 

 (x – 2) dx =  

 =  = dz... 

 =  z + c 

 =  z2/3 + c 

 =  (x2 – 4x + 5)2/3 + c. 

Some Special Integrals  

We shall give below the formulae for some special integrals without profit. These 
formulae will be used in finding the integrals of many functions. 

(a)  log  + c ; 

(b)  log  + c ; 

(c)  = log  + c 

Example 9. Integrate the following functions  

 (i)  (ii)  

 (iii)  
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x x
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Sol.  (i) Let I =  dx 

 Put 2x = t, = dx 

 1 = dt = log  + c 

 = log +  c 

(ii) Let I =  

Put 3x = t,  dx 

 1 =  =  =  log  + c 

 =  log  + c 

(iii) Let I =  

 =  =  log  

 =  log  + c 

Self-check Exercise 14.2 

Q1. Evaluate the integrals dx 

Q2. Evaluate  dx 

14.5 INTEGRATION BY PARTS 

If u and v be two function x such that u is differentiable and v is in terrible, than u (x) v 
(x) dx = differentiable and v is integrable, than u (x) v(x) dx=u (x) v (x) dx – [u' (x) v (x) dx] 
dx 

= first function × integral of second function – integral of (derivative of first × integral 
of second)  
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Example 10. Evaluate each of the following integrals 

 (i) x³ ex dx (ii) x² loge
x dx 

Sol. (i) Let I = x³ ex dx 

Integrating by parts x³ as first function 

I = x³ ex – 3 x² ex dx 

 =x³ ex – 3 [x² ex –2 x ex dx] 

 =x³ ex – 3 [x² ex+6 x ex dx 

 =x³ ex – 3x² ex+6 [x ex–1.ex dx] 

 =x³ ex – 3x² ex+6x ex – 6 ex + c 

 =(x³ – 3x²+6x – 6) ex + c 

(ii) Let I= x² loge x dx 

Taking loge x as the first function & x² as the second function 

=loge x  x² dx –  [ (log x).  x² dx] 

= loge x –   dx + c 

=  loge x –  x2 dx + c  

=  loge x – + c  

=  (loge x – ) + c  

Note: If we take 1st function=x2 and 2nd function =loge x, then it is not possible to find the 
integral by using the formula for integration by parts.  

SELF-CHECK EXERCISE 14.3 

Q1. Evaluate each of the following integrals 

(i) x³ ex dx (ii) x² loge
x dx 

14.6 DEFINITE INTEGRAL 

 We have defined integration as the inverse of differentiation. Now we shall define 
integration as a process of summation or definite integral as the limit of a sum. We shall also 
define definite integral as an area 

  

d

dx

31
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x

 
 
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x 1
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3



14.6.1 Definite Integral as the limit of a sum

 Letf(x) be a single-valued continuous function defined in a chosen interval a
be being both finite. Let us divide the interval a 
by the points 

a+h, a + 2h, ----, a + rh, ---, a + (n

so that hn – b – a. 

Now we are form the sum 

hf(a) +hƒ (a + h) + h ƒ (a + 2h) +----

 + ----+h ƒ {a + (n – 1) h} 

= h (a+ rh), where a + nh = b or 

Then the limit (a+rh), if it exists, is called the definite integral of

between the limits a and b and we denote it by the symbol

baf (x) dx 

Thus  f(x) dx = (a + rh), where n h = b 

 = b – a, a and be being the limits of integration.

14.6.2 Definite Integral as Area

 Lety=f(x) by a monotonic increasing continuous function of x in the interval a 
and b being both finite and b>a. Let PQ be the continuous curve for y=

Let AC & BE be the ordinates at the points x = a and x = b respe
OB = b so that AB = b – a. Let us divide AB (i.e. the interval a 
of length h so that n h=b – a, or b=a+nh.
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Definite Integral as the limit of a sum 

valued continuous function defined in a chosen interval a
be being both finite. Let us divide the interval a ≤x≤b into n equal sub-intervals, each length h, 

, a + (n – 1) h 

----+ hƒ (a + rh) 

 

rh), where a + nh = b or nh = b – a. 

(a+rh), if it exists, is called the definite integral of

between the limits a and b and we denote it by the symbol 

(a + rh), where n h = b – a, a and be being the limits of 

a, a and be being the limits of integration. 

Area 

(x) by a monotonic increasing continuous function of x in the interval a 
and b being both finite and b>a. Let PQ be the continuous curve for y=f(x) 

 

Let AC & BE be the ordinates at the points x = a and x = b respect. Then OA = a and 
a. Let us divide AB (i.e. the interval a <x <b) into n equal parts each 
a, or b=a+nh. 

valued continuous function defined in a chosen interval a<x<b, a and 
intervals, each length h, 

(a+rh), if it exists, is called the definite integral off (x) w.r.t. x 

a, a and be being the limits of integration. 

(x) by a monotonic increasing continuous function of x in the interval a <x<b, 

t. Then OA = a and 
b) into n equal parts each 
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Let us draw ordinates A1 D1, A2 D2, - - - at the points x = a+h, a + 2h, - - - -.  

Let S denote the area enclosed by the curve y=f (x), the x–axis and the two ordinates at 
x=a and x= b. 

Ifs1 be the sum of the inner rectangles ACC1A1,  

A1D1C2A2,------ then clearly S1<S. 

(1)  

S =hf (a) + hf (a + h) +----- hf (a + n – 1) h 

= h (a+rh) 

If S2 be the sum of the outer rectangles ADD1,A1,  

A1D'D2A2---- than S2> S, 

(2)  

and S₂ = hf (a+h)+hf (a+2h) +---+hf (a +nh) 

 = h  

 = h  (a + rh) – hf (a) ( a + nh = b) 

From (1) and (2), we have S1<S<S₂. 

(3) 

Now let n→∞ i.e., the no. of sub-divisions of AB increase indefinitely, then the length h of 
each subdivision →0, so that h f(a)→0, h f (b) →0 and 

S1→ (a + rh) =  

S2→ (a + rh) =  

Hence from (3), we have 

S = f (x) dx = dx. 

If (x) be a monotone decreasing continuous function of x in a <x<b, then we can first prove that 
S1>S>S2 and then as before we can show that  
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Thus the definite integral geometrically a represent the area bounded by the 

curve y = f (x), x–axis and the two ordinates at x=a and x = b.  

Example 11. Evaluate each of the following integrals 

 (i) 45 ex dx (ii) 2 
3  (iii) -5 

5 x dx 

Sol. (i) 45 ex dx = ex45 e5 – x4 

 (ii) 2 
3  = 2 

3   =  

 =  

 =  

 = =  log  

(iii) -55 x dx = = [25–(+25)] = 0 

14.6.3 Transformation of Definite Integrals by Substitution 

 When definite integral is to be found by substitution then lower and upper limits of 
integration is changed. If the substitution is t =  (x) and lower limit of integration is a and 
upper limit is b then new lower and upper limits will be  (a) and  (b) respectively. 

Example 12. Evaluate the following definite integrals, 

 (i)   (ii)  

 (iii)  

Sol. (i) Let I =  

 Let  

 1  =   2 dt = 2 e1  
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 = 2 (e – 1) 

(ii) Let I =  

 Let 5 – x2 = t 

 –2x dx = dt 

 x dx =  –  dt 

when x = 1, t = 5 – 1 = 4 ; when x = 2, t = 5 – 4 = 1 

 I =  

 =  

 = (1 – 43/2) = – (1 – 8) = 7 

(iii) Let I = 1  

 =  dx 

 =  log (1 + x6) =  log 2 – log 1) 

 =  log 2. 

SELF-CHECK EXERCISE 14.4 

Q1. Evaluate   dx 

Q2. Evaluate the following integrals 

 (i) ex dx 

 (ii) e-x/2 dx 

14.7 AREA UNDER THE CURVE 

 If f (x) be finite and continuous in a≤x≤b. Then area of the region bounded by x–area, y 

= f (x)and the ordinates at x=a and x = b is equal to  
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Example 13: 

Find by integration the area bounded by the straight limes: y = 4x, y=0,x=3,x=6

Sol. y = 0 is the x–axis A rough sketch of the graph of the function y = 4x is shown is figure. 
We have to find the area of the region 
two ordinates x=3 and x=3 and x=6 and this is shaded in the figure

Hence the required are of the shaded region. 

=  

=   

=  = 2 (39 – 9) =  

= 2 × 27=54 sq. units. 

Example 14 

Draw a rough sketch of the curve y=x
x = 2 and x = 4. 

Sol. The equation of the curve is

 y = x² 

b

a
y dx

6

3
4x dx

62

3

4
2

x
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Find by integration the area bounded by the straight limes: y = 4x, y=0,x=3,x=6 

axis A rough sketch of the graph of the function y = 4x is shown is figure. 
We have to find the area of the region bounded by the time y = 4x, the x–axis (y = 0) and the 

nates x=3 and x=3 and x=6 and this is shaded in the figure 

 

Hence the required are of the shaded region.  

the curve y=x2 and find the area by the curve, the x–axis and ordinates 

The equation of the curve is 

 

axis A rough sketch of the graph of the function y = 4x is shown is figure. 
is (y = 0) and the 

axis and ordinates 



If x = 0, y = 0, i.e. the curve passing through the origin. If x is replaced by
(1) remains unaltered. Therefore the curve is symmetrical about the y

Differentiating (1) w.r.t x, we get =

 > 0 for all x > 0 and and < 0 for all x < 0

The curve is increasing for x>0 & decreasing for x <0

As x=0, =0 and <0. Therefore x = 0 is a point of 

is 0. We find some points on the curve from equation (1)

x 

y 

0 

0 

1 

1 

With those ideas we can sketch the curve.The region bounded by the parabola y = x², the x

axis and the two ordinates x=2 and x = 4 is shaded Hence the required area = 

 

=  (64 – 8) = 

Area between two given curves 

Let y = f (x) and y = g(x) be two given curves. 

(i) Suppose the two given curves intersect at two points and x = a, x = b are the 
ordinates of these two points (fig. a) y =
the curve PSR. 
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If x = 0, y = 0, i.e. the curve passing through the origin. If x is replaced by
Therefore the curve is symmetrical about the y–axis. 

Differentiating (1) w.r.t x, we get =  2x and =2 

and < 0 for all x < 0 

The curve is increasing for x>0 & decreasing for x <0 

<0. Therefore x = 0 is a point of local minimum & the minimum value 

is 0. We find some points on the curve from equation (1) 
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9 

With those ideas we can sketch the curve.The region bounded by the parabola y = x², the x

2 and x = 4 is shaded Hence the required area = 

sq units.  

 

(x) and y = g(x) be two given curves.  

Suppose the two given curves intersect at two points and x = a, x = b are the 
hese two points (fig. a) y =f(x) represents, the curve PQR andy=g(x) represents, 

dy

dx

2

2
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dx

56
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If x = 0, y = 0, i.e. the curve passing through the origin. If x is replaced by–x, equation 

local minimum & the minimum value 

With those ideas we can sketch the curve.The region bounded by the parabola y = x², the x– 

2 and x = 4 is shaded Hence the required area = = 

Suppose the two given curves intersect at two points and x = a, x = b are the 
(x) represents, the curve PQR andy=g(x) represents, 

4

2
y dx



Then the regd. Area between the curves

 = Area PSRQP 

 = are A PQRS – area APSRB

 = (x) dx - (x) dx 

=  

=  

where y₁ = f (x) and y2 = g(x) at the same abscissa 

(ii) Suppose along with the two curves two co
(see fig. b). Then the required area bounded by the two given 'corves y = 
the two given ordinates x = a and x = b

b

a
f

b

a
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Then the regd. Area between the curves 

area APSRB 

(x) dx  

(x) at the same abscissa x. 

Suppose along with the two curves two co-ordinates, say x=a and x = b are also given 
(see fig. b). Then the required area bounded by the two given 'corves y = f (x) and y = g(x) and 

a and x = b 

 

ordinates, say x=a and x = b are also given 
(x) and y = g(x) and 



 = area PQRSP = area MSRN 

= (x) dx - (x) dx

=  

where y₁ = f (x) and y2 g (x) at the same abscissa

Example 15. 

Shade the area bounded by y2 = 8x and y = x along positive direction of x
integration to find the area of the part.

Sol. We have y2 = 8x     ………(1)

 and y = x      ………..(2)

Putting  y = x in (1), we get

x²=8x  or (x – 

i.e. x = 0, 8. 

from (2) y = 0, 8. 

The curves (1) & (2) intersect at (0, 0) and (8, 8). The area bounded by (1) and (2) has been 
shaded by dots. The dotted region is the required area between (1) and (2) in which x varies 
from 0 to 8. the required area between (1) and (2)

 = area OABCO – area OAB 

=  where y

=  and y
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= area PQRSP = area MSRN – area  

(x) dx 

g (x) at the same abscissa x. 

= 8x and y = x along positive direction of x
integration to find the area of the part. 

 

(1) 

(2) 

y = x in (1), we get 

 8)= 0 

The curves (1) & (2) intersect at (0, 0) and (8, 8). The area bounded by (1) and (2) has been 
dotted region is the required area between (1) and (2) in which x varies 

from 0 to 8. the required area between (1) and (2) 

area OAB  

where y2 = 8x 

and y2 = x 

= 8x and y = x along positive direction of x–axis and use 

The curves (1) & (2) intersect at (0, 0) and (8, 8). The area bounded by (1) and (2) has been 
dotted region is the required area between (1) and (2) in which x varies – 
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 =  

 =   sq. units. 

SELF-CHECK EXERCISE 14.5 

Q1. Find by integration the area bounded by the straight limes: y = 4x, y=0,x=3,x=6 

Q2. Draw a rough sketch of the curve y=x2 and find the area by the curve, the x–axis and 
ordinates x = 2 and x = 4. 
 

14.8 SUMMARY 

 In this Unit, we have exposed to varies methods of integration. In the first section we 
learnt about the Definite and Indefinite Integrals. In the first part of first section we learnt about 
the general rules of integration. In the second section we learnt about the method of integration 
by substitution and method of integration by parts to evaluate integration where the given 
function is not simple. In the last part of the unit, we studied about the Definite Integral as area. 

14.9 GLOSSARY 

1. General Rules of Integration 

(i) dx = dx 

(ii)   =  dx where R is a real number 

2.  Definite Integral : Integration as a process of summation or definite integral as the   limit 
of a sum. 

3. Transformation of definite integrals by substitution : When definite integral is to be 
found by substitution then lower and upper limits of integration is changed. 

14.10 ANSWER TO SELF-CHECK EXERCISES  

Self-check Exercise 14.1 

Ans. Q1. We know that   = x3 + 3x + +  

 Therefore  dx = dx 

 = x3dx + 3  +  ----------- Rule 2 

 using integral formulas we have  
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  dx =  +  3  + 3 (|4| × 1+c3) +  

 =  +  + 3 ln |x|  – + (c1 + 3c2+ 3c3 + c4) 

 =  x4 + x2 + 3 ln |x| – + c 

(ii) This integral can be written as  

  2 dx + 3 sin x dx + 4 ex dx 

  = 2x – 3 cos x + 4ex + c 

Ans. Q2.  (a)  + c   (b) – 
ସ

௫
 + c  

    (c) x –  x2 +  + c  (d) – 2x –  + c  

Ans. Q3. (a)  – 54  (b)  + ln  2  

    (c)    (d)  

Self-check Exercise 14.2 

Ans. Q1. Refer to Section 14.4 (Example 6) 

Ans. Q2. Refer to Section 14.4 (Example 7) 

Self-check Exercise 14.3 

Ans. Q1. Refer to Section 14.5 (Example 10) 

Self-check Exercise 14.4 

Ans. Q1.  Now   dx 

 =  dx 

 let x +  = u1 Then 

  dx  =   
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 =  

 = – ln (3 + 2 )   

Ans. 2 (i) ex dx 

  = – ex dx 

  =  ex dx 

  =  ex dx , since  =    

 (ii) e-x/2 dx 

  = e-x/2 dx 

  = e-x/2 dx  – e-x/2 dx 

  Now  

  e-x/2 dx = (–2e-x/2) – (-2e-x/2) dx 

  = – 2 e-x/2+ e-x/2 dx 

  Thus  e-x/2 dx 

  = – e-x/2+ e-x/2 dx 

  =  – e-x/2+ c 
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Self-check Exercise 14.5 

Ans. Q1. Refers to Section 14.7 (Example 13) 

Ans. Q2. Refers to Section 14.7 (Example 14) 
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14.12 TERMINAL QUESTIONS  

Q1. Integrate the following functions 

 (i)   (ii)  (iii)   

Q2. Evaluate each of the following integrals  

(i) (1 – x2) log x dx  (ii) x4 (loge x)2 dx 

Q3. Evaluate each of the following integrals. 

 (i)  (ii)  (iii)  

Q4. Find the integration the area of the circle x²+ y² = a². 

Q5. Find the area of the portion bounded by y² = 4x and the latus rectum. 

Q6. Shade the area enclosed by the two parabolas y2=4x and x2=4y and find the integration, 
the area of the shaded region. 
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Unit - 15 

ECONOMIC APPLICATIONS OF INTEGRATIONS 

STRUCTURE  

15.1 Introduction  

15.2 Learning Objectives 

15.3 From a Marginal Function to a Total Function 

Self-check Exercise 15.1 

15.4 Consumer Surplus 

Self-check Exercise 15.2 

15.5 Producer Surplus 

Self-check Exercise 15.3 

15.6 Investment and Capital Formation 

Self-check Exercise 15.4 

15.7 Present Value of a Cash Flaw 

 15.7.1 Natural Exponential Function et 

 15.7.2 An Economic Interpretation of e 

 15.7.3 Diserete Growth 

 15.7.4 Discounting and Negative Growth 

15.7.5 Present Value of a Perpetual Flow 

Self-check Exercise 15.5 

15.8 Summary 

15.9 Glossary 

15.10 Answer to self Check Exercises  

15.11 References/Suggested Readings 

15.12 Terminal Questions 

15.1 INTRODUCTION 

 In the last unit, we have learnt about the different methods of integration. In this present 
unit we will study about how integration is used to solve problems related to economic theory.   
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15.2 LEARNING OBJECTIVES 

 After going through this unit, you should be able to: 

 Indentify the dynamics problem in economics  

 Use the mathematical tools of integration to solve problems related to economic 
theory. 

Integrals are used in economic analysis in various ways. Few simple applications are: 

15.3 FROM A MARGINAL FUNCTION TO A TOTAL FUNCTION 

In non-mathematical economics courses a great deal of time is spent in showing that the 
area under a marginal curve f(x) between zero and some point x=a>0 is the total cost at the 
point. Thus the area under the marginal cost curve is total cost and the areas under the marginal 
revenue curve is total revenue. The analytical reasons for this result is apparent. We know that 
the total cost is assumed to vary with output, so that total cost (TC) may be written as 

TC – C(q) 

where C is total cost and q output then the marginal cost (MC) is given by 

 MC= (TC) = C'(q) = c(q) 

 IF we begin with the marginal cost function then the equation of the total cost function 
is obtained from its indefinite integral.  

TC= c(q) dq=C(q) + k 

where the arbitary constant k is of course fixed cost. The total variable cost of producing a 
particular level of output, a, is given by the definite level of output, a, is given the definite 
integral of the MC function between 0 and a (the sum of the marginal cost): 

 TC (a) = 0
a 

 We observe that we have just been doing is known by the rather forbidding name of 
solvingsimple differential equations.  

In a nut shell, from a given total function (e.g. a total cost function), the process of 
differentiation can yield the marginal function (e.g. the marginal cost function). Being the 
opposite of differentiation, the process g integration enables us, conversely, to infer the total 
function. We can also determine the average cost (AC) which will be equal to total cost divided 

by total output i.e. AC=  

Example I:- If the marginal cost (MC) of a firmis the following function of output, C' 
(Q)=2e0.2Q, and if the fixed cost is CF = 90, find the total-cost function C(Q). 

Sol.Marginal cost function OC' (Q) = 2e0.2Q on integrating (MC) w.r.t. Q1 we get 

d

dp

0

( ) ( )
a

c q dq C q

c

q
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where c is constant of integration. 

i.e. C(Q) = 10 e0.2Q + c 

when Q = 0 total cost C(Q) will consist solely of fixed cost CF. So 

 90 = 10 + c i.e. C = 80 

Hence the total cost function (TC) is 

C(Q) 10 e0.2Q+80 

Example 2:- The marginal cost and revenue of a firm are given as MC=4+ .08x, MR = 12. 
Compute the total profit, when x = 100? Given that total cost at zero output is equal to zero. 

Sol.Marginal cost function C' (x)=4+0.8x. On integrating MC w.r.tx, we get  

C(x)=  

=4x+.08 +k 

When x = 0, C= 0, k = 0 

C=4x+.04x²  

Also given MR = 12, Total revenue TR =pq=12x 

Profit=12x – (4x+.04)x2 

  [ Profit=TR (q) – C(q)] 

 Atx=100 

 Profit 12 × 100 – (4 × 100+.04 × 100²)  

= 1200 – 400 – 400 = 400 

 So at x = 100, there is a profit of Rs.400/- 

Example 3:- If the marginal revenue function (MR) is 8 – 8p –3q2, determine the revenue and 
demandfunctions. 

Sol.  MR = 8 – 8p – 3q2 

Total revenue (TR) =  

= 8q –  

8q – 4q2 – q3– q3+ C  

0.2'( ) 2 QC Q dQ e dQ 
0.2

2
2

Qe
c 

'( ) (4 .08 )c x dx x dx  
2

2

x

2(8 8 3 )p p dq C  
3

28
3 32

qq C 
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When q = 0, TR = 0,  C = 0  

TR = 8q – 4q² – q³ 

As demand function p=  

 =  

 8q – 4q – q2 

Example 4:- If MR = 16 – x², find the maxum total revenue. Also find the total and average 
revenue and demand.  

Sol. Given MR = 16 – x² 

 We know that TR is maximum when MR =0, 

 i.e. 16 – x²=0 i.e. x = +4. 

Hence the total revenue is maximum when output is 4 units. We shall find the maximum total 
revenue which happens when output is 4 units. 

 TR = R =  

  

(iii) Hence is the maximum total revenues. Total revenues TR is  

=  + c 

When x = 0, revenue must also be zero,  C=0 

TR=  

(iii) Average revenue =  

 =  

Since AR=p, naturally p= =  is the requireddemand function. 

  

R

q

2 38 4q q q

q

 

4 4
2

0 0

(16 )MR dx x dx  
43

0

128
16

3 3

x
x  

128

3
2(16 )x dx

3

16
3

x
x 

3

16
3

x
x 

Total  revenue

output

316 3x xTotalrevenue R

output x x


 

3

16
3

x
x 

3
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3
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Example 5:- If the marginal propensityto consume function is given as follows.  

  = 0.5 – .001y 

where c is consumption and y is disposable income. Find the total consumption if when income 
is zero c is 0.2. 

Sol. 

Consumption function C = dy 

  =  

  = .5y –  y2 + k 

Aty=0, C=0.2 

k=0.2 

 C=0.2+.5y – .0005y2 

Note:- C = 0.2 when y = 0 may be termed and subsistence or survival consumption level. 

Example 6:- If marginal propersity to save is given to be 0.5+0.2y2 (y is income). Find 
consumption function if consumption is R 50.001 when income is 200.  

Sol. 

Let s depict total saving, then 

MPS = = 0.5 + 0.2y2 

 S =  

= 0.5y – 0.2y¹ + k  

Consumption (=c)=y – S  

=y – (0.5y – 0.2y¹ + k)  

=0.5y+ – A  

If income (=y)=200, consumption is 50.001 

 ie 50.001 = 5×200+ – A 

 = 100.0 + – A 

 = 100.001 – A   

dc

dy


dc

dy

(0.5 .001 )y
.001

2

ds

dy

2(0.5 0.2 )y dy

0.2

y

0.2

200

1

1000



 A = 50 

Hence, the regd. consumption function C=

SELF-CHECK EXERCISE 15.1

Q1. The marginal cost and revenue 
Compute the total profit , when x = 100? Given that total cost at zero output is 
equal to zero. 

Q2. If the marginal propensity to consume 

   = 0.5 – .001y  

where c is consumption and y is disposable income. Find the total consumption if when 
income is zero c is 0.2. 

15.4 CONSUMER'S SURPLUS

The demand curve records for each level of output the maximum price a consumer will 
pay (rather than go without it). To sum up, any 
the total satisfaction he derives from consuming that much of output. Subtracting from this the 
amount actually paid (in rupees) and the remainder measure the consumer's surplus (C.S)

Consumer surplus  = total area of the curve below 
area of the rectangle  OX0CP0. 

(i. e) MCD is a demand curve, at price p
0x0 cp0). The area Mp0 is the consumer's surplus. Its algebraic expression is

consumer surplus = 

dc

dy

0

( ) .
x

dp x dx p x
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ence, the regd. consumption function C=-50+.5y +  

CHECK EXERCISE 15.1 

The marginal cost and revenue of a firm are given as MC = 2 + .04x, MR = 10. 
Compute the total profit , when x = 100? Given that total cost at zero output is 

If the marginal propensity to consume function is given as follows.  

.001y   

consumption and y is disposable income. Find the total consumption if when 

CONSUMER'S SURPLUS 

The demand curve records for each level of output the maximum price a consumer will 
pay (rather than go without it). To sum up, any given level of output, thus measures in rupees 
the total satisfaction he derives from consuming that much of output. Subtracting from this the 
amount actually paid (in rupees) and the remainder measure the consumer's surplus (C.S)

area of the curve below the demand function from 0 to x

 

e) MCD is a demand curve, at price p0 an amount 0.x = p0C is purchased at a total price of 
is the consumer's surplus. Its algebraic expression is 

 

0.2

y

( ) .p x dx p x

of a firm are given as MC = 2 + .04x, MR = 10. 
Compute the total profit , when x = 100? Given that total cost at zero output is 

 

consumption and y is disposable income. Find the total consumption if when 

The demand curve records for each level of output the maximum price a consumer will 
given level of output, thus measures in rupees 

the total satisfaction he derives from consuming that much of output. Subtracting from this the 
amount actually paid (in rupees) and the remainder measure the consumer's surplus (C.S) 

the demand function from 0 to x0 minus the 

C is purchased at a total price of 



where pd (x) is the demand curve.

Example 7:- If the demand curve is p=85
and the amount demanded of a commodity, what will be 
(b) if p0 = 64.  

Sol. 

(a) If x0=5, p=85 – 4×5 – 25=40

 Consumer Surplus = 

  

 = 133.33 units 

(b) If p0= 64, then 64 = 85 – 4x

iex0=3,x0= –7(which has no meaning in demand) 

Consumer Surplus 

 = 

 – 192 

 = 36 

5

0

(85 4 ) (40 5)x x dx   
52 2

0

4
85

2 2

x x
x  

3
2

0

(85 4 ) (64 3)x x dx   
33

2

0

85 2
3

x
x x  
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(x) is the demand curve. 

If the demand curve is p=85 – 4x – x², where p and x are respectively the price 
and the amount demanded of a commodity, what will be the consumers surplus (a: if x

25=40 

 

 

4x – x²  

7(which has no meaning in demand)  

 

2(85 4 ) (40 5)x x dx   

(85 4 ) (64 3)   

x², where p and x are respectively the price 
the consumers surplus (a: if x0 =5& 



SELF-CHECK EXERCISE 15.2

Q1.  Support the demand function of a consumer is given by p = 80 
is p = 60, find the consumer surplus.  

15.5 PRODUCER'S SURPLUS

With the given supply function, the producer would have supplied x
x3.....quantities on different prices less than 
shaded area becomes producer's surplus (P.S) Producer's Surplus 
p0 Ex0 0–area of the curve under the supply curve from 0 to

 =px0–  

where ps (x) is the supply curve and x

  

0

0

( )
x

sp x dx
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CHECK EXERCISE 15.2 

Support the demand function of a consumer is given by p = 80 – q. If the price offered 
is p = 60, find the consumer surplus.   

PRODUCER'S SURPLUS 

With the given supply function, the producer would have supplied x
.....quantities on different prices less than p0. At p0, he supplies all these quantities. Hence the 

shaded area becomes producer's surplus (P.S) Producer's Surplus = Area of the whole rectangle 
area of the curve under the supply curve from 0 to x0. 

(x) is the supply curve and x0 is the equilibrium output. 

 

q. If the price offered 

With the given supply function, the producer would have supplied x1, x2, 
, he supplies all these quantities. Hence the 

= Area of the whole rectangle 



 

367 
 

Example 8:-Find the producer's surplus when Pd = 3x² – 20+5 

Pb = 15+9x  (x is he quantity) 

Sol. In equilibrium 

Quantity Demand = Quantity Supplied 

 ie. 3x² – 20x+5=15+9x  

or 3x2 – 29x – 10=0  

or 3x² – 30x+x –10=0  

or 3x(x – 10)+(x – 10)=0  

or (3x+1)(x – 10)=0 

 x 10, or x =  neglected 

Atx=10, the equilibrium price is 105. 

Producers surplus = total revenues–total supply price 

 =p.x –  

 = 10 × 105 –  

 = 1050 –  

 = 450 

Example 9:- Let p be the price of rice, q the quantity of rice and s the amount of fertilizer used 
in rice production. Using data for India for 1949-1964: we find for the per capita demand 
function for rice p =0.964 – 6.773p and for the supply function q = 0.063 +0.0365. 

 (i) Find the equilibrium in the rice market if 

  S=0.5 

 (ii) Find the consumer surplus 

Sol. 

(i) The demand function for rice in 

 p = 0.964 0 6.773 q 

the supply function for rice is 

 q=0.063 +0.0368 

1
3



0

(15 9 )
x

x dx
10

0

(15 9 )x dx
102

0

9
15

2

x
x



 

368 
 

(ii) 

For equilibrium, quantity demanded= quantity supplied 

From the equations (i) & (ii) on eliminating q, wehave 

 p=0.964 – 6.773 (0.063 +0.0365) 

 For S=0.5 

 p=0.964 – 6.773 (0.063 +0.365 × 0.5)= 0.415 

 q=0.063+0.036 +0.5= 0.081 

 p00.415, q=0.081 are the equilibrium prices and quantity exchanged. 

(ii) Consumer's Surplus =  

 

 =  

= .0222501635 

SELF-CHECK EXERCISE 15.3 

Q1. Find the Producer's surplus when pd = 3x2 –20 + 5, Pb = 15 + 9x 

15.6 INVESTMENT AND CAPITAL FORMATION 

Capital formation is the process of adding to a given stock of capital. Regarding this 
process is continuous over time, we may express capital stock as a function time, k(t) and the 

derivative denote the rate of capital formation. But the rate of capital formation at time t is 

identical with the rate of net-investment flow at time t, denoted by I(t). Thus, capital stock k 
and net investment I are related by the following two equations. 

  = I(t) 

and K(t) =  

 =  

 =  

The first equation above is an identity, it shows the synonymity between net increment 
and the increment of capital. Since I(t) is the derivative of k(t), it stands to reason that k(t) will 
be the integral of (t). 

0.081

0 0
0

pdq p q
0.081

0
(0.964 6.773 ) 0.415 0.081q dq  

0.081
2

0

6.6773
0.964 0.633615

2
q q

dk

dt

dk

dt

( )I t dt
dk

dt
dk
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Example 10:- The investment flow is described bythe equation I(t)=3t1/2 and that the initial 
capital stock at time t=0, is k (0). What is the time path of capital k? 

Sol. 

 I(t)=3t1/2 

 k(t) =  

 =  

At t = 0,  k(t) = k(0) 

 K (0) = C 

 k (t) = 3t3/2 + k(0) 

k(t)=3t3/2+k(0) is the time path of capital k. The concept of the definite integral will enter 
into the picture when one desires to find the amount of capital formation during some interval 
of time (rather than the time path of k). Since, we may write the definite integral 

  

to indicate the total capital accumulation during the time interval [a, b]. 

To appreciate the distinction between k (t) and I(to) more fully, let us emphasize that 
capital k is a stock concept, whereas investment I is a flow concept. Accordingly, while k (1) 
tells us the amount of K existing at each point of time, I(t) gives us to the information about the 
rate of (net) investment per year (or per period of time which is prevailing at each point of 
time. Thus, in order to calculate the amount of net investment undertaken (capital 
accumulation) we must first specify the length of the interval involved. This fact can also be 

seen wherewe rewrite the identity =1(k) as dk = I(t) dt, which states that dk, the increment 

ink, is based not only on I(t), the rate of flow, but also on dt, the time elapsed. It is this need to 
specify the time interval in the picture, and give rise to the area representation under the I(t) 
curve. 

Example 11:- If net investment is a constant flow at I(t)=2000 rupees per year), what will be 
the total net investment (capital formation) during a year, from t= 0 to t = 1? 

Sol. 

The answer is Rs.2000/-. This can be found as follows 

  

The same answer will be found if, instead the year involved is formt=1 tot = 2. 

Example 12:- If 1(t)=3t1/2 (thousands of rupees per year) a inconstant flow what will be the 
capital formation during the time interval [1, 4], i.e., during the second, third year and fourth 
years? 

( )I t dt
1 4

2 23 2t dt t c 

1( ) ( ) ( ) ( )
b b

a a
t dt k t k b k a   

dk

dt

1 1

0 0
1( ) 2000 2000 2000.t dt dt t   



Sol. The answer lies in the definite integral

 

On the basis of the proceeding examples, we may express the amount of capital accumulation 
during the time interval [0, 1], for any investment rate I(t), by the 

 

k (t) = k (0) +  

The amount of k at any time to is the initial capital plus the total capital accumulation that has 
occurred since. 

SELF-CHECK EXERCISE 15.4

Q1. Given the rate of net  investment I(t) = 9t
years and  (ii) between the 4th and 8th years.

Q2. The investment flow is described bythe equation I(t)=3t
at time t=0, is k (0). What is the time path of capital k?

15.7 PRESENT VALUE OF A 

Before we discuss the present value of cash flow, let us define

15.7.1 Natural Exponential Function 

Where e = 2.71828 as the prefer

remarkable property of being its own de

differentiation to practically no work at

 

  

44 31
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The answer lies in the definite integral 

 

On the basis of the proceeding examples, we may express the amount of capital accumulation 
during the time interval [0, 1], for any investment rate I(t), by the definite integral

 

The amount of k at any time to is the initial capital plus the total capital accumulation that has 

 

15.4  

Q1. Given the rate of net  investment I(t) = 9t1/2, find the level of capital formation in (i) 16 
years and  (ii) between the 4th and 8th years. 

The investment flow is described bythe equation I(t)=3t1/2 and that the initial capital stock 
at time t=0, is k (0). What is the time path of capital k? 

PRESENT VALUE OF A CASH FLOW 

cuss the present value of cash flow, let us define- 

Exponential Function et 

here e = 2.71828 as the preferred base because the function et

le property of being its own derivative (ie. et=et) fact which will reduce the work of 

differentiation to practically no work at all. This e may be defined as e = 

3 2 16 2 14   

( ) ( ) | ( ) (0)I t dt k t k t k

d

dt

On the basis of the proceeding examples, we may express the amount of capital accumulation 
definite integral 

The amount of k at any time to is the initial capital plus the total capital accumulation that has 

capital formation in (i) 16 

and that the initial capital stock 

t possesses the 

fact which will reduce the work of 

This e may be defined as e = f(m) =
m

It




 

371 
 

15.7.2 An Economic Interpretation of e.  

The compound interest formula is 

 r (m) = A  

where A is the principal amount the quotient (where r interest rate per year and m is 

thecompounding periods) means that, in each of mt, the nominal rate r will actually be 

applicable. Finally, the exponent mt tells us that, since interest is to be compounded m times a 
year, there should be a total of mt compounding m years. 

 Vm =  

 =  where w =  

Consequently, the asset value in the generalized continuous-compounding process 
whenm→ (i.e. when compounding m is increases) to be V = V(m) = Aert. 

Applies to some context other them interest compounding, the coefficient r in Aert no 
longer denotes the nominal interest rate. Then r can be reinterpreted as the instantaneous rate of 
growth of the function Aert. 

15.7.3 Discrete Growth 

Actually growth does not always take place on a continuous bases not even in interest 
compounding. Fortunately, however, even for cases of discrete growth, where changes occur 
only once per period rather than from instant to instant, the continuous exponential growth 
function can be justifiably used. 

In case where the frequency of compounding is relatively high, though not infinite, the 
continuous pattern of growth may be regarded as an approximation to the true growth pattern. 
But, more importantly, we can show that a problem of discrete or discontinuous growth can 
always be transformed into an equivalent continuous version. 

Suppose that we have a geometric pattern of growth(say, the discrete compounding of 
interest) as shownby the following sequence:  

A. A(1+ C), A (1+i)2, A (1+i)3,... where the effective interest rate per period in denoted by i 
and where the exponent of the expression (1+i) denotes the number of periods covered in the 
compounding. It we consider (1+i) to be the base b in an exponential expression then the above 
sequence may be summarized by the exponential function. Abt except that, because of the 
discrete nature of the problem, t is restricted to integer value only. Moreover, b=1+i is a 
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positive number (positive even if i is a negative interest rate, say, -0.04), so that it can always 
be expressed as a power if any real number greater than, 1, including e. This means that there 
must exist a number r such 1+1=b = er.  

Thus we can transform Abt into a natural exponential function. 

  A (1+i)t Abt = Aert 

For any given value oft in this context, integer values of the function Ae will of course, 
yield exactly the same value as A (1+i)t, so such as A(1 + i) = Aer and A(1+i)²=Ae2r 
Consequently, even though a discrete case A(1+i)t is being considered, we may still work with 
the continuous natural exponential function Aert This explains why natural exponential 
functions are extensively applied in economic analysis despite the fact that not all growth 
patterns may actually be continuous. 

15.7.4 Discounting and Negative Growth 

In a compound-interest problem, we seek to compute the future value V (principle plus 
interest) from a given present value A (initial principal). The problem of discounting is the 
opposite one, that of finding thepresent value A of a given sum V which is to be available t 
years from now. 

Let us take the discrete case first, if the amount of principal A will grow into the future value of 
A(1+i)t after t years of annual compounding at the interest rate i per annum, i.e. if V = A (1+i)t 

then A= = V (1+i)-t V(1+i) which involves the negativeexponent. 

Similarly, for the continuous case, if the principal A will grow into Aertafter t years of 

continuous compounding out the rate r in accordance with the formula V=Aert then A=  = 

Ve-rt 

Here in the above equation the exponential growth function–r being negative, this rate is 
sometimes referred as a rate of decay, just as interest com- pounding exemplifies the process of 
growth, discounting illustrates negative growth.Now we are in the position to find the present 
valueof a cash flow. For single future value V, we havediscounting formulas. 

A=V(1+i)t  [discrete case] 

&C=Ve-rt  [continuous case]  

Now suppose that we have a stream or flow of future value–a series of revenues 
receivable at various times or of cost outlays payable at various times. We are interested in 
computing the present value of the entire in computing the present value of the entire "cash 
stream" or cash flow. 

In the discrete case, if we assume three future revenue figures Rt (t=1, 2, 3) available at 
the end of the 1th year and also assume an interest rate of i per annum, the present value of Rt 

(1 )t

V

i

n

V

e
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will be, respectively Rt (1+i)-1R2 (1+i)2, R3 (1+i)3 it follow that the total present value is the 
sum 

 π =  

In case of continuous revenue stream at the rate of R(t) rupees per year is discounted at 
the nominal rate of r of year, its present value should be R(t) e-rt dt. In case one problem is of 
finding the total present value of a three year stream, that is given by definite integral. 

 π  

Note:- The upper summation index and the upper limit of integration are identical at 3, 
the lower summation index, differs from the lower limit of integration 0. This is because the 
first revenue is the discrete strea, by assumption will be forthcoming until t=1 (end of first 
year), but in the revenue flow in the continuous case is assumed to commerce immediately after 
t=0. 

Example 13:- What is the present value of a continuous revenue flow lasting for y years at the 
constant rate of D rupees per year and discounted at the nominal of r per year? Find the present 
value when D= Rs.3000/- or= 0.06 and y=2.  

Sol. 

 π =  

 = D  

 = – =  

When D= Rs.3000/-, r = 0.06, y = 2.  

  π =  (1 – e-0.02) = Rs. 5655/- 

15.7.5 Present Value of a Perpetual Flow 

 If a cash flow were to present forever a situation exemplified by the interest from a 
perpetual bond or the revenue from an indestructible capital asset such as land the present value 
of the flow wouldbe 

 π =  

which is an improper integral  
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SELF-CHECK EXERCISE 15.5 

Q1. What is meant by  

(i) Natural Exponential Function 
(ii) Discrete Growth 
(iii) Discounting and Negative Growth 

Q2. What is the present value of a continuous revenue flow lasting for y years at the constant 
rate of D rupees per year and discounted at the nominal of r per year? Find the present value 
when D = Rs.3000/- or = 0.06 and y = 2.  

15.8 SUMMARY 

 In this Unit, we have learnt about the use of integration to solve different economic 
problems. 

15.9 GLOSSARY 

1. Consumer surplus : The notion was introduced by Ayred Marshal to measure the net 
benefit that a consumer enjoy from his act of purchasing u particular, commodity in the 
market. It is defined in terms of the excess of the consumer's total willingness to pay in 
units of money over his actual expenditure. 

2. Definite Integral : Of a the function f (x) over the interval (a, b) is expressed 

symbolically as  , read as integral of f with respect to x from a to b. the smaller 

number a is termed as the lower limit and b, the upper limit of integration. 
3. Indefinite Integral : The Indefinite integral is basically reverse differentiation. To 

differentiate means to find the rate of change (derivative) of a given function indefinite 
integration reverse the process and finds the unknown function where rate of change is 
given. 

4. Capital formation : Capital formation is the process of adding to given stock of 
capital. 

15.10 ANSWER TO SELF-CHECK EXERCISES  

Self-check Exercise 15.1 

Ans. Q1. Marginal Cost function C' (x) = 2 + 0.04x. On integrating MC w.r.t. x, we get  

C (x) =  (2+0.04x) dx 

= 2x + .04 + k 

When x = 0, C = 0,  k = 0 

 C = 2x + .02x²  

Also given MR = 10, Total revenue TR = pq = 10x 

( )
b

a

f x dx

'( ) (4 .08 )c x dx x dx  
2

2

x
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Profit = 10x – (2x + .02) x2 

   [ Profit = TR (q) – C(q)] 

  At x = 100 

  Profit 10 × 100 – (2 × 100 + .02 × 100²)  

= 1000 – 200 – 200 = 600 

  So at x = 100, there is a profit of Rs. 600/- 

Ans. Q2. Refer to Section 15.3 (Example 5) 

Self-check Exercise 15.2 

Ans. Q1. For p = 60, we get q = 20 from the demand equation. Actual expenditure pq = 
1200 

  Now CS = (80 – q) dq – pq 

  1400-1200 = 200 

  Thus the consumer's surplus is Rs. 200/- 

 

Self-check Exercise 15.3 

Ans. Q1. Refer to Section 15.5 (Example 8) 

Self-check Exercise 15.4 

Ans. Q1. (i) k = – 0 = 384 Ans. 

 (ii) k = 135.76– 48 = 87.76 Ans. 

Ans. Q2. Refer to Section 15.6 (Example 10) 

Self-check Exercise 15.5 

Ans. Q1.  

(i) Refer to Section 15.7.1 
(ii) Refer to Section 15.7.3 
(iii) Refer to Section 15.7.4 

Ans. Q2. Refer to Section 15.7 (Example 13) 

  

20

0


 
16

3/21/2 

0

9   6 16t dt 

   
8

3/2 3/21/2 

4

9   6 8 6 4t dt  
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15.12 TERMINAL QUESTIONS  

1. If the marginal cost function F'(q)=3+3+ , find total cost function F(q) (1)= 21. 

2. Given the marginal cost function f'(x), find thetotal cost function when fixed cost is 50 
units and f' (x)=3+x+x2, x being output produced. 

3. If marginal revenue function of a rim is – C. Find the total revenue function. Give 

that TR = O when x=0. Prove that the average revenue function AR = – C. 

4. The marginal cost function of firm is 2+3ex where x is the output. Find the total average 
cost functions if the fixed cost is Rs.500/-. 

5. If the marginal propersity of save (MPS) is the following function of income, S' (γ)=0.3 – 
1.1γ-1/2 and if the aggregate savings s is nil when income γ is 81, find the saving function 
S (γ)? 

6. If the market demand curve is p=20 – 2x, where p and x are respectively the price and the 
amount, demanded of a commodity, find the consumer's surplus when p=4&p=4. 

7. The supply curve for a commodity is p= and the quantity sold is 7 units. Find the 

producer's surplus. Can you find the consumer's surplus. If yes, find it, if not explain with 
the help of diagram, why not? 
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q


2( )
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x b
ab

b x

9 x
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Unit – 16 

INPUT-OUTPUT ANALYSIS 

STRUCTURE  

16.1 Introduction 

16.2 Learning Objectives 

16.3 Input-Output Analysis  

 16.3.1 Assumptions 

 16.3.2 The Technological Coefficient Matrix 

Self-check Exercise 16.1 

16.4 Closed and Open Input - Output Model 

Self-check Exercise 16.2 

16.5 Solution of Open Model  

 16.5.1 The Hawkins-Simon Conditions 

Self-check Exercise 16.3 

16.6 The closed Model 

Self-check Exercise 16.4 

16.7 Summary 

16.8 Glossary 

16.9 Answer to Self Check Exercises 

16.10 References/Suggested Readings 

16.11 Terminal Questions 

16.1 INTRODUCTION  

 In this unit, we will study about the Input - Output Analysis. Input-output Analysis  is a 
method of analysing how an industry undertakes production by using the output of other 
industries in the economy and how the output of the given industries used up in other industries 
or sectors. I.O. analysis is also known as the inter-industry analysis as it explain the inter 
dependence and interrelationship among various industries. 

16.2 LEARNIG OBJECTIVES 

 After studying this unit, you will be able to answer : 

 with what proportions one sector of the economy are related to other sectors. 

 how solution is obtained in a framework of several variables production 
problems related to input-output. 
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16.3 INPUT-OUTPUT ANALYSIS  

Input-Output analysis is a technique which was invented by W.W. Leontief in the year 
1951. The basic idea behind Input-Output analysis is quite simple to understand. Since inputs 
of one industry are the outputs of another industry and vice-versa, ultimately their mutual 
relationship must lead to equilibrium between supply and demand in the economy consisting of 
n industries, and demand in the economy consisting of n industries. For example, the output of 
industry 1 is needed as an input in many other industries and perhaps for that industry itself, 
therefore, the total output level of industry 1 must take account of the input requirements of all 
the industries in the economy. Exactly in the same way since the output of industry n enters 
into other industries as their "input requirements," the total output of nth industry must be one 
that is consistent with all input requirements so as to avoid any bottlenecks anywhere in the 
economy. 

Thus the essence of input-output analysis is that, given certain technological 
coefficients and final demand, each endogenous sector would find its output uniquely 
determined as a linear combination of multi-sector demand. 

Let us suppose that an economic system consists of 4 producing sectors only, and that 
the production of each sector is being used as an input in all the sectors and is used for final 
consumption. Suppose (i) X1, X2, X3 and X4 are the total outputs of the 4 sectors.  

(ii) F1, F2, F3 and F4 are the amounts of final demand, consumption, capital 
formation and exports 

INPUT-OUTPUT TRANSACTION TABLE 

Producing 
Sector No. 

Total Output of 
the sector 

Input requirement of producing sectors Requirement 
for final uses  

X1 X2 X3 X4 

1 

1 

2 

3 

4 

2 

X1 

X2 

X3 

X4 

3 

X11 

X21 

X31 

X41 

4 

X12 

X22 

X32 

X42 

5 

X13 

X23 

X33 

X43 

6 

X14 

X24 

X34 

X44 

7 

F1 

F2 

F3 

F4 

Primary Input 
(Labour) 

Total Primary 
Input = L  

L1 L2 L3 L4  

for output of these sectors. 

(iii) X11, X12, X13 and X14 are the amounts of product of sector I used as an input in 
1st, 2nd, 3rd and 4th sectors respectively. 

We can now arrange the distribution of total product of 4 producing sectors in the 
following way. 

Two important equations can be derived from theabove table: 
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(1) Column 2, 4, 5 and 6 of the above table give us total inputs (form all sectors utilized 
by each sector for its production. In other words, col. 3 gives the production function of sector 
and col. 6 represents the production function of sector 4. 

X1 = f1 (X11, X21, X31, X41, L1) 

X2 = f2 (X12, X22, X32, X42, L2) 

X3 = f3 (X12, X23, X33, X43, L3) 

X4 = f4 (X12, X24, X34, X44, L4) 

In general terms, if there are 'n' number of producing sectors then the production 
function ofsector n will be represented by: 

Xn = fn (X1n, X2n, X3n, ........  X4n) 

(2) Rows of the table give us the equality between demand and supply of each product: 

X1 = X11+X12+ X13+X14+F1 

X2 = X21+X22+ X23+X24+F2 

X3 = X31+X32+ X33+X34+F3 

X4 = X41+X42+ X43+X44+F4 

L = L1+ L2+ L3+ L4 

In general terms, if there are n producing sectors: 

X1 = X11+X12+ X13 + ........... +X1n+F1 

X2 = X21+X22+ X23 + ........... +X2n+F2 

 ....  ....  ....  ....  ....   ....  ....   .....  ....   ....   ......  

 ....  ....  ....  ....  ....   ....  ....   .....  ....   ....   ...... 

Xn = Xn1+Xn2+ Xn3 + ........... +Xnn+Fn 

INPUT-OUTPUT TRANSACTION TABLE 

Producing 
Sector 

Total 
Output of 
the sector 


pu

rc
ha

se
s  

Input requirement of producing sectors 

Requirement 
for final uses 

X1 X2 X3 X4 

 

1 

2 

3 

4 

Sales 

a11X1 

a21X1 

a31X1 

a41X1 

 

 

 

 

 

 

a12X2 

a22X2 

a32X2 

a42X2 

 

a13X3 

a23X3 

a33X3 

a43X3 

 

a14X4 

a24X4 

a34X4 

a44X4 

 

X14 

X24 

X34 

X44 

 

F1 

F2 

F3 

F4 

Primary Input I  I1X1 I2X2 I3X3 I4X4  

and  L = L1+ L2+ L3+ L4 + ........... + Ln 
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 X₁ =  + Fj and L =  

Where, XTotal output of the sector  

Xij Output of the ith sector used as input in jthsector and F1 Final demand for ith 
sector.  

The above identity states that all the output of a particular sector could be utilized either 
as an input in one of the producing sectors of the economy and/ or as a final demand. Basically, 
therefore, input-output analysis is nothing more than finding the solution of these simultaneous 
equations. 

16.3.1 Assumptions 

The economy can be meaningfully divided into a finite number of sectors (industries): 

1. Each industry produces only homogeneous output. Now two produced jointly; 
but if at all there is such case then it is assumed that products areproduced in fixed proportions. 

2. Each producing sector satisfies the properties of linear homogeneous production 
function-in other words, production of each sector is subject to constant returns to scale so that 
k-fold change in every input will result in any exactly k-fold change in output. 

3. One of the stronger assumption is that each industry uses a fixed input ratio for 
the production of its output; in other words, input requirements per unit of output in each sector 
remain fixed and constant. The level of output in each sector (industry) uniquely determines the 
quantity of each input which is purchased. 

16.3.2 The Technological Coefficient Matrix 

From the assumption of fixed input requirements we see that in order produce to one 
unit of the jthcommodity, the input used of jth commodity must be a fixed amount, which we 

denote by Qij = .IfXi represents the total output of the jth commodity (on jth producing 

sector) the input requirement of ith commodity will be equal to Qij Xj or Xij=QjjXj. 

As such we can now put the input-output transaction table in terms of technical 
coefficient as follows : 

All these coefficients are non-negative (>0). The above table gives us the total output of 
each sector in terms of technical coefficients, and there are "n" producing sectors: 

X1 = a11X1 +a12X2 +a13X3+............ +ain Xn+F1 

X2 = a21X1 +a22X2 +a23X3+............ +ain Xn+F2 

.....  ....   ....   ....    ....   ....   .....   ....   .....   ....   .... .... 

.....  ....   ....   ....    ....   ....   .....   ....   .....   ....   .... .... 

Xn = an1 X1 +an2 X2 +an3 X3+............ +ann Xn+Fn 

1  = 11X1 + 12X2 + 13X3+ 14X4 

1

n

ij
j

X



1

n

j
j

L



1

ijX

X
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X = Xi + F1 (i = 1, 2 ................n) 

and L =  Xi 

The equations may be put in matrix notations: 

 =  +  

X = AX+F and 

L=  Xi 

SELF-CHECK EXERCISE 16.1 

Q1. What is meant by input-output analysis. 

Q2. Write the assumptions of input-output analysis. 

16.4 CLOSED AND OPEN INPUT-OUTPUT MODEL 

In the above example besides n industries our model contains exogenous sector of final 
demand which supplies primary input factors (labour services which are not produced by n 
industries) and consumes the outputs of the n producing industries (no: as input). Such an 
input, output model is known as open model. It includes, exogenous sectors in terms of "final 
demand bill"-along with the endogenous sectors in terms of n-producing sectors. Input-output 
model which has endogenous final demand vector is known as Closed input-output model. 

SELF-CHECK EXERCISE 16.2 

Q1. Distinguish between Closed and Open Input-Output Model 

16.5 SOLUTION OF OPEN MODEL 

Let us consider an economy with n-industries. If producing sector is to produce an 
output just sufficient to meet the input requirements of the n-industries as well as the final 
demand of the exogenous sector, its output level x1 must satisfy the following equations.  

X₁ = a11 X1 +a12 X2+a13 X3 ......... a1nXn +F1 

or  (1–a11)X1– a12 X2 – a13 x3....... (-) a1n Xn = F1 

For the entire set of n-industries, the correct output levels, therefore can be symbolized 
by following set of n linear equations. 

(1– a11)X1– a12X2 – a13X3.........(-) a1n Xn =  F1 

–a21 X1 + (1–a22)X2 – a33 X3....... +a2n Xn  =  F2 

.....  ....   ....   ....    ....   ....   .....   ....   .....   ....   .... .... 

1

n

ij
j

a



iI

1

2

n

X

X

X

11 12 1n

21 22 23 2n

n1 n2 n3 nn

a a ... a

a a a ... a

..... ..... ... .....

..... ..... ... .....

a a a a

1

2

n

X

X

1

1

X

1

2

n

F

F

1

1

1

F

iI
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.....  ....   ....   ....    ....   ....   .....   ....   .....   ....   .... .... 

– an1 X1– an2 X2 – an3 X4...........(1–an4) Xn = Fn 

In the matrix notation this may be written as: 

 +  

[1–A] X=For, X = [1 – A]-1 F  

Where A is the given matrix or input coefficients while X and F are the vectors of 
output and final demand of each producing sector. 

[1-A]1 0 the [1-A]-1 exists, we can then estimate for either of the 2 matrices X and F by 
assuming on of them to be given exogenously. In finding the solution X = [1 - A]-1.F only one 
matrix inversion needs to be performed even if we have to consider thousands of different final 
demand vectors according to alternative development targets.  

16.5.1 The Hawkins-Simon Conditions 

Many a time input-output matrix solution may give outputs expressed by negative 
numbers. If our solution gives negative outputs, it means that more than one tonne (or any unit) 
of that product is used up in the production of every tonne of that product, which is an 
unrealistic situation. Such a system is not a viable system. Hawkins - Simon conditions guard 
against such situations. 

Our basic equation is X=[1 - A]-1.F, is in such a order that this does not give negative 
numbers as a solution, the matrix, [1 – A] which in fact is  

 

Should be such that: 

(i)  the determinant of the matrix must always bepositive, and 

(ii)  the diagonal elements: (1–an), (1–a22), (1- a33)... (1–ann) should all be positive or 
in other words elements: a11, a22, a33,.....anb should all be less than one. One unit of output of 
any sector should use not more than 1 unit of its own output these are Hawkins-Simon 
Conditions. 

-a -a -a
11

-a -a -a
22

-a -a -a
33

-a -a -a 1 - a

(a-a ) 12 13 .... 1n

21 (1-a ) 22 .... 2n

31 22 (1-a ) .... 3n

.... .... .... ....

n1 n2 n3 .... ( nn)

 
 
 
 
 
 
 
  

1

2

3

n

X

X

X

1

1

X

 
 
 
 
 
 
 
 
  

1

2

3

n

F

F

F

1

1

1

F

 
 
 
 
 
 
 
 
 
 
 

11 12 13 1n

21 22 22 2n

31 22 33 3n

n1 n2 n3 nn

(1- a ) -a -a .... -a

-a (1-a ) -a .... -a

-a -a (1-a ) .... -a

.... .... .... .... ....

.... .... .... .... .....

-a -a -a .... (1 - a )

 
 
 
 
 
 
 
 
  
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Example 1: The following inter-industry transactions table was constructed for an 
economy for the year 1978. 

Industry 1 2 Final Total 

   Consumption  

1 500 1600 400 2509 

2 1750 1600 4650 8000 

Labour 250 4800 --- 5050 

Total 2500 8000 5050 50 

Construct technology coefficient matrix showing direct requirements. Does a solution 
exist for this system? 

Solution: Technology matrix showing direct requirements per Re. of output is obtained 
by dividing input by the total output of the sector. 

i.e.  a11 =  =  =0.20 

 a12 =  =  =0.20 

 a21 =  =  =0.70 

 a22 =  =  =0.20 

 Industry 1 2 

 

 A = 

1 

 

2 

0.20 

 

0.70 

0.20 

 

0.20 

 Labour 0.10 0.60 

 1 = A  

  =  

 [1 – A] =  

 = 0.80 × 0.80 – 0.20 × 0.70 

= 0.50 

11

1

X

X

500

2500

12

2

X

X

1600

8000

21

1

X

X

1750

2500

22

2

X

X

1600

8000

1 0.20 0.20

0.70 1 0.20

  
   

0.80 0.20

0.70 0.80

 
 
 

0.80 0.20

0.70 0.80

 
 
 
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Since |1–A| is positive and all elements of principal diagonal of (1–A) are positive, 
Hawkins-Simon condition are satisfied. Hence the given system has a solution 

Example 2: Find out the output by industries 1, 2 and 3 from the following table: 

 Inter-Industry Sales Final Total 

 

 

inter-industry   1 

Purchase          2 

                        3 

Primary input  4 

 

1 

4 

10 

6 

12 

 

2 

8 

14 

4 

22 

 

3 

6 

10 

8 

16 

demand 

 

14 

14 

22 

--- 

 

 

32 

48 

40 

50 

Total 32 48 40 50 170 

 We have the technology matrix and the Leant of Matrix 

A =  1 – A =  

(I – A)-1 =  

We may verify the obvious result  

=  

If we want to find the effect of a change in one or more final demand levels we can use 
the above inversion since the technology matrix remains the same. 

Suppose the final demand targets are 10.10.20 then the new output will be given by 

4 8 6

32 48 60
10 14 10

32 48 40
6 8 8

40 48 40

 
 
 
 
 
 
 
  

4 8 6
1

32 48 60
10 14 10

1
32 48 40
6 8 8

1
32 48 40

  
 
  
 
 
  

18 7327
20 50 200

83 3373
100 50 50
6 13 70

42 50 50

 
 
 
 
 
 
 
  

7327 18
20 50 200

73 3383
50100 50

39 7013
50100 50

 
 
 
 
 
 
 
  

14

14

22

 
 
 
  

32

48

40

 
 
 
  
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=  =  

i.e. to satisfy the final demand target of 10, 10, 20 total output worth 24.4, 37, 1, 34.5 must be 
produced by industries 1.2.3 respectively.  

SELF-CHECK EXERCISE 16.3 

Q1. Discuss the importance of Hawkins-Simon Conditions of an input-output model. 

Q2. Suppose [A] = , then check whether any solution will be possible for the 

system or not. 

16.6 THE CLOSED MODEL 

If the exogenous sector (final demand level) of the open input-output model is absorbed 
into the system of endogenous sectors, the model would turn into a closed one. In such a model 
final demand bill and primary input will not appear any more: rather in their place, we shall 
have the input requirements and output of this newly conceived industry, the 'household 
industry' producing the primary input labour. Final demand sector would now be considered as 
one of endogenous sector. As such now we shall have (n+1) industries in place of n industries 
and all producing for the sake of satisfying the input requirements. 

This newly conceived industry (of demand bill) will also be assumed to have a fixed 
input ratio as any other industry. In other words, the supply of primary input must now bear a 
fixed proportion to final demand and consumption of this newly concerned industry. This will 
mean for example, that household will consume each commodity in fixed proportion to the 
labour services they supply. 

Looking at the problem in this particular way, it appears that the conversion of open 
model e. into a closed one should not create any significant change in our analyses and 
solution, because disappearance of final demand means only an addition of one more 
homogeneous equation. 

Let us assume that there are 4 industries only including the new one (of final demand) 
designated by subscript 0. We shall, therefore, have the following set of equations. 

X0 =  a00a01 X1 + a02X2+a03X3  

X1 =  a10 X0+ a11X1 + a12X2+a13X3  

X2 =  a20 X0+ a21X1 + a22X2+a23X3  

X3 =  a30 X0+ a31X1 + a32X2+a33X3  

This gives us a homogeneous equation system, 

1

2

3

X

X

X

 
 
 
  

7327 18
20 50 200

73 3383
50100 50

39 7013
50100 50

 
 
 
 
 
 
 
  

10

10

20

 
 
 
  

24.4

37.1

34.5

 
 
 
  

0.2 0.2

0.9 0.3

 
  
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=  

Since the 4 rows of the input coefficient matrix happen to the linearly dependent, |1-A| 
will turn out to be zero. Hence the solution is indeterminate. 

This means that in a close model no unique output mix of each sector exist. We can at 
most determine the output levels of endogenous sector in proportion to one another but cannot 
fix their absolute levels unless additional information is made available exogenously. 

Ex  Given 

A =  

and final demand are F1, F2 and F3, F in the output levels consistent with the model. What will 
be the output levels if F1 =20, F2 = 0 and F3 = 100?  

We know that: 

 = (1-A)-1  

 Now (1 – A)  

Co-factors are as follow 

 A11 = 0.56  A2 = 0.21 A31 = 0.14 

A12= 0  A22 = 0.63 A32=0.18 

A13 = 0  A23=0 A33 = 0.72 

Hence the value of the determinant developing by first column 0.9 × 0.56 = 0.504 

Hence (A – A)1 =  

 =   

00 01 02 03

10 11 12 13

20 23 22 23

30 31 32 33

(1-a ) -a -a -a

-a (1-a ) -a -a

-a -a (1-a ) -a

-a -a -a (1-a )

0

1

2

3

X

X

X

X

 
 
 
 
 
 

0

0

0

0

 
 
 
 
 
 

0.1 0.3 0.1

0 0.2 0.2

0 0 0.3

1

2

3

X

X

X

 
 
 
  

1

2

3

F

F

F

 
 
 
  

0.9 0.3 0.1

0 0.8 0.2

0 0 0.7

 


1

0.504

0.56 0.21 0.14

0 0.63 0.18

0 0 0.72

1.11 0.42 0.28

0 1.25 0.36

0 0 1.43
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  =  

or    =  

 x₁ = 1011F1 +0.42F2+0.28F3 

1.11 × 20+0+ 0.28 × 100 = 50.2 

x2 = 1.25F2+0.36F3 

=0+0.36 × 100 = 36 

X3=1.43F3 =143. 

SELF-CHECK EXERCISE 16.4 

Q1. Describe the features of a closed input-output model. 

16.7 SUMMARY 

 This unit tell us about the interrelationship among different industries in the market. It 
also shows the way of determining output and price of the product for each industry, which is the 
most important thing for this final of inter-linkage among the industries.  

16.8 GLOSSARY  

1. Closed and open Input - Output Model : The I-O model that consider 'final demand 
bill' as exogenous factor is said to be as open I-O model and in closed I-O model "final 
demand bill" is considered as endogenous factor.  

2. Hawkins-Simon Condition : It basically states that more than one unit of a product 
cannot be used up in the production of every unit of that product. If A is the technological 
coefficient matrix then, according to Hawkins-Simon condition, determinant of |I – A| 
must be positive and all principal minor of [I – A] must also be positive. 

3. Technological Coefficient Matrix : The matrix [aij], which basically represents input 
requirement from the industry to produce one output of jth industry, is known as 
technological coefficient matrix. 

16.9 ANSWER TO SELF CHECK EXERCISES 

Self-check Exercise 16.1 

Ans. Q1. Refer to Section 16.3  

Ans. Q2. Refer to Section 16.3.1. 

Self-check Exercise 16.2 

Ans. Q1. Refer to Section 16.4  

  

1

2

3

X

X

X

 
 
 
  

1.11 0.42 0.28

0 1.25 0.36

0 0 1.40

1

2

3

F

F

F

 
 
 
  

1

2

3

X

X

X

 
 
 
  

1 2 3

2 4

4

1.11 F 0.42 F 0.28 F

0 1.25 F 0.28 F

0 0 1.40 F

 


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Self-check Exercise 16.3 

Ans. Q1. Refer to Section 16.5.1 

Ans. Q2. Then [I – A] =  and the value of the determinant | I – A | = (–) 8.12. Which 

is less than zero. As the Hawkins-Simon condition are not satisfied no solution will be possible in 
this case. 

Self-check Exercise 16.4 

Ans. Q1. Refer to Section 16.6  
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16.11 TERMINAL QUESTIONS 

Q1. The input-coefficient matrix is of an open input-output system is given as  

A =  . If the final demand vector in thousand rupees happen to be  

d =  , solve the system for output production. 

Q2. Consider the following inter-industry transaction table. Construct technology coefficient 
matrix showing direct requirements. Does a solution exist for this system? 

Industry 1 2 Final 
Consumption 

Total 

1 500 1600 400 2500 
2 1750 1600 4650 8000 

Labour 250 4800 --- 5050 
Total 2500 8000 5050 15,500 

 

0.2 0.2

0.9 0.3

 
  

0.2 0.3 0.2

0.4 0.1 0.2

0.1 0.3 0.2

 
 
 
  

10

5

6

 
 
 
  
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Unit – 17 

LINEAR PROGRAMMING-SIMPLE METHOD 

STRUCTURE  

17.1 Introduction 

17.2 Learning Objectives 

17.3 Linear Programming 

Self-Check Exercise 17.1 

17.4 Method of Solving LPP's  

 17.4.1 Graphical Method 

 17.4.2 Trial and Error Method 

 17.4.3 The Simplex Method 

  17.4.3.1 Degeneracy of SimplexMethod  

Self-Check Exercise 17.2 

17.5 Summary 

17.6 Glossary 

17.7 Answer to self Check Exercises 

17.8 References/Suggested Readings 

17.9 Terminal Questions 

17.1 INTRODUCTION 

 In this unit, we will learn about the Linear Programming (LP). Linear Programming is a 
technique used for deriving optimum use of limited resources. We will also learn about the 
different methods of Linear Programming. 

17.2 LEARNING OBJECTIVES 

The objectives of this unit is to: 

 enable you to grasp the basic idea of linear programming principles. 

 enable to apply different methods to solve the LPP 

17.3 LINEAR PROGRAMMING  

Linear programming is a mathematical technique and is concerned with the 
optimization of an objective function subject to the availability of limited resources pertaining 
to different activities or processes.Linear programming problems involve optimization in which 
all relationships are linear in nature. It deals with deterministic rather than probabilistic 
situations. Since values attained are constant over time, linear programming problem are of the 
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continues and single stage type.An examination of following simple example should illustrate 
the basic concepts of linear programming problem abbreviated as (LPP) 

Example 1: Industry manufactures two products: x, and x, which are processed in the machine 
shop and the assembly shop. The times (in hours) required for each product in the profits per 
unit aregiven along. 

Machine 
 

 Assembly 
 

Profit Unit 
 

Product X1 2 4 Rs. 3 
Product X1 3 2 Rs. 4 
Total time available    
(In a day) 16 16  

Assuming that there is unlimited demand for both the product how many units of each 
should be produced every day to maximize total profit? 

Let x1 and x2 be the number of units of x1 and x2 be the number of units of each should 
be. produced every day to maximize may be expressedsymbolically as 

Z=3x+4x2 

which is subject to 

2x1 +3x2 ≤16 Maching Constraint  

4x1 +2x2≤16 Assembly Constraint 

Also, x1>0, x2>0, since negative units of any product is meaningless. By analogy the 
general linear programming problem can be defined by  

Maximize (or minimize) z = c1x1 +c2x₂+...... cnxnsubject to 

a1x1 +a12x2 + ...... + a1jxj+  .... + a1nxn (<=>) b1 

a2x1 +a22x2 + ...... + a2jxj+  .... + a2nxn (<=>) b2 

  |    |       | 

  |    |       | 

  |    |       | 

  |    |       | 

am1x1 +am2x2 + ...... + amjxj+  .... + amnxn (<=>) bm 

and then non-negatively restrictions. 

xj>0 where j=1,2..........n 

Also all c's, b's and aij's are constants and xj's are variables. 

We have used (<=>), which means any one of the signs could be there. 

The linear function that is to be optimized is known as the objective function. 
Conditions are called the constraints. Solving a linear programming, problem means finding 
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non-negative values of the variables (x1, x2....... xn) which optimize the objective function and 
satisfy the constraints also. 

SELF-CHECK EXERCISE 17.1 

Q1. What is a Linear Programming Problem? 

17.4 METHOD OF SOLVING LPP'S 

17.4.1 Graphical Methods: Students are advised to refer to any book on Basic Mathematics. 

17.4.2. Trial and Error Method: graphical Method cannot be used when there are more than 
2 variables in an LPP. In that case, we use the simplex Method which is highly efficient and 
versatile also amenable to further mathematical treatment and offers interesting economic 
interpretations. Before that we shall understand trial and error method. 

Slack Variables 

Example I is written below: 

Maximize z=3x1+4x₂ 

Subject to 2x1 +3x2 ≤16 

4x1 +2x2≤16 

x1, x2, >0 

Then< type inequalities can be transformed into equalities by the addition of non-
negative variables say x3 and x4 (Known as slack variables) as below. These variables represent 
imaginary products with zero profit per unit. 

-A 

And the objective function may be rewritten asbelow.  

Maximise z=3x1 +4x2 +0x3 +0x4 

The trial and error and simple methods are basedon the concept of slak variables and 
theorems described below. 

Extreme Point Theorem: It states that an optimal solution to an LPP occurs at the 
vertices of the feasible region. The first step of the method is, therefore to convert the 
inequalities into equalities by the addition (or subtraction) of the slack (or surplus variable) 
depending on the direction of the inequality. In >type inequality we subtract a variable (called 
the surplus variable) to make it an equality. 

It is to be noted that the system of equations (A)above has more variables than the 
number of equations. Such a system of equationshas an infinite number of solutions, yet it has 
a finite and few vertices the co-ordinates of which can be determined by applying the basis 
theorem. Basis theorem states that for a system of m equations in n variables (where n >m) a 
solution in which at least (n-m) of the variables have value of zero is a vertex. This solution is 
called a basis solution. 

1 2 3

1 2 4

2x  3x  1x  16

4x  2x  1x  16

   
   
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Extremes point theorem can be extended to state that the objection function is optimal at 
least at one of the basic solutions. Some of the vertices may be infeasible in that they have 
negative co-ordinates and have to the dropped in view of the non-negativity conditions on all 
variable including the slack and surplus variables. 

Consider the LPP of example I 

Maximise  x = 3x1 +4x2 

Subject to  2x1 +3x2<16 

4x1+2x2 ≤16 

x1, x2> 0 

Introducing slack variable x1 and x4 

Maximise z = 3x1+4x2+0x3+0x4 

  -B 

x1, x2, x3, x4> 0 

Heren (number of variables)=4 and m(number of equation) = 2. Thus n-m = 2. 
According to the basic theorem, we set 2= (n–m) variable in (B) equal to zero at a time, solving 
resulting system of equations and obtain a basic solution. Thus if we zeroise x1 and x2 the 
resulting system of equations would be 

 

These equations directly yield x3= 16 and x₁ = 16 as the basic solution i.e. the co-
ordinates of a vertex. 

The other sets of equations, upon zeroising two variables at a time (B) would be as 
follows : 

  

  

  

  

1 2 3 4

1 2 4 4

2x  3x  1x  0x  16

4x  2x  0x  1x  16

    
    

3 4
1 2

4 4

1x  0x  16
(C) set 1 (x x )

0x  1x  16

  
   

1 2
3 4

1 2

2x  3x  16
Set 2 (x x 0)

4x  2x  16

  
   

1 4
2 3

1 4

2x  0x  16
Set 3 (x x 0)

4x  1x  16

  
   

1 3
3 4

1 3

2x  1x  16
Set 4 (x x 0)

4x  2x  16

  
   

1 3
1 4

2 3

3x  1x  16
Set 5 (x x 0)

2x  0x  16

  
   
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By solving these six sets of simultaneous equations we obtain six basic solution i.e. co-
ordinates of the six vertices of the feasible region. The solutions are giver below: 

Set  Solution 

1  x3 = 16, x1 = 16 

2  x1 = 2, x2 = 4 

3  x1 = 8, x4 = -16 

4  x1 = 4, x3 = 8 

5  x1 = 8, x3 = -8 

6  x2 = 16/3, x2 = 16/3 

Since the solution 3 and 5 yield a negative co-ordinate each, contradicting thereby the 
non-negativity constraints, these are infeasible and have to be dropped from consideration. 

Now according to the basic theorem the optimal solution lies at one of the vertices. By 
substituting these co-ordinates the values of objective function are derived below: 

Set Solution Z (Profit) 

1 x3 = 16, x₁ = 16 48 

2 x1 = 2, x2  = 4 22. 

3 Infeasible NA 

4 x1 = 4, x3  = 8 12. 

5  Infeasible NA 

6 x2 = 16/3, x4 =  16/3 
21  

Thus the solution 2 is optimal with a profit of 22. 

This is how we can solve an LPP simply by employing the theorems stated above, but 
the simplex method is a further improvement over the trial and error method. 

17.4.3 The Simplex Method 

The simplex method is a computation procedure an algorithm for solving linear 
programming problems. It is an iterative optimizing technique. In the simplex process, we must 
first find an initial basic solution (extreme point). We then proceed to an adjacent extreme 
point until we reach an optimal solution. For maximization the simplex method always moves 
in the direction of steepest ascent, thus ensuring that the value of the objective function 
improves with each solution 

2 4
1 3

2 4

3x  0x  16
Set 6 (x x 0)

2x  1x  16

  
   

1

3
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Example Maximise: f=2x+5y 

Subject to (1) x+4y≤24 

3x + y ≤21 

x +<9 

and   (2) x,y, ≤0 

Introducing the slack variables, we obtain following equations: 

x+4y+s₁=24 

3x+y+s2=21 

x+y+s3 = 9 

 which can be written in vector equation from  

  x +  y + s1 + 

   ↓      ↓      ↓ 

 P4     P2     P3 

P1x+P2y+P3s1 +P4s2 +P5s3 = P0 

Thus the whole problems reduce to: 

Max. 

f=2x+5y+0s1 + 0s2 + 0s2+0s3  .....  (I) 

Subject to: 

P1x+P2y+P3s1 +P4s2 +P5s3 = P0.....  (II) 

Simplex Tableau is formed in a particular way as explained below: 

(1) All the vectors appear on the top or the table, but their order of appearance is 
changed.  

Simplex table (Example 2) 

Cj  0 0 0 0 2 5  

Stage  vector P0 P3 P4 P5 P1 P2 Ratios 

 ←0 P3 24 1 0 0 1 4 
 =  = 6 

1

3

1

 
 
 
  

4

1

1

 
 
 
  

1

0

0

 
 
 
  

30

32

a

a

24

4
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Stage I 0 P4 21 0 1 0 3 1 
=  = 2 

 0 P5 9 0 0 1 1 1 
 =  = 9 

 zj  0 0 0 0 0 0  

 zj-cj  0 0 0 0 -2 -5  

 5 P2 6 1/4 0 0 1/4 1 
= = 2 

Iteration  

(stage 2) 

0 P4 15 -1/4 1 0 11/4 0 
 =  =  

← 0 P5 3 -1/43 0 1 
 

0 
 =  = 4 

 zj  30 5/4 0 0 5/4 5  

 zj-cj  30 5/4 0 0 
 

-5  

 

Iteration II     5 P2 5 1/3 0 -1/3 0 1 

(Stage 3)       0 

2 

zj 

zj-cj 

P4 

P1 

4 

4 

33 

33 

8/12 

-1/3 

1 

1 

1 

0 

0 

0 

-11/4 

1 

1 

1 

0 

2 

2 

0 

0 

5 

5 

0 

(1) P0 vector appears first followed by the Basic (identity) vectors, viz: P3, P4 and P5 
followed by structural vectors, viz; P1 and P2 . 

(2) In the first row of the table (cj), we write the coefficients of the vector of the 
objective (1), which is required to be maximized, following the order described in (1) above. 

(3) In the first column of table (cj) we write the coefficient of the basis vectors at 
the first stage: but subsequently these coefficients are replaced by the coefficients of the 
incoming structural vectors. 

(4) Formulation of zj row; zj is the summation of products of element of each 
column vector with corresponding element of cj column. 

40

42

a

a

21

1

50

52

a

a

9

1

20

21

a

a

6

1 / 4

40

41

a

a

15

11/ 4

60

11

3

4
50

51

a

a

3

3 / 4

3

4
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For example, element of P, column are (0, 0, 1), while corresponding element of cj 
column = (0 × 0) + (1 × 0) + (1 × 0) = 0.  

Since cj column possesses all zeros in first zj, forall vectors will be zero (always) 

(5) Formulation of (zj–cj) row: Subtract from zj value of each column the cj value of 
the vector given in the 1st row of the table. Except in case of columns P1 and P2 all the element 
of (zj-cj) row will be zero in the first stage. For the vector P1 and P2 the value of zj-cj will be (-
2) and (-5) respectively; because for the vector P1cj= 2 and zj=0 and for vector P2cj= 5 and zj = 
0. 

Before going further to stage II (or iteration I), following test is used to determine 
whether the solution of the given LP. problem is an optimal feasible solution, or whether it is 
necessary to make further manipulation (iteration) or whether there can be no finite solution at 
all of the given problem. 

Test 

(1) If all zj-cj>0, an optimal solution has been obtained, hence no further iterations 
are necessary.  

(2) zj-cj≤0 for some columns, then 

(a) If all the element of those columns for which (zj-cjI <0) possess negative values, 
the solutions will be infinite. 

(b) If some of the elements of those columns 1 for which zj-cj<0 possess positive 
values, further iterations are necessary to achieve the optimal solution. 

If we apply the above test to our problem it is found that in the stage (zj-cj) <0 for 
vectors P1 and P2. Also all the, elements of these 2 vectors columns possess positive value 
hence further iteration is needed to arrive at the optimal solutions. 

We proceed as follows for further iteration: A structural vector (P1 and P2) is used to 
replace the basis vectors (P3, P4 and P5) in turn. Replacing vector will be that structural vector 
which has highest negative zj–cj value amongst them. In the first stage of the tableau, for 
example, we could select P2 tothe replacing vector since for P2 we have zj–cj=-5. 

The replaced vector is determined by means of finding the ratio of each element in P0, 
vector to the corresponding elements of the replacing vector P2. The basis vector associated 
with the smallest positive ratio would be the vector to be replaced. 

Let a30 denote the element of the row labeled P3 and column labeled P0. It is 24 in our 
present example. a42 denotes the element of the row labeled P4 and column labeled P2. It is 1 in 
out table. A51 denote the element of the row labeled P2 and column labeled P5. It is 1 out table. 
In the first stage of the table we have three ratios: 

(associated with P3 vector)=6 

(associated with P4 vector)=21 

30

32

a

a

40

42

a

a
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(associated with P5 vector)=9 

(B) Formulation of Iteration i (or stage II):  

(i) We first write new vector (introduced) P2 in place of the basis vector replaced 
(P3) in the 2nd column of the table. 

(ii) The element in the row of this new vector P2(introduced) are obtained by 
dividing each element of P3 row by corresponding the element of vector P2. 

Therefore, element in P2 row will be: 

 =  = 6.  =  

 = ,  =  = 0 

 =  and  =  

(C) Formulation of zj and (zj–cj) 

Again we determine zj row by the same procedure given in stage 1, that is multiply each 
column by the corresponding element in the cj column and then add these products. In stage II, 
element in the P0 are 6.15, and 3. Multiplying each of these by the corresponding elements in cj 
column and then adding them we get. 

(6 × 5+15 × 0 × 3 ×0)=30  

Value of Cj given in the first row is zero for thiscolumn. 

zj – cj = 30 – 0 = 30 

Value of Cj and (zj – cj) for other column are determined in the same way. 

As explained under 'test' this iteration process is carried on until all (xj–cj) value are 
either=0 or more than zero i.e. positive. In our example, we stop after iteration II, when all the 
solution has been achieved. 

This solution is given by P0 column 

P0=5P₂+4P4+4P1 

But the coeff. Of vector P2 is y y=5 

Coefficient of vector P1 is  x=4 

Coefficient of vector P4 is s = 4 

That is, the given function 2x+5y+0s1 +0s₂+ 0s3 will be maximum when x=4 and y=5 
and the maximum value of the function will be 2(4)+4(0)= 33, which is also given by the 1st 
element of zj row. 

50

52

a

a

30

32

a

a

24

4
33

32

a

a

1

4

34

32

a

a

0

4
35

32

a

a

0

4

31

32

a

a

1

4
32

32

a

a

4

4
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17.3.3.1 Degeneracy in SimplexMethod 

If at any stage in carrying out the simplex operation it is discovered that structural 
vectors replace more than one basis vector, then LP problem is said to degenerate. In other 
words this means that in casewe get two or more than two minimum ratio identical, then 
structural vector would be replacing two or more than two basis vector. This will be the case of 
degeneration. 

Example 3.Maximise z=x1 +x₂ 

Subject to  8x1 +x2<200 

x1 2x2≤100 

and  x1 ≤0, and x2≤0 

Using slack variables x3, x4, the inequalities become equalities which should be written 
in the form 

8x1 +x2+x3+0x4=200  

x1 + 2x2+ 0x3+x4= 100 

To maximize z=x1 + x2 +0x3 +0x4 from the initial toblean with zero profit as the 
solution corresponding to zero production. This provides us with the initial feasible solution. 

   P1 = 1 P2 = 1 P3 = 0 P4 = 0 

Pi Basis  x0 x1 x2 x3 x4 

0 x3 200 8 1 1 0 

0 x4 100 1 2 0 1 

 Zi 0 0 0 0 0 

 Pi - zi  1 1 0 0 

Step 1. First determine the optimal column. The row Pi-Zi show the net profit when one unit of 
the variable is added. If there is no positive Pj-Zj implies the solution can be improved. 

Between x1, x2 the coming in variable is that which contributed most to the profit. Here 
since both x1, x2 contribute equally we may take, say x2 as the coming in variable. The x2 
column is the optimal column. 

Step 2. Consider the ratios obtained by dividing the quantities of x3, x4 rows by the 
corresponding entries in the optimal column. 

  = 200.   = 50 

The going out variable is the one corresponding to the smaller ratio. Herex4 is the going 
out variable to be replaced by x2 in the new tableau. The largest quantity of x2 that can be taken 
50. 

200

1

100

2
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   P1 = 1 P2 = 1 P3 = 0 P4 = 0 Explanation 

For x 

Pi Basis  x0 x1 x2 x3 x4 row divide old x4 

0 x3 150 
7  

0 1 
 

row by 2 e.g. 

0 x4 50 
 

1 0 
 = 50 etc. 

 Zi 50  1 0   

 Pi - zi   0 0   

To find the elements of the rows the following formula is used. 

Old row element-old row element correspond- ing element in optimal column in the 
coming in row. 

Thus 200-1 × 50 = 150,8–1×  = 7 1-1 × 1=0 

Step 3. The positive profit per unit is the Pj-Zj column suggests the need for further 
improvement with the help of x1. 

We therefore, repeat the steps, between  = 20 and  = 100, the smaller ration 

corresponds to x3 which is now the going out variable to be replaced by x1. 

 Cj 0 0 0 3 4  Ratio 

  Vectors P0 P3 P4 P1 P2 a31/a32=6/1 = 6  

a41/a42=21/4 

21/4 is least, replaced vector 
P₂.  

4 is least no is row zj-cj 

replacing vector is P2 

a30/a31= 3/4/1/2=3/2  

a20/a21=21/4/1/2=21/2 

Since 3/2 is least ratio 
replaced vector is P3 

Since -I is least no. in row zj-
cj 

Replacing vector is P₁ 

Stage I 0 P3 6 1 0 1 1 

 ←0 P4 21 0 1 2 4 

 zj  0 0 0 0 0 

        

 Zj - cj  0 0 0 -3 -4 

 0 P3 3/4 1 -1/4 1/2 0 

 4 P2 21/4 0 1/4 24/=1/2 4/4=1 

Stage II zj  21 0 1 2 4 

 zj-cj  21 0 1 -1 0 

1

2

1

2

1

2

1

2

100

1

1

2

1

2

150

71/ 2

50

1/ 2
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 3 P1 3/2 2 -1/2 1 0  

Stage III 4 P2 9/2 -1 1/2 0 1 

 zj  45/2 2 1/2 3 4 

 zj-cj  45/2 2 1/2 0 0 

 

   P1 = 1 P2 = 1 P3 = 0 P4 = 0 

Pj Basi x0 x1 x2 x3 x4 

0 x1 20 1 0 2/15 -1/15 

       

0 x2 40 0 1 -1/2 -3/4 

zi . 60 1 1 -11/30 -41/60 

pi - zi   0 0 -1/2 -17/60 

There is no positive Pj–Zj now so that the optimal solution is x1 = 20, x2=40. 

Example 4. Maximize b = 3x1 +4x₂ 

Subject to  x1+x2 < 6 

2x1+ 4x2 < 21 

Where x,≥0, x2>0 

Sol. Introducing the stack variables we have 

x1+x2 +s1 = 6. 

2x1+ 4x2 +s2 = 21 

which can be written in vector form as 

 x1 + x2 + s1 + s2 =  ...(1) 

or P1x1 +P2x2 +P2s1 +P4s2 = P0 

our problem becomes 

Maximize f= 3x1 4x2 +0s1+ 0s₂   ...(2) 

Subject to P1x1 +P2x2 +P3s1 +P4s2 = P0=  ...(3) 

Stage 1 

Step (i) In stage 1, the elements of cj row are values of P0, P1, P2, P3 and P4 in equation 
(2) by comparing equation (2) and (3). 

1

2
 
 
 

1

4
 
 
 

1

0
 
 
 

0

1
 
 
 

6

21
 
 
 
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Step (ii) The elements of columns P0, P3, P4, P2 are written from equation (1) by 
comparing it with equation (3). 

Step (iii) The element of column vector cj in stageI are written as coefficient of s1 and s2 
in equation (2) 

Step (iv) The elements of zj row are written as sum of product of column vector of cj 
with that of column vector of P0, P3, P4, P1, P2. 

e.g. first element of cj row is 

0×6+0×21=0 

Step (v) The elements of row zj-cj are written by subtracting corresponding elements of 
the row of zj and cj. 

Step (vi) The ratios are obtained, the vector corresponding to least ratio (e.g. vector P4 
in this case) is to be replaced by vector P2 (corresponding to least number in row vector zj–cj) 

Stage II 

Step (i) The elements of row P2 in stage II are written by dividing each elements of row 
P4 in stage1 by number a42 (i.e. 4 in this case)  

Step (ii) The elements of P3 row are 

 

  

  

  

   

Step (iii) The elements of zj row are written as sum of product of corresponding 
elements of column vector ci and P0, P3, P4, P1, P2. 

e.g. first elements of row zj in stage II is 

 

Step (iv) The elements of zj–cj are written by subtracting corresponding elements or 
rows of zj and cf. 

Step (v) The ratios are obtained, the vector corresponding to least ration (e.g. vector P3 
in this cases is to be replaced by vector P1 (corresponding to least number in row vector zj-cj) 

32
40

42

a 1 3
a × = 6 21 × 

a 4 4
 

32
40 40

42

a 1
a a 3 × =1 0 × 1

a 4
  

32
34 44

42

a 1 1
a a × = 0 1 × 

a 4 4
   

32
31 41

42

a 1 1
a a × =1 2 × 

a 4 2
  

32
32 42

42

a 1
a a × =1 4 × 0

a 4
  

3 21
0 4 2

4 4
   
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This process of replacing structural vector (P2, P4) by basis vectors (P1,P2) will continue 
till all the elements of row vector zj-cj are positive or zero. 

Stage III 

Step (i) The elements of P1 row in stage III are written by dividing element of row P3 in 
stage II by number a3 1 be  

Step (ii) the elements of P2 row are 

 

 

 

 

 

Step (iii) The elements of row of zj are written in similar way e.g. the first element of 
row zj in 

 × 3 + 4 ×  = + 18 =  

Then the elements of row zj–cj are written down. In stage III all the elements of vector 
row zj–cj are positive, hence an optimum has been achieved.  

This solution is given by P0 column in stage III 

P0  =  P1 + P2 

Compare it with P1x1 +P₂x₂+P3s1 +P4s₂ = P0 

The given function is maximum when 

x₁ = 3/2,x2=9/2/ 

and Maximum value of f=3  + 4  

1

2
21

20 30 1
31 2

21 3 21 3 18 9

4 4 4 4 4 2

a
a a

a
        

1

2
21

23 33 1
31 2

0
a

a a
a

     

1

2
21

24 24 1
31 2

1 1 1

4 4 2

a
a a

a
        
 

1

2
21

21 21 1
31 2

1 1
0

2 2

a
a a

a
     

1

2
21

22 32 1
31 2

1 0
a

a a
a

     

3

2

9

2

9

2

45

2

3

2

9

2

3

2
 
 
 

9

2
 
 
 
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 =  + 18 =  

SELF-CHECK EXERCISE 17.2 

Q1. Define 

 (a) Slack variable 

 (b) Extreme Paint Theorem 

 (c) Degeneracy is Simplex Method 

Q2. What are the different methods of solving LPP's? 

Q3. Maximise  z = x + y, subject to x + y < 5 

 x + 3y < 12, x > 0, y > 0 

Q4. Maximise  z = 3x2 + 7x2 + 6x3 

 Subject to 2x1 + 2x2 + 2x3< 8 

 x1 + x2< 3 

 x1> 0, x2> 0, x3> 0 

17.5  SUMMARY 

 In this unit, we learnt about the Linear Programming. Linear Programming is a 
mathematical technique and is concerned with the optimization of an objective function subject 
to the availability of limited resources pertaining to different activities as process. We also 
studied about the different methods of solving h PP's. In the last two section we leaned about 
the Graphical method and simples method to solve linear programming. 

17.6 GLOSSARY 

1. Basic Feasible Solutions : These solutions are basic as well as feasible. 

2. Basic solution : Any set of values of the variables in which the number of non-zero 
valued variables is equal to the number of constraints is called a Basic solution.   

3. Constraints : The linear inequalities or the side condition. 

4. Feasible solution : A set of values of decision variable which satisfies the set of 
constraints and the non-negativity restrictions. 

  

9

2

45

2
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17.7 ANSWER TO SELF CHECK EXERCISES 

Self-Check Exercise 17.1 

Ans. Q1. Refer to Section 17.3 

Self-Check Exercise 17.2 

Ans. Q1. (a) Refer to Section 17.4 

     (b) Refer to Section 17.4 

     (c) Refer to Section 17.4.3.1 

Ans. Q2.  Refer to Section 17.4 

Ans. Q3. Refer to Section 17.4 

Ans. Q4. Refer to Section 17.4 

17.7 REFERENCES/SUGGESTED READINGS 

 1. Nichason, R.H. (1986). Mathematics for Business and Economics, McGrew Hill. 

 2. Dorfwan, R. Samuelson P.A. and Solow. R.M. (1987). Linear Programming and 
Economic Analysis, McGraw Hill. 

 3. Hadley, G. (2002). Linear Programming, Narosa Publishing House, New Delhi. 

 4. Bose, D. (2018). An Introduction to Mathematical Economics, Himalaya Publishing 
House, Bombay. 

17.8 TERMINAL QUESTIONS 

Q1. Using simple method solve the problem :  

 Maximise  x = 6x1 + 2x2 +5x3 

 Subject to < and  

 x1 , x2, x3> 0 

Q2. Maximise  z = 4x + 8y +2k 

   y2x + 2y + 4k > 4 

   x + y – 2k > 6 

   x > 0, y > 0, k > 0 and minimise the same for z.  

----  

2 3 1

1 0 2

1 2 5

 
 
 
 
 

1

2

3

x

x

x

 
 
 
 
 

10

8

19

 
 
 
 
 
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Unit - 18 

LINEAR PROGRAMMING-PRIMAL AND DUAL 

STRUCTURE  

18.1 Introduction 

18.2 Learning Objectives 

18.3 Duality 

18.3.1 Symmetry between Primal and Dual 

18.3.2 Correspondence between Primal and Dual Optimal Solutions 

18.3.3 Economic Interpretation of Primal and Dual 

Self-Check Exercise 18.1 

18.4 Summary 

18.5 Glossary 

18.6 Answer to Self-Check Exercises  

18.7 References/Suggested Readings 

18.8 Terminal Questions 

18.1 INTRODUCTION  

 In the last unit, we learnt about the concept of linear programming. In this unit, we will 
learn about the Primal and Dual, symmetry between then and the correspondence between 
Primal and Dual optimal solution will be studied is the successiding sections. In this last 
section of this unit, economic interpretation of primal and dual will be studied.  

18.2 LEARNING OBJECTIVES 

 After going through this unit, you will be able to  

 solve the problems based on Duality 

 apply the concept of duality to solve the economic problem 

18.3 DUALITY 

The original problem (whether it is in the form of maximization or minimization 
function) is referred to as a prime problem. If the prime problem requires maximization, the 
dual problem is one of minimization and if the prime is a minimization problem, the dual is a 
maximization problem. In this way minimization are really not so distinct as they appear to be. 
In fact, since the dual are always identical and also that prime can be translated into its dual 
and vice versa, we have always an option of picking either of the two to work on nevertheless, 
the choice will ultimately depend upon: 

(1) The formulation that yield more directly thedesired result; and  

(2) The formulation that can be more easily solved. 
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A very good illustration of relationship between optimal problem and its dual is 
provided in the theory of production and costs. Suppose the prime problem was that of 
maximization of the total net revenue with given cost out lay. The dual would be that of 
minimization of cost for the given output. 

Suppose a firm produces 2 products with 2 inputs, there are capacity constraints of the 
inputs, if the prices of two products are p1 and p2 then the revenue which the firm will try to 
maximize will be: 

 R = p1x1 + p2x2 

 Suppose a firm produces 2 products with 2 inputs, these inputs which may be written as 

  a11x1 +a12x2< b1 

  a21x1 +a22x2< b2 

for input 1 and 2 respectively. 

Obviously this presentation can be generated if the number of products are n and 
number of inputs m. Then the problem will be to maximize. 

R =  

Subject to   < b1 

  .  . 

.  . 

  .  . 

  .  or < b1 

  .  . 

  .  . 

  .  . 

   < b2  j = 1, 2 ....., m 

  .  . 

  .  . 

  .  . 

   < bm 

1

n

i i
j

Px



1

n

ji i
i

a x



1

n

ji i
i

a x



21 1
1

n

i

a x



1

n

mi i
i

a x


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And xi>0 

Ormaximize  R = px 

Subject to  Ax<B 

And  x > 0 

Now consider the Dual. Suppose that the firm decides to determine the portion, of total 
revenue from each of its products it owes to each of the inputs (or capacities spent). This can be 
done if we consider the imputed prices (or opportunity costs of Shadow prices) of all inputs on 
each of the products. 

We know that one unit of product 1 uses a11, and a21 amount of input are c1 and C2, the 
total cost of producting one unit of product 1 will be a a11c1 +  a21c2. This should be at least as 
much as the price of the product, in the market (p1). Similarly for the other product, Hence, 

 

(1) 

The total input cost of input available will be b1c1 + b2c2. 

Hence the from will minimize the total input cost (2) subject to the constraints (1). This 
can be generalised as follows: 

Minimise: 

f=b1c1 +b2c2+...+bmcm =  

(2) Structural constrains: 

a11c1 + a21a2...... am2cm> P2 or > P1 

a12c1 + a22a2...... am2cm> P2 or > P2 

 |      |        | 

 |      |        | 

 |      |        | 

a1nc1 + a2na2...... amncm> or > Pn 

(3) Non-negatively constraints: cj>0(j=1,2 ..............m) 

11 1 21 2 1

12 1 22 2 2

a c a c p

a c a c p

  
  

1

m

j

bjcj



1
1

m

j j
j

a c



2
1

m

j j
j

a c



1

m

jn j
j

a c


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or minimise f=  

Subject to ≥Pi 

    i = 1, 2 ........... n 

and cj>0,j=1,2....... m,  

or  in the matrix notation,  

minimise: f = BC 

Subject to A C>P 

C≥0 

where  P is the column vector of prices 

X is the column vector of outputs,  

A=m×n coefficent matrix  

B= capacity constraint vector. 

18.3.1 SYMMETRY BETWEEN PRIMAL AND DUAL 

Form the above general L.P section we can easily pinpoint following characteristics of 
the primal and dual programmes which give them remarkable symmetry. 

(1) Regarding objective function (i) if the primal involves maximization, the dual involve 
minimization and vice versa. 

(ii) The profit constraints in the primal problemreplace capacity constraints and vice versa. 

(2) Regarding Structural Constraints: (i) If the primal involve> sign, the dual involve< 
signs and vice versa. 

(ii) A new set of variable appear in the dual. 

(iii) If in the prime the coefficients in the constraint are found by moving from left to right, 
coefficients are positioned in the dual form top to bottomand vice versa.  

(3) Regarding non-negatively constants: Theconstraints remains unchanged. 

(4) Regarding variable: neglecting the number or non-negativity constraints. If there are 'n' 
variables and 'm' inequalities in the primal problem, in its dual there will be 'm' 
variables and 'n' inequalities. 

These symmetrical characteristics between primal and its dual help us to formulate 
certain rules fortranslating primal into to dual or vice versa. 

  

1

m

j j
j

a c



1

m

ji j
j

a c


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Example 1: 

Primal Dual 

Minimize f=4x+5y 

Subject to: 

                 x >4        
x > 3        x + y  > 
8   

and A≥0. y≥0. 

Maximize f=4A+3B+8C 

Subject to: 

A+C<4 

B +C< 5 

 and A > 0. B > 0, c > 0. 

 

structural constraints may be put in matrix form: 

 >  ,  

The basic rules to transformation are as below:  

(1) The row vector of the coefficients in the primal objective function gives us the column 
vector of constrains in the dual constraints. Similarly the column vector of constraints in 
the primal constraints becomes the row vector of the coefficients in the dual objective 
function. 

(2) Transpose of the coefficient matrix of the primal constraints gives us the coefficients of 
the primal constraints gives us the coefficients of the constraints in the dual and vice 
versa. 

(3) The inequality sign in the dual constraints is reversed, but inequalities of non-negativity 
conditions retain their direction 

Example 2. Write the dual of programme 

Minimize  f=x1 +x2 +3x2+2x5 

Subject to x1 + 3x2– x2+2x5> 7 

-2x2 + 4x3 +x4  ≥ 12  

-4x2 +3x3 +8x5 +x6>10 

and  xj> (j = 1 ................6) 

(1)  The row vector of objective function is = [1, 1,3,0,2,0]. This become the column 
vector of the constraints 

1 0

0 1

1 1

 
 
 
  

x

y

 
 
 

4

3

8

 
 
 
  

1 0 1

0 1 1

 
 
 

A

B

C

 
 
 
  

4

5

 
 
 
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(2)  The column vector of the constraints is =  

This become row vector of the coefficients of the objective function with new set of 
variables (x,y, z). 

 Objective function 

f=7x+12y+10z. 

(3) The coefficient of constraints of primal are given by matrix. 

 A =  

Transpose A = A' =  and A' <  

Since we have introduced a new set of variable (x, y, z) therefore, the required 
constraints in the dual will now be: 

 x ≤ 1 ...(1) 

 3x – 2x – 4z ≤ 1 ...(2) 

 -x + 2y + 3z ≤ 3 ...(3) 

 y ≤ 0 ...(4) 

 2x+8z≤2 ...(5) 

 z ≤ 0 ...(6) 

and x, y, z ≤ 0 ...(7) 

with the objective function: f=7x+ 12y + 10z of course, constraints 4, 6 and 7 imply that y and 
z must be zero. 

1

1

3

0

2

0

 
 
 
 
 
 
 
 
  

7

12

10

 
 
 
  

1 3 1 0 2 0

0 2 4 1 0 0

0 4 3 0 8 1

 
  
  

1 0 0

3 2 4

1 4 3

0 1 0

2 0 8

0 0 1

 
   
 
 
 
 
 
  

x

y

z

 
 
 
  

1

1

3

0

2

0

 
 
 
 
 
 
 
 
  
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We always select the problem in the form which involves lesser number of constraints. 
But in case the primal and its dual have an equal or nearly number of constraints, preference 
should be given to the problem in its maximization form because there is no need to introduce 
artificial variables along with the slack variables as would be in the minimization form. 

18.3.2 CORRESPONDENCE BETWEEN PRIMAL AND DUAL OPTIMAL 
SOLUTIONS 

Example 3. Write the Dual of the following problem and solve it. 

Primal Dual 

Maximizez=3x1+4x2 

Subject to  2x1 +3x2 <16 

4x1 +2x2<16 

x1, x₂≥  0 

Maximize z=16y1 +16y2 

Subject to 2y+4y2≥3 

3y1+2y₂≥4 

y1, y₂≥  0 

Introducing surplus and artificial varietals.  

Minimize  z = 16y1 +16y₂+MA1 +MA₂ 

Subject to  2y1 +4y₂– s1 +A₁ = 3 

3y₁+2y₂– s₂+ A₂ = 4  

y₁, y₂, s₁, s₂, A₁, A2>0 

Fixed Prog.  Cost Qty. 16 16 0 M M Replacement 

Ratio   y1 y2 s1 s2 A1 A2 Ratio 

A1 M 3 2 4 -1 0 1 0 3/4← 

1/2 A2 M 4 3 2 0 -1 0 1 2 

  16-5 M  16-2M  MM 0 0  

    ↑      

1/2 Y2 16 3/4 1/2 1 -1/40 1/4 0 3/2  

A2 M 5/2 2 0 -1/2 -1 -1/2 5/4  

 3-2 M 0 4 
- MM -4+  

MM 0  

 ↑         

Y2 16 1/8 0 1 -1/8 1/4 3/2 -1/4  

Y1 16 5/4 1 0 1/4 -1/2 -1/4 1/2  

   0 0 2 4 M-2 M-4  

 

  

1

2

1

2
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We put the optimal table of the primal and the dual below to bring out the 
correspondence between them.Except for sign reversal the value in the primal and the dual are 
the same. In other words the dual problems gives the solution in term of marginal value of 
resources for the primal problem.There is exact correspondence between the primal and the 
dual.Thus we can extract the primal optimal solution from the dual optimal table vice versa. 

Primal Optimal Table  

Prog. Profit Qty x1 x2 x3 x4 

x2 4 4 0 1 1/2 -1/4 

x3 3 2 1 0 -1/4 3/8 

       

NER   0 0 -5/4 -1/8 

Dual Optimal Table  

Prog. Cost. Qty y1 y2 s1 s2 A1 A2 

y2 16 1/8 0 1 -3/8 1/4 1/8 -1/2 

y3 16 5/4 1 0 1/4 1/2 -1/4 1/2 

   0 0 2 4 M-4 M-4 

Marginal value of resources is synonymous with opportunity cost or shadow price. 
 

18.3.3 ECONOMIC INTERPRETATION OF PRIMAL AND DUAL 

Example 4: 

Wordsworth Ltd. has three departments (Assembly, Finishing And Packing) with 
capability to make three products Table (T) at Rs.2/ unit profit, Chairs (C) at Rs. 4/unit profit 
and Book Case (B) at Rs. 3/unit profit. One table requires 3 hrs of assembly, 2hrs of finishing 
and 1 hrs of packing time. One Chair requires 4 hrs, 1 hrs and 3 hrs of assembly, finishing and 
packing time respectively. One book case require 2 hrs each of assembly, finishing and 
packaging time. Total time available for assembly, finishing, and packing are 60 hrs, 40 hrs and 
80 hrs, respectively. Find the number of each product that should be produced in order to 
maximize the profit. 

Solution: The primal for the problem is 

Maximize 2T+4C+3B 

Such that 3T + 4C + 2B ≤ 60 Assembly constraint 

2T+1C+2B≤ 40 Finishing constraint 

1T+3C+2B≤80 Packing constraint 

All variable>0 

The final table of primal is 
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   T 

2 

C 

4 

B 

3 

S1 

0 

S2 

0 

S3 

0 

4 C 
6  

1/3 1 0 1/3 -1/3 0 

3 B 
16  

5/6 0 1 -1/6 2/3 0 

0 s2 26  
-5/3 0 0 -2/3 -1/3 0 

 cj-zj  -11/6 0 0 -5/6 -2/3 1 

 The optimal solution is to produce 6  chairs, 16 book cases and no tables. The total 

contribution for the product mix is Rs.76.67. The value under the s1, s2, s3 columns in the cj-zj 
row indicate that to remove one productive hour form each of the three departments would 
reduce the total contribution, respectively, by Rs.5/6, Rs.2/3 and Rs.0. 

Now the manager or the company recognizes that the productive capacity of the three 
departments is a valuable resource to the firm. He soon comes to think in terms of how much 
he would receive from another furniture producer, a renter who wanted to rent all the capacity 
in Woodworth company's three departments. He reasons along the following lines, suppose the 
rental charge were Rs.y1 per hour of assembly time, Rs.y2 per hour of finishing time Rs.y3 per 
pacing time. The cost to the renter of all the time would be Rs.60y1 +40y₂+80y3= total rent 
paid of course, the rented would want to set the rental pricein such a way as to minimize the 
total rent to be minimize. Hence objective function 

Minimize 60y1 +40y2 +80y3 

One table requires 3 assembly hours, 2 finishing hours and packing hour. The time that 
goes making a table would be rented out for Rs. (3y1 +2y₂+ ly3) if the manager used that time 
to make a table, he would earn Rs.2 in contribution to profit, and so he will not rent out the 
time unless 

3y1 +y2+ly3>4 

Similar reasons give the other two dual constraints. 

4y1 +1y2 +3y3>4 

2y1 +2y2+2y3>0and or course, the rental must be non-negative. 

Thus the dual problem which determines the value of the productive resources is 

Minimise  60y1 +40y2+80y1 = total rent paid. 

Subject to 3y1 +1y1+1y3= <2 

  4y1 +1y2+ 3y3= < 4 

  2y1 + 2y2+1y3= < 3 

  y1, y2 , y3< 3 

2

3

2

3

2

3

2

3

2

3
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The final table of the dual problem is 

   60 

y1 

40 

y2 

80 

y3 

0 

s1 

0 

s2 

0 

s3 

M 

A1 

M 

A2 

M 

A3 

60 y1 5/6 1 0 2/3 0 -1/3 1/6 0 1/3 -6 

0 s1 11/6 0 0 5/6 1 -1/3 -5/6 -1 1/3 5/6 

40 y2 2/3 0 1 1/3 0 1/3 -2/3 0 -1/3 2/3 

   0 0 
26  

0 
6  16  

M M 
-6  

          M 
-16  

The optimal solution indicates that the worth of the company of a productive hour in 
assembly isRs.5/6 in finishing department Rs.2/3 and in pack- aging department Rs.0. Of 
course, these are the same values we get by looking at the cj-zj in the final table of the primal. 
Thus if we solve primal, we can get solution to dual. Similarly, if we solve primal, we get 
solution to primal which can be obtained from cj-zj row of dual corresponding to the slack 
variables. In this case cj-zj corresponding to s₁, S₂ and s3 0, and which is the solution to the 
primal problem. 

Example 5: Find the dual of the following problem. 

Maximize X Z =x1+2x2 

Subject to  x1 + x2< 3 

2x1 +x2≤10 

x1>x2>0 

Solution. The 1st constraint must be brought to >type of changing signs before we can derive 
the dual. This is done below. 

Maximize X Z =x1+2x2 

Subject to  x1 + x2< -3 

2x1 +x2≤10 

x1, x2>0 

Dual is now formulated below. 

 Minimize z=-3y1 +10y₂ 

Subject to -y1 +2y₂≥1 

  y1 +y₂≥ 2 

  y1, y₂≥ 0 

  

2

3

2

3

2

3

2

3

2

3
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Example 6. Formulate the dual for the followingproblem. 

Maximize 3x1 – x2 

Subject to 2x1 + x2> 2 

x1 + 3x2≤ 3 

x2≤ 4 

x1, x2>0 

Solution. Since this is a minimization problem firstof all we make the <type inequalities of the 
> typeas below. 

Maximize 3x1- x2 

Subject to 2x1 + x2>2 

  -x1- 3x2>  -3 

-x2>  -4 

-x1, x2>  0 

The dual can be written as below 

Maximize 2y1– 3y2 – 4y3 

Subject to 2y₁ – y₂≤3 

y₁, 3y2, y3< -1  

y₁, y2, y3> 0 

Example 7. Find the dual of the following problem. 

Minimize  z=30x1 +20x₂ 

Subject to  x1+4x2<8 

6x1 + 4x2≥12 

5x1 + 8x2= 20................. (iii) 

x1 +8x2 >0 

Solution. The equality (iii) can be restated as two inequalities as below 

 

or   

The entire problem is now restated as below 

Minimize z = 30x₁ +20x2 

Subject to -x+1 –x₂> -8 

1 2

1 2

5 8 20

5 8 20

x x

x x

  
  

1 2

1 2

5 8 20

5 8 20

x x

x x

  
    
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6x1+4x₂≥12 

5x1 + 8x2>20 

-5x1 – 8x2 ≥ -20 

This dual is formulated below: 

Maximize -8y1 +12y₂+20y3 – 20y4 

Subject to -y1 +6y₂+5y3 – 5y4 ≤30 

-y₁+4y₂+8y3 – ly4≤20 

y₁, y₂, y3 , y4>0 

Example 8. To maintain his health a person mustfulfill certain minimum daily requirements for 
following three nutrients: Calcium. Protein and Calories, His diet consists of only two items I 
and II whose prices and nutrient are shown below. 

 Food I(per Ib) Food III(Per Ib) Mini.DailyRequirement 

Price 0.60 1.00  

Calcium (unit) 10 4 20 

Protein (..) 5 5 20 

Colaries (..) 2 6 12 

Set up linear programming problem mathematically and solve it by simplex method. 
The objective being the minimization of the cost for the combination of food items. 

Solution. Let x and y be the units of Food I and Food II respectively, then given linear 
programming problem becomes. 

Minimize  z=0.60x+1.00y  

subject   10x+4y ≥20 

5x+5y>20 

2x+6y≥12 

where x≥0, y ≥0. 

The matrix of primal problem is 

  

Its Transpose is  

10 4 20

5 5 20

2 6 12

0.60 1.00 0

 
 
 
 
 
 

10 5 2 0.60

4 5 6 1.00

20 20 12 0

 
 
 
  
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The dual problem is 

Max.   z=20x1 +20x₂+12x3 subject to 

Constraints  10x1 +5x2+2x3 ≤0.60 

4x1 +5x2+6x3+≤1.00 

To solve Dual problem by simplex method.  

Introducing slack variables x4 ≥ 0, x5 ≥0, we obtain 

10x1 +5x2 + 2x3 + 1x4 +0x5 = 0.40  

5x1 +5x2 + 6x3 + 0x4 + 1x5 = 1000  

and obvious initial basic feasible solution is  

XB = [0.60, 1.00}, (x4, x5, basic), with B1 I2 as basic sub matrix. 

Starting Table 

 
Cb 

 
Yb 

cf 
Xb 

20 
y1 

20 
y2 

12 
y3 

0 
y4 

0 
y5 

 

R1 ← 0  y4 0.60 10 5 2 1 0 0.60/10 = 0.60 

R2   0  y5 1.00 4 5 6 0 1 
 = 0.25 

zf  0 0 0 0 0 0 As = 20 is most 
negative element  

zj-cj  -20 -20 -12 0 0 0 in now cj-zj, we 
choose arbitrary y1 
column as key 
element. 

R1
1 ← 20  y1 0.60 1 1/2 1/5 1/10 0 0/60 = 0.12 

R1
2   0  y5 0.76 0 3 26/5 -2/25 1 0.76/3 = 0.25 

zj  
zj-cj 

  20 10 4 2 0  

R"1  20  y2 0.12 2 1 2/5 1/5 0 0.12/2/5 = 0.3 

R"2 ← 0   0.40 -6 0 4 -1 1 0.40/4 = 0.10 

zj   40 20 8 4 0  

zj-cj  0.08 20 0 -4 4 0  

20 y2  0.10 13/5 1 0 3/10 -1/10  

12y3   -3/2 0 1 -1/4 1/4  

zj   34 20 12 3 1  

zj-cj   14 0 0 03 1  

As all element of row zj – cj are + ve  

1

4
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An optimum solution is obtained at 

  

and so minimum is obtained at (3, 1) 

Atx1= 3, x2=1, Mini. Z= 0.60 × 3+1.00× 1 

= 1.8+1=2.8 

Example 9. Minimizez=6x+30y 

Subject x + 2y > 3 

x + 4y >4 

and  x≥0, y ≥0. 

Solution. The dual of given problem is 

Maximize T=3x1 +4x2 

Subject to x1 +x₂ ≤ 6 

2x1 +4x₂ ≤30 

 and   x1< 0, x₂ ≤0 

Introducing the slack variable. 

x1 +x₂+s1 = 6 

2x1 +3x₂+s₂ = 30 

which can be written in vector form as 

 x1+  x₂+  s1 +  s₂=  ...(1) 

or p1x1+p2x2+p3s1 + p4s2=P0 

our problem becomes 

Maximize f= 3x1 +4x₂+0s1 + 0s₂   ...(2) 

Subject to p1x1+p2x2+p3s1 + p4s2=P0  ...(3) 

  

13 3
0 ,

5 2
  
 

1

2
 
 
 

1

4
 
 
 

1

0
 
 
 

0

1
 
 
 

6

30
 
 
 
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Simplex Table  

cf 

vectors 

 0 

P0 

0 

P3 

0 

P4 

0 

P1 

0 

P1 

Ratio 

stage I ← 0 P3 6 1 0 1 1 
a31/a32 =   = 6 

0 P3 30 0 1 2 4 
a41/a42 =   = 7.5 

zj  0 0 0 0 0 6 is lest 

replaced vector 

is       P3 and as  

zj - cj  0 0 0 0 0 6 is last num 

replacing  

vector is P2. 

← 4. P3 6 1 0 1 1 
a20/a21 =   = 6 

0 P4 6 -4 1 -2 0 a42/a31 = 6/(-2) = -3 

Stage II zj  24 4 0 4 4  

zj-cj  24 4 0 1 0  

Since all the elements of row zj – cj are + ve or zero in stage optimal solution is 
obtained.The solution of maximization problem is (0.6) and of dual is (4.0) minimized value of 
given function is6x+30y=6×4 +30 ×0 = 24 

Exercise 18.1 

Q1. Construct the dual  of follow L.P. problem and solve the primal and the dual. 

 Maximise  Z = 3x1 + 4x2 

 subject to  x1 + x2< 12 

   2x1 + 3x2< 21 

   x1< 8 ,  x2< 6 , and x1, x> 0 

Q2. Formulate the dual for the followingproblem. 

Maximize 3x1 – x2 

Subject to 2x1 + x2> 2 

x1 + 3x2≤ 3 

x2≤ 4 

x1, x2>0 

  

1

6

30

4

1

6
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18.4 SUMMARY 

 This unit was in continuation with the last unit. In this unit we have leaned about the 
Duality in Linear Programming. We  also studied about the economic interpretation of Primal 
and Dual. 

18.5 GLOSSARY  

1. Dual Problem : Associated with every linear programming there is a linear 
programming problem. Which is called its dual problem. 

2. Primal : The original LPP is called the primal problem. 

18.6 ANSWER TO SELF CHECK EXERCISES  

Exercise 18.1 

Ans. Q1. Refer to Section 18.3.2 (Example 3) 

Ans. Q2. Refer to Section 18.3.3 (Example 6) 

18.7 REFERENCES/SUGGESTED READINGS 

1. Nichason, R.H. (1986). Mathematics for Business and Economics, McGrew Hill. 

 2. Dorfwan, R. Samuelson P.A. and Solow. R.M. (1987). Linear Programming and 
Economic Analysis, McGraw Hill. 

 3. Hadley, G. (2002). Linear Programming, Narosa Publishing House, New Delhi. 

 4. Bose, D. (2018). An Introduction to Mathematical Economics, Himalaya Publishing 
House, Bombay. 

18.8 TERMINAL QUESTIONS 

Q1. Solve the following problem  

Maximise     10x1 + 10x2 + 20x3 + 20x4 

Subject to  12x1 + 8x2 + 6x3  + 4x4< 210 

  3x1 + 6x2 + 12x3  + 24x4< 210 

  x1 ,  x2 , x3 , x4<  0 

Q2.  How will you state the problem of linear programming. 

---------- 

  



 

421 
 

Unit-19 

SETS 

STRUCTURE  

19.1 Introduction 

19.2 Learning Objectives 

19.3 Concept of Sets 

 19.3.1 Set Notation  

19.3.2 Description of a Set 

  19.3.2.1Roster Method 

19.3.2.2 Set-Builder Method 

Self-Check Exercise 19.1 

19.4 Types of Set 

 19.4.1 Empty Set 

 19.4.2 Singleton Set 

 19.4.3 Finite & Infinite sets 

 19.4.4 Equivalent sets 

 19.4.5 Subsets 

 19.4.6 Proper Subsets 

 19.4.7 Universal Sets 

Self-Check Exercise 19.2 

19.5 Venn Diagram 

 19.5.1 Union of Sets 

 19.5.2 Intersection of Sets 

 19.5.3 Disjoint sets 

 19.5.4 Difference of two Sets 

 19.5.5 Complement of a Set 

Self-Check Exercise 19.3 

19.6 Law of Algebra of Sets 

 19.6.1 Idempotent Law 

 19.6.2 Associative Law 

 19.6.3 Commutative Law 
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 19.6.4 Distributive Law 

 19.6.5 De Morgan's Law 

 19.6.6 Identity Law 

 19.6.7 Complement Law  

Self-Check Exercise 19.1 

19.7 Summary 

19.8 Glossary 

19.9 Answer to Self Check Exercises 

19.10 Suggested Reading 

19.11 Terminal Questions 

19.1 INTRODUCTION  

In the present unit, we will study about a concise overview of some fundamental will 
team concepts of sets. In the first part we will learn about the basic elements of set theory and 
the relationships between sets. Finally we will learn about some operations on sets that are 
most frequency encountered in economics. 

19.2 LEARNING OBJECTIVES  

 After going through this Unit, you will be able to- 

 Define set and object 

 Identify the elements of a given set 

 Describe contentious used to list sets 

 List the elements of a set using natatias 

 Apply basic set concepts to economic Analyses. 

19.3 CONCEPT OF SETS 

A set is defined as a collection of distinct objects. These objects may be a group of 
students or a deck of cards or a group of numerical numbers. The objects of a set are called the 
elements. 

19.3.1 SET NOTATION 

The sets are usually denoted by capital letters like A, B, C, D, X, Y, Z etc. If a is an 
element of a set A, then we write a∈A and Say a belongs to A. If a does not belong to A, then 
we write α ∉ A. It is assumed here that if A is any set and a is any element, then either a∈A or 
A ∉ A and the two possible............ inclusive. The following are some sets/ 

a. The collection of first five natural numbers is a set containing the elements 1, 2, 3, 4, 5.  

b. The collection of all twelve districts of Himachal Pradesh is a set. 
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c. The collection of brilliant students is a class in not a set, since the term "brilliant" is vague 
and is not well defined. However, the collection of all students in a class is a set. In the 
following paragraphs, we will use some sets frequently which are listed below: 

N: for the set of natural numbers. 

Z:  for the set of integers. 

Z+:  for the set of all positive integers. 

Q:  for the set of all rational numbers. 

Q+:  for the set of all positive rational numbers. 

R:  for the set of all real numbers. 

R+:  for the set of all positive real numbers. 

C:  for the set of all complex numbers. 

19.3.2 DESCRIPTION OF A SET 

A set is often described in the following two ways 

19.3.2.1Roster Method 

One way of defining a particular set is by enumeration. We simply list the items 
included in set the elements of the set. 

Example 1. The set of even numbers between 1 and 13 may be described as  

S = {2, 4, 6, 8, 10, 12} 

Example 2. The set of first five prime natural numbers can be written as 

A = {2, 3, 5, 7, 11} 

Example 3. The set of even natural numbers can be described as A = {2, 4, 6...}  

Here the dots stand for 6 and so on. 

NOTE: The order in which the elements are written in a set makes no difference. Also 
repetition of an element has no effect. 

19.3.2.2 Set-Builder Method 

Alternatively, we can describe a set by stating a specific property P(x) of the elements 
x. If an item possesses that property, it is an element of that set, but if it does not, then it is 
excluded from the set. In such a case the set is described by  

{x: P(x) holds} or {x | P(x) holds}, 

Which is read as 'the set of all x such that P(x) holds'. The symbol ":" or "l' is read as 
'such that.' 

Example The set X = {1, 2, 3, 4, 5,} can be written as X = {x ∈ N : x ≤ 5). 

Example The set of all real numbers greater than-1 and less than 1 can be described as 
{x ∈ R: - 1 < x < 1} 
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Self-Check Exercise 19.1 

Q1. Define Set.  

Q2. Are all empty set equal? 

19.4 TYPES OF SETS 

19.4.1 Empty Set 

A set is said to be empty or void or null set if it does not have any element and it is 
denoted by ϕ. In roster method, ϕ is denoted by{}. The null set is unique in the sense there is 
only one set in the whole world that can be considered a subset of any conceivable set. It from 
the above definition that a set A is an empty set if the statement x ∈A is not true for any x. 

Example: A = {x ∈N: 8<x<9)= ϕ  

Example: A= {x:x is an even prime number greater than 2} is an empty set because 2 is 
the only even prime number. 

19.4.2 Singleton Set 

A set consisting of a single element is termed as unit of singleton set. 

Example: A= {10} is a singleton set. 

Example: The set {x:x ε N and x2=9} is α singleton set equal to {3} 

19.4.3 Finite and Infinite Sets  

A set is finite if it contains finite number of elements. In other words if the elements of 
a set can be listed by natural numbers 1, 2, 3,.... and the process of listing goes on till a certain 
natural number say n, then the set is finite set. 

On the other hand, a set whose elements cannot be listed by the natural numbers n is 
called an infinite set. In other words if the number of elements of a set is very large and 
infinite, then the set is infinite set. 

Example:Each one of the following sets is afinite set: 

(i) Set of all persons on the Earth. 

(ii) Set of even natural numbers less than 1000.  

Example: Each one of the following sets is aninfinite set. 

(i) Set of all in a plane. 

(ii) A= {x:x is a natural number} 

Relationship between Sets 

When two sets are compared with each other, on can observe several possible 
relationship between them. 

Equality of Two Sets 
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Two sets are said to be equal if every element of A is a member of B, and every element 
of B is a member of A. 

If sets A and B are equal, we write A =B and A ≠ B when A and B are not equal. 

Example If A = {2, 4, 7, 8} andB = {7, 4, 2, 8} 

Then A = B, because each element of A is an element of B and vice-versa. 

Note that the elements of a ------------------------- any order. However, even if one 
element ------------------- ent, two sets are not equal. 

Example 

A = {1, 5, 7} 

B={1, 5, 8} 

A ≠ B  

19.4.5  Equivalent Sets 

Two finite sets A and B are equivalent if their cardinal numbers are same i.e. n(A)= 
n(B). In other words, two sets are equivalent if there is one to one correspondence between the 
elements of the two sets. Equivalent sets have same number of distinct elements but notthe 
same elements. 

Example: 

A= {a, b, c) 

B = {9, 10, 11} 

Then A & B are equivalent sets and are writtenas A ≡ B or A ↔ B. 

19.4.5 Subsets 

Let A and B two set. Ifevery element of A is an element of B, then A is called a subset 
of B. If A is subset of B, we write A ⊆B, which is read as "A is a subset of B" or "A is 
contained in B." Thus, A⊆B ifa∈e A⇒a∈B. 

The symbol"⇒" stands for "implies." 

If A is a subset of B, we say that B contains A or 

B is a super set of A and we write B⊇A. 

If A is not a subset of B, 

We write A  B. 

Every set is a subset of itself and the empty set is subset of every set. These two subsets 
are calledimproper subsets. 
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19.4.6 Proper Subset 

A subset A of a subset B is called proper subset of B if A≠ B and we write A ⊂B. In 
such a case, we also say that B is a super set of A. Thus, if A is a proper subset of B, then there 
exists an element X∈ B such that x ∈A. 

It follows immediately from this definition and the definition of equal sets that two sets 
A and B are equal if A⊆B and B⊆ A. Thus whenever we want to prove that two sets are equal, 
we must prove that A⊆B and B⊆ A. 

Example: A = {1, 9, 20} 

B={1,9} 

Then B⊂A, and is a proper subset of A. 

19.4.7 Universal Set  

In any discussion in set theory, there always happens to be a set that contains all sets 
under consideration i.e. it is a super set of each of the given sets. Such a set is called 
theuniversal set and is denoted by U. 

Thus, a set that contains all sets in a given context is called the universal set. 

Example: If A = {1, 2, 3}, B = {2, 4, 5, 6} and C = {1, 3, 5, 7} then 

U= {1, 2, 3, 4, 5, 6, 7} can be taken as universal set. 

SELF-CHECK EXERCISE 19.2 

Q1. Define finite and Infinite Sets 

Q2. What is meant by Equivalent Set? 

Q3. What is Universal Set? 

Q4. Let U = {u, v, w, x, y, z} 

 (i) Find the number of subsets of  

 (ii) Find the number of proper non-empty subsets of .  

19.5 VENN DIAGRAM 

Operations on sets or any property or theorem relating to sets can be well understood 
with the help of a diagram known as Venn-Euler diagram or simply Venn diagram. In Venn 
diagram the universal set U is denoted by rectangular region of U by a region enclosed by a 
closed curve (or a circle) lying within the rectangular region. These closed curves (or circles) 
representing the subsets of U will intersect each other if they have some common elements 
among them. 

19.5.1 Union of Sets 

Def: The union of two sets A and B, written as AB, is the set of all elements which 
belongs either to A or to B or to the both A and B. 



Symbolically, AUB = {x: xεAU

Here U means and/or' AB is read as 'A unionB'.

For example 

If  A  ={1, 3, 4, 5}

and  B  = {2, 3, 4, 6, 8}

then AB  = {1, 2, 3, 4, 5, 6, 8).

Note that no element is to be repeated even if it belongs to both the sets.

Union can be extended to more than two sets. We can construct a set A as the union of 
three sets A, B and C, i.e. 

X=ABC. 

Set Z consists of all the elements bel
more elements other then the elements of the sets A, B & C.

Set Z consists of all the elements belonging to A,B and C without duplication and no 
more elements other then the elements of the sets A, B & C.

Suppose A = {1,3}, B = {1, 6, 9} and C = {2,3, 5, 6, 7}

Then 

X=ABC= {1,3} {2, 3, 5, 6, 7} 

= {1, 2, 3, 5, 6,,9} 

We can extend the notation of union to any number of sets.

Venn diagram for AB 

In Venn diagram we have shaded A

It follows from definition that A
AB, i.e.. A ⊂AB and B⊂ AB.
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Symbolically, AUB = {x: xεAU x εB}.  

B is read as 'A unionB'. 

={1, 3, 4, 5} 

= {2, 3, 4, 6, 8} 

2, 3, 4, 5, 6, 8). 

Note that no element is to be repeated even if it belongs to both the sets. 

Union can be extended to more than two sets. We can construct a set A as the union of 

Set Z consists of all the elements belonging to A,B and C without duplication, and no 
more elements other then the elements of the sets A, B & C. 

Set Z consists of all the elements belonging to A,B and C without duplication and no 
more elements other then the elements of the sets A, B & C. 

pose A = {1,3}, B = {1, 6, 9} and C = {2,3, 5, 6, 7} 

{2, 3, 5, 6, 7}  

We can extend the notation of union to any number of sets. 

In Venn diagram we have shaded AB, i.e. the area of A and the area of B.

 

Fig. AB is shaded 

It follows from definition that AB=BA and both A and B are always subsets of 
B. 

 

Union can be extended to more than two sets. We can construct a set A as the union of 

onging to A,B and C without duplication, and no 

Set Z consists of all the elements belonging to A,B and C without duplication and no 

rea of B. 

A and both A and B are always subsets of 



19.5.2 INTERSECTION OF SETS

Def. The intersection of two sets A and B, writ
which are common to both A and B.

Symbolically, AB = {x:x

Here means intersection and A

For example 

If  A =  {2, 3, 5, 7}

and  B  = {1, 3, 4, 6, 7, 9}

then  A B  = {3, 7} 

Like the set union the operation of 
sets. For any three sets X, Y and Z we may define W=X
elements which are common to all the three sets X, Y and Z. Thus if

X = {a, b, c, d, e} 

Y = {b, d, f} 

Z= {a, b, d, g, h}, 

Then 

W = X Y Z = (b, d). 

In Venn diagram we have shaded A

It follows from definition that A
ABisa subset of both A and B i.e. 

A B⊂C A and A B ⊂B.

19.5.3 DISJOINT SETS 

Def: If two sets A and B have no elements in common, i.e. if no e
and no element of B is in A, then A and B are said to be disjoint or mutually exclusive sets.

Clearly AB= ϕ  when A and B are disjoint
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INTERSECTION OF SETS 

ction of two sets A and B, written as AB is the set of all elements 
which are common to both A and B. 

B = {x:x∈ABx∈ B}.  

means intersection and AB is read as 'A intersection B'. 

{2, 3, 5, 7} 

= {1, 3, 4, 6, 7, 9} 

Like the set union the operation of intersectioncan be extended to the more than two 
sets. For any three sets X, Y and Z we may define W=XY Z. Clearly, W cons

mon to all the three sets X, Y and Z. Thus if 

Venn diagram for A  B 

 

Fig A  B is shaded 

In Venn diagram we have shaded AB, i.e. the area common to A and B.

It follows from definition that AB = BA and each of A and B contains A
Bisa subset of both A and B i.e.  

B. 

If two sets A and B have no elements in common, i.e. if no element of A is in B 
ment of B is in A, then A and B are said to be disjoint or mutually exclusive sets.

when A and B are disjoint 

B is the set of all elements 

intersectioncan be extended to the more than two 
Z. Clearly, W consists of 

B, i.e. the area common to A and B. 

A and each of A and B contains ABi.e. 

lement of A is in B 
ment of B is in A, then A and B are said to be disjoint or mutually exclusive sets. 



For example, 

If  A = {2, 5, 7} and  

B = {1,3,6,8} 

Then two sets A and B are disjoint sets since they have no common elements.

Venn diagram for disjoint sets

Two disjoint sets A and B having no common elements 
Venn diagram. 

19.5.4 DIFFERENCE OF TWO SE

Def: The difference of two sets A and B is the set of elements which belongs to A but 
which does not belong to B. 

We denote the difference of A and B by A

Symbolically, A – B= {x:x

Similarly  B – A= {x:x

For Example, 

If  A = {1, 2, 3, 5, 7} 

and  B = {2, 3, 4, 5, 6} 

then  A – B={1,7} 

and  B – A = {4,6} 

Venn diagram for difference of two sets

In Venn diagram we have shaded A
part of B. 
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Then two sets A and B are disjoint sets since they have no common elements.

Venn diagram for disjoint sets 

 

Fig A  B= ϕ 

Two disjoint sets A and B having no common elements among them are shown in the 

DIFFERENCE OF TWO SETS 

Def: The difference of two sets A and B is the set of elements which belongs to A but 

We denote the difference of A and B by A-B  

B= {x:x∈Ax∉ B}  

= {x:x∈ B x∉A}/ 

 

 

Venn diagram for difference of two sets 

In Venn diagram we have shaded A – B, i.e. the area in A which does not 

Then two sets A and B are disjoint sets since they have no common elements. 

them are shown in the 

Def: The difference of two sets A and B is the set of elements which belongs to A but 

B, i.e. the area in A which does not include any 



It follows from definition that 

A – B⊂A and B – A⊂B. 

19.5.5 Complement of a Set (or Negation of a Set)

Def: The complement of a Set A is the set ofall the elements of the Universal set U 
which do notbelong to A. 

The complement of a Set is the difference of the universal set U and the set A. the 
complement of the set A is denoted by A' of A

Symbolically A' = {x:x∈ U

Clearly. A' A = ϕ  

AA'=U. U' = ϕ . ϕ

For example. 

Let  U= {a, e, i, o, u} 

and  A = {e, o} 

Then  A' = U – A = {a, i, u}

The complement of the complement of a set A is the set A itself.

(A')'= A 

Venn diagram for the complement of a set
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Fig A-B is shaded 

It follows from definition that  

Complement of a Set (or Negation of a Set) 

The complement of a Set A is the set ofall the elements of the Universal set U 

The complement of a Set is the difference of the universal set U and the set A. the 
complement of the set A is denoted by A' of Ac. 

Ux ∉A} 

 

ϕ  = U 

A = {a, i, u} 

The complement of the complement of a set A is the set A itself. 

Venn diagram for the complement of a set 

 

Fig A is Shaded 

The complement of a Set A is the set ofall the elements of the Universal set U 

The complement of a Set is the difference of the universal set U and the set A. the 



 

431 
 

In the Venn diagram, we have shaded the complement of A i.e. the area outside A.  

Example 1. Write down the following in settheoretic notations: 

(i) 4 is an element of A 

(ii) 8 does not belong to set B  

(iii) X is a subset of Y 

(iv)  S & T are disjoint sets. 

Sol.  (i)  4 ∈A   (ii)  8 ∉B 

(iii) X⊂Y   (iv)  ST= ϕ  

Example 2. State which of the following are nullsets. 

(i) {x:3x² – 4=0, x is an integer} 

(ii) {x:(x+3)(x+3)=9, x is a real number} 

(iii) (AB) – A 

Sol. (i) We have 3x² – 4=0, or 3x² = 4, 

or x2=4/3 

or +  which is not integer 

∴the given set has no element in it. i.e., it is a nullset 

(ii) We have 

(x+3)(x+3)=3  

or  x²+6x=0 

x(x+6)=0 

i.e.  x = 0, x = –6 

The given set contains two elements 0 and -6. 

Hence it is not a null set. 

(iii) Clearly, AB<A. 

Hence AB – A is a null set.  

Hence the first and the third sets are null sets. 

Example 3. If A = {1, 3, 5), B = {2, 4, 6, 8},C = {2, 5, 10} and 

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10), verify byactually writing the sets that  

(i)  (AB)c=AcBc 

(ii)  A (BC)= (A  B)  (AC) 

Sol. 

(i)  A = {1, 3, 5}, B = {2, 4, 6, 8}, C= {2, 5,10} 

∴ AB= {1,3,5} {2, 4, 6, 8} = ϕ . 

4

3



∴ (AB)=U – (AB)

Again Ac=U – A=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

= {2, 4, 6, 7, 8, 9, 10} 

and Bc = U – B={1, 3, 5, 7, 9, 10)

∴AcBc = {2, 4, 6, 7, 8, 9, 10}

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Hence from (1) and (2), we get

(AB)c=Ac Bc 

(ii) BC{2, 4, 6, 8}  {2, 5, 10} = {2, 4, 5, 6,8, 10}

∴A(BC)= {1, 3, 5} {2, 4, 5, 6, 8, 10}= 5 

Again AB = ϕ  and AC = {1, 3, 5} {2,5, 10} = {5}

∴(AB)  (AC)= ϕ   {5} = {5}

Hence from (3) and (4) we get 

A(BC)=(AB)(AC) 

Example 4. 

In the Venn diagram below shade

(i) B' (ii) (B – A)' (iii) A'  B'.

Sol.  
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B) – =U= ϕ {1,2,3,4,5, 6, 7, 8, 9, 10}…… (1) 

A=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10} – {1,3,5} 

B={1, 3, 5, 7, 9, 10) 

= {2, 4, 6, 7, 8, 9, 10} {1,5,7,9,10} 

= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}………….. (2) 

Hence from (1) and (2), we get 

{2, 5, 10} = {2, 4, 5, 6,8, 10} 

{2, 4, 5, 6, 8, 10}= 5 ………….(3) 

C = {1, 3, 5} {2,5, 10} = {5} 

{5} = {5} ………….(4) 

Hence from (3) and (4) we get  

C)  

In the Venn diagram below shade 

 

B'. 

 

Fig 
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(i) B' is the complement of B and therefore, B' consists of elements which do not 
belong to B. Hence we shade the area outside B. 

(ii) First we shade the area B – A with upward slanted strokes. (iii) then (B-A)' is the 
area outside B – A which is shaded with horizontal lines and is shown in fig. 2. 

 

Fig. 1. B–A is shaded 

 

Fig. 2.  B – A' is shaded 

(iii) We first shade A', the area outside A, with upward slanted strokes (iii) and then 
shade B' with downward slanted strokes (iii) A'B' is the cross shaded (or cross-hatched) area 
i.e. the area common to A' and B' which is shaded with horizontal lines and is shown in Fig. 4 
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Fig. 3 

 

Fig. 4A'B' is shades 

SELF-CHECK EXERCISE 19.3 

Q1. What is Ven Diagram 

Q2. What is meant by Complement of a Set? 

Q3. If  A ={1, 3, 4, 5}and B = {2, 3, 4, 6, 8} 

then Find (i) AB and (ii)  A B 

19.6 LAWS OF ALGEBRA OF SETS 

Three main operations of sets, viz. intersection (), union () and complement (') 
satisfy the certain laws of Algebra. These laws are stated below. 

19.6.1. Idempotent Law  

For any set A, we have 

(i) AA = A and (ii) A A = A 
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19.6.2 Associative Law: 

For any three sets A, B and C we have  

(A (BC)=ABC. 

(ii) A (BC)=(AB) C 

19.6.3  Commutative Law:  

For a pair of sets A and B, we have 

(i)  AB =  BA and 

(ii)  AB = BA. 

19.6.4 Distributive Law:  

For any three sets A, B and C, we have  

(i)  A (BC)=(AB)(AC) and 

(ii)  A (BC)=(AB)  (AC) 

19.6.5 De Morgan's Law:  

For any two sets A and B, we have  

(i) (AB)'= A'B' and  

(ii)  (AB)'=A' B'. 

19.6.6 Identity Law: 

(i) Aϕ  = A,  (ii)  AU=A 

(iii)  AA ϕ  = A  (iv) AU=U 

19.6.7 Complement Law: 

(i) AA'=U  (ii)  AA' = ϕ 

(iii)  (A')'= A' and  (iv)  U' = ϕ, ϕ'=U 

Let us verify the Associative Law and de Morgan's Law by using Venn diagrams and 
analytical proofs using first definitions. The proof of idem- potent Law, Commutative Law, 
Distributive Law, Identity law, Complement Law are left as exercises to the reader. 

Proof: Associative Law  

(i) With the help of Venn diagram 

We have to shows that  

(i) A (BC)=(AB) C 

(ii)  A (BC)=(AB) C 

(iii)  L.H.S = A (BC) 



In Fig. 5, we first shade A with upward slantedstrokes (II) and shade B
downward slanted strokes (III). A
limits is shown in Fig. 6. 

R.H.S. (AB) C  

In Fig 7. We first shade (A
slanted strokes. 
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In Fig. 5, we first shade A with upward slantedstrokes (II) and shade B
downward slanted strokes (III). A (BC) is the total area which is shaded with horizontal 

Fig. 5 

 

Fig. 6 

7. We first shade (A B) with upward strokes and then shade C with downward 

 

In Fig. 5, we first shade A with upward slantedstrokes (II) and shade BC with 
C) is the total area which is shaded with horizontal 

 

and then shade C with downward 



(III) (AB)C is the total area which is shadedwith horizontal lines and is shown in fig 8. 

(ii) L.H.S. A (BC). 

In fig 9. first we shade A with upward strokes

(II)and then shade BC with downward strokes (III)
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Fig. 7 

 

Fig. 8 

C is the total area which is shadedwith horizontal lines and is shown in fig 8. 

C).  

with upward strokes 

C with downward strokes (III) 

 

Fig. 9 

 

 

C is the total area which is shadedwith horizontal lines and is shown in fig 8.  

 

 



Fig. 10 A 

A (BC) is the cross-
horizontal lines.  

In Fig. 7A first we shade A
downward strokes (III) (AB) 
shading it with horizontal lines 

Fig. 8A (A 

Hence from Fig. 7A and Fig. 8A we obtain

A(BC)=(AB) C  

(b) Analytical Proof 

To Prove 

(i) A(BC)=(AB) 

(ii)  A (BC)=(AB)

Sol. (i) Let xɛ A (BC). Then

x∈ A  (BC) 
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Fig. 10 A  (B  C) is shades 

-shaded area which is shown in Fig. 10 by shaded it with 

In Fig. 7A first we shade AB with upwardslanted strokes (II) and shade C with 
B) Cis the cross-shade area which is shown in Fig. 8A. by 

 

Fig. 7. A 

 

Fig. 8A (A  B)   C is shaded 

Hence from Fig. 7A and Fig. 8A we obtain 

B) C and 

B) C.  

C). Then 

shaded area which is shown in Fig. 10 by shaded it with 

slanted strokes (II) and shade C with 
shade area which is shown in Fig. 8A. by 
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⇒x∈ A or/and x∈ (BC)  

⇒x∈  A or/and x∈ (BC)  

⇒(x∈ A or/and x∈ B) or/ and x∈ c  

⇒x∈ (AB) or/and x∈ C  

⇒x∈ (AB) C  

Thus x∈ A (BC) 

x∈  (A  B)  C 

∴ A(BC)<(AB) C 

(1) 

Now, let y ∈ (AB) C. Then by definition,  

y∈ A  (BC) 

⇒y ∈ (AB) or/and yε C  

⇒y∈ A or/and y ∈B or/and y∈ C  

⇒y∈  A or/and y∈ (BC)  

⇒y∈ A or/and y∈ B C  

(2) 

∴(AB) C⊆ A  (B  C) 

Hence from (1) and (2), we get  

A (BC)=(AB) C. 

(ii) Using the definition of intersection and proceeding and above we can also prove 
the result. 

A (BC)=(AB) C 

This is left as an exercise to the reader.  

Proof of De Morgan's Law 

(a) With the help of Venn diagram 

We have to show that 

(i) (AB)'=A'B' 

(ii) (AB)'=A'B' 

(i) L.H.S. = (AB)' 



In Fug, 11. AB is shaded with upward slanted strokes (III). (A
A B which is shaded with horizontal line and shown inFig. 12.
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Fig. 11 (A) B is shaded  

 

Fig. 12 (AB)' is shaded 

B is shaded with upward slanted strokes (III). (AB)' is the area outside 
horizontal line and shown inFig. 12. 

 

Fig. 13 

 

 

is the area outside 

 



R.H.S. A' B' 

We first shade A' i.e. the area outside A with upward slanted strokes (III) and then 
shade B', the area outside B, with downward strokes (III). A'
the area common to both A' & B' is shaded with horizontal lines and is shown is Fig. 14. Hence 
from fig. 12 and fig. 14, wehave -

(AB) A'B'  

L.H.S. = (AB)' 
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Fig. 14 (A'  B') 

We first shade A' i.e. the area outside A with upward slanted strokes (III) and then 
shade B', the area outside B, with downward strokes (III). A'B' is the cross-hatched 
the area common to both A' & B' is shaded with horizontal lines and is shown is Fig. 14. Hence 

- 

 

Fig. 15 

 

Fig. 16 

 

We first shade A' i.e. the area outside A with upward slanted strokes (III) and then 
hatched area, i.e. 

the area common to both A' & B' is shaded with horizontal lines and is shown is Fig. 14. Hence 



In fig. 15. we have shaded A
outside A B which is shaded with horizontal lines and is shown in fig. 16.

R.H.S. A'B' 

First we shade A', the area outside A with up
with downward slanted strokes (III). A'
horizontal lines andshown in fig. 18. Hence from Fig. 16 and Fig. 18, we have (A

Analytical Proof : 

(i) (AB)'= (A' B)' 

(i)  (A B)'= A' B' 

(i) Letx ε (AB)' Then by definitio

 xε (AB)' ⇒x∉ (AB)

⇒x ∉A and x 

⇒x∈ A' and x

Thus x 8 (AUB) ⇒x∈ (A' 
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In fig. 15. we have shaded AB i.e., the area common to A & B. (A
B which is shaded with horizontal lines and is shown in fig. 16. 

 

Fig. 17 

 

Fig. 18 A'   B' is shaded 

First we shade A', the area outside A with up- ward slanted strokes (III) and then B' 
strokes (III). A' B' is the total shaded area with is shaded with 

horizontal lines andshown in fig. 18. Hence from Fig. 16 and Fig. 18, we have (A

 

Then by definition of complement 

B) 

A and x ∉ B 

A' and x∈ B' 

(A' B') 

B)' is the area 

es (III) and then B' 
B' is the total shaded area with is shaded with 

horizontal lines andshown in fig. 18. Hence from Fig. 16 and Fig. 18, we have (AB)=A'  B'. 
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∴(AB)'  (A   B)' 

(1) 

Next, let y ∈(A'B'). Then by definition  

yε (A'B')  ⇒y∈ A' and y ε  B'  

⇒y∉and y∉B  

⇒y∉(AB)  

⇒y∈(AB)' 

A'B'.  ⊆(AB)'   (2) 

Hence form (1) and (2), we get 

(AB)'=A' B' 

(ii) Using definition of complement and proceeding and above, we can also prove the result 

(AB)'=A' B' 

Example 5. If A and B are two given sets, thenshow that 

A (B – A)= ϕ  

Solution :If possible, let A (B – A) ≠ ϕ where ϕ  is the null set and A, B are not null sets. 
Then there is at least one element, say x. such that x∈A (B – A) 

x∈A (B –A)  ⇒x∈A and x∈(B – A)  

⇒x∈A and (x∈B and x∉A) 

⇒x∈A And x∈B and x∉A 

which is absurd, since x∈A and x∉A cannot holds simultaneously. 

Hence A (B – A) = ϕ  

If A, B are null sets, the result is obvious. 

Example 6 : Let S = {1, 2, 3, 4, 5, 6} be the universal set. 

Let AB={2,3, 4} find Ac A Bc, where Ac, Bcare the complements of A and B 
respectively. 

Solution By De Morgan's Law, we have 

 Ac Bc (AB)c 

Again  (AB)c= S – (AB)  

= {1, 2, 3, 4, 5, 6} – {2, 3, 4,}  

= {1, 5, 6} 

Hence from (1), we get 
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Ac Bc=  {1, 5, 6} 

SELF-CHECK EXERCISE 19.4 

Q1. Let ∈ = {1, 2, 3, 4, 5, 6, 7}  and A = {1, 2, 3, 4, 5} 

 B = {2, 5, 7} show that 

 (a) (A  B)' = A'  B' 

 (b) (A  B) = B  A 

Q2. Let P = {a, b, c, d} Q = {b, d, f),   R = {a, c, e} 

 verify that (P  Q)  R = P  (Q  R) 

19.7 SUMMARY  

 In this unit we have discussed notations used in set theory, operation of sets, building 
blocks of relations and functions. Starting with meaning of a set as one of collection of distinct 
objects, called elements, which are normally endeared within brockets and separated by 
commas, we went an to learn different ways of forming of sets. The operation an difference, 
i.e. all elements of one that are not elements of the other and compliment set viz all elements in 
the universal set that are not in a given set were covered. 

19.8 GLOSSARY 

 1. Complement set : Set containing one set's elements that are not members of the 
other set. 

 2. Disjoint set : Sets having no members in common, having an intersection equal 
to the empty set. 

 3. Element : An object in a set. 

 4. Power set : The set of all subsets of a set. 

 5. Set : collection of objects, disregarding their order and repetition. 

 6. Subset : with respect to another set, a set such that each of the elements is also 
an element of the other set. 

 7. Venn Diagram : Diagram representing sets by circles or ellipses. 

19.9 ANSWER TO SELF CHECK EXERCISE 

Self-Check Exercise 19.1 

Ans. Q1. Refer to Section 19.3 

Ans. Q2. Yes, all empty sets are equal 

Self-Check Exercise 19.2 

Ans. Q1. Refer to Section 19.4.3 

Ans. Q2. Refer to Section 19.4.4 

Ans. Q3. Refer to Section 19.4.7 
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Ans.Q4.  (i) 26 = 64 

    (ii) 62 

Self-Check Exercise 19.3 

Ans. Q1. Refer to Section 19.5 

Ans. Q2. Refer to Section 19.5.5  

Ans. Q3. (i) {1, 2, 3, 4, 5, 6, 8) 

    (ii) {3, 4} 

Self-Check Exercise 19.4 

 Ans. Q2. (a) L.H.S. = R.H.S. = {6} 

   (b) {1, 2, 3, 4, 5, 7} 

 Ans. Q3.  {a, b, c, d, e, f} 
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19.11 TERMINAL QUESTIONS 

 Q1. Prove that  A – (B  C) = (A – B)  (A – C) 

Q2. If u = {a, b, c, d, e, f} be the universal set and A, B, C, and three subsets of U1 
where A = {a, b, c, d, f}, B  C  = {a, b, f}, final (A  B) (A  C) and B'  C'. 
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20.1 INTRODUCTION  

 Sets, relations and functions, inter alia are basic ingredients of mathematics and they 
have immense use in economics. In the study of economics, we come across situations where a 
certain relation exists between two or more economic variables. In order to examine the 
mathematical representation of such economic relationships, such as the relation- ship between 
cost of production and quantity produced, or between quantity demanded and price etc., we 
need to know how such relationship are handled in mathematics. The first step in doing this 
involves defining a distinct collection of entities as a set. The next step will be the 
examinations of the concept of "ordered pairs" followed by the final step of defining the 
concepts of "relations and functions." 

20.2 LEARNING OBJECTIVES  

 After studying this unit, students will be able to - 

 Define Functions 

 Explain Limits 

 Elucidate continuity of Function  

20.3 ORDERED PAIRS 

In writing a set of two numbers (x, y), we do not care about the order in which the 
elements x and y appear since by definition (x, y) = {y, x}. In such a case, the elements x and y 
are said to be "unordered pair." But when x and y have distinct meaning denoting, say, height 
and weight of students or price and demand of a commodity, the ordering of the pair of 
elements will have a particular significance. In such a case we write two distinctly different 
ordered pairs given by (x, y) and (y, x) such that (x, y) ≠ (y, x) unless x = y. 

In general, a set consisting of two elements with the order of the elements specified say 
price and demand or height and weight, is called an "ordered pair." Ordered pairs are normally 
written in ordinary brackets as we have shown above.If we include another element Z, say age 
of the students or income of the consumers, then we can write ordered quintuples, etc. having 
the location of the elements in the specific order.  

The ordered pair can be represented graphically in rectangular co-ordinate plane as 
shown in figure I dividing the plane into four quadrants. The xy plane is an infinite set of 
points, with each point representing an ordered pair whose first element is the value of x and 
the second element is the value of y. If we have two sets x = {2, 3} and y = {4, 5}, we can 
generate all possible ordered pairs with (x, y) = (2, 4), (2, 5), (3, 4), (3, 5) 



Since an ordered pair indicates the value of y a
collection of ordered pairs will constitute a relation between y and x. The relation will give the 
value of y for a particular value of x. For example, there can be a relation between cost of 
production (y) and quantity produced (x) or between total revenue (y) and quantity sold (x) 
indicating that value of y depends on x.

In a given set {(x, y/y=2x), we can have various ordered pairs having the value of y 
double thevalue of x such as (-2, 
This set constitutes a relation and is represented in the graph be
given by the set of points. In this particular relation, the equation y=2x provides the value of y 
associated with the value of x. 
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Fig. 1 

Since an ordered pair indicates the value of y associated with a given value of x, the 
collection of ordered pairs will constitute a relation between y and x. The relation will give the 
value of y for a particular value of x. For example, there can be a relation between cost of 

ty produced (x) or between total revenue (y) and quantity sold (x) 
indicating that value of y depends on x. 

In a given set {(x, y/y=2x), we can have various ordered pairs having the value of y 
2, -1), (0, 0), (2, 1), (4, 2), .... which satisfy the equation y = 2x. 

This set constitutes a relation and is represented in the graph be- low (Fig. 2) by a straight line 
given by the set of points. In this particular relation, the equation y=2x provides the value of y 

 

Fig. 2 

ssociated with a given value of x, the 
collection of ordered pairs will constitute a relation between y and x. The relation will give the 
value of y for a particular value of x. For example, there can be a relation between cost of 

ty produced (x) or between total revenue (y) and quantity sold (x) 

In a given set {(x, y/y=2x), we can have various ordered pairs having the value of y 
.... which satisfy the equation y = 2x. 

low (Fig. 2) by a straight line 
given by the set of points. In this particular relation, the equation y=2x provides the value of y 



Similarly another set {(x, y)/ Y
ordered pairs satisfy the inequality y 
inequality as (-1, 2), (0, 2), (1, 2), 
greater than two times of the value of x. Such a relation is graphically represented by the set of 
all the points in the shaded area including the straight ling y=2x as shown in the Fig. 3. fr
the above two examples of sets 

{(x, y)|  y=2x}

and {(x, y)|  y≥2x}

It appears that in the set (2), the relation between x and y is given by the inequality 
y>2x. This means that each value of y associated with the value of x is an ordered pair 
satisfy the inequality condition y
and y such that for each value of x there exists only one corresponding value of y.

This type of relation between y and x consisting of a set of ordered pa
property that the value of x determines a 'unique' value of y. is called a 'function'. In such a 
situation y is said to be a function of x and it is symbolically expressed as y= 
dependent variable and x is called independent va
noted that ƒ is a symbol implying a particular function. We can also use other symbols like g, 
h, 4, etc. to symbolize a particular function.Normally two different symbols should be used to 
indicate two different functions even of the same variable (s).

For example, if we write y = 
between y and x in both the functions, but the nature of functional relations are different. It 
may be noted thatthe relation betwee
a function where as the relation given in the inequality y 
since there exists more than one value of y for a particular value of x.

But the relation between y 
This ex- ample indicates that while the definition of a function requires a unique y for each x, 
but there may be cases where we can have a single value of y for more than one value of x.
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Fig. 3 

Similarly another set {(x, y)/ Y>2x)} provides a relation between y and x such that the 
dered pairs satisfy the inequality y ≥2x. We can have the ordered pairs satisfying the above 

1, 2), (0, 2), (1, 2), (2, 5), (3, 11), etc. implying that y value will be equal to or 
greater than two times of the value of x. Such a relation is graphically represented by the set of 
all the points in the shaded area including the straight ling y=2x as shown in the Fig. 3. fr

y=2x}  (1) 

≥2x}  (2) 

It appears that in the set (2), the relation between x and y is given by the inequality 
2x. This means that each value of y associated with the value of x is an ordered pair 

satisfy the inequality condition y≥2x. But in case of the set (1), we have a relation between x 
and y such that for each value of x there exists only one corresponding value of y.

This type of relation between y and x consisting of a set of ordered pa
property that the value of x determines a 'unique' value of y. is called a 'function'. In such a 
situation y is said to be a function of x and it is symbolically expressed as y= 
dependent variable and x is called independent variable or explanatory variable. It may be 
noted that ƒ is a symbol implying a particular function. We can also use other symbols like g, 
h, 4, etc. to symbolize a particular function.Normally two different symbols should be used to 

unctions even of the same variable (s). 

For example, if we write y = f(x) and y = g(x), it means that there exists relation 
between y and x in both the functions, but the nature of functional relations are different. It 
may be noted thatthe relation between y and x represented by the straight line y=2x qualities as 
a function where as the relation given in the inequality y > 2x does not qualify as a function 
since there exists more than one value of y for a particular value of x. 

But the relation between y and x given by the curve in Fig. 4 qualifies as a function. 
ample indicates that while the definition of a function requires a unique y for each x, 

but there may be cases where we can have a single value of y for more than one value of x.

tween y and x such that the 
≥2x. We can have the ordered pairs satisfying the above 

(2, 5), (3, 11), etc. implying that y value will be equal to or 
greater than two times of the value of x. Such a relation is graphically represented by the set of 
all the points in the shaded area including the straight ling y=2x as shown in the Fig. 3. from 

It appears that in the set (2), the relation between x and y is given by the inequality 
2x. This means that each value of y associated with the value of x is an ordered pair must 

≥2x. But in case of the set (1), we have a relation between x 
and y such that for each value of x there exists only one corresponding value of y. 

This type of relation between y and x consisting of a set of ordered pairs with the 
property that the value of x determines a 'unique' value of y. is called a 'function'. In such a 
situation y is said to be a function of x and it is symbolically expressed as y= f(x). Here y is 

riable or explanatory variable. It may be 
noted that ƒ is a symbol implying a particular function. We can also use other symbols like g, 
h, 4, etc. to symbolize a particular function.Normally two different symbols should be used to 

(x) and y = g(x), it means that there exists relation 
between y and x in both the functions, but the nature of functional relations are different. It 

n y and x represented by the straight line y=2x qualities as 
2x does not qualify as a function 

and x given by the curve in Fig. 4 qualifies as a function. 
ample indicates that while the definition of a function requires a unique y for each x, 

but there may be cases where we can have a single value of y for more than one value of x. 



The above fig clearly shows that in the function y = 
with four values of x viz,, x1, x2, 
called a "mapping" or "transformation."

It is also relevant to distinguish between "do
function y= = f(x), the set of values that x can take in a certain context is called the "domain" 
of the function. But the set of values of y into which the set of values of x is mapped, is 
the "range" of the function. Suppose, for example, the value of x is restricted to a set {|x| 2
2}, then in the function y = 2x,the value of y will be restricted to the set {
value of x between -2 and +2 is called the domain an
range of the function y = f(x)=2x.

The functional notation y= 
between x and y but does not tell us the exact way in which y depends on x. If we assu
our function y = f(x) is given as y=2x+3, then this equation states the exact functional 
relationship viz linear relation- 
equation, given the values of x variable, we can find the correspondin
variable y. Here we say that y is an explicit function ofx. 

20.4  FUNCTION 

20.4.1 EXPLICIT AND IMPLICI

y is said to be an Explicit Function of x ify is expressed directly in terms of x in the 
form y = f(x) e.g. y=2x+3, y=x²+x

But if y and x are mixed up in the functional relation of the from 
be an Implicit Function of x. 

e.g. 2xy + 3x+4y+5=0, x² + y² = a² are examples of implicit function.
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Fig. 4 

The above fig clearly shows that in the function y = f(x), the value of y=y
, x3, and x4.Here, it is appropriate to note that a function is also 

called a "mapping" or "transformation." 

to distinguish between "do- main" and "range" of a function. In a 
function y= = f(x), the set of values that x can take in a certain context is called the "domain" 
of the function. But the set of values of y into which the set of values of x is mapped, is 
the "range" of the function. Suppose, for example, the value of x is restricted to a set {|x| 2
2}, then in the function y = 2x,the value of y will be restricted to the set {|y|-4

2 and +2 is called the domain and that of y between -4 and +4 is called the 
(x)=2x. 

The functional notation y= f(x) only states that there exists some functional relationship 
between x and y but does not tell us the exact way in which y depends on x. If we assu

(x) is given as y=2x+3, then this equation states the exact functional 
 ship between the two variables x and y. From the given 

equation, given the values of x variable, we can find the corresponding values of the dependent 
variable y. Here we say that y is an explicit function ofx.  

EXPLICIT AND IMPLICIT FUNCTIONS: 

y is said to be an Explicit Function of x ify is expressed directly in terms of x in the 
3, y=x²+x –1, y=log x + 4.  

But if y and x are mixed up in the functional relation of the from f(x, y) = 0, y is said to 

e.g. 2xy + 3x+4y+5=0, x² + y² = a² are examples of implicit function. 

(x), the value of y=y1 is associated 
.Here, it is appropriate to note that a function is also 

main" and "range" of a function. In a 
function y= = f(x), the set of values that x can take in a certain context is called the "domain" 
of the function. But the set of values of y into which the set of values of x is mapped, is called 
the "range" of the function. Suppose, for example, the value of x is restricted to a set {|x| 2>x>-

4>y >4). So the 
4 and +4 is called the 

(x) only states that there exists some functional relationship 
between x and y but does not tell us the exact way in which y depends on x. If we assume that 

(x) is given as y=2x+3, then this equation states the exact functional 
ship between the two variables x and y. From the given 

g values of the dependent 

y is said to be an Explicit Function of x ify is expressed directly in terms of x in the 

(x, y) = 0, y is said to 
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If it is to solve the equation f(x) = 0 fory, the implicit function may be changed into an 
explicit one. 

e.g. the implicit form x²+y2=a2 can be written inthe explicit form as 

y =  

In such cases, each of the two functions is called the inverse function of the other. 

Single-Valued and Many - Valued Function  

y is said to the single - valued function of x if a value of x gives rise to only one value 
of y e.g.y = x²+4, y = log x, y = ex are all single valued function of x, y is said to be Many 
Valued Function of x if a value of x gives rise to more than one value of y e.g...y2=x(x≥ 10). Y 
tan-1 x are examples of many valued functions. 

20.4.2 EVEN AND ODD FUNCTIONS 

y=f(x) is said to be an Even function of x if 

f(–x) = f(x)     (1) 

e.g. y=x², y = cos x, y = x² are all examples or even functions 

∴in all these examples f(-x) = f(x)   (2) 

Similarly a function y = f(–x) is said to be oddfunction of x if 

f(-x) = f(x) 

e.g., y=x³, y = sin x are examples of odd function. 

∴in these examples f(–x) = –f(x). 

20.4.3 INVERSE FUNCTION:  

Ify be a function of x given by the relation y = f(x). then the relation which ex- presses 
x as a function of y (if such a function is possible) is called the Inverse function of y and is 
symbolically written as 

x = f-1 (y) 

For example, if y=x2, the inverse function is x =  

ify=sin x, the inverse function if x=sin-1y 

if y=ex, the inverse function is x=logy.  

20.4.4 INCREASING AND DECREASING FUNCTION 

y is said to be an increasing function of x if the value of y always increases and x 
increases, y is said to be a decreasing function of x if the value of y always decreases as x 
increases. The class of in- creasing and decreasing function together is known as monotonic 
functions. The function will be called increasing function if the curve of thefunction rises from 
left to right without interruption and called monotonically decreasing function if the curve of 
the function falls from left to right without interruption. Demand functions are monotonically 

2 2a x 

y



de- creasing functions and total cost functions are monotonically increasing functio
example 

f(x)=  

is a monotonically decreasing function ofx and

f(x) = x²+2 

is a monotonically increasing function of x. There are some function which may 
increase as x increases for some value of x and may decrease over values of x. Such functions 
are not monotonic. 

20.4.5 TYPES OF FUNCTION 

Functions are divided into two broad groups algebraic and non
functions include basically polynomial function and rational function. But the non
functions broadly com- 3 prise expone
functions etc. 

20.4.5.1  Constant Functions: 

A Function whose range consists of only one specific value, is called a constant 
function. Or in other words, when the value of y in a function y = f(x) does not change or 
remains the same irrespective of the values of x, the said function is called a cons
So a constant function is expressed as y = 

For example, the average revenue (AR) function under perfect competition is a constant 
function. Since total revenue is a function of quantity sold, AR is also a function of quant
(Q). But the Aver- age Revenue under perfect competition is fixed and so the AR curve is 
horizontal to the X-axis. The following figure 5 shows that when the output (0)increase from 
Q1 to Q2 and from Q₂ to Q3 etc. the AR or Price remains the same at th

1
X 0

x

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creasing functions and total cost functions are monotonically increasing functio

is a monotonically decreasing function ofx and 

is a monotonically increasing function of x. There are some function which may 
increase as x increases for some value of x and may decrease over values of x. Such functions 

 

Functions are divided into two broad groups algebraic and non-algebraic. Algebraic 
clude basically polynomial function and rational function. But the non

3 prise exponential, function, logarithmic functions, s trigonometric 

A Function whose range consists of only one specific value, is called a constant 
function. Or in other words, when the value of y in a function y = f(x) does not change or 
remains the same irrespective of the values of x, the said function is called a cons
So a constant function is expressed as y = f(x)=C=(constant). 

For example, the average revenue (AR) function under perfect competition is a constant 
function. Since total revenue is a function of quantity sold, AR is also a function of quant

age Revenue under perfect competition is fixed and so the AR curve is 
axis. The following figure 5 shows that when the output (0)increase from 

etc. the AR or Price remains the same at the level OP.

 

Fig. 5 

creasing functions and total cost functions are monotonically increasing function. For 

is a monotonically increasing function of x. There are some function which may 
increase as x increases for some value of x and may decrease over values of x. Such functions 

ebraic. Algebraic 
clude basically polynomial function and rational function. But the non-algebraic 

ntial, function, logarithmic functions, s trigonometric 

A Function whose range consists of only one specific value, is called a constant 
function. Or in other words, when the value of y in a function y = f(x) does not change or 
remains the same irrespective of the values of x, the said function is called a constant function. 

For example, the average revenue (AR) function under perfect competition is a constant 
function. Since total revenue is a function of quantity sold, AR is also a function of quantity 

age Revenue under perfect competition is fixed and so the AR curve is 
axis. The following figure 5 shows that when the output (0)increase from 

e level OP. 



Another example of constant function may be cited from nation
where investment is determined exogenously. In such a case, we may have the investment 
function of the form I = I0 = Rs.100 crores where I

20.4.5.2  Polynomial Function 

A constant function referred above is also a formof polynomial funct
form of a poly nominal function of a single variable x is given by 

y = 0 + 1 a + ₂ x² + 3

Where 0, 1, x2——n are the parameters. The above function has the largest power 
of x equal to n and, therefore, is called a polynomial function of degree n. Depending on the 
value of n, we can have several sub

n=0,  y = 0, it is a constant function

n = 1,   y=0+1x,it is a linear function, 

n - 2,   y = 0 + 1

N = 3,   y = 0+1 x  

Similarly, we can have polynomia
depending on n = 4 or 5 or 6. 

The parameter 0 in a polynomial function represents the intercept 
axis. The general form of a linear function is a straight line as shown below in Figure 6. where 
0 is the intercept of the curve and 

Quadratic
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Another example of constant function may be cited from national Income models, 
ment is determined exogenously. In such a case, we may have the investment 

= Rs.100 crores where I0 is a fixed value of investment.

A constant function referred above is also a formof polynomial function. The general 
nominal function of a single variable x is given by  

3, x³ + —n x
n 

are the parameters. The above function has the largest power 
of x equal to n and, therefore, is called a polynomial function of degree n. Depending on the 
value of n, we can have several sub-classes of polynomial functions. For instance, when

it is a constant function 

x,it is a linear function,  

1 x +2 x
2, it is a quadratic function. 

x  +2 x₂+3 x3, it is acubic function. 

Similarly, we can have polynomial of fourth degree or fifth degree or sixth degree etc. 

in a polynomial function represents the intercept of the curve on y
eral form of a linear function is a straight line as shown below in Figure 6. where 

ept of the curve and 1 is the slope of the curve. 

 

Fig. 6 

Quadratic y  = 0+1 x +2 x21 >0, 2< 0 

al Income models, 
ment is determined exogenously. In such a case, we may have the investment 

of investment. 

ion. The general 

are the parameters. The above function has the largest power 
of x equal to n and, therefore, is called a polynomial function of degree n. Depending on the 

classes of polynomial functions. For instance, when 

degree or sixth degree etc. 

of the curve on y-
eral form of a linear function is a straight line as shown below in Figure 6. where 



Cubic  y  = 

The general form of the quadratic and cubic functions are shown in Figures 7 and 8 
respectively. The shape of the parabolic and cubic functions will be different if 
or 3<0. So the exact shape of the polynomial functions will depend on the sig
the parameters.  

20.4.5.3   Rational Function 

A function which is expressed as the ratio of two polynomial functions in the same 
variable x is called a 'rational function'. For example, if a function y = 

 y=f(x) = 3   +3 x 

 β0 + β1 x+ β₂ x² 

where 0, ₁, β1,β2 are parameters, it is ratio

There can be special form of rational function in the form 

y = f(x) =  (c is a constant)

or xy=c 

c

x
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Fig. 7 

0+1 x +2 x
2 +3 x

31> 0, 2 > 0, 3> 0 

 

Fig. 8 

The general form of the quadratic and cubic functions are shown in Figures 7 and 8 
respectively. The shape of the parabolic and cubic functions will be different if 

<0. So the exact shape of the polynomial functions will depend on the sig

A function which is expressed as the ratio of two polynomial functions in the same 
variable x is called a 'rational function'. For example, if a function y = f(x) is defined as

are parameters, it is rational. 

There can be special form of rational function in the form  

is a constant) 

The general form of the quadratic and cubic functions are shown in Figures 7 and 8 
respectively. The shape of the parabolic and cubic functions will be different if 2>0 or 1<0 

<0. So the exact shape of the polynomial functions will depend on the sign and value of 

A function which is expressed as the ratio of two polynomial functions in the same 
(x) is defined as 



which has an interesting application in economics. It is a rational function as it 
constant function to a linear function having zero intercept and unitary slope. The shape of 
such a rational function is shown in figure 9.

The curve is convex to the origin and is as
that the curve will never touch the x
function is popularly known as 'rectangular hyperbola.' The indifference curve in consumer's 
behaviour or the isoquant curve in production behaviour are examples of re
hyperbola. 

20.4.5.4  Exponential Function 

 In an algebraic function the exponent of a variable happens to be a constant such as x² 
or x3 or any power ofx. 

 But it is also possible to have a function where the independent variable is the exponent 
of a constant such as 5x or 2x etc. So a function whose independent variable appears as the 
exponent of a constant is called an exponential function. The simplest form of exponential 
function may be represented in the form

 y= f(x)=bx (b>1) 

 The standard shape of an exponential function is given in figure 10
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which has an interesting application in economics. It is a rational function as it 
constant function to a linear function having zero intercept and unitary slope. The shape of 
such a rational function is shown in figure 9. 

 

convex to the origin and is asymptotic to both x-axis and y
rve will never touch the x-axis or y-axis, for all positive values of x. Such a rational 

function is popularly known as 'rectangular hyperbola.' The indifference curve in consumer's 
behaviour or the isoquant curve in production behaviour are examples of re

 

In an algebraic function the exponent of a variable happens to be a constant such as x² 

But it is also possible to have a function where the independent variable is the exponent 
etc. So a function whose independent variable appears as the 

exponent of a constant is called an exponential function. The simplest form of exponential 
function may be represented in the form 

hape of an exponential function is given in figure 10 

 

which has an interesting application in economics. It is a rational function as it is a ratio of a 
constant function to a linear function having zero intercept and unitary slope. The shape of 

axis and y-axis implying 
axis, for all positive values of x. Such a rational 

function is popularly known as 'rectangular hyperbola.' The indifference curve in consumer's 
behaviour or the isoquant curve in production behaviour are examples of rectangular 

In an algebraic function the exponent of a variable happens to be a constant such as x² 

But it is also possible to have a function where the independent variable is the exponent 
etc. So a function whose independent variable appears as the 

exponent of a constant is called an exponential function. The simplest form of exponential 



The curve passes through the (0, 1) intersecting y
dependson the value of b. 

 But in the exponential function the base value 'b' may be replaced by a certain irrational
number denoted by e = 2.71828. When e is taken as base value in such function, it is termed as 
'natural exponential function', and is defined as y = e
exponential function is defined as y = 

20.4.5.5  Logarithmic Function 

 In a function where the dependent variable (y) is a function of the logarithm of the 
independent variable x such that y=log

 or y=loge x for natural logarithm.

 The function is known as 
function is shown in figure below.

20.4.6 Functions in Economics 

 Functions are very important in economics as economics is concerned with functional 
relation- ships between measurable qua
economics.  

1. Demand function: q

 2. Supply function: qs

 3. Consumption function: C=a+cY, where c=marginal 

 We have assumed that all these functions are linear but sometimes these relations or 
certain other relations suggested by economic theory can be adequately represented only by 
non-linear form e.g. constant elasticity demand 
U-shaped marginal cost functions.

Non-Linear Functions in Economics

(i) If initial income is y, and income grows at g percent per year, then income after t 
years is 
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The curve passes through the (0, 1) intersecting y–axis and the slope of the curve 

But in the exponential function the base value 'b' may be replaced by a certain irrational
number denoted by e = 2.71828. When e is taken as base value in such function, it is termed as 
'natural exponential function', and is defined as y = ex. The generalized form of natural 
exponential function is defined as y = f(x) = Aerx where A and r are constants.  

 

In a function where the dependent variable (y) is a function of the logarithm of the 
independent variable x such that y=log10x for common logarithm 

x for natural logarithm. 

The function is known as logarithmic function. The standard shape of a logarithmic 
function is shown in figure below. 

 

Fig. 11 

 

Functions are very important in economics as economics is concerned with functional 
ships between measurable quantities. We shall discuss some important function is 

Demand function: qd=a – bp with constant negative slope = -b. 

s = -c + dp, with constant positive slope = d. 

Consumption function: C=a+cY, where c=marginal propensity to consume.

We have assumed that all these functions are linear but sometimes these relations or 
certain other relations suggested by economic theory can be adequately represented only by 

linear form e.g. constant elasticity demand functions. Cobb-Douglas production functions, 
shaped marginal cost functions. 

in Economics 

If initial income is y, and income grows at g percent per year, then income after t 

axis and the slope of the curve 

But in the exponential function the base value 'b' may be replaced by a certain irrational 
number denoted by e = 2.71828. When e is taken as base value in such function, it is termed as 

. The generalized form of natural 

In a function where the dependent variable (y) is a function of the logarithm of the 

logarithmic function. The standard shape of a logarithmic 

Functions are very important in economics as economics is concerned with functional 
ntities. We shall discuss some important function is 

propensity to consume. 

We have assumed that all these functions are linear but sometimes these relations or 
certain other relations suggested by economic theory can be adequately represented only by 

Douglas production functions, 

If initial income is y, and income grows at g percent per year, then income after t 



 Yt=yo (1+g)t=yo r
t, where r = 1 + g 

Here income is said to be an exponential function of time. In other words, income is 
growing at an exponential rate. 

 (ii) If consumption is taken as a logarithmic function of income then

 y=α+ β log X (>β> 0).  

This is termed as semi-log transformation.

 Here when y = 0, log X = 

(iii) Production function is generally of the type 

y=Ax1
αx1

β 

 where x1 and x2 are labour and capital respectively. If we take only one factor labour (
in the short run capital remains constant and hence can be combined with x
Douglas production will be 

 y= Axα 

 where x is labour. Obviously when x = 0, y = 0 and y increases with x if 
output changes at increasing rate with chan
<β<1, there are decreasing returns.

 Since y = Axα 

Taking logarithms, we get 

log y=log A+ α log x  

or log y = A' + α log x  

(where A'=log A) 

This is termed as double logarithmic transformation. 
of price i.e. if price increases, demand decreases by such an amount that total expenditure 
remains constant, price elasticity of demand is 1.

 Hence p. q.= constant, = a² (say)
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, where r = 1 + g  

come is said to be an exponential function of time. In other words, income is 

If consumption is taken as a logarithmic function of income then 

log transformation. 

hen y = 0, log X =  or x=e-αβ 

Production function is generally of the type  

are labour and capital respectively. If we take only one factor labour (
in the short run capital remains constant and hence can be combined with x1

 

where x is labour. Obviously when x = 0, y = 0 and y increases with x if 
increasing rate with change in labour (x) i.e. there are increasing returns. If 0 

<1, there are decreasing returns. 

Taking logarithms, we get  

 

This is termed as double logarithmic transformation. (iv) Demand is an inverse function 
of price i.e. if price increases, demand decreases by such an amount that total expenditure 
remains constant, price elasticity of demand is 1. 

Hence p. q.= constant, = a² (say) 





come is said to be an exponential function of time. In other words, income is 

 

are labour and capital respectively. If we take only one factor labour ( 
 then the Cobb-

where x is labour. Obviously when x = 0, y = 0 and y increases with x if β>0. Ifβ>1, 
ge in labour (x) i.e. there are increasing returns. If 0 

(iv) Demand is an inverse function 
of price i.e. if price increases, demand decreases by such an amount that total expenditure 
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 or P=  

 This represents a rectangular hyperabola. Here neither price nor demand can be zero for 
finite value of the other variable. 

 (v) U-shaped marginal and average cost function can be represented by parabola, 
the general equation being 

 C = a + bq+cq² 

 where q is outpur and c is M.C. 

 We have to choose a, b, c in such a manner that c and q always lie in positive quadrant.  

(vi) Total Revenue function expressed as 

 R = p × q 

Let  p=a – bq 

  then  R = (a – bq) x q = aq – bq2  

If we take p=20 – 10q, then 

    R=20q – 10q2 

 and   AR = where AR = average  

revenue functions. 

 Thus average revenue and price imply one and the same thing, 

 We have discussed only a few important functions in economics. There are many other 
functions e. g. utility function, supply function, investment function etc. which can be similarly 
described.  

Example 1: (i) if f(x) = x6 – 2x4+5. 

   show that f(-x) = f(x) 

  (ii) if f(x)=2x²+3x+4.  

find f(0). f(1) and f(½) 

  (iii) if (x)=  

Solution: (i) f(x)=x6 – 2x4+5 

   f (-x) = (-x)6 – 2 (-x)4+5 

 Hence (-x)  = f (x) 

the function is even. 

 (ii)  f (x) = 2x²+3x+4 

1

3x

R

q

1

x

x 
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  f (x) =2(0)²+2(0)+4 

   =0+0+4 

   =4 

  f (x) =2 (1)²+3 (1) +4 

   =2+3+4 

   =9 

  f (x) =2(-1)2+3(-1)+4 

   =2.1+3 (-1)+4 

   =2 – 3+4 

   = 3 

  f (x) =2.(½)²+3. ½+4 

   = 2½ + 3½ + 4 

   = 2 + 4 

   = 6 

 (iii) f (x)  =   

  f (2) =  =  

f [(2)] = f  =  =  

Example 2: Find the domain of definition of the following functions: 

 (i)   (ii)   (iii)   

Solution: (i) Let f(x)= +1 

f(x) is defined only for those values of x for which 2x + 1 is ≥ 0 otherwise f(x) becomes 
imaginary.  

2x+1≥ 0 or 2x ≥ - 1 or x≥ -½.  

Hence f(x) is defined only for those x ≥ -½ which is its domain of definition. 

 (ii) Let f(x)=  

f(x) is defined only for those values of x for which x -3>0 

1

x

x 

2

2 1
2.

3

2

3
 
 
 

2 / 3

2 / 3 1
2 3 2

3 5 5
 

2 1x 
1

3x     
1

2 4x x 

2x

1

3x 
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∵Ifx-3=0, f(x)= which is not defined. 

if x - 3<0, f(x) is imaginary  

x -3> 0 which gives x > 3 

Hence f(x) is defined only for values of x>3, which is its domain to definition. 

 (iii) Let f (x) =  

f(x) is defined for only those values of x for which(x-2) 

 (x-4) is non-negative, for f(x) is imaginary when  

(x – 2) (x – 4)≥0 then two cases arise.  

Case I   x –2≥ and x – 4≥0 

 ⇒ x≥2 and x≥4 

 ⇒ x >4 

Case II  x – 2 ≤ 0 and x – 4≤0  

⇒ x≤2 and x ≤4 

⇒ x ≤ 2 

Hence f(x) is defined only for values of x>4 orx< 2 which is its domain of definition. 

SELF-CHECK EXERCISE 20.1 

Q1. Point out the domain of definition of the following functions :  

  (i)  

  (ii)  

Q2. Find the inverse of y  = 3x – 2 ⇒ 

20.5 LIMITS 

 Before defining limits, we would explain the concept of Absolute Value of Numbers.  

Modulus (or Absolute value) of a Real Number: 

We define the modulus (or absolute value) of a real number (x) as follows: 

 x=x ifx>0 

 = x if x <0. 

i.e. modulus of a number is always positive. It is in fact the numerical value of the number 
regardless of its sign. For example, absolute value of – 4 as well as +4 is 4. i.e. |-4|= 4 and  
|+ 4| = 4  

1

0

   
1

2 4x x 

2 1x 

1

2x 
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If x and y are assumed to be two real numbers, then the following properties hold good: 

(i) |xy| = |x| |y| 

(ii)  

(iii) |x + y| < |x| + |y| 

(iv) |x - y| > |x| - |y| 

Now we will introduce the concept of limit of a function. 

Let y =  where 

y is single–valued function of x. The each value ofx, there corresponds one and only 
one value of y. We want to see the behaviour of the function as a sequence of values are 
allotted to x. From the above function, we get 

x : 1 2 3 4 ........ 100 .......... 

y:     ....... ........... 

 To the x sequence, there corresponds a y sequence. y sequence has been obtained 
according to some rule and not as arbitrary numbers from the sequence. It is obvious that as x 
becomes larger and larger, y or f(x) becomes smaller and smaller. Continuing this argument, 
we say that as x tends to infinity (i.e. very-very large) y tends to zero. It may be noted that y 
can never be equal to zero by making x larger and larger, but it can be very close to zero. Let us 
consider the function 

 y= f(x) =  

 Let x approach 1 through values < 1, then the corresponding values of y or f(x) are 
shown asbelow. 

x: .9 .99 .999 ... ... ... ... 

y: 1.9 1.99 1.999 ... ... ... ... 

Let x approach 1 through values > 1, then we get 

x : 1.1 1.01 1.001 ... ... ... ... 

y : 2.1 2.01 2.001 ... ... ... ... 

 We observe that x takes values nearer and nearer to 1 remaining always < 1 as in the 
first case > 1 asin the second case, y or f(x) takes values nearer and near to 2. Thus, the 
difference between f(x) and 2 can be made as small as we please by giving x a value 
sufficiently close to 1. In other words as x approaches 1 (written as x→ 1), f(x) tends to the 
limit 2 as x tends to 1. 

xx

y y


1

3x

1

3

1

6

1

9

1

12

1

300

2 1

1

x

x



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i.e. f(x)→ 2 as  or Lim f(x)=2  

Now we define limit of a function at a point x = a. 

 Definition: If x approaches a (through values < a or>a) and thereby f(x) approaches a 
real number ℓ, then f(x) can be brought as near to ℓ as we please by bringing x close enough to 
a but  x ≠ a. In this case we say that f(x) tends limit ℓ as x tends to a and write it as 

 f(x)→ ℓ as x → a or f(x) = ℓ 

Note:- 

 1. When x → a through values which are greaterthan a, we say that x approaches a 
from the right(i.e. x → a +0) 

 2. When x → a through values which are less than a, we say that x approaches a 
from the left (i.e. → a – 0) 

 3. In the first case f (x) is called the right-hand limit of f(x) and in the second 

case f(x)is called the left hand limit of f(x).  

Existence of the limit of a function 

 f(x) is said to exist if 

 (i) left hand Limit and right hand exist  

(ii) left hand Limit=right hand limit. 

 Thus if f(x)= f(x) = ℓ, only then we say that: 

 f (x) = ℓ 

Formal Definition of Limit 

 The function f(x) tends to a limit ℓ as x tends to a if the numerical difference between 
f(x) and ℓ can made as small as we like by making the positive difference between x and a 
small enough. In symbols we write 

 f (x) = ℓ 

To be more rigorous, we state that f(x) tends to limit ℓ as x tends to a, if for each given 
∈>0 however small, there exists a positive number δ (that depends on ∈) such that 

| f(x) –ℓ/<∈ 

1

Lim

x 

Lim

x a

Lim

x a
Lim

x a

Lim

x a

Lim

x a
Lim

x a

Lim

x a

Lim

x a
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 for all values of x for which 0 <1x – a≤ δ. The condition (f(x)-) ℓ <∈ is equivalent to the 
condition ℓ– ∈<f(x) < ℓ +∈. Hence it is clear that the limit exists if f(x) can be confined to any 
arbitrary small interval ( ℓ – ∈,  ℓ +∈) 

20.5.1 Distinction between the Value and Limit of a Function 

 The value of a function f(x) as x = a is obtained by putting x = a. Limit of a function as 

x → a is obtained by considering the values of x in the Lim neighbourhood of a. Thus  

f(x) may exist even if the function is not defined at x = a. For example, we have seen above that 

  = 2 

 

where as the value of the function is not defined at 1. 

∵ƒ (1) = =  which is indeterminate.  

Infinite Limits and Variable tending to Infinity 

1. A function f(x) is said to tend to infinity (+ ∞ or -∞) as x tends to a. If for each 
arbitrarily assigned positive value G, no matter how large, we can find a positive number δ 
such that 

 f(x)>G (or < – (i) 

 for all values of x for which 0<(x – a) < δ. 

 2. A function f(x) is said to tend to a limit ℓ as x tends to + ∞ (or -∞), if to each 
arbitrarily assigned positive number δ no matter how small, wecan find a positive number G 
such that  

| f(x)| ≠  ℓ<δ 

 for every value of x> (or < – G). 

 In less rigorous language, the function f(x) tends to limit ℓ as x ends to + ∞ (or – ∞) if it 
is possible to make the positive difference between f(x) and as small as one likes by making x 
large (or small enough) 

 Now we shall state (without proofs) important theorems on limits which help us in 
solving problems. 

20.5.2 Theorems on Limits:  

Let f(x) and g(x) are functionsof x, then  

1. Lim [f(x)+g(x)] = Lim f(x) + Lim g(x) 

 i.e. the limit of the sum of two functions is equal to the sum of their limits. 

 2. Lim [f(x) – g(x)] = Lim f(x) – Lim g(x) 

Lim

x a

Lim

x a

2 1

1

x

x




1 1

1 1




0

0
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 3. Lim [f(x). g(x)= Lim f(x). Lim (x)  

i.e. the Limit of the product of two functions is equalto the product of their limits. 

 4.  

 For example, if g (x) = x² and f(x)  

Then as x→2, g(x) →4 and f(x)→12. 

 Then Lim | f(x)+g(x) = Lim f(x) + Lim g(x) = 12 +4=16 

 Lim f(x) – g(x) = Lim f(x) – Lim g(x)=12 – 4= 8 

 Lim | f(x). g(x) = Lim f(x) Lim g(x) = 12.4=48. 

 Lim [f(x)/g(x)]= =  = 3 

Illustrative Examples  

Example 3: Evaluate 

 (i)   (ii)   (iii)  

(a being +ve and x is any real number different from 

Solution : (i) Here y = f (x)  =  

Put x = 1 + h so that as x → 1. h → 0. 

 

 

 

  

  

 

( ) ( )

( ) ( )

 
 

 

f x Lim f x

g x Lim g x
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x 1
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2 - 9

- 3

x

x 1
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-
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x

x

3 3

2 2
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x hx h

2 3

2

(1 3 3 ) 1

0 (1 2 ) 1

   


   

Lim h h h

h h h

2 3

2

3 3

0 2

 


 

Lim h h h

h h h

2(3 3 )

0 (2 )

 


 

Lim h h

h h h

23 3

0 2

 


 
Lim h h

h h

as h  0 and h 0

h can be cancelled

  
  
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 =  =   

Second Method  

   =  

  

     

 =  

  

  

  

     

 = 3 + 3 = 6 

  

Let x = a + h so that as x → a. h → 0 

   =  

 =  

 =   

23 3.0 0

2

 
 h

3

2

1
Lim

x

3

2

-1

-1

x

x

2( 1)( 1)

1 ( 1)( 1)

  
  

Lim x x x

x x x

2( 1)

1 ( 1)

 


 

Lim x x

x x

Since   0 and 1
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  
  

x x

x

(1) 1 1 3

1 1 2

 




2 9

3 3
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x x

( 3)( 3)

3 ( 3)

 
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Lim x x

x x

( 3)
3



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x x

x

-

-

 
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n nLim x a

x a x a

-

-

 
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n nLim x a

x a x a
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0 ( )
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n nLim a h a

h a h a
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0
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 =   

 =  

 (By Binomial Theorem. < 1) 

 =  

 =  

 =  

 = an-1 [n+0+0+ ... ... ...| 

= n an-1 

 Hence   n a (an-1> 0) 

Example 4: Evaluate  (i)  –1 

    (ii)    +  

Solution : (i) If we directly calculate by put yx = 0 we get 0/0 which is indeterminate. Hence to 
seek the limits of the given function, we must divide out x from the denominator. 

 ∴  

 By Rationalisation) 

 =  
 

 =   

1

0

   
 



n
n nh

a a
Lim a

h h

1 2nd higher power of 1

3

  


n
h
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h h

h

a
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0

  


n
h

n hLim a a
h h

( 1)
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0


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

n
n n h

n hLim a h a
h ha
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0 2
 
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 =  

 =  

 =   

 =  

 =  

 =  

 =   x  

 =  

 =   

 =  

     

 =   

 =  =   

Example5: Evaluate   

    

0 and 0
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x x
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Solution : Note : To evaluate  where f (x) and g (x) are polynomials in x, divide  

f (x) and g(x) by the highest power of x in the fraction  As x → ∞,  , b etc. all → 0.  

  

  (Dividing the numerator and denominator by x2) 

  

 =  =   

Example 6. Prove that 

 (i)  = e 

 (ii)  

 (iii) = log a 

 (iv)  = 1 

Solution : (i) As n→ ∞, is positive and less than unity and therefore expansion of by 

Binomial. Theorem for any index is possible. 

 ∴ = 1 + n.  

  

 = 1 + 1 =  

 As n→ ∞,  
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1 1
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   = 1+1+  

     (By Def.) 

(ii)  Putting  x =   so that as → ∞, n =  = 0 

  = (1 + x) = e.... 

 =  

 =  

 =  

 =   

 = log a + 0 + 0 + ......... 

 = log a. 

  = log e.  (from (iii) above) 

Example 7. Evaluate    (i)  

   (ii)   

Solution : (i)   

 =   

 =   

 =  

1
1

0

nLim

n n
    

1 1
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2 3
 
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0 0
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n nn
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n x
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

1
( 1)

0
aLim

a
n x
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2 21 (log )
1 log .... 1

0 2

Lim x a
x a

n x
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2 21 (log )
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x a

n x

 
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x x
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
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a aLim a b

x x
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lxLim
ax
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x x
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 = Log a - log b = log   

(ii)  

 =  

 =   

 =   

 = ea. 

Example 8. Evaluate   

Solution :   

=  

=   

=   

=  ×  

=   ×  

=   where 2x = z or n = z/2 cm n→0. z→0. 

= 2 × 1 × 1 = 2 
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
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2 1
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n x


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0 a
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n e

1

0 / 2
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z z




1

0 a
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n e

1
1

0

zLim e

z z



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SELF-CHECK EXERCISE 20.2 

 Evaluate the following limits 

 (i)  

 (ii)  Sin x = 0 

 (iii)  sin x  = sin θ 

 (iv)  

20.6 CONTINUITY OF FUNCTIONS 

1. A function y = f(x) is said to be continuous atx=c if for any positive number∈, 
however small, there exists a positive number (depending on ∈), such that 

 | f(x) – f(c) | <∈for |x – c| ≤ δ 

 It can be defined in other way as follows: 

 2. A function f(x) is said to be continuous at x=c, if for any positive number ∈, 
however small, there exists a positive number δ (depending on ∈) such that 

 f(c) – ∈ <f(x)<f(c) + ∈ for 

 c – δ < x < c + . 

 3. In simple language. A function f(x) is continuous at 

  x – cif Lim f(x) – f(c). 

  x  → c 

 For continuity of functions, the following three conditions must be fulfilled. 

 1. Lim f(x) exists. i.e. right hand limit and left hand x → c. 

 2. The value of a function f(x) at x=c exists i.e.f(c) exists. 

 3. Lim f(x) = f(c) i.e. Limit of function and value ofthe x → c. 

 function are same at that point 

 Note: A function f(x) is continuous is an interval (a, b) if it is continuous at every point 
of the interval. 

 Note: If any of the three conditions is not fulfilled,the functions is discontinuous. 

Note: Continuity represents the agreement  between limit and value where both exists, 
i.e. the assumes a definite value of f(a) at the point and that f(x) tends to the same value f(x) as 
x approaches a from either side. Hence the curve has no gaps or jumps at x = a. 

0

Lim a x a x

x x

  


0

Lim

x 

0
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x 

2 4

1 3

Lim x

x x


 
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Example 9. Examine whether the function is continuous or discontinuous. 

(i) f (x) = xz – 1 at x = 1 

(ii) f (x) = at xz - 1 

(iii) f (x) =  at xz – 1 

Solution : (i) f (x) = x – 1 

 Lim f (x) = (1)z – 1 = 1 = 0 

 x – 1 

 f (1) = (1)z – 1 = 0 

Since Lim f (x) = f (1) 

 x – 1 

  the function is continuous as x = 1. 

(ii) f (x) =  

 f (x) =   =  which is meaningless  

 In the question f(x) exists and is equal to 2, which can be verified. But since the 

value of the function does not exist, there is no point in finding the limit of the function. Hence 
we say that function is discontinuous. 

 (ii) f (x) =  

Clearly f(x) is not defined at x = a. Hence it is discontinuous.  

Example 10: Show that the function 

  is discontinuous at zero. 

Solution : As x→ 0.  or  

∴ e1/x  

Thus left hand Limit =   

1

1

zx

x




1

1x

1

1
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x




1 1

1 1




0
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1
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x 
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x a

1/ when 01

when 01

x xe
y

xe

   

1

x


1

x
 

1/
1/

1 1
0x

x
e

e
 



1/

1/

1

0 1

x

x

Lim e

x e

 
   
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=  

 Again let x → 0. + then 0 

  and  

  right hand limit =  

    =  

Thus left hand limit right hand limit.  

Hence of the given does not exist. 

  The function is discontinuous at x = 0 

Example 11: The function ƒ is discontinuous at x=0  

Solution: Atx=0, f(x)=x – 3.f(o)= – 3  

+f(x)= +x2=0  

and  +f(x)= +x - 3 = - 3 

 f(x) f(x) 

i.e. f(x) does not exist.  

Hence ƒ is discontinuous at x = 0. 

Example 12. The function f(x) =  is undefined at thepoint x = 1: what should be the value 

of f(1) such that f(x) may be continuous at x = 1? Give arguments.  

Solution: For the function f(x) to be continuous at x =, we must have f(x) = f(1). 

0 1 1
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0 1 1
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1

x

x





1
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x 



 

474 
 

Now  f(x) =  

=   

=  ( x  1) 

SELF-CHECK EXERCISE 20.3 

 Q1. Find the paint of discontinuity of the following function  

  f (x) =  

Q2. f (x) = . What should the value of f (2) be, so that f (x) is continuous at  

x = 2. 

20.7 SUMMARY 

 In this unit, you were introduced to the three important basic concept of calculates 
namely, function, limit and continuity. Important types of function the limiting value of a 
function and its substance. Important cut property of function, continuity and when the limit of 
function existed and when it is continuous was discussed in detail. 

20.8 GLOSSARY 

1. Explicit and Implic Function : y is said to be an explicit function of x if y is expressed 
directly in terms of x in terms of x in the form y = f (x). But if y and x are mixed up in 
the functional relation of the from f (x, y) = 0 y is said to be an implic function of x. 

2. Constant Function : A function whose range consists of only one specific value, is 
called a constant function. 

3. Polynomial Function : A polynomial function is a function that can be defined by 
evaluating a polynomial. 

4. Rational Function : A function which is expressed as the ratio of two polynomial 
function in the same variable x is called a 'rational function'. 

5. Exponential Function : In an algebraic function the exponent of a variable happens to 
be a constant such as x2 or x3 or an power of x.    
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20.9 ANSWER TO THE SELF-CHECK EXERCISE  

Self-check Exercise 2.1 

Ans.Q1 (i)  

 Let f (x) =  

f (x) is defined only for those value of x for those value of x for which 2x + 1 is 
> 0 otherwise f (x) become imaginary. 

 2x + 1 > 0 or 2x > –1 or x > -  

Hence f (x) is defined only fare there x > -  which is its domain of definition. 

Ans. Q1 (ii) Let f (x) =  

  f (x) is defined only for those value of x for which x – 2 > 0 

   if x – 2 = 0, f (x) =  which is not defined 

  if x – 2 < 0 , f (x) is imaginary 

   x – 2 > 0 which gives x > 3 

 Hence f (x) is defined only for value x > 2, which is its domain to definition. 

Ans. Q2 First get   = x 

  Switch the location y to x and x to y have y = which is required inverse. 

Self-check Exercise 2.2  

Ans. (i)  

  =   

  =    =  

  (since x → 0 and x  0 we can cancel x in the ratio) 

2 1x 

2 1x 

1

2

1

2

1

2x 

1

0

2

3

y 

2

3

x 
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Lim a x ax x

x x

  

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Lim a x a x
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   

 
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x x a x a x   
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  Now as x → 0,  

  Thus, the limit =   =  

Ans. (ii) |Sin x – 01 = 1 Sin x| can be made arbitrarily small by making 1 × 1 arbitrarily 
small. 

  Thus   sin x = 0 

Ans. (iii) Sin x = Sin θ =  2 Sin  (x – θ) Cos  (x + θ) 

 As x → θ, Sin (x – θ) → θ 

 Also |Cos  (x + 0)| 

 Thus,  (Sin x – Sin θ) = 0 

 i.e.  Sin x – Sin θ 

Ans. (iv)  

 =  

 =  x + 2 

 = 1 + 2 = 3 

Self-check Exercise 2.3 

Ans. Q1. f (x) =  is the ratio of two continuous function (Polynomials are 

continuous can be verified lastly). There by the property III of the continuous 
function f (x) will be continuous at all value of x except when x2 – 5x +6 equal 
zero i.e., the point of discontinuity of f (9x) are x = 2, 3. 

Ans. Q2 f (x) =  = 4 

  Thus, f (2) = 4 is the requirement for f (x) to be continuous at x = 2 
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20.11 TERMINAL QUESTIONS  

 Q1. Examine the continuity of the function  at x = 2. 

 Q2. Evaluate :  

  (i)   (ii) 
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