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Unit - 1 

Basic Concepts of Probability 

Structure 

1.1 Introduction 

1.2 Learning Objectives  

1.3 Basic Terminology  

1.4 The Concept of Probability  

Self Check Exercise-1 

1.5 Summary 

1.6 Glossary 

1.7 Answers to Self Check Exercises 

1.8 Reference/Suggested Readings 

1.9 Terminal Questions 

1.1 Introduction 

If an experiment is repeated under essentially homogeneous and similar conditions, then 
we generally come across two types of situations. 

(i) The result or what is usually known as the outcome is unique or certain.  

(ii) The result is not unique but may be one of the several possible outcomes.  

 The phenomena covered by (i) are known as deterministic or predictable phenomena. 
By a deterministic phenomenon we mean one in which the result can be predicted with certainty 
e.g.  

 (a) For a perfect gas  

   V 
1

P


 i.e. PV = constant    .....(1) 

Where V is one volume and P is the pressure of the gas,  

 provided the temperature remains the same.  

 (b) The velocity '' of a particle after time t is given by 

    = u + at,   ......(2) 
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 where u is the initial velocity and a is the acceleration. Equation (2) uniquely determines 
 if the right hand quantities are known.  

 (c) Ohm's law, viz.,  

   c = 
E

R
,    ......(3) 

where c is the flow of current, E the potential difference between the two ends of the conductor 
and R the resistance, uniquely determines the value c as soon as E and R are given.  

 A deterministic model is defined as a model, which stipulates that the conditions under 
which an experiment is performed determine the outcome of the experiment. For a number of 
situations the deterministic model suffices.  

 However, there are phenomena, as covered by (ii) above, which do not lend themselves 
to deterministic approach and are known as unpredictable or probabilistic phenomena, e.g.,  

 (i) In tossing of a coin one is not sure if a head or a tail will be obtained. 

 (ii) If a light-tube has lasted for m hours, nothing can be said about its further life. It 
may fail to function any moment.  

 In such cases we talk of chance or probability which is taken to be a quantitative 
measure of certainty.  

 The word probability may be used in two different contest. Firstly, it may be used in 
regard to some proposition. Take, for instance, the statement, "It is very probable that India will 
adhere to the democratic system of government till the end of this century" or, "It is very 
improbable that the county's brain drain will stop in the near future". Probability here means the 
degree of belief in the proposition of the person making the statement. This is called the 
subjective probability.  

 Alternatively, the word may be used in regard to the results of an experiment that can, 
conceivable, be repeated an infinite number of times under essentially similar conditions. The 
results will be called events. The probability of an event here refers to the proportion of cases in 
which the event occurs in such repetitions of the experiments. This type of probability is called 
the objective probability, being a part of the real world, and it is with this sense of the word that 
we shall be concerned in the present discussion.  

1.2 Learning Objectives 

 After reading this unit, you should be able to:- 

 Discuss the various terms that are frequently used in the theory of probability.     

 Discuss the concept of probability and discuss to important approaches by 
means of cohich we can estimate the probability of an event i.e. discuss the 
classical approach or 'A Priori' approach and statistical or empirical probability.  

 Discuss the limitations of classical definition of probability and empirical definition 
of probability.  

 Do some basic questions of probability.  
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1.3 Basic Terminology  

 The following terms are frequently used in the theory of probability:- 

 If an experiment, when repeated under identical conditions, does not produce the same 
outcome every time but the outcome in a trial is one of the several possible outcome, then such 
an experiment is called a random experiment.  

 Examples of random experiments of are : fossing a coin, throwing a die, selecting a card 
from a pack of playing cards etc. In all these cases, there are number of possible results which 
can occur but there is an uncertainty as to which one of them will actually occur. 

Outcome 

 The result of a random experiment coill be called an outcome. 

Trial and Event  

 Any particular performance of a random experiment is called a trial and outcome or 
combinations of outcomes are termed as events e.g. is a coin is tossed repeatedly, the result is 
not unique-we may get any one of the two faces, heat or tail. Thus tossing of a coin is a random 
experiment or trial and getting of a head or tail is an event.  

Elementary Event  

 If a random experiment is performed, them each of its outcomes is known as an 
elementary event.  

Sample Space  

 A sample space is defined as the set of all possible outcomes of an experiment and is 
denoted by S. For example:- 

 (i) In tossing a coin, sample space is given by  

  S = {H, T} 

 (ii) In tossing two coins simultaneously, sample space is given by 

  S = {(H,T)  (H, T)} = {HH, HT, TH, TT} 

 (iii) In tossing three coins simultaneously, sample space is given by  

  S = {(H,T)  (H,T)  (H,T)} 

  = {(HH, HT, TH, TT)  (H,T)} 

  = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}     

 (iv) In throwing a die, sample space is  

  S = {1,2,3,4,5,6} 

 (v) In throwing a die twice or in a single throw of two die, same space is  

Sample Point 

 Elements of sample space S are known as sample points. 

If we roll a die, them  
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 S = {1,2,3,4,5,6} 

 and sample points are 1,2,3,4,5.6 

Event 

 A subset of the sample space associated with a random experiment is called an event.  

Certain (or Sure) Event  

 An event associated with a random experiment is called a certain event if it always 
occurs whenever one experiment is performed.  

Impossible Event  

 An event associated with a random experiment is called an impossible event if it never 
occurs whenever the experiment is performed.  

Compound Event  

 An event associated with a random experiment is a compound event if it is the disjount 
union of two or more elementary events.  

Exhaustive Events or Cases  

 The total number of possible outcomes of a random experiment is known as the 
exhaustive events or cases. For example,  

 (i) In tossing of a coin, there are two exhaustive cases, viz., head and tail come 
possibility of the coin standing on an edge being ignored.  

 (ii) In throwing of a die, there are 6 exhaustive events since any of the six faces may 
come uppermost.  

 (iii) In drawing two cards from a pack of cards, the exhaustive number of events is 

2
52c , since 2 cards can be drawn out of 52 cards in 

2
52c  ways.  

 (iv) In throwing of two dice, the exhaustive number of cases is 62 since any of the 6 
numbers 1 to 6 on the first die can be associated with any of the 6 numbers on 
the other die. In general, in throwing of  dice, n the exhaustive number of cases is 
6n.  

Mutually Exclusive Events  

 Events are said to be mutually exclusive or incompatible, if the happening of any one of 
them precludes the happening of all the others i.e. if no two or more of them can happen 
simultaneously in the same trial. For example:- 

 (i) In tossing a coin the events head and till are mutually exclusive  

 (ii) In throwing a die, all the 6 faces numbered 1 to 6 are mutually exclusive since if 
any one of these 6 faces comes, the possibility of others in the same trial, is ruled 
out.  
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Mutually Exclusive and Exhaustive System of Events 

 If there are events such that one of them must occur and the occurrence of one rules out 
the possibilities of the occurrence of the others, them the events are said to be mutually 
exclusive and exhaustive system of events.  

Favorable Events or Cases  

 The number of cases favorable to an event in a trial is the number of outcomes which 
ensure the happening of the event. For example: 

 (i) In drawing a card from a pack of cards the number of cases favorable for drawing 
of a queen is 4, for drawing a spade is 13 and for drawing a black card is 26. 

 (ii) In throwing of two dice, the number of cases favorable to get a sum 5 is (1, 4), (4, 
1), (2, 3), (3, 2) i.e. 4. 

Equally Likely Events  

 Outcomes of trial are said to be equally likely is taking into consideration all the relevant 
evidence, there is no reason to expect any one in preference to other. For example: 

 (i) In tossing an unbiased coin, head or tail are equally likely events.  

 (ii) In throwing an unbiased die, all the six faces are equally likely to come.  

Complimentary event (or negation) of E 

 Given an event E, the event which occurs when, and only when, E does not occur is 
called the event "not E". This event "not E" is also called the complimentary event of E or 
negation of E and is denoted by Ec. For example, consider die is thrown. The two events. "the 
number is even" and "the number is odd" are such that at least one of the events has to occur 
and only one occurs. If the first event does not occur, then the second must occur and the non-
occurrence of the second means the first event must have occurred. 

Simple Event, Compound Event  

 A single event is called a simple event and when two or more than two events occur in 
connection with each other then their simultaneous occurrence is called a compound event.  

1.4 The Concept of Probability  

 In any random experiment there is always uncertainty as to whether a particular event 
will or will not occur. As a measure of the chance or probability, with which we can expect the 
event to occur, it is convenient to assign a number between 0 and 1. 

 If we are sure or certain that one event will occur, we say that its probability is 100% or 
1, but if we are sure that the event will not occur, we say that its probability is zero. If, for 
example, the probability is 1/4. We could say that there is 25% chance it will occur and a 75% 
chance that it will not occur. Equivalently, we can say that the odds against its occurrences are 
75% to 25% or 3 to 1. There are two important approaches by means of which we can estimate 
the probability of an event.  
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1. Classical Approach or 'A Priors' Approach 

 If a random experiment or a trial results in 'n' exhaustive, mutually exclusive and equally 
likely outcomes (or cases), out of which m are favorable to the occurrence of an event E, then 
the probability 'p' of occurrence (or happing) of E, usually denoted by P(E), is given by,  

 p = P(E) = 
Number of FavourableCases

Total number of exhaustivecases
= 

m

n
  ......(1) 

Remarks 

 (i) Since m > 0, n > 0 and m < n, we get from (1) P(E) > 0 and P(E) < 1  0 < P(E) 
< 1 

 (ii) Sometimes we express (1) by saying the odds in favour of E are m : (n-m) or the 
odds against E are (n-m) : m1. 

 (iii) The non-happening of the event E is called the complementary event of E and is 

denoted by E  or Ec.  

 (iv) Probability 'p' of the happening of an event is also known as the probability of 
success and the probability 'q' of the non-happening of the event as the 
probability of failure i.e. p + q = 1.  

 (v) If P(E) = 1, E is called a certain event and if P(E) = 0, E is called an impossible 
event.  

2. Statistical or Empirical Probability 

 If an experiment is performed repeatedly under essentially homogeneous and identical 
conditions, them the limiting value of the ratio of the number of times the event occurs to the 
number of trials, as the number of trials becomes indefinitely large, is called the probability of 
happening of the event, it being assumed that the limit is finite and unique.  

 Symbolically, if in N trials an event E happens M times, then the probability of the 
happening of E, denoted by P(E), is given by: 

  P(E) = 
N

Lim


 
M

N
   .....(2) 

Limitations of These Definitions 

(I) The classical definition breaks down if  

(i)  The various outcomes of the random experiment are not equally likely. For 
example: 

(a) The probability that a ceiling fan in a room will fall is not 1/2, since the 
events of the fan 'falling' and 'not falling' though mutually exclusive and 
exhaustive, are not equally likely. In fact, the probability of the fan falling 
will be almost zero.  

(b) If a person jumps from a running train, then the probability of his survival 
will not be 50%, since in this case the events survival and death, though 
exhaustive and mutually exclusive, are not equally likely.  
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(ii) The exhaustive number of outcomes of the random experiment is infinite or 
unknown.  

II. The Empirical definition has the following limitations:  

(i) For large repetition of any experiment, the experimental conditions may not 
remain identical and homogeneous.  

 (ii) The result generally differs for different set of experiments of the same type: 

 Let us improve our understanding of these results by looking at some following 
examples:- 

Example 1: Three coins are tossed once. find the probability that  

 (i) head and tails appear alternatively 

 (ii) at least one head and one tail occur.  

Sol. Here S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT} 

  Total number of outcomes = 8 

 (i) Favourable cases are HTH, THT 

   Number of favourable cases = 2 

   Required probability = 
2

8
= 

1

4
 

 (ii) Favourable cases are HHT, HTH, THH, TTH, THT, HTT 

  Number of favourable cases = 6 

   Required probability = 
6

8
= 

3

4
 

Example 2: In a single throw of two unbiased dice, what is the probability of obtaining: 

 (i) a total of 7 ? (ii) a total of 13 ? 

 (iii) a total as even number ?  

Sol. We have  

 S = 

(1,1) (1,2) (1,3) (1, 4) (1,5) (1,6)

(2,1) (2, 2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3, 4) (3,5) (3,6)

(4,1) (4, 2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5, 4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6, 4) (6,5) (6,7)

 
 
 
 
 
 
 
 
 

 

  Total number of outcomes = 36 
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 (i) Favourable outcomes are (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 

  Number of favourable outcomes = 6 

   Required probability = 
6

36
 = 

1

6
 

(ii) A total of 13 is an impossible event as the sum f two numbers on the two dice 
can not be 13. 

   Number of favourable outcomes = 0 

   Required probability = 
0

36
= 0 

 (iii) Favourable outcomes are  

  (1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), (5,1), 
(5,3), (5,5), (6,2), (6,4), (6,6). 

   Number of favourable outcomes = 18 

   Required probability = 
18

36
 = 

1

2
 

Example 3: What is the choice that a leap year selected at random will contain 53 Sundays?  

Sol. Leap Year contains 366 days. 

   There are 52 complete weeks and two days other. The following are the 
possibilities of these two 'over' days: 

 (i) Sunday and Monday  (ii) Monday and Tuesday 

 (iii) Thursday and Friday  (iv) Wednesday and Thursday  

 (v) Thursday and Friday  (vi) Friday and Saturday  

 (vii) Saturday and Sunday  

 Now there will be 53 Sundays in a leap year when one of the two over days is a Sunday. 

  out of 7 possibilities, two are favourable to this event.  

  Required probability = 
2

7
 

Example 4: Tickets are numbered from 1 to 10. Two tickets are drawn one after the other with 
replacement. Find the probability that the number on one of the tickets is a multiple of 5 and the 
other a multiple of 4. 

Sol. Two tickets are drawn from tickets numbered 1 to 10. 

  S = {(1,1), (1,2), (1,3),......, (10,9), (10,10)} 
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  Total number of possible outcomes 

  = 10  10 = 100 

 Let E denote the event that number on one of the tickets is a multiple of 5 and the 
number on the other is a multiple of 4.  

  A = {(5,4), (5,8), (10,4), (10,8), (4,5), (4,10), (8,5), (8,10)} 

 Number of favourable cases = 8 

  Required probability = 
8

100
= 

2

25
 

Example 5: In a random arrangement of the letters of word 'Mathematics', find the probability 
that all the vowels are together.  

Sol. Given word is 'MATHEMATICS' 

 No. of given letters = 11 

 No. of M's = 2 

 No. of T's = 2 

 No. of A's = 2 

  Required number of arrangements = 
11

2 2 2
 

 = 
11 10 9 8 7 6 5 4 3 2 1

(2 1) (2 1) (2 1)

         

    
= 4989600 

  Total number of cases = 4989600 

 Consider the four vowels as one letter.  

  8 letters can be arranged in 
8

2 2
 ways. 

 Also four vowels can be arranged in 
4

2
ways. 

  Number of words in which vowels are always together = 
8

2 2
  

4

2
 

  = 
8 7 6 5 4 3 2 1

(2 1) (2 1)

      

  
  

4 3 2 1

2 1

  


= 120960 

  Number of favourable cases = 120960 
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 Required probability = 
120960

4989600
= 

4

165
 

Example 6: 20 books are placed at random in a shelf. Find the probability that a particular pair 
of books is  

 (i) always together  (ii) never together  

Sol: Total no. of books = 20 

 Number of ways in which these can be arranged = 20  

  Total number of cases = 20  

 (i) Consider the two particular books as one. So 19 books can be arranged in 19  

ways. Also two particular books can be arranged in themselves in 2 = 2 1 = 2 ways. 

  Number of ways in which two particular books are always together = 2 19  

  Number of favourable cases = 2 19  

  Required probability = 
2 19

20 19
= 

1

10
 

 (ii) Number of ways in which 2 particular books are never together = 20  - 2 19  

  = 20 19  - 2 19  = 1819  

  Number of favourable cases = 1819  

  Required probability = 
1819

20
= 

1819

20 19
= 

9

10
 

Example 7: Find the probability that when a hand of 7 cards is dealt from a well-shuffled deck of 
52 cards, it contains. 

 (i) all 4 kings  (ii) exactly 3 kings  

 (iii) at least 3 kings  

Sol: Total number of cards = 52 

 Number of cards to be taken = 7 

  Total number of possible hands = 
7

52c  

 Total number of possible hands = has 4 kings 

 (i) P (a hand has 4 kings) = P (a hand has 4 kings and three cards from non-kings) 
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  = 4 3

7

4 48

52
c c

c


 

  = 

48 47 46
1

1 2 3
52 51 50 49 48 47 46

1 2 3 4 5 6 7

 


 
     

     

 

  = 
1

7735
 

 (ii) Number of hands with 3 kings and 4 cards from non-kings = 3 4

7

4 48

52
c c

c


 

  = 

4 48 47 46 45
1 1 2 3 4

52 51 50 49 48 47 46
1 2 3 4 5 6 7

  


  
     

     

 

  = 
9

1547
 

 (iii) P (at least 3 kings) = P(3 kings) + P(4 kings) 

  = 
1

7735
+ 

9

1547
 

  = 
1 45

7735


= 

46

7735
 

Dear Students, now try the following exercises:- 

1.4 Self Check Exercise 

Q.1 In a lottery of 50 tickets numbered 1 to 50, two tickets are drawn simultaneously. 
Find the probability when 

 (i) both the tickets drawn have prime numbers  

 (ii) none of the tickets drawn has prime number. 

Q.2 If n biscuits are distributed among N beggars, find the probability that a particular 
beggar receives r (< n) biscuits.  

1.5 Summary 

 We conclude this unit by summarizing what we have covered in it:-  

(1) Defined and discussed the various terms that are used in the theory of 
probability.  
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Various terms defined are: Random experiment, outcome, trial, event, sample 
space, sample point, certain event, impossible event, compound event, 
exhaustive, events, mutually exclusive events, favourable events. equally likely 
events, complimentary events, simple event, compound event.  

(2) Discussed the concept of probability by classical approach or 'A Priori' approach 
and statistical or empirical probability.  

 (3) Did some basic questions of probability. 

1.6 Glossary: 

1. If an experiment, when repeated under identical conditions, does not produce the 
same outcome every time but the outcome in a trial is one of the several possible 
outcomes, these such as experiment is called a random experiment.  

2. Any particular performance of a random experiment is called a trial and outcome 
or combination of outcomes are termed as events.  

3. A sample space is defined as the set of all possible outcomes of an experiment  

4. An event associated with a random experiment is called a certain event if it 
always occurs whenever the experiment is performed.  

5. The total number of possible outcomes of a random experiment is known as the 
exhaustive events or cases: 

6. Events are said to be mutually exclusive if the happening of any one of them 
precludes the happening of all the others.  

1.7 Answer to Self Check Exercise 

 Ans.1 
21

245
 

Ans.2 
119

245
 

Ans.3 Required probability = 
( 1)

r

n r
c

n

n N

N

 
 

1.8 References/Suggested Readings 

1. Robert V. Hogg, Joseph w. Mckean and Allen T. Craig, Introduction to 
Mathematical Statistics, Pearson Education, Asia, 2007. 

2. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007 

3. Irwin Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 
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1.9 Terminal Questions 

1. Two cards are drawn together from a back of 52 cards at random. What is the 
probability that  

  (i) both are spades? 

  (ii) both are kings? 

  (iii) exactly one is king? 

2. If p, q are chosen randomly from the set :1,2,3,4,5,6,7,8,9,10}. Determine the 
probability that roots of equations x2 + p x + q = 0 are real. 

3. A fair coin is tossed four times, and a person wins Rs. 1 for each head and loses 
Rs. 1.50 for each tail that turns up. Calculate how many different amounts of 
money he can have after four tosses and the probability of having each of these 
amounts.  

--------- 
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Unit - 2 

Probability Axioms 

Structure 

2.1 Introduction 

2.2 Learning Objectives  

2.3 Axioms of Probability And The Probability Set Function 

2.4 Some Important Theorems on Probability 

 Self Check Exercise 

2.5 Summary 

2.6 Glossary 

2.7 Answers to Self Check Exercises 

2.8 Reference/Suggested Readings 

2.9 Terminal Questions 

2.1 Introduction 

 The probability axioms are set of fundamental principles that govern one mathematical 
theory of probability. These axioms were developed to provide a rigorous and consistent 
framework for defining and analyzing probabilities. The three main probability axioms are : Non-
negativity axiom; Normalization axiom; Additively axiom. These three axioms form the 
foundation of probability theory and are used to derive various properties and theorem in 
probability. These probability axioms provide a solid mathematical foundation for probability 
theory and enable the development of more advanced concepts and applications in the field of 
probability and statistics. 

2.2 Learning Objectives  

 After studying this unit, you should be able to: 

 Define and discuss the three axioms of probability. 

 Define and discuss the probability set function. 

 Prove some important theorems of probability. 

 Do questions related to probability by using theorems.  

2.3 Axioms of Probability And The Probability Set Function  

 Suppose we have a sample space s. If S is discrete, all subsets correspond to events 
and conversely, but if S is non-discrete, only special subsets (called measurable) correspond to 
events. To each event A in the class C of events, we associate real number P(A). Then P is 
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called a probability set function, and P(A) the probability of the event A, if the following axioms 
are satisfied: 

Axiom 1 : For every event A in the class C, P(A) > 0.  .....(1) 

Axiom 2 : For the sure or certain event in the class C, P(S) = 1 ......(2) 

Axiom 3 : For any number of mutually exclusive events A1, A2,......., in the class C, 

 P (A1 ∪ A2 ∪ ...........) = P(A1) + P(A2) + .........  ........(3) 

 In particular, for two mutually exclusive events A1, A2,  

 P(A1 ∪ A2) = P(A1) + P(A2)     .....(4) 

 The above three axioms give the Axiomatic definition of probability. 

 A more rigorous definition of a Probability set Function is: 

 P(A) is called the probability set function defined on a  - field  of events if the following 
properties or axioms hold:-  

1. Axiom of non-negativity : For each AC, P(A) is defined, is real and P(A) > 0 

2. Axiom of certainty : P (s) = 1 

3. Axiom of additivity : If {An} is any finite or infinite sequence of disjoint events in c, then 

 P  = 
1

n

i
i

A


 
 
 

 = 
1

( )
n

i
i

P A


  

2.4 Some Important Theorems on Probability  

Theorem 1 : For each a belonging to the class c of events, 

     ) = 1 - P(A) 

   or           -    ) 

 

Proof : Let S be the sample space . 

 Since A     =           S 
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  S = A ∪   

By axioms (2) and (3), we have 

 P (s)  =  1 

and  P (A∪               ) 

Thus, we get 

               ) 

  P(       - P (a) 

Or equivalently  

          -       

Theorem 2 : The probability of the null set or empty set is zero, that is P() = 0 

Proof : Let S be the sample space. 

 The  S    =  and S ∪  = S 

  P(S ∪ ) = P (S) 

Now Axiom (3)  P(S ∪ ) = P(S) + P() 

and Axiom (2)  P(S) = 1 

 Equation (1) becomes  

  P(S) + P() = P(S) 

  ) = 1 

  P() = 0 

Hence the result 

Theorem 3 : For any two events A and B in the class C of events, show that if B  A , then  

 (i) P(A     ) = P(A) - P(B) or P(A - B) = P(A) - P(B) 

 (ii) P(B) < P(A) 

Proof : (i) Since B  A, therefore B and A    are mutually exclusive events, 

 i.e. B   (C     ) =  

Moreover,  

 B ∪ (A     ) = A 

 P(B ∪ (A     )) = P (A) 



17 
 

 P(B) + P(A   ) = P(A) 

 P(A      = P(A) - P(B)   ....(1) 

 

Since A      = A - B 

Therefore, (i) can also be written as  

 P(A - B) = P (A) - P(B) 

(ii) From Axiom (i), probability of any event in s is greater than or equal to zero. 

In Particular, P(A - B) > 0 

  Using (2), we have P(A) - P(B) > 0 

 or  P(B) < P(A)    ....(3) 

 Hence the result 

Theorem 4 : For every event A,  

 0 < P (A) < 1, 

 i.e. a probability is between 0 and 1 

Proof : We know that for any event A in the class C of events, A  S where S is the sample 
space. 

 Now P(A) < P(S) 

 But P(S) = 1    [By Axiom (2)] 

  P(A) < 1 

Also, by Axiom (1), we have  

 P(A) > 0 

 On combining these two, we get 

 0 < P(A) < 1 

 Hence the result. 
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Theorem 5 : For any two events A and B, prove that  

 (i) P ( A    B) = P(B) - P (A   B) 

 (ii) (A   B ) = P(A) - P(A   B) 

 

Proof: (i) We have      B and A   B are disjoint events i.e. 

 ( A    B)   B) =  Also 

 ( A    B) ∪ (A   B) = B 

 P ( ) ( )A B A B 
   = P(B) 

 P( A   B) + P(A B) = P(B) [  of Axiom (3)] 

 P( A    B) = P(B) - P(A   B) 

 Hence the result. 

 (ii) Similarly Starting with  

  (A   B )   (A   B) =  

 and (A   B ) ∪ (A   B) = A 

 We can show that  

Theorem 6: Addition Theorem of Probability  

Statement: If A and B are any two events  subsets of sample space < , then from the class 
 containing the events A and B cohich are not disjoint, we have  

 P(A ∪ B) = P(A) + P(B) - P(A   B) 

Proof: From the Venn diagram, we have  
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 A∪B = A∪( A   B),cohere A and A    B are mutually disjoint.  

 P(A ∪ B) = P ( )A A B 
   

  = P(A) + P( A    B)  [By Axiom 3]  ......(*) 

  = P(A) + P(B) - P(A   B) ( ) ( ) ( )P A B P B p A B  
   

 

 OR From (*) onwards 

 P(A ∪ B) = P(A) + ( ) ( ) ( )P A B P A B P A B  
   - P(A   B) 

  = P(A) +P ( ) ( ) ( )A B A B P A B 
   

  [  ( A    B) and (A   B) are disjoint] 

 P(A ∪ B) = P(A) + P(B) - P(A   B) 
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Cor. 1: If the events A and B are mutually exclusive, then  

 A   B =   P(A   B) = P() = 0 

 so that above result becomes 

 P(A ∪ B) = P(A) + P(B) 

 which is the third axiom of probability. 

Cor 2: For three not mutually exclusive events A, B and C, we have  

 P(A ∪ B ∪ C) = P(A) + P(B) - P(A   B) - P(B C) - P(C   A) + P(A   B   C) 

Proof : We have 

 P(A ∪ B ∪ C) = P[A ∪ (B ∪ C)] 

  =P(A) + P(B ∪ C) - P[A  (B ∪ C)] 

  = P(A) + P(B) + P(C) - P(B   C) 

  = P[(A   B) ∪ (A   C)] 

  = P(A) + P(B) + P(C) - P(B   C) - 

  - [P(A   B) + P(A   C) - P{(A   B)   (B   C)} 

  = P(A) + P(B) + P(C) - P(A   B) - P(B   C) - 

  - P(C   A) + P[A   B   C] 
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 Hence the result. 

Theorem 7: For any events A and B, prove that P(A) = P(A   B) + P(A    ) 

 

Proof : We clearly have A   B and A      are disjoint sets. 

i.e. (A   B)   (A     ) =  

Also A = (A   B) ∪ (A     ) 

   P(A) = P[(A   B) ∪ (A     )] 

By Axiom (2) of probability, we have 

 P(A) = P(A   B) + P(A     ) 

Hence the result. 

Theorem 8 : Generalised Addition Theorem  

 For any n events A1, A2, ..... , An in a sample space, we have  

 P 
1

n

i
i

A


 
 
 

 = 
1

( )
n

i
i

P A


  - 
1 i j n  

  P(Ai   Aj) 

  + 
1 i j k n   

 P(Ai   Aj   Ak) + ...... + 

  + (-1)n-1 P (A1   A2   .....   An) 

Proof : We shall prove the result by induction on n. 

 For n = 2, we have  
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  P(A1 ∪ A2) = P(A1) + P(A2) - P(A1   A2)     ...(1) 

 Which is always true 

   the result holds for n = 2. 

 Let  the result hold for n = r 

 i.e.  P 
1

r

i
i

A


 
 
 

= 
1

( )
r

i
i

P A


  - 
1 i j r  

   P(Ai   Aj) 

      + 
1 i j k r   

  P(Aj   Aj   Ak) + ...... + 

  + .......... (-1)r-1 P (A1   A2   .....   Ar)     ...(2) 

 is true 

 We shall now show that the result is also true for n = r + 1. 

 Consider 

 P 
1

1

r

i
i

A




 
 
 

 =  P 1
1

r

i r
i

A A 



  
  
  

 

Using equation (1), we get 

 P 
1

1

r

i
i

A




 
 
 

 =  P 
1

r

i
i

A


 
 
 

+ P(Ar+1) - P 1
1

r

i r
i

A A 



  
  
  

 

   =  P 
1

r

i
i

A


 
 
 

+ P(Ar+1) - P 1
1

( )
r

i r
i

A A 



 
 
 

 

Using equation (2), we get 

 P 
1

1

r

i
i

A




 
 
 

 =  
1

( )
r

i
i

P A


  - 
1 i j r  

 P(Ai   Aj) 

   + 
1 i j k r   

  P(Aj   Aj   Ak) + ...... + 
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  + (-1)r-1 P (A1   A2   .....   Ar) + P(Ar+1) - P 1
1

( )
r

i r
i

A A 



 
 
 

 

 =  
1

1

( )
r

i
i

P A




  - 
1 i j r  

 P(Ai   Aj) + 
1 i j k r   

  P(Aj   Aj   Ak)  

+ ...... + (-1)r-1 P (A1   A2   .....   Ar)  

- 1 1
1 1

( ) ( )
r

i r i r j
i i j k r

P A A P A A A 

    





   

+ ...... + (-1)r-1 P (A1   A2   .....   Ar+1)] 

     [  of (2)] 

 =  
1

1

( )
r

i
i

P A




  - 1
11

( ) ( )
r

i j i r
ii j r

P A A P A A 

  





 + 

   
1

( )i j k
i j k r

P A A A
   

  + 1
1

( )i j r
i j r

P A A A 

  

  

  + (-1)r-1 P (A1   A2   .....   Ar+1) + (-1)r P (A1   A2   .....   Ar+1)] 

=  
1

1

( )
r

i
i

P A




  - 
1 1i j r   

 ( )i jP A A  

+ 
1 1i j k r    

  P (Aj   Aj   Ak) +....+ (-1)r P (A1   A2   .....   Ar+1) 

 the result is true for n = r + 1. 

 by principle of Mathematical induction, the result is true  n  N 

Theorem 9 : Boole's Inequality : For any n events A1, A2,......, An, we have 

 (i) P 
1

n

i
i

A


 
 
 

 > 
1

( )
n

i
i

P A


 -(n - 1)  (ii) 
1

n

i
i

A


 
 
 

< 
1

( )
n

i
i

P A


  

Proof : (i) For any two events A1, A2 
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 P(A1∪A2) = P(A1) + P(A2) - P(A1 A2) 

 P(A1 A2) = P(A1) + P(A2) - P(A1∪A2)     ....(1) 

By axiom (1) of probability 

 P(A) < 1  - P(A) > - 1 

and in particular - P(A1∪A2) > -1 

 - P(A1) + P(A2) - P(A1 A2) > -1  

 P(A1 A2) > P(A1) + P(A2) - 1      ....(2) 

 The result is true for n = 2 

Let us suppose that the result is true for n = r 

i.e.  P 
1

r

i
i

A


 
 
 

> 
1

( ) ( 1)
r

i
i

P A r


         ...(3) 

Now consider n = r + 1 

P
1

1

r

i
i

A




 
 
 

 = P 1
1

( ) 1
r

i r
i

A P A 



  
   

  
+ P(Ar+1) - 1    [  of (2)] 

 > 
1

( ) ( 1)
r

i
i

P A r


   + P(Ar+1) - 1      [  of (3)] 

 = 
1

1

( ) ( 1 1)
r

i
i

P A r




    

i.e. P 
1

1

r

i
i

A




 
 
 

 > 
1

1

( )
r

i
i

P A r




  

 the result is true for n = r + 1 

Thus the mathematical induction the result is true  n  N. 

(ii) We shall proceed by induction on n. 
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We already have  

 P(A1∪A2) = P(A1) + P(A2) - P(A1 A2) 

 P(A1 A2) = P(A1) + P(A2) - P(A1∪A2) 

 P(A1 A2) > 0 

 P(A1) + P(A2) - P(A1∪A2) > 0 

 P(A1 A2) < P(A1) + P(A2)     ...(3) 

 The result is true for n = 2. 

Let us suppose that the result is true for n = r. 

i.e.  P 
1

r

i
i

A


 
 
 

> 
1

( )
r

i
i

P A


       ...(4) 

Now we shall show that the result is true for n = r+1. 

For this we have  

 P 
1

1

r

i
i

A




 
 
 

 = P 1
1

r

i r
i

A A 



  
  
  

 

  < P 
1

r

i
i

A


 
 
 

+ P(Ar+1)    [  of (3)] 

  < 1
1

( ) ( )
r

i r
i

P A P A 



     [  of (4)] 

i.e.  P 
1

1

r

i
i

A




 
 
 

 < 
1

1

( )
r

i
i

P A




  

 by mathematical induction the result is true for all n  N 

i.e.  P
1

n

i
i

A


 
 
 

 < 
1

( )
n

i
i

P A


  
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Theorem 10 : For any n events A1, A2, ....., An, we have 

 P
1

n

i
i

A


 
 
 

 > 
1

( )
n

i
i

P A


  - 
1

( )i j
i j n

P A A
  

  

Proof : We shall prove the result by induction. 

 We have that  

 P(A1∪A2∪A3) = P(A1) + P(A2) + P(A3) 

- P(A1 A2) + P(A2 A3) + P(A3 A1) + P(A1 A2  A3) 

 > P(A1) + P(A2) + P(A3) - [P(A1 A2) + P(A2 A3) + P(A3 A1)  

[ As P(A1 A2  A3) < 1] 

i.e. P
3

1
i

i

A


 
 
 

 > 
3

1

( )i
i

P A


  - 
1 3

( )i j
i j

P A A
  

  

 The result holds for n = 3. 

Let us suppose that the result is true for n = r. 

i.e.  P P
1

r

i
i

A


 
 
 

 > 
1

( )
r

i
i

P A


  - 
1

( )i j
i j r

P A A
  

     ...(1) 

We shall prove that the result is also true for n = r + 1. 

For this, consider  

 P 
1

1

r

i
i

A




 
 
 

= P 1
1

r

i r
i

A A 



  
  
  

 

 = P 
1

r

i
i

A


 
 
 

+ P (Ar+1) - P 1
1

r

i r
i

A A 



  
  
  

 

 >  
1 1

( ) ( )
r

i i j
i i j r

P A P A A
   

 
  

 
+ P (Ar+1) - P 1

1

r

i r
i

A A 



  
  
  
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[  of (1)] 

 
1

11
( ) ( )

r

i i j
i j ri

P A P A A


  

  - P 1
1

r

i r
i

A A 



  
  
  

 

By Boole's inequality, we have 

 P 1
1

( )
r

i r
i

A A 



 
 
 

< 1
1

( )
r

i r
i

P A A 


  

 - P 1
1

( )
r

i r
i

A A 



 
 
 

> - 1
1

( )
r

i r
i

P A A 


     ...(3) 

 from (2) and (3), we get 

 P 
1

1

r

i
i

A




 
 
 

- 
1

11
( ) ( )

r

i i j
i j ri

P A P A A


  

  > - 1
1

( )
r

i r
i

P A A 







  

 P 
1

1

r

i
i

A




 
 
 

>
1

1

( )
r

i
i

P A




 - 1
11

( ) ( )
r

i j i r
ii j r

P A A P A A 

  

 
 

 
  

  = 
1

1

( )
r

i
i

P A




 - 
1 1

( )i j
i j r

P A A
   

  

Hence the result. 

Let us now do some examples to have better idea of the concept : - 

Example 1 : If A and B are two events defined on a sample space such that P(A∪B) = 
1

3
, then 

find P(A). 

Sol. Here P(A∪B) = 
5

6
, P(A B) = 

1

3
      ) = 

1

3
  

        ) = 
1

3
 

1

3
 1 - P(B) = 

1

3
  P(B) = 

2

3
  

 Also P(A∪B) = P(A) + P(B) 0 P (A B) 
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 
5

6
 = P(A) + 

2

3
+ 

1

3  


 

P(A) = 
5

6
 - 

2

3
+ 

1

3  

  = 
3

6
 = 

1

2
 

Example 2: A ball is drawn at random from a box containing 6 red balls, 4 white balls and 5 
blue balls. Determine the probability that ball drawn is  

 (a) red  (b) white 

 (c) blue  (d) red or white  

Sol: Let A be the event of drawing a red ball, B be the event of drawing a white ball and C be 
the event of drawing a blue ball.  

 Then A∪B is the event of drawing either red ball or a white ball. 

 (a) P (red ball) = P(A) = 
6

15
 = 

2

5
 

 (b) P(white ball) = P(B) = 
4

15
 

 (c) P (blue ball) = P(C) = 
5

15
 = 

1

3
 

 (d) P (red ball or white ball)  

= P(A∪B) = P(A) + P(B)  [  A and B are mutually exclusive) 

  = 
6

15
 + 

4

15
 = 

10

15
 

  = 
2

3
 

Example 3: The odds in favour of standing first of three students appearing at an examination 
are 1 : 2, 2 : 5 and 1 : 7 respectively. Find the probability that either of them stands first. 

Sol. Let A, B, C denote the events of standing first of the three students respectively. 

  P(A) = 
1

1 2
= 

1

3
, P(B) = 

2

2 5
 = 

2

7
,  
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P(C) = 
1

1 7
 = 

1

8
 

  Required probability = P(A∪B∪C) 

  = P(A) + P(B) + P(C)   

[  events A, B and C are mutually exclusive) 

  = 
1

3
 + 

2

7
 + 

1

8
 

  = 
125

168
 

2.4 Self Check Exercise 

Q.1 A and B are two non-mutually exclusive events. If P(A) = 
1

4
, P(B) = 

2

5
 and 

P(A∪B) = 
1

2
        he     e                         

Q.2 One card in drawn from a pack of 52 cards, each of 52 cards being equally likely 
to be drawn. Find the probability of  

 (i) the card drawn is red 

 (ii) the card drawn is a king 

 (iii) the card drawn is a red and a king  

 (iv) the card drawn is either red on a king. 

2.5 Summary 

 We conclude this unit by summarizing what we have covered in it:-  

1. Defined and discussed three axioms of probability i.e. non-negativity axiom; 
normalization axiom and additivity axiom.  

2. Defined and discussed the probability set function.  

3. Proved some basic and important theorems on probability. 

4. Did some equations on probability by using basic theorems and axioms of 
probability.  

2.6 Glossary: 

1. Suppose we have a sample space S. If S is discrete, all subsets correspond to 
events and conversely, but if S is non-discrete, only special subsets c(called 
measurable) correspond to events. To each event A in the class C of events, we 
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associate real number P(A). Then P is called a probability set function and P(A) 
the probability of the events if it satisfies three axioms.   

2. If A and B are any two events, then from the class C containing the events A and 
B which are not disjoint, we have 

 P(A∪B) = P(A) + P(B) -        

2.7 Answer to Self Check Exercise 

 Ans.1          
3

20
 

  and P         
1

10
 

  (i) 
1

2
  (ii) 

1

3
  

  (iii) 
1

26
  (iv) 

7

13
 

2.8 References/Suggested Readings 

1. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007 

2. Irwin Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 

3. Robert V. Hogg, Joseph w. Mckean and Allen T. Craig, Introduction to 
Mathematical Statistics, Pearson Education, Asia, 2007. 

2.9 Terminal Questions 

1.          re     e e      ch  h          0 54         0 69              0 35  

find  (i) P(A∪B) (ii)          

  (iii)         (iv)         

2. A card is drawn from 52 cards at random. Find the probability that card drawn is 
a heat or a face card or an ace. 

3. M and N are two events. Show that the probability that one of them occur is P(M) 
+ P(N) - 2   M     

4. Two unbiased dice are thrown. Find the probability that neither a doublet nor a 
total of 10 will appear.  

--------- 
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Unit - 3 

Conditional Probability, Multiplication Theorem of  
Probability And Independence 

Structure 

3.1 Introduction 

3.2 Learning Objectives  

3.3 Conditional Probability Self-Check Exercise-1 

3.4 Multiplication Theorem of Probability 

3.5 Independent Events 

3.6 Pairwise And Mutually Independent Events  

 Self Check Exercise-2 

3.7 Law of Total Probability 

3.8 Baye's Theorem  

 Self-Check Exercise-3 

3.9 Summary 

3.10 Glossary 

3.11 Answers to Self Check Exercises 

3.12 Reference/Suggested Readings 

3.13 Terminal Questions 

3.1 Introduction 

 The probability P(A) of an event A represents the likelihood that a random experiment 
will result in an outcome in the set A relative so the sample space S of the random experiment. 
However, quite often, while evaluating some event probability, we already have same 
information stemming from the experiment. For example, if we have prior information that the 
outcome of the random experiment must be in a set B of S, then this information must be used 
to re-appraise the likelihood that the outcome will also be in B. This re-appraised probability is 
denoted by P(A/B) and is read as the conditional probability of the event A, given that the event 
B has already happened. For example, let us consider a random experiment of drawing a card 
from a pack of cards. Then the probability of happening of the event A : "The card drawn is a 

king", is given by : P(A) = 
4

52
 = 

1

13
 

 Now suppose that a card is drawn and 49 we are informed that the drawn card is red. 
How does this information effect the likelihood of the event A? Obviously, if the event B, the 
card drawn is red, has happened, the event 'Black card' is not possible. Hence the probability of 
the event A must be computed relative to the new sample space 'B' which consists of 26 sample 
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points (red cards only). Among these 26 red cards, there are two red kings. Hence the required 

probability P(A|B) = 
2

26
 = 

1

13
. 

 From this illustrations we observe that some additional information may change the 
probability of the happening of some event.  

3.2 Learning Objectives  

 After studying this unit, you should be able to: 

 Defined and discuss conditional probability and do questions related to it. 

 State and prove multiplication theorem of probability. 

 Define and discuss independent events.  

 State and prove multiplication theorem of probability for independent events.  

 Define and discuss pairwise and mutually independent events. 

 Prove the theorem on law of total probability.   

 Prove Baye's theorem. 

 Do questions related to these theorem's.  

3.3 Conditional Probability  

 Let A and B two events and S be the sample space. We denote by P(B|A) the probability 
of B given that A has occurred called the conditional probability of B given A. Since A is known 
to have occurred, it becomes the new sample space replacing the original S. we thus have 
conditional probability of B given A 

 

 P(B|A) = 
( )

( )

P A B

P A
 

 We can also define P(B|A) as a probability set function, defined for subset of A as 
follows:  
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 1. P(B|A) > 0    

2. P(B,∪B2∪.......|A) = P(B,|A) + P(B2|A) +........., provided that B1,B2,........are 
mutually disjoint sets.  

 3. P(A|A) = 1 

 The statements 1 and 3 are obvious and for the 2 statement, we note that, by def. 

 P(B1∪B2∪.........|A) = 
 1 2( ......)

( )

P A B B

P A
 

   = 
 1 2( ) ( ) ......)

( )

P A B A B

P A
 

 Here (A Bi)   (A Bj) = A (Bi Bj) = A  = 

 the above relation becomes. 

 P(B1∪B2∪.......|A) = 1 2( ) ( ) ......

( )

P A B P A B

P A

 
 

   = 1( )

( )

P A B

P A
 + 2( )

( )

P A B

P A
+........ 

  P(B1∪B2∪.........|A) = P(B1|A) + P(B2|A) + ......... 

 Thus, statements is also proved and P(B|A) is a probability set function. This may thus 
be called the conditional probability set function, relative to the hypothesis A. 

 Similarly, P(A|B) = conditional probability of A and B = 
( )

( )

P A B

P B
 

 Let us do some examples to have better idea of the concept:- 

Example 1: If A and B are two events such that P(A) = 0.5, P(B) = 0.6 and P(A∪B) = 0.8, find 
P(A|B) and P(B|A) 

Sol. Here P(A) = 0.5, P(B) = 0.6, P(A∪B) = 0.8 

 Now P(A∪B) = P(A) + P(B) - P(A B)  

  0.8 = 0.5 + 0.6 - P(A B) 

  P(A B) = 0.5 + 0.6 - 0.8  

  = 0 - 3 

  P(A|B) = 
( )

( )

P A B

P B
 = 

0.3

0.6
= 

1

2
 = 0.5 
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  P(B|A) = 
( )

( )

P A B

P A
= 

0.3

0.5
= 

3

5
 = 0.6 

Example 2: A die is thrown twice and the sum of the numbers appearing is observed to be 6. 
What is the conditional probability that the number 4 has appeared at least once? 

Sol: Let the events be 

 E : number 4 appears at past once 

 F : the sum of the numbers appearing is 6 

 The elementary event favorable the occurrence of E are  

 (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,4), (2,4), (3,4), (5,4), (6,4) 

 The elementary events favourable to the occurrence of F are  

 (1,5), (2,4), (3,3), (4,2), (5,1) 

 The elementary events favourable to the occurrence of both E and F are  

 (2,4), (4,2) 

  P(E) = 
11

36
, P(F) = 

5

36
, P(E F) = 

2

36
 

  Required probability = 
( )

( )

P E F

P F
= 

2

5
 

Example 3: In a hostel, 60% of the students read Hindi newspaper, 40% read English 
newspaper and 20% read both Hindi and English newspaper. A students at random. 

 (a) find the probability that he reads neither Hindi nor English newspaper.  

(b) If he reads Hindi newspaper, find the probability that he reads English 
newspaper.  

(c) If he reads English newspaper, find the probability that he reads Hindi 
newspaper.  

Sol. Let A and B be two events such that  

 A : student reads Hindi newspaper  

 B : a student reads English newspaper  

 P(A) = 
60

100
 = 

3

5
 ; P(B) = 

40

100
 = 

2

5
 

 P(A B) = 
20

100
 = 

1

5
 

 (a) P (a student reads neither Hindi nor English newspaper) = P(Ac and Bc) 

  = P ( )cA B    = 1 - P(A∪B) 
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  = 1 - ( ) ( ) ( )P A P B P A B   

  = 1 - 
3 2 1

5 5 5
 

  
 

 

  = 1 - 
4

5
 

  = 
1

5
 

 (b) P[he reads, English newspaper when it is given that he reads Hindi newspaper] 

  = P(B|A) = 
( )

( )

P B A

P A
= 

( )

( )

P A B

P A
= 

1
5

3
5

 

  = 
1

3
 

 (c) P(he reads Hindi newspaper when it is given that he reads English newspaper) 

  = P(A|B) = 
( )

( )

P A B

P B
 = 

1
5

2
5

 = 
1

2
 

Example 4: If P(A) = p, P(B) = 2, then show that P(A|B) > 
1p q

q

 
 

Sol. Let S be the sample space we note that  

  P(A∪B) = P(A) +(B) - P(A B) 

  P(A∪B) = p + q - P(A∪B) 

  p + q - P(A∪B) = P(A∪B)  ......(1) 

 Now P(A∪B) < 1 

  - P(A∪B) > -1 

 Now p + q - p(A∪B) > p + q - 1 

  P(A B) > p + q - 1  [  of (1)] 

 We know that  

 P(A|B) = 
( )

( )

P A B

P B
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  P(A|B) > 
1P q

q

 
 [  of (2)] 

 Hence the result 

Self Check Exercise-1 

 Q.1 If A and B are two events such that P(A) = 0.3, P(B) = 0.5 and P(A|B) = 0.4,  

  find P(A B) and P(B|A) 

 Q.2 A die is thrown three times. Events A and B are defined as below:- 

  A : 4 on the third throw 

  B : 6 on the first and 5 on the second throw. 

  Find the probability of A given that B has already occwared.  

Q.3 Find the probability of drawing a king, when a card is drawn from a well shuffled 
pack of cards. It is also given that the card drawn is a face card.  

3.4 Multiplication Theorem of Probability 

 For two events A and B in a sample space S,  

 
( ) ( ). ( | ), ( ) 0

and  ( ) ( ). ( | ), ( ) 0

P A B P A P B A P A

P A B P B P A B P B

  


  
  .....(1) 

 Where P(A) = probability of occurrence of A 

  P(B|A) = conditional probability of occurrence of B given A 

  P(A|B) = conditional probability of occurrence of A given B. 

 The statement (1) is called the Multiplication theorem of probability. This can also be 
stated as "the probability of simultaneous occurrence of two events A and B is equal to the 
product of the probability of the other, given that the first one has occurred." 

Proof: With usual notations, we have  

 P(A) = 
( )

( )

n A

n S
, P(B) =  

( )

( )

n B

n S
, P(A B) = 

( )

( )

n A B

n S
 

Also P(B|A) = 
number of elements common to A and B

number of elements in A
 

  = 
( )

( )

n A B

n A
 

  R.H.S. of (1) is  

  P(A).P(B|A) = 
( )

( )

n A

n S
.

( )

( )

n A B

n A
= 

( )

( )

n A B

n S
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  = P(A B) 

 Similarly P(B).P(A|B) = P(A B) 

 Hence the result. 

 For n events A1,A2,......,An, the multiplication theorem of probability can be stated as: 

 For n events A1,A2,.......,An, we have P(A1 A2 ...... An) = P(A1) P(A2|A1) 
P(A3|A1 A2).........P(An|A1 A2 ....... An-1)  .......(2) 

 Where P(Ai|Aj Ak ....... Al) represents the conditional probability of the event Ai given 
that the events Aj, Ak,......,Al have already occurred.  

3.5 Independent Events 

 Definition: Two or more event are said to be independent if the happening or non-
happening of any one of them, does not in any way, affect the happening of others. In terms of 
probability, we can say that, an event A is said to be independent cor statistically independent) 
of another event B, if the conditional probability of A given B, i.e. P(A|B) is equal to the 
unconditional probability of A i.e. if  

  P(A|B) = P(A) 

 and similarly, B is said to be independent of A, if  

 P(B|A) = P(B) 

Multiplication Theorem of Probability for Independent Events 

 If A and B are two events with positive probabilities, then A and B are independent iff 

 P(A B) = P(A) P(B) 

Proof: We have, by def. 

 P(A B) = P(A) P(B|A) = P(B) P(A|B)  ......(1) 

 where P(A) > 0, P(B) > 0 

 If A and B are independent, then  

 P(A|B) = P(A) and P(B|A) = P(B)  .......(2) 

  From (1) and (2), we get 

  P (A                

 Hence the result 

Conversely, if  

                     

 then 
( )

( )

P A B

P B
= P(A)  P(A|B) = P(B)  .......(3) 

 and 
( )

( )

P A B

P A
= P(B)  P(B|A) = P(B)  .......(4) 
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 (3) and (4)  A and B are independent events.  

Hence proved. 

 For n events, it is stated as: n events A1,A2,......,An are independent if and only if 

 P(A1  2          n) = P(A1) P(A2).........P(An) 

3.6 Pairwise And Mutually Independent Events  

 The n events A1,A2,.......,An defined on a sample space S with P(Ai) > 0 ; i = 1,2,.....,n are 
said to be pairwise independent if every pair of two events is independent i.e. 

 P(Ai  j) = P(Ai) P(Aj); i j = 1,2,......,n . 

 The n events A1,A2,.......,An defined on a sample space S with P(Ai) = 0, i = 1,2,....,n are 
said to be mutually independent if the probability of the simultaneous occurrence of (any) finite 
number of these is equal to the product of their separate probabilities i.e. 

 P(
1i

A   
2i

A   ........   
ki

A ) = P(
1i

A ) P(
2i

A )........P(
ki

A ); k = 2,3,.......,n 

Remarks:- 1. The total number of pairwise conditions for mutual indolence of A1,A2,.....,An is 
2n-1 - n.  

 2. Mutual independence of events implies that they are pairwise independent, but 
not conversely.  

Let us do some examples:- 

Example 5:- Assuming the probability of a male birth as 
1

2
, find the chances that a family of 3 

children will have  

 (i) atleast one girl,  (ii) two boys and one girl and  

 (iii) atmost two girls. 

Sol: Here it is given that probability of male birth = 
1

2
 

  probability of female birth = 
1

2
 

 (i) P (at least one girl) = 1 - P (no girl birth) 

    = 1 - p (3 male births) 

    = 1 - P(BBB) 

    = 1 - 
1

2
.
1

2
.
1

2
 

    = 1 - 
1

8
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    = 
7

8
 

 (ii) P (two boys and one girl) = P(BBG) + P(BGB) + P(GBB) 

   = 
1

8
 + 

1

8
+ 

1

8
 

  = 
3

8
 

 (iii) P (at most two girls) = 1 - P(all three girls) 

  = 1 - P(GGG) 

  = 1 - 
1

8
 

  = 
7

8
 

Example 6: The odds in favour of one student passing a test are 3 : 7. The odds against 
another student passing it are 3 : 5. What is the probability that both pass the test? 

Sol: Let E, F denote the two events of passing the test by two students. 

  P(E) = 
3

3 7
 = 

3

10
, P(F) = 

5

3 5
 = 

5

8
 

  Required probability = P(E and F) 

     = P(E) P(F) 

     = 
3

10
 

5

8


3

16


Example 7: A problem in statistics is given to three students A, B and C whose chances of 

solving it are 
1

2
, 

3

4
 and 

1

4
 respectively. What is the probability that the problem will be solved 

if all of them try independently. 

Sol: Let A, B, C denote the events that the problem is solved by the students A, B, C 
respectively, then 

 P(A) = 
1

2
, P(B) = 

3

4
 and P(C) = 

1

4
   

 The problem will be solved if at least one of them solves the problem. Thus the required 
probability is  

 P(A∪B∪C) = 1 - P ( )A B C  
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   = 1 -               ) 

 Since A, B and C are independent events 

              are also independent  

  P(A∪B∪       -                 ) 

   = 1 - 
1

1
2

 
 

 

3
1

4
 
 

 

1
1

4
 
 

 
 

   = 1 - 
3

32
 

   = 
29

32
, 

 Which is the required probability. 

Example 8: A and B throw a coin alternatively till one of them gets a head and wins the game. If 
A starts the game, find their respective probabilities of winning.  

Sol:  e            ) be probabilities of A's getting the head and not getting the head respectively, 
then  

 P(A) = 
1

2
      ) = 1-P(A) = 1 - 

1

2
 = 1 

Similarly P(B) = 
1

2
         ) = 

1

2
 

 Let A start the game. He can win in the first throw, 3rd throw, 5th throw and so on. 

 Probability of A's winning in first throw = P(A) = 
1

2
 

  r                            3r   hr               ) P(A) 

 = 
1

2
  

1

2
  

1

2
 = 

3
1

2
 
 
 

 

 Probability of A's winning in 5th throw 

                         ) P(A) 

 = 
1

2
  

1

2
  

1

2
  

1

2
  

1

2
 = 

5
1

2
 
 
 

 

 ..................................................... 

 ..................................................... 
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 Since all these cases are mutually exclusive  

  Probability of A's winning the game first is  

 = 
1

2
 + 

3
1

2
 
 
 

 + 
5

1

2
 
 
 

 + ..............

 = 
2

1
2
1

1
2

 
  
 

   [  S = 
1

a

r
] 

 = 
1

2
3

4

 = 2
3  

 Since either A or B wins  

  Probability of B's winning the game first  

  = 1 - 2
3 = 1

3  

Self-Check Exercise - 2 

Q.1 A fair die is tossed twice. Find the probability of getting 4,5 or 6 on the first toss 
and 1,2,3, or 4 on the second toss. 

Q.2 A town has two doctors A and B operating independently. If the probability that 
doctor A is available is 0.9 and that for doctor B is 0.8, what is the probability that 
at least one doctor is available when needed? 

3.7 Law of Total Probability 

Statement: If an event A must result in one of the mutually exclusive events E1,E2,....,En, then 

 P(A) = P(E1) P(A|E1) + P(E2) P(A|E2) +...........+ P(En) P(A|En) 

Proof: If an event A must result in one of the mutually exclusive events E1, E2,......, En, then  

  A = A  (E1∪E2∪.......∪En) 

 i.e. A = (A E1) ∪(A E2)∪.......∪ (A En) 

 Since Ei and Ej, i  j are mutually exclusive  

  A   E          Ej     j are also mutually exclusive  

  By axiom 3 of probability, we have  

         [   E1)∪   E2)∪       U   En)] 

      E1        E2                En) 
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  P(A) = P(E1) P(A|E1) + P(E2) P(A|E2) +.........+ P(En) P(A|En) 

 or P(A) = 
1

( ) ( | )
n

i i
i

P E P A E


  

 Hence the result.  

3.7 Baye's Theorem  

Statement:- If E1, E2,......, En are mutually disjoint events with P(Ei)  0, (i = 1, 2,....,n), then for 

any arbitrary event A which is a subset of 
1

( )
n

i
i

E


 such that P(A) > 0, we have  

 P(Ei|A) = 
( ) ( | )

( )
i iP E P A E

P A
= 

1

( ) ( | )

( ) ( | )

i i
n

i i
i

P E P A E

P E P A E



 

 Where i = 1, 2,....., n. 

Proof: We are given that  

 A  
1

n

i
i

E


 

  We have using distributive law 

         
1

n

i
i

E


 
 
 

= 
1

( )
n

i
i

A E


 

 S  ce    Ei)  Ei, (i = 1, 2,......, n) 

 and Ei's being mutually exclusive  

      Ei's are also mutually exclusive.  

  Using axiom 3 of the definition of probability 

  P(A) = P
1

( )
n

i
i

A E


 

  = P 1 2( ) ( ) ..... ( )nA E P A E A E  

            E1) +     E2)+......+     En) 

and using multiplication theorem of probability, we get  

  P(A) = P(E1)P(A|E1)+P(E2)P(A|E2)+.......+P(En).P(A|En) 

  P(A) = 
1

( ) ( | )
n

i i
i

P E P A E


   .....(1) 
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 Also, we have  

      Ei) = P(A) P(Ei|A) = P(Ei) P(A|Ei) (By def.)  

  P(Ei|A) = 
( )

( )
iP A E

P A
  .......(2) 

 Now, on using equation (1) in (2), we get  

 P(Ei|A) = 

1

( )

( ) ( | )

i
n

i i
i

P A E

P E P A E



  ......(3) 

  P(Ei|A) = 

1

( ) ( | )

( ) ( | )

i i
n

i i
i

P E P A E

P E P A E



 

 Hence the result. 

Note: The probability of the occurrence of another event c,  

    |  E1),    |  E2               |  En) is given by 

 P(C|A) = 1

1

( ) ( | ) ( | )

( ) ( | )

n

i i i
i

n

i i
i

P E P A E P C E A

P E P A E








 

Remarks:- 

 1. The probabilities P(E1), P(E2),........P(En) are term as the 'a prior probabilities' 
because they are known before the happening of the experiment itself.  

 2. The probabilities P(A|Ei), i = 1,2,......,n are called 'Likelihoods' because they 
indicate how likely the event A under consideration is to occur, given each and 
every a priori probability.  

 3. The probabilities P(Ei|A), i = 1, 2,....., n are called 'Posterior probabilities' because 
they are determined offer the result of the experiment are known.  

 Let us now do some examples to have better idea of the concept:- 

Example 9:- An win contains 10 white and 3 black balls, while another urn contains 3 white and 
5 black balls. Two balls are drawn from the first urn and put into the second urn and them a ball 
is drawn from the latter. What is the probability that it is white ball? 

Sol:   

 White Black 

urn I 10 3 



44 
 

urn II 3 5 

 

 Let E1, E2, E3 denote the events that two balls drawn from urn I are both white, one white 
and one black, both black. 

  P(E1) = 2

2

10

13
c

c

 = 

10 9
1 2

13 12
1 2








= 
15

26
 

  P(E2) = 1 1

2

10 3

13
c c

c


 = 

10 3
1 1
1 2

13 12
1 2








= 
5

13
 

  P(E3) = 2

2

3

13
c

c

 = 
3 12

13 12




= 

1

26
 

 Alter 2 balls have been drawn from urn I, urn II. will have  

 (i) 5 white, 5 black balls or (ii) 4 white, 6 black balls or (iii) 3 white, 7 black balls. 

 Let E denote the event that a white ball is drawn from urn II. 

  P(E|E1) = 
5

10
= 

1

2
, P(E|E2) = 

4

10
 = 

2

5
, P(E|E3) = 

3

10
 

 Now P(E) = P(E1) P(E|E1) + P(E2) P(E|E2) + P(E3). P(E|E3) 

  = 
15

26
  

1

2
 + 

5

13
  

2

5
 + 

1

26
  

3

10
 

  = 
75 40 3

260

 
 = 

118

260
 = 

59

130
 

Example 10: Suppose that 5% of men and 0.25% of women have grey hair. A grey haired 
person is selected at random. What is the probability of this person being male? Assume that 
there are equal number of males and females. 

Sol: Let E1, E2, E be the events as  

 E1 : 'Selected person is a male' 

 E2 : 'Selected person is a female' 

 E3 : 'Selected person is grey haired' 
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  P(E1) = P(E2) = 
1

2
 

 and P(E|E1) = 
5

100
= 

1

20
 ; P(E|E2) = 

0.25

100
 = 

1

400
  

 Required probability = P(E1|E) = 
2 2

( ) ( | )

( ) ( | ) ( ) ( | )
i i

i i

P E P A E

P E P E E P E P E E
 

  = 

1 1
2 20

1 1 1 1
2 20 2 400



  

 = 
1

20
11

20 400


 = 
1

20
20 1
400


 

  = 
1

20
21

400

 = 1
20   

400

21
 = 

20

21
 

Example 11: The contents of urns I, II and III are as follow: 

 1 white, 2 black and 3 ked balls, 

 2 white, 1 black and 1 red ball, and  

 3 white, 5 black and 3 red balls. 

 One urn is chosen at random and two balls drawn from it. They happen to be white and 
red. What is the probability that they come from urns I, II or III. 

Sol: Let E1, E2 and E3 denote the events that one urns I, II and III are chosen, respectively Let A 
be the event that the two balls taken from the selected urn are white and red. 

 Then P(E1) = P(E2) = P(E3) = 
1

3
 

 P(A|E1) = 
2

1 3

6c


= 

1

5
, P(A|E2) = 

2

2 1

4c


= 

1

3
 

 and P(A|E3) = 
2

4 3

12c


 = 

2

11
 

 Also P(A) = 
3

1

( ) ( | )i i
i

P E P A E


  

  = 
1

3
  

1

5
 

1

3


1

3


1

3


2

11

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  = 
1

15
 + 

1

9
 + 

2

33
 = 

33 55 30

495

 
 = 

188

495
 

  Required probabilities are  

 P(E1|A) = 1 1( ) ( | )

( )

P E P A E

P A
 = 

1 1
3 5

118
495



 = 
33

118
 

 P(E2|A) = 2 2( ) ( | )

( )

P E P A E

P A
 = 

1 1
3 3

118
495



 = 
55

118
 

 P(E3|A) = 3 3( ) ( | )

( )

P E P A E

P A
 = 

1 2
3 11

118
495



 = 
30

118
 

Example 12: A company has two plants to manufacture scooters. Plant I manufactures 70% of 
scooters and plant II manufactures 30%. At plant I, 80% of the scooters are rated as of standard 
quality and at plant II, 90% of the scooters are rated as of standard quality. A scooter is chosen 
at random and is found to be of standard quality. What is the probability that it has come from.  

 (i) Plant I  (ii) Plant II ? 

Sol: Let E1, E2 be the events that the scooter is produced by plants I, II respectively. 

  P(E1) = 
70

100
, P(E2) = 

30

100
 

 Let E be the event of scoter being of standard quality.  

  P(E|E1) = 
80

100
, P(E|E2) = 

90

100
 

 (i) P(E1|E) = 1 1

1 1 2 2

( ) ( | )

( ) ( | ) ( ) ( | )

P E P E E

P E P E E P E P E E
 

  = 

70 80
100 100

70 80 30 90
100 100 100 100



  

 = 
5600

5600 2700
 

  = 
5600

8300
 = 

56

83
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 (ii) P(E2|E) = 2 2

1 1 2 2

( ) ( | )

( ) ( | ) ( ) ( | )

P E P E E

P E P E E P E P E E
 

  = 

30 90
100 100

70 80 30 90
100 100 100 100



  

 = 
2700

5600 2700
 

  = 
2700

8300
 = 

27

83
 

Self-Check Exercise-3 

Q.1 A bag A contains 3 white and 4 black balls. Another bag B contains 5 white and 7 
black balls. A ball is transferred from the bag A to the bag B and one ball is 
drawn from the second bag B. Find the probability that it will be white.  

Q.2 Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times 
and notes the number of heads. If she gets 1,2,3 or 4, she tosses a coin once 
and notes whether a head or tail is obtained. If she obtained exactly one head, 
what is the probability that she threw 1,2,3 or 4 with the die?  

3.9 Summary 

 We conclude this unit by summarizing what we have covered in it:-  

1. Defined and discussed in detail the conditional probability.  

2. Did some examples related to conditional probability to clarify the concept.  

3. Proved multiplication theorem of probability. 

4. Defined independents events. 

5. Proved multiplication theorem of probability for independent events. 

6. Defined and discussed pairwise and mutually independent events. 

7. Performed some examples to clarify the concept. 

8. Proved the theorem on Law of total probability. 

9. Proved Baye's theorem and did some examples by using  this theorem. 

3.10 Glossary: 

1. Let A and B be two events and s be the sample space. Then P(B/A) g denoted 
the probability of B given that A has occurred, called the conditional probability of 

B given A and it is given by P(B/A) = 
( )

( )

P A B

P A
 

2. For two events A and B in a sample space 3,  

 P(A B) = P(A) . P(B/A), P(A) > 0 
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and        = P(B) . (PA/B), P(B) > 0 

and it is called the multiplication theorem of probability. 

3. Two or more events are said to be independent if the happening or non-
happening of any one of them, does not in any way, asset the happening of 
others. 

3.11 Answer to Self Check Exercise 

 Self Check Exercise-1 

 Ans.1          0.2 

  and P(B/A) = 
2

3
  

 Ans. 2 P (A/B) = 
1

6
 

 Ans. 3 
1

4
 

 Self Check Exercise-2 

 Ans.1 Required probability = 
2

3
  

 Ans. 2 P (at least one doctor is available)  = 0.98 

 Self Check Exercise-3 

 Ans.1 = 
38

91
 

 Ans. 2  = 
8

11
 

3.12 References/Suggested Readings 

1. Robert V. Hogg, Joseph w. Mckean and Allen T. Craig, Introduction to 
Mathematical Statistics, Pearson Education, Asia, 2007. 

2. Irwin Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 

3.13 Terminal Questions 

1. If P(A) = 0.4, P(B) = 0.8, P(B/A) = 0.6, 

Find P(A/B) and P(A∪B) 

2. A bag contain 10 gold and 8 silver coins. Two successive drawing of 4 coins are 
made such that  
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 (i) coins are replaced before the second trail 

 (ii) the coins are not replaced before the second trial. 

 Find the probability that the first drawing will give 4 gold and the second 4 silver 
coins.  

3. A purse contains 2 silver and 4 copper coins. A second purse contains 4 silver 
and 3 copper coins. If a coin is pulled one at random from one of the two purses, 
what is the probability that it is silver coin?  

4. The probability of hitting a target by three marksmen are 
1

2
, 

1

3
 and 

1

4
 

respectively. Find the probability that one and only one of them will hit the target 
when they fire simultaneously. 

5. An urn contains a white chips and b blue chips. A chip is chosen at random from 
the urn, discarded and replaced by one of opposite colour and then a second 
chip is drawn. Find the probability that second chip drawn is blue. 

6. The probabilities of x, y and z becoming managers are 
4

9
, 

2

9
 and

1

3
 

respectively. The probabilities that the bonus scheme will be introduced if x, y 

and z becomes managers are 
3

10
, 

1

2
and 

4

5
 respectively. 

 (i) What is the probability that bonus scheme will be introduced, and  

(ii) If the bonus scheme has been introduced, what is the probability that the 
manager appointed was x?  

--------- 
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Unit - 4 

Probability Distribution of A Discrete Random Variable  

Structure 

4.1 Introduction 

4.2 Learning Objectives  

4.3 Random Variable- Definition 

4.4 Discrete Random Variable and its Probability Distribution 

4.5 Distribution Function 

4.6 Properties of Distribution Function  

 Self Check Exercise 

4.7 Summary 

4.8 Glossary 

4.9 Answers to Self Check Exercises 

4.10 Reference/Suggested Readings 

4.11 Terminal Questions 

4.1 Introduction 

 A Random variable is a numerical quantity that is one result of a random experiment or 
process. It is a variable that can take on different values with certain probabilities. A discrete 
random variable is a variable that can only take n  a countable number of distinct values. The 
probability distribution of a random variable describes the likelihood of the variable taking on 
different values. For discrete random variables, the probability distribution is typically given as a 
probability mass function, which assigns a probability to each possible value. The expected 
value (or mean) of a random variable is the average or central tendency of the distribution and 
the variance of a random variable is a measure of the spread or dispersion of the distribution 
around the expected value. 

4.2 Learning Objectives  

 After studying this unit, you should be able to: 

 Define and discuss random variable. 

 Define independent random variable. 

 Define and discuss discrete random variable.  

 Discuss probability distribution of discrete random variable.  

 Define distributive function and able to discuss properties of distributive function. 
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 Do examples to have better idea if the concept.   

4.3 Random Variable - Definition  

 By a random variable (r.v) we means a real number x associated with the outcomes of a 
random experiment. If can take any one of the various possible values each with definite 
probability. For example in tossing of a coin if x denotes the number of heads, then x is a 
random variable which can take any one of the two values ; 0 (No head i.e. tail) or 1 (i.e. head), 

each with equal probability 
1

2
. Now consider a random experiment of three tosses of a coin (or 

three coins tossed simultaneously). 

 Then S = {HHH, HTH, THH, TTH, HHT, HTT, THT, TTT} 

 Let us consider the variable x, which is the number of heads obtained. The, x is a 
random variable which can take any one of the values 0, 1, 2, 3. 

Sample point or 
outcome :  

HHH HTH THH TTH HHT HTT THT TTT 

Values of X : 3 2 2 1 2 1 1 0 

 If the sample point in the above order be denoted by w1, w2, ...... , w8, then to each 
outcome w of the random experiment, we can assign a real number x = x (w). For example 
x(w1) = 3, x(w2) = 2, x(w3) = 2, x(w4) = 1, x(w5) = 2, x(w6) = 1, x(w7) = 1, x(w8) = 0. Therefore, 
Random variable may be defined as a real valued function on the sample space, taking values 
on the real time R (-, ). In other words, random variable is a function which takes real values 
which are determined by the outcomes of the random experiment.  

Def. A function X : S → R    c   e    r    m   r    e   here S     he   mp e  p ce        
random experiment. 

Or 

 Random variable is a real values function defined on a sample space whose range is 
non-empty set of real numbers. 

 A variable whose value is a number determined by the outcome of an experiment is 
called random variable.  

 If x  R, then the set of all w  s such that X(w) = x is denoted by writing X = x.  

  P(X = x) = P {w : X(w) = x} 

 similarly, P(X < a) = P{w:X(w)  (-, a]} 

 and P(A < X < b) = P{w: X(w)  (a, b]}. 

Independent Random Variable 

 A random variable that does not have an effect on the other random variable in an 
experiment is called independent random variable.  
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4.4 Discrete Random Variable And Its Probability Distribution 

Discrete Random Variable  

 If the random variable X assumes only a finite or at the most countable number of 
values, then it is known as discrete random variable. In other words, a real valued function 
described on a discrete sample space is called a discrete random variable. For example, marks 
obtained by students in a test, the number of students in a college, the number of accidents 
taking place on a busy road, etc. are all discrete random variables.  

Probability Distribution  

 Consider a discrete random variable X which can take the possible values x1,x2,.....,xn 
and with each value of the variable X, associate a number.  

 pi = P(X = Xi) ; i = 1,2,.....,n which is known as the probability of Xi and satisfies the 
following conditions:  

 (i) pi = P(X = Xi) > 0, (i = 1,2,....,n) 

 i.e. pi's are all non-negative and 

 (ii) {pi = p1 + p2 +........+ pn = 1 

 i.e. the total probability is one.  

 Again, let X be a discrete random variable and p(x) = P(X = x) such that p(x) > 0 and 
{p(x) =1, summation being taken over various values of the variable.  

 The function pi = P(X = Xi) or p(x) is called the probability function or probability mass 
function (p.m.s.) of the random variable X and the set of del possible ordered pairs {x, p(x)} is 
called the probability distribution of the random variable X.  

Def. If a random variable X takes values x1, x2,....., xn with respective probabilistic p1, p2,....., pn, 
then the tabular description.  

X: x1 x2 .............. xn 

P(X): p1 p2 .............. pn 

is called probability distribution of the random variable X. 

4.5 Distribution Function 

 Let the random variable X takes the values x1, x2,......., xn with respective probabilities 
p1,p2,.....,pn and let x1 < x2 <.......<xn. The distributive function F(x) is defined as  

  F(x) = P[X < x] 

 where P[X < xi] = p1 + p2 + ........+ pi 

Another definition: If X is a discrete random variable then the function defined for all real x, is 
given by 

 F(x) = P[X < x] = ( )
w x

f w


  
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 is called distribution function. 

Note1. Distributive function is abbreviated as d.f. 

 2. Distribution function is also sometimes called cumulative distribution function.  

 If X is a discrete r.v. with probability function p(x), them the distribution function, usually 
denoted by F(x) is defined as F(x) = P(X < x)  

 If X takes integral values i.e. 1,2,3,.........,x, then  

 F(x) = P(X = 1) + P(X = 2) +..........+ P(X = x) 

or F(x) = p(1) + p(2) + p(3) +..........+ p(4) 

4.6 Properties of Distributive Function 

Property I : The distribution function F(x) is non-decreasing [i.e. F(x1) < F(x2) if x1 < x2]. 

Proof: Let x1 < x2 

 Then {x : x < x2} = {x : x < x1} ∪ {x : x1 < x < x2} and therefore 

 P(X < x2) = P(X < x1) + P(x1 < X < x2) 

 i.e. F(x2) = F(x1) + P(x1 < X < x2) 

  F(x2) - F(x1) = P(x1 < X < x2) > 0 

  F(x2) > F(x1) 

 Thus F(x) is a non-decreasing function of x. 

Property II : If F is the distribution function of a random variable X and if a < b, then 

 P(a < X < b) = F(b) - F(a) 

Proof: The events a < X < b and X < a are disjoint and their union is the event X < b.  

Hence by addition theorem of probability. 

  P(a < X < b) + P(X < a) = P(X < b) 

  P(a < X < b) = P(X < b) - P(X < a) 

   = F(b) - F(a) 

 Hence the result 

Property III: 0 < F(x) < 1 

Proof: We have, F(x) = P(X < x} 

 Since probability of any event lies between 0 and 1. 

  0 < F(x) < 1 

Property IV: If F is the distribution function of the random variable X and if a < b, then  

 P(a < X < b) = P(X = a) + [F(b) - F(a)] 

Proof: We have 
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 P(a < X < b) = P{(X = a)∪(a < X < b)} 

   = P(X = a) + P(a < X < b) 

 and using property II, we get 

 P(a < X < b) = P(X = a) + [F(b) - F(a)] 

Property V: For the distribution function F of a random variable X, 

 (i) 
x
Lim


F(x) = 0 

 (ii) 
x

Lim


 F(x) = 1 

Proof: The whole sample space S can be expressed as a countable union of disjoint events as 
follows: 

  S = 
1

( 1)
n

n X n




 
     

 
∪

0

( 1)
n

n X n




 
   

 
 

  P(S) = 
1

( 1
n

P n X n




      + 
0

( 1
n

P n X n




    

  1 = 
a

Lim


  
1

( 1) ( )
n

F x F x




    + 
b

Lim


  
0

( 1) ( )
b

n

F x F x


   

  = 
a

Lim


{F(0) - F(-a)} + 
b

Lim


{F(b + 1) - F(0)} 

  = {F(0) - F(-)} + {F() - F(0)} 

   1 = F() - F(-)   ......(1) 

 Since -F(-) < F() 

 Also F(-) > 0 and F() < 1 

  0 < F(-) > F() < 1   .......(2) 

 From (1) and (2), we get 

  F(-) = 0 and F() = 1 

 Hence the result.  

 Let us now do examples to have better idea of the concept:- 

Example 1: Check whether the following can define probability mass function and explain your 
answer.  

 (x) = 
25

6

x
; x = 0,1,2,3. 
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Sol:  Here (x) = 
25

6

x
; x = 0,1,2,3. 

 For (x) to be a probability mass function, we have  

 
3

0

( ) 1
x

f x


  and (x) > 0 

 Now 
3

0

( )
x

f x


 = (0) + (1) + (2) + (3) 

  = 
5 0

6


+

5 1

6


+

5 4

6


+

5 9

6


 

  = 
5

6
+

4

6
 + 

1

6
 - 

4

6
 

  = 
5

6
 + 

1

6
 = 1 

  
3

0

( ) 1
x

f x


  

 Again (3) = 
5 9

6


= -

4

6
 = -

2

3
 < 0 

  (x) < 0 for x = 3 

  Given function is not a probability moss function.  

Example 2: Given that (x) = 
2x

k
is a probability function for a random variable which can take 

on the values x = 0,1,2,3 and 4, Find k.  

Sol. Here (x) = 
2x

k
, x = 0,1,2,3,4 

 Since (x) is probability function 

  (x) > 0  x  k > 0 

 and 
4

0

( ) 1
x

f x


  

  (0) + (1) + (2) + (3) + (4) = 1 

  
02

k
+ 

12

k
 + 

22

k
 + 

32

k
 + 

42

k
 = 1 
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  k + 
2

k
 + 

4

k
 + 

8

k
 + 

16

k
 = 1 

  
16 8 4 2

16

k k k k k   
 = 1 

  k 
16 8 4 2 1

16

    
 
 

= 1 

 or k 
31

16
 
 
 

 = 1 

  k = 
16

31
 

Example 3: Find the constant c so that (x) satisfies the condition of being a p.. of the random 
variable X: 

 (x) = 
2

; 1,2,3,........;
3

x

c x elsewhere
  

  
 

 

Sol. Here (x) = 
2

; 1,2,3,........0;
3

x

c x elsewhere
  

  
 

 

 Since (x) is p.f. 

  ( ) 1f x   

  (1) + (2) + (3) +........... = 1 

  c
2

3
 
 
 

 + c
2

2

3
 
 
 

 + c
3

2

3
 
 
 

 +............ = 1 

  c 
1 2 3

2 2 2 2
........

3 3 3 3

      
         
       

= 1 

  c
2

3
1 2

3

 
 
 

 

 = 1 

  
2

3
1

3

 
 
 
 

 = 1 
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  c (2) = 1 

  c = 
1

2
 

Example 4: The probability mass function of a random variable X is given by  

  (x) = 
xCX

x
, x = 0,1,2,..........  

Where  is some positive number. 

 Find (i) P(X = 0)  (ii) P(X > 2) 

Sol. Now 
0

( ) 1
x

f x




  

  
0

x

x

CX

x





 = 1 

  c 
0

x

x x





  = 1 

  ce = 1  
0

i
x

x

x
e

i





 
 

 
  

  c = e- 

  (x) = 
xe

x



 

 (i) P(X = 0) = (0) = 
0

0

e 

= 
(1)

(1)

e 

= e- 

 (ii) P(X > 2) = 1 - P(X < 2) 

   = 1 - P(X = 0) -P(X = 1) -P(x = 2) 

   = 1- 
0

0

e 

 - 
1

e 

 - 
2

2

e 

 

   = 
1 (1)

1

e 
 - 

1

e 

 - 
2

1 2

e 


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   = 1 - e- -  e- - 
2

1 2

e  


 

Example 5: A random variable X has the following probability functions:- 

x: 0 1 2 3 4 5 6 7 8 

p(x):  3 5 7 9 11 13 15 17 

 (i) Find the value of  

 (ii) Evaluate P(X > 6), P(3 < X < 5) 

 (iii) Calculate the minimum value of , such that P(X < 3) > 0.5. 

Sol. (i) Since p(x) is a probability function  

  
8

0

( ) 1
x

p x


  

   + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 1 

  81 = 1   = 
1

81
 

 (ii) P(X > 6) = P(X = 6) + P(X = 7) + P(X = 8) 

  = 13 + 15 + 17 

  = 45 = 
45

81
 = 

5

9
 

  P(3 < X < 5) = P(X = 4) 

   = 9 = 
9

81
 = 

1

9
 

 (iii) P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) 

   =  + 3 + 5 + 7 = 16 

  Now P(X < 3) > 0.5  16 > 
1

2
 

  or  > 
1

32
 

  Minimum Value of  is 
1

32
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Example 6: In a single throw of two dice, find the probability function and the distribution 
function of the random variable X, where X denotes the total obtained with the pair of dice. Draw 
the graph of the distribution function and name it. 

Sol. In a single throw of two dice, the possible values of the random variable X are 2,3,4,....., 12 

and the corresponding probabilities are 
1

36
, 

2

36
, 

3

36
,......., 

1

36
. 

These results are shown in the table: 

X=x 2 3 4 5 6 7 8 9 10 11 12 

P[x=x]=(x) 1

36
 

2

36
 

3

36
 

4

36
 

5

36
 

6

36
 

5

36
 

4

36
 

3

36
 

2

36
 

1

36
 

F(x)=P(X<x) 1

36
 

3

36
 

6

36
 

10

36
 

15

36
 

21

36
 

26

36
 

30

36
 

33

36
 

35

36
 

36

36
 

The above table can also be written in the following form:  



60 
 

0 2

1
2 3

36
6

4 5
36
10

5 6
36
15

6 7
36
21

7 8
36
26

8 9
36
30

9 10
36
33

10 11
36
35

11 12
36
36

12
36

for x

for x

for x

for x

for x

for x

for x

for x

for x

for x

for x


 

  


  



 



 



 

  


  



 



 





 

The graph of the distribution function is shown in the figure: 

 

Distributive function is a step function 
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Example 7: A random Variable X has the following probability function: 

x: -2 -1 0 1 2 3 

(x): 0-1 k 0.2 2k 0.3 3k 

 (i) Find k 

 (ii) Evaluate P(X < 2), P(X > 2), P(-2 < X < 2) 

 (iii) Determine the distribution function F(x) of X. 

Sol. (i) Since (x) is a probability function  

  
3

2

( ) 1
x

f x


  

  0.1 + k + 0.2 + 2k + 0.3 + 3k = 1 

  0.6 + 6k = 1 

  6k = 1 - 0.6 

  6k = 0.4 

  k = 
0.4

6
= 

4

60
 

  k = 
1

15
 

 (ii) P(X < 2) = P(X = -2) + P(x = -1) + P(x = 0) + P(x = 1) 

  = 0.1 + k + 0.2 + 2k 

  = 0.3 + 3k 

  = 
3

10
+ 

3

15
 = 

3 2

10


 = 

5

10
 = 

1

2
 

 (iii) P(X > 2) = P(x = 2) + P(x = 3) 

  = 0.3 + 3k 

  = 
3

10
+ 

3

15
= 

3

10
 + 

1

5
 

  = 
3 2

10


 = 

5

10
 = 

1

2
 

 P(-2 < X < 2) = P(x = -1) +P(x = 0) + P(x = 1) 

  = k + 0.2 + 2k 
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  = 3k + 
2

10
 

  = 
3

15
+

2

10
 = 

1

5
 + 

1

5
 = 

2

5
 

 (iii) The distribution function F(x) is shown in the table given below: 

x -2 -1 0 1 2 3 

(x) 3

30
 

2

30
 

6

30
 

4

30
 

9

30
 

5

30
 

F(x) 3

30
 

5

30
 

11

30
 

15

30
 

24

30
 

30

30
 

Example 8: A bag contains two one rupee coins and 3 twenty paise coins. A person draws two 
coins. Find probability mass function of value of coins drawn. 

Sol. Let X denote the value of the coin drawn X can take following value 

 x1 = 1 + 1 = 2Rs. [When both one Rs. coins are drawn] 

 x2 = 1 + 
20

100
 = 

6

5
 Rs. [When one Rs. and one twenty paise coin is drawn]  

 x3 = 
20

100
+ 

20

100
 = 

2

5
 Rs. [When both twenty paise coins are drawn] 

 P(X = x1) = 2 0

2

2 3

5
c c

c


= 

1

10
 

 P(X = x2) = 1 1

2

2 3

5
c c

c


= 

6

10
 

 P(X = x3) = 0 2

2

2 3

5
c c

c


= 

3

10
 

 Probability mass function of X is given by  

X x1 = 2 
x2 = 

6

5
 x3 = 

2

5
 

P(X=x)=(x) 
P(X=2) = 

1

10
 P(X=

6

5
) = 

6

10
 P(X=

2

5
) = 

3

10
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Example 9: From a lot of 12 items, having 4 defective items, 5 are drawn at random without 
replacement. If X denote the number of defectives in the sample: 

 (i) Write the probability distribution of X 

 (ii) Find P(1 < X < 3) 

Sol. (i) 5 items can be drawn from a lot of 12 items in 
5

12c ways. If x denote the number of 

defective items, then x defectives can be chosen out of 4 defectives and from the remaining 8 
items, 5 - x non-defective items can be chosen in 4

xc  
5

8
xc 
 ways. 

 Hence the probability function is  

 p(x) = 5

5

4 8

12
x xc c

c




, x = 0,1,2,3,4 

 (ii) P(1 < X < 3) = P(X = 2) = 2 3

5

4 8

12
c c

c


 

  = 

4 3 8 7 6
1 2 1 2 3

12 11 10 9 8
1 2 3 4 5

  


  
   

   

 = 
14

33
 

Self-Check Exercise 

Q.1 A bag contains two one rupee coins and 3 twenty five paise coins. A person 
draws two coins. Find probability mass function of value of coins drawn. 

Q.2 Suppose that an urn contains a red and 4 blue balls. If 5 balls are selected at 
random without replacement, determine the probability function of the number of 
red balls that will be obtained.  

Q.3 For the following, find constant  so that (x) satisfies the condition of probability 
mass function. 

 (x) = 
; 0,1,2,3,4,5,6

0;

ex x

elsewhere





 

Q.4 Find the probability distribution of the number of heads when three coins are 
tossed simultaneously   

4.7 Summary 

 We conclude this unit by summarizing what we have covered in it:-  

1. Defined and discussed random variable. Also defined independent random 
variable.  

2. Defined and discussed discrete random variable. 
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3. Discussed probability distribution of discrete random variable. 

4. Defined distribution function. Discussed in detail the properties of distributive 
function. 

5. Did some examples related to each topic so that concept be clarified.  

4.8 Glossary: 

1. By a random variable (r.v.) we mean a real number X associated with the 
outcomes of a random experiment It can take any one of the various possible 
values each with definite probability. 

2. If a random variable X assumes only a finite or at the most countable number of 
values, then it is known as discrete random variable.  

4.9 Answer to Self Check Exercise 

 Ans.1 Probability mass function of X is given by 

X x1 = 2 
x2 = 

5

4
 x3 = 

1

2
 

P(X=x) = (x) 
P(X=2) = 

1

10
 P(X=

6

5
) = 

6

10
 P(X=

2

5
) = 

3

10
 

 Ans. 2 Probability function is given by 

X 1 2 3 4 5 

P(X) 9

1287
 

144

1287
 

504

1287
 

504

1287
 

126

1287
 

 Ans. 3  = 
1

21
 

 Ans. 4 Probability distribution table is  

X 0 1 2 3 

P(X) 1

8
 

3

8
 

3

8
 

1

8
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4.11 Terminal Questions 

1. The bad eggs are mixed with 10 good ones. Three eggs are drawn at random 
without replacement. Determine the probability function of number of bad eggs 
that will be obtained. 

2. Four balls are drawn from a bag containing 5 black, 6 white and 7 red balls. Let X 
be number of white balls drawn. Find probability mass function or probability 
distribution of X. 

3. Check whether the following can define probability mass function and explain 
your answer: 

  (x) = 
25

6

x
, x = 0,1,2,3 

4. A fair die is rolled once. Find the probability function and the distribution function 
of the number of points appearing on the top face. 

5. Suppose that a box contain 7 red and 3 blue balls. If 5 balls are selected at 
random with replacement, determine the probability function of the number of red 
balls that will be obtained.  

--------- 
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Unit - 5 

Probability Distribution of A Continuous Random Variable 

Structure 

5.1 Introduction 

5.2 Learning Objectives  

5.3 Continuous Distribution 

5.4 Continuous Distribution Function  

 Self-Check Exercise 

5.5 Summary 

5.6 Glossary 

5.7 Answers to Self Check Exercises 

5.8 Reference/Suggested Readings 

5.9 Terminal Questions 

5.1 Introduction 

 A continuous random variable is a variable that can take on any value within a specified 
range or interval. Unlike discrete random variables, which can only take on specific, countable 
values, continuous random variables can assume an infinite number of possible values. The 
probability distribution of a continuous random variable is described by a probability density 
function (pds) denoted as (x). The pdf represents the relative likelihood of the random variable 
taking on a particular value within the specified range. The pdf (x) is non-negative for all values 
of the random variable x. The total area under the probability density function curve is equal to 
1. The expected value (or mean) of a continuous random variable is the weighted average of all 
possible values, where the weights are the probabilities associated with each value. 
Understanding continuous probability distributions has a wide range of real world applications 
across various fields like in Engineering and Physics; Quality control and Reliability engineering; 
Biology and Ecology: Healthcare and Medicine etc.  

5.2 Learning Objectives  

 After studying this unit, you should be able to:- 

 Define continuous random variable 

 Discuss probability density function of a continuous random variable 

 Define continuous distribution function and discuss properties of continuous 
distribution function. 

 Do questions related to these concepts.  
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5.3 Continuous Distribution 

 A random variable X is said to be continuous if it can take all possible values between 
certain limits. In other words, a random variable is said to be continuous when its different 
values cannot be put in 1-1 correspondence with a set of positive numbers.  

 

Probability Density Function 

 The probability density function (x) of a continuous random variable X is defined as  

 (x) = 
0x

Lim
 

 
( )P x X x x

x





  
 

 Where P(x < X < x + δx)  

Properties of Probability density function (x) 

 (i) (x) > 0 

 (ii) ( ) 1f x dx




  

 (iii) P(a < X < b) = ( )
b

a

f x dx  

 (iv) For any event E, 

  P(E) = ( )
E

f x dx  is well defined.  

5.4 Continuous Distribution Function 

 If X is a continuous random variable with the probability distribution function (x), then 
the function. 
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 F(x) = P(X < X) = ( ) ,
x

f t dt t


     

 is called the distribution function or sometimes the Cumulative distribution function of the 
random variable X. 

Properties of Distribution Function: 

 The distribution function defined by equation (1) as above obeys the following properties: 

 1. 0 < F(x) < 1, - < x <  

 2. F'(x) = 
d

dx
F(x) = (x) > 0 

  i.e. F(x) is a non-decreasing function of x. 

 3. F(-) = 
x
Lim


 F(x) = 
x
Lim


 ( )
x

f t dt


  

  = ( ) 0f t dt




  

  and F(+ ) = 
x
Lim


F(x) = 
x
Lim


( )
x

f t dt


  

  = ( ) 1f t dt




  

 4. F(x) is a continuous function of x on the right  

 5. The discontinuities of F(x) are at the most countable 

 6. It may be noted that  

  P(a < X < b) = ( )
b

a

f x dx  = ( )
b

f x dx


 - ( )
a

f x dx


  

   = P(X < b) - P (X < a) 

   = F(b) - F (a) 

   = F(b) - F (a) 

 and P(a < X < b) = P (a < X < b) = P(a < X < b) 

  = ( )
b

a

f t dt  

 Let us now do some examples to have better idea of the concept:-   
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Example 1: Test if following is a probability density function: 

 (x) = 
,0 1

2 ,1 2

x x

x x

 


 
 

Sol. If (x) is a probability distribution function, it must satisfy 

 (i) (x) > 0, which is true for all the given values of x.  

 (ii) ( ) 1f x dx




  

 Now ( )f x dx




 = 
2

0

( )f x dx = 
1

0

xdx  + 
2

1

2xdx  

  = 

12

0
2

x 
 
 

 + 

22

1

2

2

x 
 
 

 

  = 
1

0
2
 

 
 

 + (4 - 1) 
1

2
 + 3 = 

7

2
  1 

  (x) is not a probability distribution function 

Example 2: Find the constant c so that (x) satisfies the conditions of being a p.d.f. of a random 
variable X: 

  (x) = 
,0

0,

xexe x

elsewhere

   



 

Sol. We have 

 (x) = 
,0

0,

xcxe x

elsewhere

   



 

 Now ( )f x dx




 = 1 

  
0

( )f x dx


  + 
0

( )f x dx


 = 1 

  
0

1xc xe dx


   



70 
 

  c 
0

1xxe dx


   

  c 
00

1.
1 1

x xxe e
dx

     
  

    
 = 1 

 or c 
0 0

x
x

x
e dx

e

 


   

  
   

  = 1 

  c 
0

(0 0)
1

xe


   
   

   

 = 1 

  c 
0

1
xe



 
 
 

= 1 

  c [0 + 1] = 1 

  c = 1 

Example 3: If the density function of a random variable X is given by  

  (x) = 

,0 1

2 ,1

0,

x x

x x a

elsewhere

 


  



 

 Find (i) The value of a  

  (ii) The distribution function of x. 

  (iii) P (0.8 < X < 0.6 a). 

Sol. (i) Here  

 (x) = 

,0 1

2 ,1

0,

x x

x x a

elsewhere

 


  



 

  ( ) 1f x dx




  

  
1

0

( )f x dx  + 
1

( )
a

f x dx  + ( )
a

f x dx


  = 1 
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  
1

0

xdx  + 
1

(2 )
a

x dx + 0 = 1 

  

12

0
2

x 
 
 

 + 
2

1

2
2

a
x

x
 

 
 

= 1 

  
1

0
2

 
 

 
 + 

2 1
2 2

2 2

a
a

    
      

   
 = 1 

  
1

2
 + 2a - 

2

2

a
 - 

3

2
 = 1 

 or 2a - 
2

2

a
 = 2 

 or 4a - a2 = 4 

  a2 - 49 + 4 = 0 

  (a - 2)2 = 0 

  a = 2 

  the p.d.f. 

  (x) = 

,0 1

2 ,1 2

0,

x x

x x

elsewhere

 


  



 

 (ii) F(x) = P(X < x) = ( )
x

f x dx


  

 For x < 0, F(x) = 0 

 For 0 < x < 1, F(x) = ( )
x

f x dx


  = 
0

0 dx


  + 
0

x

x dx  

  = 0 + 
2

0
2

x
x 

 
 

= 0 + 
2

2

x
 - 0 = 

2

2

x
 

 For 1 < x < 2, F(x) = ( )
x

f x dx


 = 
0

0 dx


  + 
1

0

x dx  + 
1

(2 )
x

x dx  
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  = 0 + 

12

0
2

x 
 
 

 + 
2

1

2
2

x
x

x
 

 
 

 

  = 0 + 
1

0
2

 
 

 
 + 

2

2
2

x
x

 
 

 
 - 

1
2

2
 

 
 

 

  = 2x - 
2

2

x
- 1 

 For x > 2, F(x) = ( )
x

f x dx


  

  = 
0

0 dx


 + 
1

0

x dx  + 
2

1

(2 )x dx + 
2

0
x

dx  

  = 0 + 

12

0
2

x 
 
 

 + 

22

1

2
2

x
x

 
 

 
 + 

22

1

2
2

x
x

 
 

 
 + 0 

  = 
1

0
2

 
 

 
 + 

1
(4 2) 2

2

  
    

  
 

  = 
1

2
 + 2 - 

3

2
 = 1 

  F(x) = 

2

2

0, 0

, 1
2

2 1, 2
2

1 , 2

x

x
x

x
x x

x



 


   





 

 (iii) P(0.8 < X < 0.69) = P (0.8 < X < 1.2) 

  = 
1.2

0.8

( )f x dx  = 
1

0.8

x dx  + 
1.2

1

(2 )x dx  

  = 

12

0.8
2

x 
 
 

 + 

1.22

1

2
2

x
x

 
 

 
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  = 
1 0.64

2


 + 

2(1.2) 1
2(1.2) 0. 2

2 2

    
      

   
 

  = 0.18 + 0.18 

  = 0.36 

Example 4: A random variable X has the following density function 

  (x) = 2
,

1
0 ,

k
if x

x
otherwise


   





 

 Determine k and the distribution function. Also find the probability that X2 lies between 
1

3
 and 1. 

Sol. We have  

  (x) = 2
,

1
0 ,

k
x

x
otherwise


   





 

 Now ( ) 1f x dx




  

  k 2

1
1

1
dx

x






   k 1tan x





   = 1 

  k 1 1tan tan ( )      = 1 

  k
2 2

   
   
  

= 1  k = 1 

  k = 
1


 

 Again F(x) = ( )f x dx  

  = k
2

1

1
dx

x
 

  F(x) = k 1tan x c     ......(1) 
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 Now F(-) = 0  k 1tan c    = 0 

  
1



1
c



 
  
 

 = 0 

  c = 
2


 

  from (1), we have  

  F(x) = 
1



1tan
2

x
 

 
 

 

 The probability distribution function is  

  (x) = 
2

1

( 1)x 
, - < x <  

 Now, if  
1

3
 < X2 < 1 

 then  X2 < 1   |X| < 1 

  -1 < X < 1   .....(2) 

 and X2 > 
1

3
 

  |X| > 
1

3
 

  X > 
1

3
 or X < - 

1

3
 ......(3) 

 Combining (2) and (3), we have  

  
3

3
 < X < 1 or -1 < X < - 

3

3  
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 Thus, the required probability is  

 P 21
1

3
X

 
  

 
 = P 

3 3
1 1

3 3
X or X

 
       

 
 

  = P
3

1
3

X
 

   
 

 + P 
3

1
3

X
 
     
 

 

  = 
1



1

2
3

3

1

1

dx

x 




3
3

2
1 1

dx

x




  

  = 
2



1

2
3

3

1

dx

x   = 
2



11
3

3

tan x    

  = 
2


 1 1 3

tan (1) tan
3

 
  

   
   

 

  = 
2

 4 6

  
 

 
 = 

1

6
 

Example 5: The probability density function of a random variable X is given by 

  (x) = 
, 0 4

0 ,

c
x

x
elsewhere


 





 

 Where c is a constant. Find c and then compute 

 (i) P
1

4
x

 
 

 
 (ii) P(X > 1) 

Sol. Now (x) is probability density function of X 
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  (x) > 0  x   > 0 

 Also 
4

0

( )f x dx  = 1 

  
4

0

e
dx

x  = 1  c
4

1
2

0

x dx


  = 1 

  c 

4
1

2

0

1
2

x 
 
 
 

 = 1 

  2c 
4

0
x 

 
= 1 

  2c [2 - 0] = 1  4c = 1 

  c = 
1

4
 

  (x) = 

1
, 0 4

4
0 ,

x
x

elsewhere


 





 

 (i) P
1

4
x

 
 

 
 = 

1
4

0

1

4
dx

x  = 
1

4

1
4 1

2

0

x dx


  

  = 
1

4

1
41

2

0

1
2

x 
 
 
 

 

  = 
1

2
 

1
4

0
x 

   

  = 
1

2

1
0

2
 

 
 

= 
1

4
 

 (ii) P(X > 1) = 
4

1

1

4
dx

x = 
1

4

4
1

2

1

x dx


  

  = 
1

4

4
1

2

1

1
2

x 
 
 
 

= 
1

2

4

1
x 

 
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  = 
1

2
(2 - 1) = 

1

2
 

Example 6: Let (x) = 

2
, 0 3

9
0 ,

x
x

elsewhere


 





 

 Then find P(A1), P(A2) and P(A1∪A2), 

 Where A1 = {x: 0 < x < 1} and A2 = {x : 2 < x < 3} 

Sol. Here (x) = 

2
, 0 3

9
0 ,

x
x

elsewhere


 



  

Now P(A1) = P(0 < x < 1) = 
1

0
( )f x dx  = 

1

0

2

9

x
dx  

  = 
2

9
 

1

0
xdx  

  = 
2

9

12

0
2

x 
 
 

 =
1

9
 

12

0
x    = 

1

9
 (1 - 0) = 

1

9
 

 P(A2) = P(2 < x < 3) =
3

2
( )f x dx  = 

3

2

2

9

x
dx  

  = 
2

9

3

2
xdx = 

2

9

32

2
2

x 
 
 

 =
1

9
 

32

2
x     

= 
1

9
 (9 - 4) = 

5

9
 

Also A1   A2 =   P(A1   A2) = 0 

Now P(A1 ∪ A2) = P(A1) + P(A2) - P(A1   A2) 

  = 
1

9
 + 

5

9
 - 0 

  = 
1 5

9


 = 

6

9
 = 

2

3
 

Example 7 : A continuous random variable x has p.d.f. (x) =  3x2, 0 < x < 1 
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Find a and b such that  

 (i) P(x < a) = P (x > a), and  

 (ii) P(x > b) = 0.05 

Sol. - (i) Here (x) =  3x2, 0 < x < 1 

 Now P(x < a) = P (x > a) 

 
0

( )
a

f x dx  = 
1

( )
a

f x dx  

 2

0
3

a
x dx = 

1 23
a

x dx  2

0

a
x dx  = 

1 2

a
x dx  

 
3

0
3

a
x 

 
 

 = 

13

3
a

x 
 
 

 

 a3 = 1 - a3  2a3 = 1 

 a3 = 
1

2
   a = 

1
31

2
 
 
 

 

(ii) Again  P(x > b) = 0.05 

 
1

( )
b

f x dx  = 0.05 

 
1 23
b

x dx  = 0.05 

or  

13

3
b

x 
 
 

 = 
5

100
 

 1 - b3 = 
5

100
 

 b3 = 1 -
5

100
 

 b3 = 
95

100
 

 b = 

1
319

20
 
 
 
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Example 8 : The amount of bread (in hundreds of pounds) x that a certain bakery is able to sell 
in a day in found to be a numerical valued random phenomenon, with a probability function 
specified by the probability density function (x), given by 

 (x) = 

,  for 0 5

(10 ),  for 5 10

0,  otherwise 

Ax x

A x x

 


  



 

(i) Find the value of A such that (x) is p.d.f. 

(ii) What is the probability that the number of pounds of bread that will be sold tomorrow is  

 (a) more than 500 pounds, 

 (b) less than 500 pounds, 

 (c) between 250 and 750 pounds? 

Sol. : (i) Here  

 (x) = 

,  for 0 5

(10 ),  for 5 10

0,  otherwise 

Ax x

A x x

 


  



 

Since (x) is p.d.f 

 ( )f x dx


  = 1 
5

10
( )f x dx 

10

5
( )f x dx 

10
( )f x dx



 


5

10
( )f x dx 

10

5
( )f x dx 


5

0
Axdx 

10

5
(10 )A x dx = 1 

or  A 
5

0
xdx  + A

10

5
(10 )x dx  = 1 

 A 

52

0
2

x 
 
 

 + A 

102

5

10
2

x
x

 
 

 
 = 1 

 A 
25

0
2

 
 

 
 + A 

100 25
100 50

2 2

    
      

    
 = 1 

 A 
25

2
 
 
 

 + A  
100 25

100 50
2 2

 
   

 
 = 1 
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 A 
25

2
 
 
 

 + A 
25

2
 
 
 

 = 1 

 A(25) = 1   A = 
1

25
 

(ii) (a) P(x > 500) = 
10

5
(10 )A x dx  

  = A 

102

5

10
2

x
x

 
 

 
 

  = 
1

25
 

100 25
100 50

2 2
 

   
 

 

  = 
1

25

25

2
 
 
 

 = 
1

2
 

  P(x > 500) = 0.5 

(b) P(x < 500)  = 
5

0

Axdx  = A

52

0
2

x 
 
 

 

  = 
1

25
 

25
0

2
 

 
 

 = 
1

25

25

2
 
 
 

= 
1

2
 = 0.5 

  P(X < 500) = 0.5 

(c) P(250  < X < 750) = 
3

2.5

( )f x dx + 
7.5

5

( )f x dx  

  = 
5

2.5

Axdx  + 
7.5

5

(10 )A x dx  

  = A
5

2.5

xdx  + A
7.5

5

(10 )x dx  

  = 
1

25

52

2.5
2

x 
 
 

 + 
1

25

7.52

5

10
2

x
x

 
 

 
 

  = 
1

25

25 6.25

2 2
 

 
 

+ 
1

25
 

56.25 25
75 (50

2 2
 

   
 
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  = 
1

25

25 6.25

2 2
 

 
 

 + 
1

25
 

56.25 25
75 (50

2 2
 

   
 

 

  = 
1

25
 

25 6.25

2

 
 
 

 + 
1

25

31..25
25

2
 

 
 

 

  = 
1

25

18.75

2
 
 
 

+
1

25

50 31.25

2

 
 
 

 

  = 
1

25

18.75

2
 
 
 

+ 
1

25

18.75

2
 
 
 

 

    = 
1

25

18.75 18.75

2 2
 

 
 

 = 
18.75

25
 

  = 0.75 

Self-Check Exercise 

Q.1 Find the value of  such that (x) = e-x ; 0 < x <  represents a probability 
density function.  

Q.2 Let (x) = 
2 , 0

0 ,

xc x e x

elsewhere

 



 

 be the probability density function of a random variable X. Then find 

 (i) Constant c  (ii) the distribution F(x) 

 (iii) P(2 < X < 3)  (iv) P(X > 1) 

Q.3 Let (x) be the p.d.f. of a random variable X, find the distribution function F(x) of 

X if (x) = 
3

2

x
, 1 < x < , zero elsewhere.  

Q.4 Let X be the number of gallons of ice-cream that is required at a certain store on 
a hot summer day.  

 Let (x) = 

2

12

12 (1000 )
,0 1000

12
0 ,

x x
x

elsewhere

 
 





 

 be the probability density function if X. How many gallons of ice-cream should the 
store have in hand each of these days so that the probability of exhausting its 
supply on a particular day is 0.05   

5.5 Summary 

 We conclude this unit by summarizing what we have covered in it:-  
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1. Defined continuous random variable.  

2. Discussed probability density function of continuous random variable. 

3. Defined continuous distribution function and discussed in detail she properties of 
continuous distribution function. 

4. Performed some examples related to each topic so that each concept be clarified 
further.  

5.6 Glossary: 

1. A random variable X is said to be continuous if it can take all possible values 
between certain limits.  

2. The probability density function (x) of a continuous random variable X is defined 
as  

 (x) = 
0x

Lim
 

(x X x x

x





  
 

 Where P(x < X < x + δx) = (x) dx 

3. If X is a continuous random variable with the probability distribution function (x), 
then the function 

 F(x) = P(X < x) = ( )
x

f t dt


 , - < t <  

 is called the distribution function or sometimes the cumulative distribution 
function of the random variable X.   

5.7 Answers To Self-Check Exercise 

 Ans.1  = 1 

 Ans.2 (i)  = 4 

  (ii) The distribution of function is 

   F(x) = 2 2

0, 0

1 2 ;0

1 ;

x x

x

x e e x

x

 



    

 

 

  (iii) P(2 < X < 3) = 5e-4 - 76-6 

  (iv) P(X > 1) = 3e-2 

 Ans.3 Distribution function 
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  F(x) = 
2

0, 1

1
1 , 1

x

x
x




 



 

 Ans.4 Required number of gallons of ice-cream = 751.395 nearly.  

5.8 References/Suggested Readings 
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2. Robert V. Hogg, Joseph w. Mckean and Allen T. Craig, Introduction to 
Mathematical Statistics, Pearson Education, Asia, 2007. 

3. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007. 

5.9 Terminal Questions 

1. Is the function defined as follows a probability density function? 

 (x) = 

0, 2

1
(3 2 ),2 4

8
0 ,

x

x x

elsewhere





  



 

2. Show that the function  

 (x) = 
| |, 1 1

0 ,

x x

elsewhere

  



 

 is a possible probability distribution function. Also find its distribution function. 

3. A continuous random variable X has the distribution function 

 F(x) = 4

0 , 1

( 1) , 1 3

1 , 3

if x

k x if x

if x




  
 

 

4. The distribution function for a random variable X is  

 F(x) = 
2

0 , 0

1 , 0x

x

e x



 

 

 Find 

 (i) the probability density function of X 

 (ii) the probability that X > 2 
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 (iii) the probability that -3 < X < 4 

5. If (x) = c x2 ; 0 < x < 1 is the probability density function of a continuous random 
variable X. Find 

 (i) constant c  (ii) P
1 1

3 2
x

 
  

 
 

 (iii) Find 'a' such that P(X < a) = P(X > a) 

 (iv) Find 'b' such that P(X > b) = 0.05 

6. A petrol pump is supplied with petrol once in a day. If its daily volume of sale (X) 
is thousand liters is distributed as  

  (x) = 5 (1 - x)4 ; 0 < x < 1 

 What must be the capacity of its tank in order that the probability that its supply 
will be exhausted in a given day shall be 0.01. 

--------- 
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Unit - 6 

Expectation For Discrete And Continuous Random Variable 

Structure 

6.1 Introduction 

6.2 Learning Objectives  

6.3 Mathematical Expectation  

 Self-Check Exercise 

6.4 Summary 

6.5 Glossary 

6.6 Answers to Self Check Exercises 

6.7 Reference/Suggested Readings 

6.8 Terminal Questions 

6.1 Introduction 

 The mathematical expectation, or expected value, of a discrete random variable X is 

denoted as E(X) or μ. It represents one average or long-term average value of the random 
variable, and is calculated as the sum of the products of each possible value of the random 
variable and its corresponding probability. For continuous random variable, it is defined as the 
integral of the product of the random variable and its probability density function (p.d.f) over the 
entire range of the random variable. The expected value of a continuous random variable 
represent the 'average' or 'central' value of the distribution, and it is a measure of the location or 
central tendency of the distribution. In gambling and casino games, expected value is used to 
axalyse the long-term expected payoff of different bets or strategies, which can inform decision-
making and risk management. In lottery and other probability-based games, expected value is 
used to evaluate the fairness of the game and the potential return to players. In project 
management, expected value is used to evaluate the potential outcomes and is used to 
evaluate the potential outcomes and profitability of different projects or investments. In quality 
control, expected value is used to assess the potential impact of defects or failures and to make 
informed decisions about quality assurance measures.   

6.2 Learning Objectives  

 After studying this unit, you should be able to: 

 Define mathematical expectation for discrete random variable  

 Define mathematical expectation for continuous random variable 

 Define expectation of function of a random variable  
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6.3 Mathematical Expectation  

 Gambling was the origin of word expectation. Originally, expectation was defined as: 

 If p represents a person's chance of success in any venture and A the amount which he 
will receive in case of a success, then the money equivalent to pA is called expectation. 

Mathematical Expectation for Discrete Random Variable   

 Let X be a random variable with p.d.f. (x). Then its mathematical expectation, denoted 
by E(x), is given by 

  E(X) = ( )x f x




  

Mathematical Expectation for Continuous Random Variable  

 Let X be a random variable with p.d.f. (x). Then its mathematical expectation, denoted 
by E(X), is given by 

  E(X) = ( )x f x dx




  

Note: Here it is understood that ( )x f x dx




  exists and ( )x f x




 is absolutely convergent, 

otherwise these definition are not valid.  

 In simple words if random variable X takes the value x1,x2,......,xn with corresponding 
probabilities p1,p2,........,pn, then 

  E(X) = p1x1 + p2x2 +......+ pnxn 

   = 
1

n

i i
i

p x


  

Note: E(X) is also called the mean of X or the population mean and is denoted by μ. 

Expectation of Function of a Random Variable  

 Let X be a random variable with p.d.f. (x) and distribution function F(x). If g is a function 
such that g(X) is a random variable and E[g(X)] is defined, then  

  E[g(X)] = ( ) ( )g x f x dx




  (for continuous random variable) 

   = ( ) ( )g x f x




  (for discrete random variable)  

 Let us improve our understanding of these results by looking at some of the following 
examples:- 
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Example 1: Find the expectation of the number on a die when thrown.  

Sol. Let X be the random variable representing the number on a die when thrown. Then X can 

take any one of the values 1,2,3,4,5,6 each with equal probability 
1

6
as shown in the table:- 

X = x 1 2 3 4 5 6 

p 1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

 E(X) = (1) 
1

6
 
 
 

 + (2) 
1

6
 
 
 

 + (3) 
1

6
 
 
 

 + (4) 
1

6
 
 
 

 + (5) 
1

6
 
 
 

 + (6) 
1

6
 
 
 

 

  = 
1

6
[1 + 2 + 3 + 4 + 5 + 6] 

  = 
1

6
  21 = 

7

2
 

Example 2: In four tosses of a coin, Let X be the number of heads. Tabulate the 16 possible 
outcomes with the corresponding values of X. By simple counting derive the distribution of X 
and hence calculate the expected value of X. 

Sol. Let H represent a head, T a tail and X, then random variable denoting the number of 
heads.  

S. No. Outcomes No. of Heads (X) S.No. Outcomes No. of Heads 
(X) 

1 HHHH 4 9 HTHT 2 

2 HHHT 3 10 THTH 2 

3 HHTH 3 11 THHT 2 

4 HTHH 3 12 HTTT 1 

5 THHH 3 13 THTT 1 

6 HHTT 2 14 TTHT 1 

7 HTTH 2 15 TTTH 1 

8 TTHH 2 16 TTTT 0 
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 The random variable X takes the values 0,1,2,3 and 4. Since, from the above table, we 
find that the number of cases favourable  to the coming of 0,1,2,3 and 4 heads are 1,4,6,4 and 
1, respectively. Then, we have 

 P(X = 0) = 
1

16
, P(X = 1) = 

4

16
 = 

1

4
, P(X = 2) = 

6

16
 = 

3

8
, 

 P(X = 3) = 
4

16
 = 

1

4
 and P(X = 4) = 

1

16
 

Thus, the probability distribution of X is  

x 0 1 2 3 4 

p(x) 1

16
 

1

4
 

3

8
 

1

4
 

1

16
 

 E(X) = 
4

0

( )
x

x p x


  = 1. 
1

4
 + 2. 

3

8
 + 3. 

1

4
 + 4. 

1

16
 

    = 
1

4
 + 

3

4
 + 

3

4
 + 

1

4
 = 2 

Example 3: A coin is tossed until a head appears. What is the expectation of the number of 
tosses required? 

Sol. Let X denote the number of tosses required to get the first head. The probability distribution 
of X is  

Event x Probability p(x) 

H 

 

TH 

 

TTH 

...... 

...... 

...... 

1 

 

2 

 

3 

...... 

...... 

...... 

1

2


1

2


1

2
=

1

4
 

1

2


1

2


1

2
= 

1

8
 

...... 

...... 

...... 

  E(X) = 
1

( )
x

x p x




  
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  = 1 
1

2
 + 2  

1

4
 + 3  

1

8
 + 4  

1

16
 + ................  .....(1) 

 This is an arithmetic-geometric series with ratio of GP being r = 
1

2
 

 Let S = 1. 
1

2
 + 2. 

1

4
 + 3. 

1

8
 + 4. 

1

16
+ .....................  .......(2) 

  
1

2
S = 

1

4
 + 2. 

1

8
 + 3. 

1

16
+ .....................   .......(3) 

 Subtracting (3) from (2), we get  

 
1

1
2

 
 

 
S = 

1

2
+ 

1

4
 + 

1

8
 + 

1

16
+ ..................... 

  
1

2
 S = 

1
2
1

1
2

 
  
 

 = 1 

 [Since the sum of an infinite G.P. with first term a and common ratio r (<) is 
1

a

r
]. 

  S = 2 

  from (1), we get  

  E(X) = 2 

Example 4: A and B throw with one die for a prize of Rs. 11 which is to be won by player who 
first throws 6. If A has the first throw, what are their respective expectation? 

Sol. The chances of throwing a six are as follows:- 

A B 

1

6  
2

5

6
 
 
 

 
1

6
 
 
   

...... 

...... 

...... 

5

6


1

6  
3

5

6
 
 
 


1

6 

...... 

...... 

...... 
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 A's chances of success = 
1

6 
+ 

2
5

6
 
 
  

.
1

6
+ 

4
5

6
 
 
 

. 
1

6
+................. 

 = 
1

6 

2 4
5 5

1 ..........
6 6

    
       
     

 

 = 
1

6
. 2

1

5
1

6
 

  
 

 = 
6

11
 

 B's chances of success = 1 - 
6

11
= 

5

11
 

 A's expectation = 
6

11
  11 = Rs. 6 

 B's expectation = 
5

11
  11 = Rs. 5 

Example 5: A person draws cards one by one from a pack until he draws all the aces. How 
many cards he may be expected to draw? 

Sol. Suppose he has to make n draws for all the aces. It means that in n-1 draws, he draws 
three aces and in the nth one ace. The probability of such an occurrence.  

 = 3 4

1

4 48

52
n

n

c c

c






  

1

52 ( 1)n 
 

 = 
4 48 1 52 1

4 48 4 52

n n

n n

     

  
 

1

52 1n 
 

 = 
4( 1)( 2)( 3)

49 50 51 52

n n n  

  
 

 The least number of draws he has to make is 4 and the maximum number 52. Hence n 
ranges from 4 to 52. 

 The expected number of draws  

 = 
52

4

( 1)( 2)( 3)
.4

49 50 51 52n

n n n
n



   
    

  

 = 
4

49 50 51 52  
 

52 52 52 52
4 3 2

4 4 4 4

6 11 6
n

n n n n


 
   

 
     

Self-Check Exercise 
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Q.1 Two unbiased dice are thrown. Find the expected values of the sum of numbers 
of points on them. 

Q.2 An urn contains 3 black marbles and 2 white marbles. Four persons A,B,C,D in 
order, draw one marble without replacement. The first to draw white marble gets 
Rs. 1. compute their expectations.  

6.4 Summary 

 We conclude this unit by summarizing what we have covered in it:-  

1. Defined mathematical expectation for discrete random variable  

2. Defined and discussed expectation for continuous random variable  

3. Defined expectation of function of a random variable 

6.5 Glossary: 

1. Let X be a random variable with p.d.f. (x). Then its mathematical expectation 
denoted by E(X), is given by  

 E(X) = 

( ), var

( ) , var

x f x for discrete random iable

x f x dx for continuous random iable









 
 
 
 
 
 





 

2. Expectation of function of a random variable is defined as: 

 Let X be a random variable with p.d.f. (x) and distribution function F(x). If g is a 
function such that g(X) is a random variable and E[g(X)] is defined, then. 

 E[g(X)] = 

( ) ( ), var

( ) ( ) , var

g x f x for discrete random iable

g x f x dx for continuous random iable









 
 
 
 
 
 





 

6.6 Answers To Self-Check Exercise 

 Ans.1  

 Ans.2 A's expectation : Rs. 4 

  B's expectation : Rs. 3 

  C's expectation : Rs. 2 

  D's expectation : Rs. 1 

6.7 References/Suggested Readings 

1. Robert V. Hogg, Joseph w. Mckean and Allen T. Craig, Introduction to 
Mathematical Statistics, Pearson Education, Asia, 2007. 
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2. Irwin Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 

3. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007. 

6.8 Terminal Questions 

1. If X has the uniform density 

 (x) = 

1
, 2 4

2
0 ,

for x

elsewhere


 





 

 find its mathematical expectation. 

2. Show that the expected number of failures preceding the first success in a series 

of Bernoullian trials with a constant probability 'p' of success is 
1 p

p


. 

3. A random variable X takes values  

 xi = 
( 1) 2i i

i

 
, 

 with probability pi = 2-i, i = 1, 2, 3, ........ 

 Find the expected value of X.   

--------- 
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Unit - 7 

Addition And Multiplication Theorems Of Expectation 

Structure 

7.1 Introduction 

7.2 Learning Objectives  

7.3 Addition Theorem Of Expectation 

7.4 Multiplication Theorem of Expectation 

7.5 Variance, Standard Deviation  

7.6 Some Standard Results 

 Self-Check Exercise 

7.7 Summary 

7.8 Glossary 

7.9 Answers to Self Check Exercises 

7.10 Reference/Suggested Readings 

7.11 Terminal Questions 

7.1 Introduction 

 The addition theorem of expectations states that for any two random variables X and Y, 
the expectation of their sum is equal to the sum of their individual expectations. This theorem 
holds true regardless of whether the random variables X and Y are independent or dependent. 
The multiplication theorem of expectations states that for any two random variables X and Y, the 
expectation of their product is equal to the product of their individual expectations, but only if the 
random variables are independent. In manufacturing and engineering, the addition theorem is 
used to calculate the expected failure rate of a system composed of multiple components. In 
finance, the addition theorem is used to calculate the expected return of a portfolio of assets. 
The multiplication theorem is used in various statistical tests, such as t-test determine the 
significance of the relationship between variables. In the insurance industry, the addition 
theorem is used to calculate the expected total claims for a portfolio of insurance policies.  

7.2 Learning Objectives  

 After studying this unit, you should be able to: 

 Prove addition theorem of expectation  

 Prove multiplication theorem of expectation  

 Define variance and standard deviation of a random variable  

 Prove some standard results on the mathematical expectation, variance.  
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7.3 Addition Theorem of Expectation  

 If X and Y be random variables, then  

 E(X + Y) = E(X) + E(Y) 

Proof: Let X take the values x1,x2,....,xn with respective probabilities p1,p2,......,pn and Y takes 
the values y1,y2,.....,yn with probabilities p1',p2',.....,pm'. Then clearly X+Y is also a random 
variable which takes the nm values xi + yj, i = 1,2,....., n; j = 1,2,....., m.  Also let pij be 
probability of X takes the value xi and Y taking the value yj simultaneously. 

 When X takes the value xi, Y can take any one of the values y1,y2,....,ym, therefore, the 

sum 
1

m

ij
j

p


 will represent the probability pi of X taking the value xi i.e. 
1

n

ij
i

p


 = pi. Giving the 

similar arguments, 
1

n

ij
i

p


 represents the probability pj' of Y taking the value yj i.e. 
1

n

ij
i

p


 = pj 

Now, we have 

 E(X + Y) = 
1

n

i


1

( )
m

ij i j
j

p x y


  

  = 
1

m

ij i
j

p x



1

n

i


1

m

ij j
j

p y


  

  = 
1

n

i


1

m

ij i
j

p x


 
 

 


1

m

j


1

n

ij j
i

p y


 
 
 
  

  = 
1

n

ij i
i

p x


  + 
1

m

i j
j

p y


  

  = E(X) + P(Y) 

Note. 1. If X, Y, Z ...... be discrete random variables, then 

  E(X + Y + Z + .........) = E(X) + E(Y) + E(Z) +........ 

 2. If X and Y be random variables, then E(aX + bY) = a E(X) + B E(Y), where a and 
b are constant. 

7.4 Multiplication Theorem of Expectation  

 If X and Y be two independent random variables, then  

 E(XY) = E(X) E(Y) 

Proof: Let X take the values x1, x2, ...... xn with respective probabilities p1, p2,...., pn and Y take 
the values y1, y2,....., ym with probabilities p1, p2,.......,pm.  

 Since the variables X and Y are independent, therefore, the probability that X takes the 
values xi and that the variable Y takes the value yj simultaneously is pi pj'.  
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 Thus, E(XY) = 
1 1

n n

i j i j
i j

p p x y
 

   

  = 
1

n

i i
i

p x


 
 
 


1

'
m

j j
j

p y


 
 
 
  

  = E(X) E(Y) 

Note:- The above theorem may be extended to any number of independent variables i.e. if 
X,Y,Z,....... be independent random variables, then  

 E (X Y Z ..........) = E(X) E(Y) E(Z)............. 

7.5 Variance, Standard Deviation  

 Variance of random variable X is the expected value of the non-negative random 

variable (X - μ)2. 

  V(X) = E(X - μ)2 

 or Var (X) = ip (xi -   )
2 

 The positive square root of the variance of X is called the standard deviation of X and is 
denoted by . 

  Var (X) = 2 = E(X = μ)2 = ip     -   )2 

7.6 Some Standard Results  

Result 1:- The mathematical expectation of the sum of n random variables is equal to the sum 
of their expectations, provided all the expectations exist. 

Proof: We have to prove that  

 E(X1 + X2 +.......+ Xn) = E(X1) + E(X2) +.......+ E(Xn)  ......(1) 

 For the random variables X1, X2 

 E(X1 + X2) = E(X1) + E(X2) 

  Result (1) is true for n = 2. 

 Assume that result (1) is true for n = m 

  E 
1

m

i
i

X


 
 
 
  = 

1

( )
m

i
i

E X


    ....(2) 

 Now E
1

1

m

i
i

X




 
 
 
  = E 1

1

m

i m
i

X X 



 
 

 
 = E

1

m

i
i

X


 
 
 
  + E(Xm+1) 
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 = 
1

( )
m

i
i

E X


  + E(Xm+1)  [  of (2)] 

 = 
1

1

( )
m

i
i

E X




 
 
 
  

  Result (1) is true for n = m + 1. 

  If the result (1) is true for n = m, then it is also true for n = m + 1. 

 i.e. if the result (1) is true for any integer, then it is also true for the next higher integer. 
But result (1) is true for n = 2 

  By the method of induction, result (1) is true for all nI. 

Result 2: If X is a random variable and a is constant, then  

 (i) E[a (X)] = a E [ (X)] 

 (ii) E[ (X) + a] = E[ (X)] + a 

 where  (X), a function of X, is a random variable and all the expectations exist.  

Proof: (i) E[a  (x)] = ( ) ( )a x f x dx




  

  = a ( ) ( )x f x dx




  = aE[ (X)] 

 (ii) E[ (X) + a] =  ( ) ( )x a f x dx




  

   = ( ) ( )x f x dx a




 ( )f x dx




  

   = E[ (X)] + a   ( ) 1f x dx




 
 

 
  

Result 3: If X is a random variable and a and b are constants, then  

  E[a X + b] = a E (X) + b 

Proof: By definition, we have  

  E[a X + b] = ( ) ( )ax b f x dx




  
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   = a ( )xf x dx




  + b ( )f x dx




  

   = a E (X) + b 

Result 4: With usual notations  

 
2 = 2

1

n

i i
i

p x


  - 
2

1

n

i i
i

p x


 
 
 
  

Proof: 2 = 2

1

( )
n

i i
i

p x X


  

 = 
22

1

( 2 )
n

i i i
i

p x x X X


   

 = 2

1

2
n

i i
i

p x X



1

n

i i
i

p x


     2

1

n

i
i

p


  

 = 
2 22

1

2
n

i i
i

p x X X


    
1 1

1
n n

i i i
i i

X p x and p
 

 
  

 
   

 = 
22

1

n

i i
i

p x X


  

 = 2

1

n

i i
i

p x


  - 
2

1

n

i i
i

p x


 
 
 
  

Result 5: For any random variable X, 

 Var (X) = E(X2) - [E(X)]2 

Proof: Var (X) = E (X - μ)2 

  = E(X2 - 2μX + μ2) 

  = E(X2) - 2μE(X) + μ2 E (1) 

  = E(X2) - 2μ.μ+ μ2.1  [ E(X) = μ,E(1) = 1] 

  = E(X2) - 2μ2 + μ2 

  = E(X2) - μ2 

  = E(X2) - [E(X)]2   [ μ= E(X)] 
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 Hence Var (X) = E(X2) - [E(X)]2 

Result 6: For any constants a and b,  

 Var (a X + b) = a2 Var (X) 

Proof: We have  

 Var (a X + b) = E [a X + b]2 - [E (a X + b)]2 

 = E(a2X2 + 2abX + b2) - [a E (X) + b]2  [  E(1) = 1] 

 = a2E (X2) + 2abE (X) + b2 - a2 [E(X)]2 - b2 - 1 - 2ab E (X) 

 = a2 {E(X2) - [E(X)]2} 

 = a2 Var (X) 

 Hence the result 

Result 7: If X1, X2 are two independent random variables having E(X1) = μ1 and E(X2) = μ2, then 
Var (X1 + X2) = Var (X1) + Var (X2) 

Proof: Var (X1 + X2) = E(X1 + X2)
2 - [E(X1 + X2)]

2 

 = E( 2
1X ) + E( 2

2X ) + 2E(X1 X2) - {[E(X1(]
2 + [E(X2)]

2 + 2E(X1) E(X2)} 

 = E( 2
1X ) + E( 2

2X ) + 2E(X1) E(X2) - [E(X1)]
2 - [E(X2)]

2 - 2E(X1) E (X2) 

 = {E( 2
1X ) - [E(X1)]

2} + {E( 2
2X ) - [E(X2)]

2 

 = Var (X1) + Var (X2) 

 Hence Var (X1 + X2) = Var (X1) + Var (x2) 

 Let us improve our understands of these results by looking at some of the following 
examples:- 

Example 1: For the following probability distribution of the random variable X 

X 8 12 16 20 24 

p(X) 1

8
 

1

6
 

3

8
 

1

4
 

1

12
 

Find (i) E (X)  (ii) E (X2)  (iii) E    -   )2 

Proof: (i) E(X) = i ix p = 8  
1

8
 + 12  

1

6
 + 16  

3

8
+ 20  

1

4
 + 24  

1

12
 

  = 16 

 (ii) E(X2) = 2
i ix p = 82  

1

8
 + 122  

1

6
+ 162  

3

8
+ 202  

1

4
+ 242  

1

12
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  = 276 

  V(X) = E(X2) - [E(X)]2 

   = 276 - (16)2 = 20 

  Mean = E(X) = 16, Variance = V(X) = 20 

 (iii) E   -   )
2 = E(x2     

2 - 2   ) 

   = E(x2      
2 - 2E     ) 

   = E(x2      
2 - 2    

  = E(x2      
2  

  = E(x2) + [E(x)]2 

= 276 - (16)2 = 276 - 256 

= 20  

Example 2: A s/x - sided die is tossed. Find the variance of the number of dots on the top face. 

Sol. : Here s = {1, 2, 3, 4, 5, 6} 

 Let x be random variable denoting the number of points taking values 1, 2, 3, 4, 5, 6. 

 

X 1 2 3 4 5 6 

(x) 1

6
 

1

6
 

1

6
 

1

6
 

1

6
 

1

6  

E(x)  =   x (x) 

 = 1 
1

6
 
 
 

 + 2 
1

6
 
 
 

 + 3 
1

6
 
 
 

 + 4 
1

6
 
 
 

 + 5 
1

6
 
 
 

 + 6 
1

6
 
 
 

 

 = 
1

6
 + 

2

6
 + 

3

6
 + 

4

6
 + 

5

6
+ 

6

6
 

 =  
1 2 3 4 5 6

6

    
 = 

21

6
 = 

7

2
 

E(x2)  =   x2 (x) =  1
1

6
 
 
 

 + 4 
1

6
 
 
 

 + 9 
1

6
 
 
 

 + 16 
1

6
 
 
 

 + 25 
1

6
 
 
 

 + 36 
1

6
 
 
 

 

 = 
1

6
 +  

4

6
 + 

9

6
 + 

16

6
 + 

25

6
 + 

36

6
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 = 
1 4 9 16 25 36

6

    
 = 

91

6
 

Var (x) = E(x2) - [E(x)]2 

  = 
91

6
 - 

49

4
 = 

182 147

12


= 

35

12
 

Example 3 : A coin is tossed until a tail appears. What is the expectation of the number of 
tosses required? 

Sol. :- Let denote the number of tosses required to get the first tail. The probability distribution 
of x is  

Event x Probability 

H 

 

TH 

 

TTH 

...... 

...... 

...... 

1 

 

2 

 

3 

...... 

...... 

...... 

1

2


1

2


1

2
=

1

4
 

1

2


1

2


1

2
= 

1

8
 

...... 

...... 

...... 

  E(X) = 
1

( )
x

x p x




  

  = 1 
1

2
 + 2  

1

4
 + 3  

1

8
 + 4  

1

16
 + ................  .....(1) 

 This is an arithmetic-geometric series with ratio of G.P. being r = 
1

2
 

 Let S = 1. 
1

2
 + 2. 

1

4
 + 3. 

1

8
 + 4. 

1

16
+ ..........  .......(2) 

  
1

2
S = 

1

4
 + 2. 

1

8
 + 3. 

1

16
+ ...........   .......(3) 

 Subtracting (3) from (2), we get  
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1

1
2

 
 

 
S = 

1

2
+ 

1

4
 + 

1

8
 + 

1

16
+ ............ 

  
1

2
 S = 

1
2

1
1

2
 

  
 

 = 1 

 [Since the sum of an infinite G.P. with first term a and common ratio r (<) is 
1

a

r
]. 

  S = 2 

  from (1), we get  E(x) = 2 

Example 4 :- Three urns contain respectively 3 green and 2 white ball, 5 green and 6 white 
balls and 2 green and 4 white balls. One ball is drawn from each urn. Find the expected number 
of white balls drawn out? 

Sol. :- 

 Number of green balls Number of white balls 

Urn I 

Urn II 

Urn III 

3 

5 

2 

2 

6 

4 

E (one white ball drawn from each urn) 

 = 1  
2

5
 + 1  

6

11
 + 1  

4

6
 

 = 
2

5
 + 

6

11
 + 

2

3
 

 =  
66 90 110

165

 
 = 

266

165
 

Example 5 : Let x have the p.d.f. 

 (x) = 

1
( 1), 1 1

2
0, elsewhere

x x


   




 

 Find the mean and variance of x  
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Sol. : - Here (x) = 

1
( 1), 1 1

2
0, elsewhere

x x


   




 

 E(x) = ( )xf x dx


  = 
1

1
( )xf x dx

  = 
1

1

( 1)

2

x x
dx




  

 = 
1

2
 

1 2

1
( )x x dx


  = 

1

2

13 2

1
3 2

x x



 
 

 
 

 = 
1

2
 

1 1 1 1

3 2 3 2

    
       

    
= 

1

2
 

2

3
 = 

1

3
 

 Mean  = 
1

3
 

Now E(x2) = 
1 2

1
( )x f x dx

  = 
1

2

1 2 2

1
( 1)x x dx


  

  = 
1

2
 

1 3 2

1
( )x x dx


  

  = 
1

2

14 3

1
4 3

x x



 
 

 
 

  = 
1

2

1 1 1 1

4 3 4 3

    
      

    
 

  = 
1

2
 

2

3
 = 

1

3
 

Variance x = E(x2) - [E(x)]2 

 = 
1

3
- 

2
1

3
 
 
 

 = 
1

3
- 

1

9
 = 

3 1

9


 = 

2

9
 

Example 6 :- Find the mean and variance of the distribution that has the distribution function 
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F (x) = 
2

0, 0

, 0 2
8

, 2 4
16
1, 4

x

x
x

x
x

x



  


  





 

Sol. :- Here 

 F(x) = 
2

0, 0

, 0 2
8

, 2 4
16
1, 4

x

x
x

x
x

x



  


  





 

 which is continuous function of x 

 The p.d.f. of x is given by (x) = F'(x) 

  (x) =

1
, 0 2

8

, 2 4
8
0, elsewhere

x

x
x


 




 





 

Now E(x) = ( )xf x dx


  =
2

0
( )xf x dx  + 

4

2
( )xf x dx  

   = 
2

0 8

x
dx  + 

24

2 8

x
dx  

  = 
1

8
 

2

0
xdx  + 

1

8

4 2

2
x dx  

  =  
1

16
 

22

0
x    + 

1

24
 

43

2
x    

=  
1

16
[4 - 0] + 

1

24
 [64 - 8] 

= 
4

16
 + 

56

24
 = 

1

4
 + 

7

3
 = 

31

12
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and E(x2) = 2 ( )x f x dx


  = 
2 2

0

1

8
x dx  + 

4 2

2 8

x
x dx  

  = 
1

8
 

2 2

0
x dx  + 

1

8

4 3

2
x dx  

 = 
1

24
 

23

0
x    + 

1

32

44

2
x    

 = 
1

24
 [8 - 0]+ 

1

32
[256 - 16] = 

8

24
 + 

240

32
 

 = 
1

3
 + 

15

2
 = 

2 45

6


 = 

47

6
 

Now variance = E(x2) - [E(x)]2 

  = 
47

6
- 

2
31

12
 
 
 

 = 
47

6
 - 

961

144
 

  = 
1128 961

144


 = 

167

144
  

Example 7 :- Find the mean and variance of a random variable that takes the values 1, 2, 

3,....,n each with probability 
1

n
. 

Sol. :- Here 

x 1 2 3 ..... n 

P(x) 1

n
 

1

n
 

1

n
 

..... 1

n
 

E(x) =   x (x) 

 = 1
1

n
 
 
 

 + 2 
1

n
 
 
 

 + 3 
1

n
 
 
 

+ ..... x 
1

n
 
 
 

 

 = 
1

n
 (1 + 2 + 3 + ....... + n) 

 = 
1

n

( 1)

2

n n  
 
 

 = 
1

2

n 
 

 Mean = E(x) = 
1

2

n 
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E(x2) =   x2 (x) 

 = 12 1

n
 
 
 

 + 22 
1

n
 
 
 

 + 3 
1

n
 
 
 

 + ..... x2 
1

n
 
 
 

 

 = 
1

n
 (12 + 22 + ....... + n2) 

 = 
1

n

( 1)(2 1)

6

n n n  
 
 

 

 = 
( 1)(2 1)

6

n n 
 

  Var (x) = E(x2) = [E (x)]2  

 = 
( 1)(2 1)

6

n n 
 - 

2
1

2

n 
 
 

 

 = 
1

2

n  
 
 

 
2 1 1

3 2

n n  
 

 
 

 = 
1

2

n  
 
 

4 2 (3 3)

6

n n   
 
 

 

 = 
1

2

n  
 
 

4 2 3 3

6

n n   
 
 

 

 = 
1

2

n  
 
 

1

6

n 
 = 

( 1)( 1)

12

n n 
 

 = 
2 1

12

n 
 

Example 8 :- If x is random variable such that E(x) = 10, v(x) = 25, find the positive numbers a 
and b such that y = a x -b has mean zero and variance 1. 

Sol. :- E(y) = E(x - b) = a E(x) - b = 10a - b = 0 

  10 a = b       ....(1) 

Also V(y) = a2 v(x) = a2 x 25 =1 

 a2 = 
1

25
   a = 

1

5
       ....(2) 

Putting the value of a from (2) in (1), we have  

 b = 2 
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 a = 
1

5
 , b = 2 

Example 9 : Show that if y and z are independent random values of a random variable x, then 

 E(y - z)2 = 2 v(x) 

Sol. :- Let y and z are independent random values of variable x. 

  E(yz) = E(y) E(z) 

and  E[y - z]2 = E(y2) + E(z2) - 2E (yz) 

[ y and z are independent] 

  = E(y2) + E(z2) - 2E (y) E(z) 

  = E(x2) + E(x2) - 2E (x) E(x) 

[ E(x) = E(y) = E(z) =  (say)  

and E(x2) = E(y2) = E(z2) 

  =2[E(x2) - [E(x)] 2] 

  = 2 v(x) 

 E(y - z)2 = 2 v(x) 

Self-check exercise 

Q. 1 If x1 and x2 are two independent random variables having variance k and 2 
respectively. If the variance of y = 3x2 - x1 is 25. Find k. 

Q.2 Let y = 3x - 5 and E(x) = 4, var (x) = 2. What is the mean and variance of y? 

Q.3 Let the probability function of the random variable x be of the following form, 

where c is some constant: (x) = c 
5

x

 
 
 

, x = 0,1,2,3,4,5  

 (i) Determine the value of c.  

 (ii) Find E(x)  

 (iii) Find var (x) 

Q.4 A and B thrown with one die for a stake of Rs. 44 which is to be won by the 
player who first throws a six. If A has the first throw, what are their respective 
expectations?  

7.7 Summary 

 We conclude this unit by summarizing what we have covered in it:-  

1. Proved addition theorem of expectation of two random variables.  

2. Proved multiplication theorem of expectation of two independent random 
variables. 
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3. Defined variance and standard deviation of a random variable. 

4. Proved some standard results of expectation and variance.  

5. Some examples are given related to each topic so that the contents be clarified 
further.  

7.8 Glossary: 

1. Variance of a random variable x is the expected value of the non-negative 

random variable (x - μ)2 i.e. 

 Var (x) = E(X - μ)2 

or Var (x) = ip     -    2 

 The positive square root of the variance of x is called the standard deviation of x 
and is denoted by  i.e. 

 Var (x) = 2 = E (x = 4)2 = ip      -   )2  

2. If x and y be random variables, then  

 E (x + y) E (x) + e (y) 

3. If x and y be two independent random variables, then 

 E (xy) = E (x) E (y) 

7.9 Answers To Self-Check Exercise 

 Ans.1 k = 7 

 Ans.2 Mean = 7 ; variance = 18 

 Ans.3 (i) c = 
1

3
   

(ii) E (x) = 
5

2
 

  (iii) Var (x) = 
5

4
 

 Ans.4 A's expectation = Rs. 24 

  B's expectation = Rs. 20 

7.10 References/Suggested Readings 
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7.11 Terminal Questions 

1. Let the random variable x have the distribution 

 P(x = 0) = P (x = 2) = p ; P (x = 1) = 1 - 2p, for 0 < p < 
1

2
 

 For what p is the V(x) a maximum. 

2. Let the probability function of the random variable x be of the following form 
where c is some constant: 

  (x) = c x, x = 3,4,5,6 

 (i) Determine the value of c 

 (ii) Find E (x) 

 (iii) Find Var (x) 

3. If (x) = 
, 0 1

2 ,1 2

x x

x x

 


  
 

 Find the mean and variance of a random variable x.  

4. Let x be a random variable with the following probability distribution 

x -3 6 9 

p(x) 1

6
 

1

2
 

1

3
 

  Find E (x) and E (x2) and using the laws of expectation, evaluate E (2x + 1)2  

5. An urn contains 3 black and 2 white marbles. Four persons A,B,C,D in order, 
draw one marble without replacement. The first to draw a white gets Rs. 10. 
compute their expectations.  

--------- 
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Unit - 8 

Moments 

Structure 

8.1 Introduction 

8.2 Learning Objectives  

8.3 Moments 

8.4 Relation Between The Moments About The Mean In Terms of Moments About The 
Origin 

8.5 Relation Between the Moments About the Origin In Terms of Moments About The Mean 

 Self-Check Exercise 

8.6 Summary 

8.7 Glossary 

8.8 Answers to Self Check Exercises 

8.9 Reference/Suggested Readings 

8.10 Terminal Questions 

8.1 Introduction 

 Moment are numerical characteristics that describe the shape and properties of a 
probability distribution. They provide a quantitative way to analyse and understood the 
distribution of random variables. The most used moments are: mean (first moment); variance 
(second moment): skewness (third moment) and kurtosis (fourth moment). The mean or the first 
moment represents the contra) tendency of the distribution. It is the average or expected value 
of the random variable. The variance or the second moment, measures the spread or dispersion 
of the distribution around the mean. Skewness measures the asymmetry or lack of symmetry in 
the distribution. If indicates the direction and degree of the distribution's departure from 
symmetry kurtosis measures the 'peakedness' or 'flatness' of the distribution compared to a 
normal distribution. Positive kurtosis indicated a 'peaked' distribution with heavier tails, while 
negative kurtosis indicates a 'flat' distribution with lighter tails.  

 Moments are used to describe and characterize the shape and properties of probability 
distributions, such as symmetry, dispersion and tail behaviour. Moments are often used to 
estimate the parameters of probability distributions, such as the mean and standard deviation, 
from sample data.  

8.2 Learning Objectives  

 After Studying this unit, you should be able to: 

 Defined moments about origin and moments about mean for discrete and 
continuous probability distribution 
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 Find the relation between the moments about the mean in terms of moments 
about the origin.  

 Find the relation between the moments about the origin in terms of moments 
about the mean  

8.3 Moments  

 In case of discrete probability distribution, rth moment about origin, denoted by μr', is 
defined as 

 μr' = E [x - μ)r] = ( ) ( )rx f x  

 In case of continuous probability distribution, 

  'r  = E (xr) = ( )rx f x dx




  

 and μr = E [(x - μ)r] = ( ) ( )rx f x dx




     

Note I.  

If r = 1, then 'r  = ( )rx f x  given 

 1 '  = E (x) = ( )x f x , 

 which is the expected value of the random variable x and is denoted by μ. 

  μ = 1 '  = E (x) = ( )x f x  

Note II.  

If r = 1, then r  = ( ) ( )x f x gives 

 1  = E (x = μ) = ( ) ( )x f x  gives 

  = ( )x f x  - μ ( )f x  

  = μ - μ.1   [ ( )f x = 1] 

  = 0 

  First moment about mean is always zero  

Note III.  

If r = 2, then  

  r  = ( ) ( )rx f x  gives 
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  2  = E (x - μ)2 = 2( ) ( )x f x = 2 

8.4 Relation Between the Moment About the Mean in Terms of Moments About the 
Origin  

 We know that  

 r  = ( ) ( )rx f x  

 Put r = 1 

  1  = ( ) ( )x f x  

  = ( )x f x  ( )f x  

  = μ - μ- 1   ( ) 1f x    

  = 0 

  1  = 0 

  2  = E (x - μ)2 = E (x2) - 2μ E (x) + μ2 E (1) 

  = E (x2) - 2μ E (x) + μ2  [  E (x) =μ and E (1) = 1] 

  = E (x2) - 2μ2 + μ2 

  = E (x2) - μ2 = 2 '  + 2
1  

 3  = E (x - μ)3 = E (x3 - 3μ x2 + 3μ2 x - μ3) 

  = E (x3) - 3μ E (x2) + 3μ2 E (x) - μ3 E (1) 

  = E (x3) - 3μ.μ2 + 3μ2.μ - 3
1   [ μ=

1
1 ] 

  = 3 ' - 3 1 ' 2 ' + 2 3
1  

 4  = E (x -μ)4 

  = E (x4 - 4 x3μ+ 6x2μ2 - 4xμ3 +μ4) 

  = E (x4) - 4μE(x3) + 6μ2 E (x2) - 4μ3 E (x) + μ4 E (1) 

  = 1
4  - 4μ 1

3  + 6μ2 1
2 - 4μ3 1

1  + μ4 

  = 4 ' - 4 1 ' 3 ' + 6 2 ' 2
1' - 4 4

1'  + 4
1'  [ μ = 1

1 ) 

  = 1
4 - 4 1

3
1
1  + 6 1

2
2
1'  - 3 4

1'  
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8.5 Relation Between the Moments About the Origin In Terms of Moments About the 
Mean  

 We have  

 1
1  = E (x) = μ 

 1
2  = E (x2) = E [(x -μ) +μ]2 

  = E[(x =μ)2 + 2μ (x -μ) + μ2] 

  = E [(x -μ)2] + 2μE (x = μ) + μ2 E (1) 

  = 2  + 2μ(0) + μ2 (1)  [  E(x -μ) = 0, E(1) = 1] 

  1
2  = 2  + μ2 

  1
3  = E (x3) = E[(x = μ) + μ]3 

  = E [(x -μ)3 + 3μ(x =μ)2 + 3μ2 [x = μ) + μ3] 

  = E [(x -μ)3] + 3μE (x -μ)2 + 3μ2 E (x - μ) +μ3 E (1) 

  = 3 + 3μ 2 + 3μ2 (0) +μ3 (1) 

  1
3  = 3 + 3μ 2 +μ3 

  1
4  = E (x4) = E [(x -μ) +μ]4 

  = E [(x - μ)4 + 4μ(x -μ)3 + 6μ2 (x - μ)2 + 4μ3 (x -μ) + μ4] 

  = E[(x -μ)4 + 4μE [(x -μ)3] + 6μ2 E [(x -μ)2] 

   + 4μ3 E (x -μ) + μ4 E (1) 

  = 4  + 4 3  + 6μ2
2 + 4μ2 (0) +μ4 (1) 

  1
4  = 4 + 4μ 3 + 6μ2

2  + μ4 

 Let us improve our understanding of these results by looking at some of the following 
examples:- 

Example 1: The first four moments of a distribution about the value 4 are -1.5, 17, -30, 108. 
Calculate the moments about the mean.  

Sol. Here the rth moment about any point '4' is  
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  'r = E (x - 4)r 

 Putting r = 1,2,3,4, we obtain 

  1
1 = E (x - 4) 

 or -1.5 = E (x) - 4 

 or E (x) = 4 - 1.5 

 or μ = 2.5  [ μ= E (x)] 

 Put r = 2 1
2  = E (x - 4)2 

 or 17 = E (x2 - 8x + 16) 

  = E (x2) - 8 E (x) + 16 E (1) 

  = E (x2) - 8μ + 16 

  E (x2) = 17 + 8μ - 16 

  = 17 + 8 (2.5) - 16 

  = 17 + 20 - 16 = 21 

 Now μ2 = E [x2] - [E(x)]2 

  = 21 - (2.5)2 

  = 21 - 6.25 

  = 14.75 

  μ2 = 14.75 

 Put r = 3; 3 ' = E (x - 4)3 

 or -30 = E [x3 - 12x2 + 48x - 64] 

  = E (x3) - 12 E (x2) + 48E (x) - 64E (1) 

  = E (x3) - 12 (21) + 48 (2.5) - 64 

 or E (x3) = -30 + 252 - 120 + 64 

  E (x3) = 166 

 Now 3  = E (x3) - 3E (x2) E (x) + 2 [E (x)]2 

  = 166 - 3 (21) (2.5) + 2 (2.5)2 

  = 166 - 157.5 + 31.25 

  = 197.25 - 157.50 
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  = 39.75 

 Pat r = 4; 1
4  = E [x - 4]3 

 or 108 = E [x4 - 16x3 + 96x2 - 256x + 256] 

  = E(x4) - 16E (x3) + 96E (x2) - 256 E (x) + 256 E (1) 

  = E (x4) - 16 (166) + 96 (21) - 256 (2.5) + 256 

 or E (x4) = 108 + 2656 - 2016 + 640 - 256 

  = 1132 

 Now 4  = E (x4) - 4 E (x3) E (x) + 6E (x2) [E(x)]2 - 3 [E(x)]4 

  = 1132 - 4 (166) (2.5) + 6(21) (2.5)2 - 3 (2.5)4 

  = 1132 - 1660 + 787.50 - 117.1875 

 or 4  = 142.3125 

Example 2: Following are the four moments about the true mean, which is 5.2 :  

1 = 0, 2 = 5.16, 3 = -2.304, 4 = 59.8032.  

Find the four moments about the origin.  

Sol. Here μ= 5.2, 1 = 0, 2 = 5.16, 3 = -2.304, 

  4 = 59.8032 

 Now 1
1 = μ= 5.2 

  1
2  = 2 + 2

1 = 5.16 + (5.2)2 =5.16 + 27.04 = 32.2 

  1
3  = 3  + 3μ 2  + μ3 = -2.304 + 3(5.2) (5.16) + (5.2)3 

   = -2.304 + 80.496 + 140.608 = 218.8 

  1
4  = 4  + 4μ 3 + 6μ2 + μ4 

  = 59.8032 + 4(5.2) (-2.304) + 6 (5.2)2 (5.16) + (5.2)4 

  = 59.8032 - 47.9232 + 837.1584 + 731.1616 

  = 1580.2 

Example 3: The first four moments of a distribution about arbitrary origin 4 are 1,3.5,8.5,33.5 
respectively. 

Calculate  (i) 2 , 3 , 4  (ii) the first four moments about zero. 

Sol. (i) Here E (x - 4) = 1  E (x) - 4 = 1 
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  E (x) = 1 + 4 

  = 5 

  μ = 5 

  E (x - 4)2 = 3.5 

  E [x2 + 16 - 8x] = 3.5 

  E (x2) + 16 E (1) - 8E (x) = 3.5 

  E (x2) + 16 - 8 (5) = 3.5 

  E (x2) = 27.5 

 Now E (x - 4)3 = 8.5 

 or E [x3 - 12x2 + 48x - 64] = 8.5 

 or E (x3) - 12E (x2) + 48 E (x) - 64 = 8.5 

 or E (x3) - 12 (27.5) + 48(5) - 64 = 8.5 

 or E (x3) - 330 + 240 - 64 = 8.5 

 or E (x3) = 162.5 

and  

  E (x - 4)4 = 33.5 

  E[x4 - 16x3 + 96x2 - 256x + 256] = 33.5 

 or E (x4) - 16 E (x3) + 96 E (x2) - 256 E (x) + 256 = 33.5 

 or E (x4) - 16 (162.5) + 96 (27.5) - 256 (5) + 256 = 33.5 

 or E (x4) - 2600 + 2640 - 1280 + 256 = 33.5 

  E (x4) = 1017.5 

 Now 2  = 1
2  - ( 1

1 )2 = 27.5 - (5)2 = 27.5 - 25 = 2.5 

  3  = 3 ' - 3 2 ' 1 '  + 2 '3
1  

  = 162.5 - 3(27.5) (5) + 2 (5)3 

  = 162.5 - 412 + 250 

  = 0 

 4  = 4 ' - 4 3 ' 1 ' + 6 2 '  ( 1 ' )2 - 3( 1 ' )4 

  = 1017.5 - 4 (162.5) (5) + 6 (27.5) (5)2 - 3 (5)4 

  = 1017.5 - 3250 + 4125 - 1875 

  = 17.5 
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 (ii) 4 '  - μ= 5, 2 '  = E (x2) = 27.5, 3 ' = E (x3) = 162 - 5, 

  4 '  = E (x4) = 1017.5 

Example 4: The first three moments of a distribution about the value 2 are 1, 16 and - 40. Show 
that the first three moments about zero are 3,24,76. 

Sol. Here E (x - 2) = 1 

  E (x) - 2 = 1 

  E (x) = 3 

  E (x - 2)2 = 16 

  E (x2 + 4 - 4 x) = 16 

 or E (x2) + 4 - 4 E (x) = 16 

  E (x2) + 4 - 4 (3) = 16 

 or E (x2) = 24 

 Also E (x - 2)3 = -40 

  E [x3 - 8 - 6x2 + 12x] = - 40 

 or E (x3) - 8 - 6 E (x2) + 12 E (x) = - 40 

 or E (x3) - 8 - 6 (24) + 12 (3) = - 40 

 or E (x3) - 8 - 144 + 36 = - 40 

  E (x3) = 76 

Example 5: Find the first four moments 

 (a) about the origin (b) about the mean, 

 for a random variable x having density function  

  (x) = 
24 (9 ) / 81, 0 3

0 ,

x x x

elewhere

   



 

Sol: (a) By definition  

 4 ' = E (x) = 
3

0

( )x f x dx  = 
4

81

3
2 2

0

(9 )x x dx  

 =
4

81

33 5

0

9
3 5

x x 
 

 
 

 = 
4

81

81 243

1 5
 

 
 

 = 
8

5
 = μ 
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 2 ' = E (x2) = 
3

2

0

( )x f x dx = 
4

81

3
3 2

0

(9 )x x dx  

  = 
4

81

34 6

0

9
4 6

x x 
 

 
 

  = 
4

81

9 81 9 81

4 6

  
 

 
= 

4

81
  

9 81

1


  

1

12
 = 3 

 3 '  = E (x3) = 
3

3

0

( )x f x dx = 
4

81
 

3
4 2

0

(9 )x x dx  

  = 
4

81

35 7

0

9
5 7

x x 
 

 
 = 

4

81
 

2187 2187

5 7
 

 
 

 

  = 
4

81
  2187 

2

35
 
 
 

 = 
216

35
 

 4 '  = E (x4) = 
3

4

0

( )x f x dx = 
4

81

3
5 2

0

(9 )x x dx  

  = 
4

81

36 8

0

9
6 8

x x 
 

 
 

  = 
4

81

9 729 651

6 8

 
 

 
 = 

4

81
 6561  

1

24
= 

27

2
 

 (b) We know that 1 ' = μ and 0 '  = 1 

  2  = 2 '  - 2
1 '  

  3  = 3 '  - 3 2 ' 1 '  + 2 3
1 '  

  4  = 4 '  - 4 3 ' 1 '  + 6 2 ' 2
1 '  - 3 4

1 '  

 Thus, we have  

  1  = 0 

  2  = 3 - 
2

8

5
 
 
 

 = 
11

25
 = 2 
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  3  = 
216

35
 - 3 (3) 

8

5
 
 
 

 + 2
3

8

5
 
 
 

 = -
32

875
 

  4  = 
27

2
- 4 

216

35
 
 
 

8

5
 
 
 

 + 6(3) 
2

8

5
 
 
 

- 3
4

8

5
 
 
 

 

   = 
3693

8750
 

Self-check exercise 

Q. 1 The first four moments of a distribution about x = 2 are 1, 2.5, 5.5 and 16. 
Calculate the first four moments about the mean.  

Q.2 Let the first, second and third moments of the distribution about the point 7 be 

3,11 and 15 respectively. Determine the mean μ of x and then find the first, 

second and third moments of the distribution about the point μ. 

8.6 Summary 

 We conclude this unit by summarizing what we have covered in it:-  

1. Defined moments about origin and moments about mean for discrete and 
continuous probability distribution. 

2. Derived the relation between the moments about the mean in terms of moments 
about the origin.  

3. Derived the relation between the moments about the origin in terms of moments 
about the mean. 

4. Some examples are given related to each topic so that the contents be clarified 
further.  

8.7 Glossary: 

1. Moments are numerical characteristics that describe the shape and properties of 
a probability distribution. 

2. In case of discrete probability distribution rth moment about origin, denoted by 
'r , is defined as  

  'r  = E (xr) = ( )rx f x  

 In case of continuous probability distribution, 

  'r  = E (xr) = ( )rx f x dx




  

 Also, rth moment about mean, denoted by r , is defined as  
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 r  = E [(x - μ)r] = ( ) ( )rx f x




   [For discrete probability distribution] 

 r  = E[(x - μ)r] = ( ) ( )rx f x dx




 [For continuous probability distribution] 

 

8.8 Answers To Self-Check Exercise 

 Ans.1 1  = 0, 2  = 1.5, 3  = 0, 4  = 6 

 Ans.2 μ= 10; 1  = 0, 2  = 2, 3  = -30 

8.9 References/Suggested Readings 

1. Robert V. Hogg, Joseph w. Mckean and Allen T. Craig, Introduction to 
Mathematical Statistics, Pearson Education, Asia, 2007. 

2. Irwin Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 

3. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007. 

8.10 Terminal Questions 

1. The first four moments of a distribution are 1,4,10 and 46 respectively. Compute 
the first four central moments and the Beta constants. 

2. The first four moments of a distribution about the value 4 are -1.5, 17, -30 and 
108. Calculate the moments about origin. 

3. In a continuous distribution whose relative frequency density is given by (x) = 
3

4
x (2 - x), the variable ranges from 0 to z, show that 3  = 0. 

4. The first four moments of a distribution about the value 5 of the variable are 2, 
20, 40 and 50. 

 Show that 3  = - 64, 4  = 162 

--------- 
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Unit - 9 

Moment Generating Function 

Structure 

9.1 Introduction 

9.2 Learning Objectives  

9.3 Moment Generating Function (m.g.f.) 

9.4 Properties of Moment Generating Function 

 Self-Check Exercise 

9.5 Summary 

9.6 Glossary 

9.7 Answers to Self Check Exercises 

9.8 Reference/Suggested Readings 

9.9 Terminal Questions 

9.1 Introduction 

 The moment generating function is a powerful mathematical tool used in probability 
theory and statistics to characterize the probability distribution of a random variable. It uniquely 
determines the probability distribution of the random variable i.e. if two random variables have 
the same moment generating function, then they have the same probability distribution. The nth 
moment of the random variable x can be obtained by taking the nth derivative of the moment 
generating function with respect to t and evaluating it at t = 0. The moment generating function 
is useful for studying the behaviour of transformed random variables. The moment generating 
function is widely used in deriving probability distribution; studying properties of random 
variables; analyzing sums and transformations of random variables; constructing confidence 
intervals and hypothesis tests.   

9.2 Learning Objectives 

 After studying this unit, you should be able to: 

 Define moment generating function (m.g.f.) for discrete and continuous random 
variable 

 Discuss moment generating function 

 Discuss different properties of moment generating function 

 Discuss limitation of moment generating function  

9.3 Moment Generating Function (m.g.f.) 

 Def: The moment generating function of the distribution of a random variable x (if it 
exists), is given by the expected value of etx, named by  
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  Mx(t) = E (etx) = . ( )tx

x

e f x    .....(1) 

 When x is discrete, and  

  Mx(t) = E (etx) = ( )txe f x dx




   ......(2) 

 When x is continuous  

  Substituting in (1), the expansion of etx, we obtain for the discrete case  

 Mx(t) = 
2

21 ....... ....... ( )
2

r
r

x

t t
tx x x f x

r

 
     

 
  

  = ( )f x t ( )x f x + 
2

2

t 2 ( )x f x + ........+
rt

r
( )rx f x +........ 

  = 1 + 1 ' t + 2 '  
2

2

t
+........+ 'r

rt

r
 + .......... 

 Where 1 ' , 2 ' ....., 'r ,..... are the first, second,....., rth moment about the origin and 

this explains the term 'moments generating function'. It can be seen from (t), however, that for 
any random variable x, the m.g.f. Mx(t) must exist at the point t = 0 and at that point its value 
must be Mx(0) = E (1) = 1. 

 Suppose now that the m.g.f. of a random variable x exists for all values of t in some 
interval around the point t = 0. It can be shown that the derivative Mx'(t) then exists at the point t 
= 0, and that at t = 0, the derivative of the expectation in (1) must be equal to the expectation of 
the derivative. That is  

 [Mx'(t)]t=0 = )

0

( tx

t

d
E e

dt 

 
 
 

= E )

0

( tx

t

d
e

dt 

 
 
 

 

  = E (x),  0
0

( )tx tx
t

t

d
e x e x

dt 



  
   

  
 

 Therefore, it follows that  

  M'x(0) = E (x) 

 In words, it means that the derivative of the on g.f. Mx(t) at t = 0 is the mean of x. 
Similarly, it can be shown that for n = 1,2,....., the nth derivative Mx(n)(t) at t = 0 will satisfy the 
following relation.  

 Mx
(n)(0) = 

0

( )
n

tx
n

t

d
E e

dt


 
 
 

 = E
0

n
tx

n

t

d
e

dt


 
 
 
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  = E
0

( )n tx

t
x e


    = E (xn) 

 Thus, M'x(0) = E (x), M"x(0) = E (x2), .... and soon,  

9.4 Properties of Moment Generating Function  

Property I : If a and b are constants, then  

 (a) Mx+a(t) = eat Mx(t) 

 (b) Mbx
(t) = Mx

(bt) 

 (c) M
x a

b


 (t) = 

a

b

t

e
Mx 

t

b
 
 
 

 

Proof: (a) We have  

 Mx+a(t) = E [et(x+a)] = E (etx. eat) 

  = eat. E (etx) = eat. Mx(t) 

 (b) Mbx(t) = E[et.bx] = E [etbx] = Mx(tb) 

 (c) x a

b

M 
(t) = E 

x a
t

be
 

 
 

= E .
t ta

x
b be e

 
 
 

 

  = 
ta

be E 
t

x
be

 
 
 

= 
ta

be Mx
t

b
 
 
 

. 

Property II: Effect of change of origin and scale on Moment Generating Function 

 Let us transform x to the new variable U by changing both the origin and scale in x as 
follows: 

 U : 
x a

h


, where a and h are constants. Moment generating function of ∪ (about origin) 

is given by: 

 MU(t) = E(et∪) = E 
( )

exp
t x a

h

  
  
  

 

   = E .
tx at

e e
h h

 
 
 

 

  = 
at

e
h


. E

tx

he
 
 
 

 

  = 
at

e
h


. Mx

t

h
 
 
 
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  MU(t) = 

at

he


. Mx
t

h
 
 
 

 

 Where Mx(t) is the m.g.f. of x about origin. 

 In particular, if we take a = E(x) = μ (say) 

  and h = x =  (say), then 

 U = 
( )

x

x E x




= 

x 




= z(say) 

 is known as a standard variable. Thus the m.g.f. of a standard variate z is given by  

  Mz(t) = e-μt/ . Mx
t



 
 
 

 

Property III : The m.g.f. of the sum of a number of independent random variables is equal to the 
product of their respective moment generating functions.  

Proof: Let x1, x2,......, xn be independent random variables. Then by definition of a m.g.f. applied 
on x1 + x2 +......+xn, we have  

 
1 2 ...... nx x xM    (t) = E 1 2( ..... )nt x x xe   

   

  = E 1 2. ....... ntxtx txe e e 
   

  = E  1txe  E  2txe .......E  ntxe  

  (  x1, x2, ......, xn are independent) 

  = 
1x

M (t) 
2xM (t) ....... 

nxM (t) 

 i.e. 
1 2 ...... nx x xM    (t) = 

1x
M (t) 

2xM (t) ....... 
nxM (t) 

 Hence the result 

Property IV: Moment generating function of a random variable x about point x = a generate rth 

moment about the point x = a. 

Proof: Moment generating function about x = a is given by 

 Mx(t) = E[et(x-a)] 

  = E
2

21 ( ) ( ) ....... ( ) .......
2

r
rt t

t x a x a x a
r

 
        

 
 

= 1 + t 1 ' + 
2

2

t
2 ' +........+

rt

r
'r +......... 
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 Which clearly shows that coefficient of 
rt

r
= 'r (about x = a) 

Property V: Property of Uniqueness  

 The m.g.f. of a distribution, if it exists, uniquely determines the distribution a given 
probability distribution, there is only one m.g.f. (provided it exists) and corresponding to a given 
m.g.f., there is only one probability distribution. Hence Mx(t)  = My(t)  x and y are identically 
distributed.  

Property VI: Limitation of the Moment Generating Function 

 Moment generating function suffers from some drawbacks which has restricted its use in 
statistics. These are  

 1. A random variable x may have no moments although its m.g.f. exists.   

 2. A random variable x can have m.g.f. and some (or all) moments, yet the m.g.f. 
does not generate the moments. 

 3. A random variable x can have all or some moments, but m.g.f. does not exist 
except perhaps at one point. 

 Let us improve our understanding of these results by looking at some of the following 
examples: 

Example 1: The random variable x can assume the value 1 and -1 with probability 
1

2
each. Find  

 (a) the moment generating function 

 (b) the first four moments about the origin 

Sol. Given information in the tabular form can be put as under: 

x (x) 

1 1/2 

-1 1/2 

 (a) Mx(t) = E (etx) = ( )tx

x

e f x  

  = et(1) 
1

2
 
 
 

 + et(-1) 
1

2
 
 
 

 

  = 
1

2
  t te e  

 (b) We have  
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  et = 1 + t + 
2

2

t
+ 

3

3

t
+ 

4

4

t
+............ 

  e-t = 1 - t - 
2

2

t
- 

3

3

t
+ 

4

4

t
........... 

Now   
1

2
 (et  e-t) = 1+

2

2

t
 + 

4

4

t
+............    ...(1) 

   Mx (b) = 1+
2

2

t
 + 

4

4

t
+............ 

But  Mx (b)  1 + 1
1  t + 1

2  
2

2

t
+ 1

3  
3

3

t
+ 1

4  
4

4

t
+............   ....(2) 

Comparing (1) and (2), we have 

 1
1  = 0,  1

2  = 1, 1
3  = 0, 1

4  = 1, ............ 

 The odd moments are all zero, and even moments are all one. 

Example 2 : Find m.g.f. of Binomial variate and hence find mean and variance.  

Sol. : - Let x be a binomial random variable  

  P (x = r) = 
rcn  pr qn-r, r = 0, 1, 2, ....., n 

 p + q = 1, p, q > 0 

By definition  

 Mx(t) = E(etx) = 
0

n

r
 etr P(x = r) 

 = 
0

n

r
 etr

rcn  pr qn-r 

 = 
0

n

r
 rcn  (p . et)r qn-r 

 = 
0cn (p . et)0 . qn + 

1cn (pet) qn-1 +
2cn (pet)2 qn-2 +....... 

  + 
ncn (pet)n q0 

 = (q + pet)n 

  Mx (t) = (q + pet)n 
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 
( )xdM t

dt
 = n(q + pet)n-1 

 pet 

 


 
1
1  = 

0

( )x

t

dM t

dt 

 =  n(q + p)n-1 p = np 

[ q + p = 1] 

 
1
1  = np 

Also  
2

2

( )xd M t

dt
 = np[(q + pet)n-1 et + et (n - 1). 

  (q + pet)n-1 pet] 

 
2

2

0

( )x

t

d M t

dt


= np[(q+p)n-1 + (n-1) (q + p) n-2 p] 

 1
2  = 

2

2

0

( )x

t

d M t

dt


= np[(q+p)n-1 + (n-1) (q + p) n-2 p] 

 1
2  = np[1+ (n-1)p] = np [1+ np - p] 

  2 = 1
2  - 2

1 = np + n2p2 - np2 - n2 p2 

  = np - np2 = np(1- p) =  npq 

 Mean = np, variance npq, Mx(t) = (q + pet)n  

Example 3 : In a continuous distribution whose relative frequency density is given by  (x) = 
3

4
 (2 - x), the variable ranges from 0 to 2. Show that the distribution is symmetrical with mean 

= 1 and variance  = 
1

5
. Show that the third moment about x = 0 is 

5

8
. Verify 3 = 0. 

Sol. :   ( )f x dx




   = 
2

0

3
(2 )

4
x dx  

   = 
2

2

0

3
(2 )

4
x x dx  

   =  
3

4

23
2

0
3

x
x
 

 
 

 = 1 
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and   (x) > 0  for 0 < x < 2 

   (x) is the density function 

Now using 1
r  (about the origin) =  ( )

b

a
f x dx  

we have 

 1
1  (about the origin)  = 

3

4

2 2

0
(2 )x x dx  

  = 
3

4

2 2 3

0
(2 )x x dx  

  = 
3

4

23 4

0

2

3 4

x x 
 

 
 

  = 
3

4

16 16

3 4
 

 
 

 = 
3

4
 16

1

12
 
 
 

 = 1 

 1
2  (about the origin)  = 

3

4

2 3

0
(2 )x x dx  

  = 
3

4

2 3 4

0
(2 )x x dx  

  = 
3

4

24 5

0

2

4 5

x x 
 

 
 

  = 
3

4

32 32

4 5
 

 
 

 = 
3

4
 32

1

20
 =

5

6
 

 1
3  (about the origin)  = 

3

4

2 4

0
(2 )x x dx  

  = 
3

4

2 4 5

0
(2 )x x dx  

  = 
3

4

25 6

0

2

5 6

x x 
 

 
 

  = 
3

4

64 64

5 6
 

 
 

 = 
3

4
 64

1

30
 =

5

8
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 Mean 1
1  = 1; 

and variance 2 = 1
2  - ( 1

1 )2 = 
6

5
 - 1 = 

1

5
, 

 3 = 1
3  - 3 1

2   1
1  + 2 1

1
3 = 

8

5
 - 

18

5
 + 2 = 0 

Since 3, which is measure of skewness is zero, the distribution is symmetrical about the 
mean.   

Example 4 : For the Bernouth distribution  

(x; ) = 
1(1 ) , 0,1

0, elsewhere

k k x    



 

Find Mx(t) and hence find 1
1  and 2. Also find 1 and 2. 

Sol. :- We have 

 Mx (t) = E(etx) = ( ; )tx

x

e f x   

  = 
1

1

0

(1 )tx x x

x

e   



  

  = 
1

1

0

( ) (1 )t x x

x

e  



  

  = [(1 - ) + et], which is the required m.g.f. 

 1
1  (mean) = '

0
( )x t

M t


    = [et]t=0 =  

 1
2  = "

0
( )x t

M t


   = [ et]t=0 =  

Therefore, 2 (variance) = 1
2  - 12

1  

  =  - 2 

  =  (1 - ) 

Thus, the mean and variance of the Bernoulli distribution ,  (1 - ) respectively.  

Also, 1 = 3
3/2
2




, 2 = 4

2
2




 

Now, 1
3  = 

0
( )III

x t
M t


    = [ et]t=0 =  
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 1
4  = 

0
( )iv

x t
M t


    = [ et]t=0 =  

Thus, 3 = 1
3  - 3 1

2
1
1  + 2 1 3

1  

 =  - 3  .  + 23 

=  (1 - 3 + 22) 

=  (1 - ) (1 - 2) 

4 = 1
4  - 4 1

3
1
1  + 6 1

2
1 2
1 , 3 1 4

1  

 =  - 4. + 6.2 - 34 

 =  (1 - 4 + 62 - 33) 

 = (1 - ) (1 - 32) 

 = (1 - ) [1 - 3 (1 - )] 

Hence, 1 = 3
3/2
2




 = 3/2

(1 )(1 2 )

[ (1 )]

  

 

 


 = 

1 2

(1 )



 




 

 2 = 4
2
2




= 2 2

(1 )[1 3 (1 )]

(1 )

   

 

  


 

 = 
1 3 (1 )

(1 )

 

 

 


 

Example 5: Find the moment generating function for the distribution defined by 

 (x) = 

, 0 1

2 ,1 2

0,

x x

x x

elsewhere

 


  



 

Sol. Here (x) = 

, 0 1

2 ,1 2

0,

x x

x x

elsewhere

 


  



 

Moment generating function = M(t) = E(etx) 

 = ( )txe f x dx




  = 
0

0txe dx


 + 
1

0

txe x dx  + 
2

1

(2 )txe x dx + 
2

0txe dx


  
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 = 
1

0

txxe dx  + 
2

1

(2 ) txx e dx  

 = 

1 1

00

1.
tx txe e

x
t t

   
  

   
 + 

2 2

11

(2 ) ( 1)
tx txe e

x
t t

   
    

   
  

 = 

1

0

txx e

t

 
 
 

 - 
2

1

t

1

0

txe   + 

2

1

(2 ) txx e

t

 
 
 

+ 
2

1

t

2

1

txe    

 = 
1

0te
t
 

 
 

- 
2

1

t
(et - e0) + (0 - 

1

t
et) + 

2

1

t
(e2t - et) 

 = 
1

t
et - 

2

1

t
et + 

2

1

t
 - 

1

t
 et + 

2

1

t
 e2t - 

2

1

t
 et 

 = 
2

2

te

t
 - 2 2

te

t
 + 

2

1

t
 

 = 

2
1te

t

 
 
 

, t  0 

Example 6: Let (x) = 

1
, 1 2

3
0,

x

elsewhere


  





 

 be the p.d.f. of random variable x. Show that m.g.f. of x is  

 M (t) = 

2 1

, 0
3

1 , 0

te e
t

t
t

 



 

 

Sol. Moment generating function 

 M(t) = E (etx) = ( )txe f x dx




  

 = 
2

1

1

3
txe dx



  = 
1

3

2

1

t xe

t


 
 
 

 = 
2

3

t te e

t


, t  0 
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 For t = 0, M(t) = 
2

1

1

3
oxe dx



 = 
1

3
 

2
2

1
1

1
1

3
dx x





  = 
1

3
 (2 + 1) = 1 

  M(t) = 

2

, 0
3

1 , 0

t te e
t

t
t

 



 

 

Example 7: The probability density function of the random variable x follows the probability law: 

  p(x) = 
1

2
exp 

1 1x 



 
 
 

, - < x <   

 Find the m.g.f. of x. Hence or otherwise find E(x) and V(x). 

Sol. The m.g.f. of x is  

 Mx(t) = E (etx) = 
1

exp
2






1 1x 



 
 
 

etx dx 

  = 
1

exp
2







x



 
 
 

 etx dx + 
1

exp
2







x 



 
 
 

 etx dx 

 For x  (-, ), x -  < 0   - x > 0 

  |x - | =  - x  x  (-, ) 

 Similarly |x - | = x -   x  (, ) 

  Mx(t) = 
1

2

e





exp





1

x t


  
  

  
dx + 

2

e


exp






1

x t


  
   

  
dx 

 = 
1

2

e





 
1

1
t




exp 
1

t


  
  

  
+ 

2

e



1
1

t


 
 

 

exp
1

t


  
   

  
 

 = 
2( 1)

te

t



 
+ 

2(1 )

te

t




 = 2 21

te

t




= et (1 - 2t2)-1 

 = 
2 2

1 .....
2

t
t




 
   

 
 (1 + 2t2 + 4t4 + ........) 

 = 1 + t + 
2 23

2

t
 + ........... 
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  E(x) = 1
1 = Coeff. of t in Mx(t) =   

  Mean =  

 Now 1
2  = Coeff. of 

2

2

t
 in Mx(t) = 32 

 Hence var (x) = 1
2 - 1 2

1  = 32 - 2 = 22 

  Variance (x) = 22 

Self-check exercise 

Q. 1 For the discrete uniform distribution  

 (x) = 
1

, 1,2,.....,

0 ,

forx k
k

elsewhere








 

 Find the m.g.f. and hence find 1
1  and M2 (i.e. mean and variance). 

Q.2 Let the random variable x assume the value 'r' with the probability law: 

 P (x = r) = 2r-1. p ; r = 1,2,3,........ 

 Find the moment generating function of x and hence its mean and variance. 

Q.3 A random variable x has probability density function given by 

  (x) = 
1

2
e-|x| , - < x <  

 Find its m.g.f. Hence find the variance of the distribution. 

9.5 Summary 

 We conclude this unit by summarizing what we have covered in it:-  

1. Defined moments generating function (m.g.f.) for discrete and continuous 
random variable. 

2. Discussed moment generating function further. 

3. Discussed in detail different properties of moment generating function 

4. Discussed limitations of moment generating function. 

5. Some examples are given related to each topic so that the contents be clarified 
further. 

9.6 Glossary: 
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1. The moment generating function (m.g.f.) of the distribution of a random variable x 
(if it exists), is given by the expected value of etx, named by 

  Mx(t) = E (etx) = ( )tx

x

e f x , 

 When x is discrete, and  

  Mx(t) = E (etx) = ( )txe f x dx




 , 

 When x is continuous. 

2. The m.g.f. of the sum of a number of independent random variables is equal to 
the product of their respective moment generating functions.  

9.7 Answers To Self-Check Exercise 

 Ans.1 Moment generating function (m.g.f.) 

  = Mx(t) = 
(1 )

(1 )

t tk

t

e e

k e




 

   1
1  = 

1

2

k 
 

   2 = 
2 1

12

k 
 

 Ans.2 Moment generating function (m.g.f.) 

  = Mx(t) = 
1

t

t

pe

qe
 

  Mean = 1
1  (about origin) = 

1

p
 

  Variance = 2 = 2

q

p
 

 Ans.3 Moment generating function = 
2

1

1 t
, |t| < 1 Variance = 2 
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Reprint, 2007. 

 

9.9 Terminal Questions 

1. A random variable x has density function given by 

  (x) = 
22 , 0

0 , 0

xe x

x

 



 

 Find (a) the moment generating function 

  (b) the first four moments about the origin 

2. Let x is a Bernoulli Variate with parameter p i.e. P(x = 1) = p, P(x = 0) = q; p,q > 0 
and p+q = 1. 

 Find moment generating function of x and hence find mean and variance. 

3. Let (x) = 
1

, 1, 2,3,.....
2

0 ,

x

x

elsewhere

  
  

  



 

 be the p.d.f. of random variable x. Find m.g.f., mean and variance of x.  

4. Find the rth moment of the distribution that has m.g.f. 

  M(t) = (1 - t)-3, t < 1 

--------- 
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Unit - 10 

Cumulant Generating Function And Characteristic Function 

Structure 

10.1 Introduction 

10.2 Learning Objectives  

10.3 Cumulants And Cumulant Generating Function 

10.4 Properties of Cumulants 

10.5 Characteristic Function 

10.6 Properties of Characteristic Function 

 Self-Check Exercise 

10.7 Summary 

10.8 Glossary 

10.9 Answers to Self Check Exercises 

10.10 Reference/Suggested Readings 

10.11 Terminal Questions 

10.1 Introduction 

 Cumulants are a set of statistical measures that characterize the shape of a probability 
distribution. They are defined as the coefficients in the Taylor series expansion of the natural 
logarithm of the Characteristic function. They provide a way to quantity the deviation of a 
distribution from a normal distribution. The first cumulant is the mean, the second cumulant is 
the variance, the third cumulant is the skewness and the fourth cumulant is the kurtosis. The 
cumulant generating function is the natural logarithm of the characteristic function of a random 
variable. Cumulants are often used in statistical inference, signal processing and time series 
analysis. The eumulant generating function provides a concise way to characterize the entire 
distribution of a random variable.  

 The Characteristic function is a powerful mathematical tool that plays a crucial role in 
probability theory and its applications. It provides an alternative representation of the probability 
distribution of the random variable X. It exists for any random variable X with a finite first 
moment. The characteristic function uniquely determines the probability distribution of the 
random variable X. The characteristic function is a continuous function of the parameter t.  

10.2 Learning Objectives  

 After studying this unit, you should be able to: 

 Define cumulant generating function 

 Find the series expansion of cumulant generating function 
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 Discuss properties of cumulants 

 Define characteristic function 

 Find the series expansion of the characteristic function 

 Discuss properties of characteristic function  

10.3 Cumulants And Cumulant Generating Function 

 Definition: Cumulant generating function k(t) is defined as: 

  Kx(t) = loge Mx(t) = ln[Mx(t)]  

 provided the right hand side can be expanded as a convergent series in powers of t. 

Series Expansion: 

 Kx(t) = K1t + K2 
2

2

t
+.......+Kr

rt

r
+.......= log Mx(t) 

 = log 
2 3

1 1 1
1 2 31 ....... .......

2 3

r
r
r

t t t
t

r
   

 
      

 
 

 Where Kr = coefficient of 
rt

r
in Kx(t) is called the rth cumulant. Hence  

 K1 t + K2 
2

2

t
+ K3

3

3

t
+ .........+ Kr

rt

r
 

 = 
2 3

1 1 1
1 2 3 ....... .......

2 3

r
r
r

t t t
t

r
   
 

     
 

 - 
1

2

22 3
1 1 1
1 2 3 .......

2 3

t t
t  

 
   

 
 

 + 
1

3

32
1 1
1 2 .......

2

t
t 

 
  

 
- 

1

4

42
1 1
1 2 .......

2

t
t 

 
  

 
+....... 

 comparing the coefficients of like powers of t on both sides, we get the relationship 
between the moments and cumulants.  

 Hence, we have  

  K1 = 1
1 = mean  

  
2

2

k
 = 

1
2

2


- 

1 2

2


 

  K2 = 1
2  - 1 2

1  = 2 = variance  
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 3

3

k
 = 

1
3

3


- 

1

2
. 

1 1
1 22

2

 
+ 

1 3
1

3


 

  K3= 1
3  - 3 1

2
1
1 + 2 1 3

1  = 3 

 Also 4

4

k
 = 

1
4

4


= 

1

2
 

1 11 2
1 32 2

4 3

  
 

 
 + 

1

3

1 2 1
1 23

2

 
 - 

1 4
1

4


 

  K4 = 1
4  - 3 1 2

2  - 4 1
1

1
3  + 12 1 2

1 2 - 6
1 4
1  

  = ( 1
4  - 4 1

3
1
1  + 6 1

2
1 2
1  - 3 1 4

1 ) - 3 ( 1 2
2 - 2 1

2
1 2
1 + 1 4

1 ) 

  = 4 - 3 ( 1
2  - 1 2

1 )2  

   [  4 = 1
4 - 4 1

3
1
1  + 6 1

2
1 2
1 - 3 1 4

1 ] 

  = 4 - 3
2
2  

  = 4 - 3
2
2k   [  2 = k2] 

  4 = k4 + 3 2
2k  

 Hence, we obtained 

  Mean = k1 

  Variance = 2 = k2 

   3 = k3 

   4 = k4 + 3 2
2k  

 If we differentiate both sides of (1) w.r.t. t, 'r' times and then put t = 0, we get  

  kr = 
0

( )
r

xr

t

d
k t

dt


 

10.4 Properties of Cumulants  

Property I: Additive Property of Cumulants  

 The rth cumulant of the sum of the independent random variables is equal to the sum of 
the rth cumulants of the individual variables. Symbolically,  

 kr (x1 + x2 +........+ xn) = kr (x1) + kr (x2) +.......+ kr (xn)  

 Where xi ; i = 1,2,....., n are independent random variables.  

Proof: Since xi is are independent, 
1 2 ....... ( )

nx x xM t   = 
1x

M (t)
2xM (t) ........

nxM (t) 
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 Taking logarithms of each side, we get  

 
1 2 ....... ( )

nx x xK t   = 
1xK (t) + 

2xK (t) +.......+
nxK (t) 

 Differentiating both sides w.r.t t 'r' times and putting t = 0, we get  

 
1 2 .......

0

( )
n

r

x x xr

t

d
K t

dt   



 
 
 

= 
1

0

( )
r

xr

t

d
K t

dt


+ 
2

0

( )
r

xr

t

d
K t

dt


+..........+
0

( )
n

r

xr

t

d
K t

dt


 

  Kr (x1 + x2 +........+ xn) = Kr (x1) + Kr (x2) +.......+ Kr (xn) 

 which establishes the result 

Property II : Effect of change of origin and scale and Cumulants 

 If we take U = 
x a

h


, then  

  MU(t) = exp 
at

h
 
 
 

Mx
t

h
 
 
 

 

  KU(t) = log MU(t) = - 
at

h
+ Kx

t

h
 
 
 

 

  1
1k t + 1

2k
2

2

t
+........+ 1

rk
rt

r
+ ......... = -

at

h
+ K1

t

h
 
 
 

 

  + K2 
2

t

h
 
 
 

+..........+ Kr 

r
t

h
r

 
 
  +......... 

 Where 1
rk and kr are rth cumulants of U and X respectively. 

Comparing Coefficients, we get  

 1
1k = 1k a

h


and 1

rk = r
r

k

h
; r = 2,3,....... 

 Thus we see that except the first cumulant, all cumulants are independent of change of 
origin. But the cumulants are not invariant of the change of scale as the rth cumulant of U is 

1
rh

 
 
 

times the rth cumulant of the distribution of X. 

10.5 Characteristic Function 

 Definition : Characteristic function is defined as  

 x(t) = E (eitx) 



139 
 

  = 
( ) (for continuous  probability  distribution)

( ) (for  discrete probability  distribution)

itx

itx

x

e f x dx

e f x










 

 If F(x) is the distribution function of a continuous random variable x, then  

  F(t) = ( )itxe dF x




  

 Obviously (t) is a complex valued function of real variable t. It may be noted that 

 |(t)| = ( )itxe f x dx




  < ( )itxe f x dx




  

= ( ) 1f x dx




   ......(1) 

 [  |eitx| = |cos tx + i sin t x|1/2 

 = [(cos2 tx + sin2 tx)1/2]2 = 1] 

Since | (t)| < 1, characteristic function x(t) always exists. 

Series Expansion of the Characteristic Function :  

 x(t) = E (eitx) 

 = E 
2

2( ) ( )
1 | ...... ........

2

r
rit it

itx x X
r

 
     

 
 

 = 1 + it E(x) + 
2( )

2

it
E(x2) +........+

( )rit

r
E(xr) +...... 

 = 1 + it 1
1  +

2( )

2

it 1
2 +.......+

( )rit

r
1
r +....... 

 Where 1
r = E (xr), is the rth moment of x about origin. 

 
1
r = coefficient of 

( )rit

r
 in x(t). 

 Hence, like m.g.f., the characteristic function (t) also generates moments 

 Rewriting (1), we get  

  x(t) = 
0

( )r

r

it

r






1
r 
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10.6 Properties of Characteristic Function 

Property I : For all real t, we have 

 (i) (0) = ( )df x




 = 1 (ii) |(t)| < 1 =  (0) 

Property II :  (t) is continuous everywhere, i.e. (t) is continuous function of t in (-, ). Rather 
(t) is uniformly continuous in 't'. 

Property III : x(t) and x(t) are conjugate functions, 

 i.e. x(-t) = x      here    is the complex conjugate of a.  

Property IV : If the distribution function of a random variable x is symmetrical about zero i.e. if  

 1 - F(x) = F(-x)  (-x) = (x) then x(t) is real valued and even function of t.  

Proof: By definition, we have  

 x(t) = ( )itxe f x dx




 = ( )itye f y dy




  

 = ( )itye f y dy




    

[Putting x = -y] 

[  (-y) = (y)] 

= x(-t) 

 x(t) is an even function of t. 

 From property III and equation (1), we get  

 x(t) = x(-t) = ( )x t 

 Hence x(t) is a real valued and even function of t. 

Property V : If x is some random variable with characteristic function x(t) and if 1
r = E(xr) 

exists, then  

 1
r  = (- i )r  

0

( )
r

r

t

t
t







 

Proof :  (t) = ( )itxe f x dx




  

Differentiating (under the integral sign) 'r' times w.r.t. t, we have 
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 ( )
r

r
t

t





 = ( ) . ( )r itxix e f x dx





  

  = (i)r . ( )r itxx e f x dx




  

 
0

( )
r

r

t

t
t







 =  (i)r 

0

. ( )r itx

t

x e f x dx


 

  

   =  (i)r ( )rx f x dx




  

  = ir E(xr) = ir. 1
r  

Hence  

 1
r  = 

1
r

i
 
 
  0

( )
r

r

t

t
t







 =  (i)r 

0

( )
r

r

t

t
t







 

Property VI : cx (t)  = x (ct), c being a constant. 

Property VII : If x1 and x2 are independent random variables, then 

 
1 2x x  (t) = 

1x (t) * 
2x (t) 

More generally, for n independent random variables 

 xi, i = 1, 2, .... , n, we have 

 
1 2x x  xn(t) = 

1x (t) 
2x (t) ..... 

nx (t) 

Property VIII : Effect of change of origin and scale on characteristic function 

 If U = 
x a

h


, a and h being constants, then  

 U (t) = e-iat/h x 
t

h
 
 
 

 

 In particular if we take a = E(x) =  (say) and h = x = , then the characteristic function 

of the standard variate z = 
( )

x

x E x




 = 

x 




, is given by 

 z (t) = eit/ . x 
t



 
 
 
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Property IX : Necessary and sufficient conditions for a function  (t) to be a Characteristic 
Function. 

 (t) is a characteristic function if 

(i)  (0) = 1  

 (ii)  (t) =  (-t) 

 (iii)  (t) is continuous 

 (iv)  (t) is convex for t > 0 i.e. for t1, t2 > 0 

   1 2

1
( )

2
t t

 
 

 
  <  1 2( ) ( )

2

t t 
 

 (v) 
t
Lim


  (t) = 0 

Let us improve our understanding of these results  by looking at some of the following 
examples :- 

Example 1 : If 1
r  is the rth moment about origin, prove that 

 1
r  = 

1

r

j
  

1

1

r

j

 
 

 
 1

r j 
 Kj, where Kj is the jth cumulant. 

Sol. : By definition  

 Kx (t) = ln [Mx(t)] 

 Differentiating both sides of  

 

2

1 2 ......... ..........
2

r

r

t t
K t K K

r

r

   

 

 = log 
2 3

1 1 1 1
1 2 31 ......... ........

2 3

r

r

t t t
t

r
   

 
      

 
 

 w.r.t. t, we get 

 K1 + K2t + K3

2

2

t
+..........+ Kr

1

( 1)!

rt

r




+............. 

 = 

2 1
1 1 1 1
1 2 3

2 3
1 1 1 1
1 2 3

......... ..........
2 ( 1)!

1 ......... .......
2 3

r

r

r

r

t t
t

r
t t t

t
r

   

   



    


     
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 
2 1

1 2 3 ......... .......
2 1

r

r

t t
K K t K K

r

 
     

 

2
1 1 1
1 21 ......... .......

2

r

r

t t
t

r
  

 
     

 
 

 = 
2 1

1 1 1 1
1 2 31 ......... .......

2 1

r

r

t t
t t

r
   



     


 

 Comparing the coefficients of 
1

1

rt

r




on both sides, we get  

 1
r  = K1.

1
1r  + (r-1) K2

1
2r  + 

1

2

r  
 
 

K3
1

3r  +.......+Kr = 
1

0

r  
 
 

1
1r  K1 + 

1

1

r  
 
 

 

 1
2r  K2 + 

1

2

r  
 
 

1
3r  K3 +.........+

1

1

r

r

 
 

 

1
0 Kr 

 = 1

1

1

1

r

r j j
j

r
K

j
 



 
 

 
  

 Hence the required result 

Example 2: Find the characteristic function of the random variable x whose probability density 
function is given as  

  (x) = 
, 0

0 ,

xe x

otherwise

 



 

 and hence find mean and variance of X. 

Sol. We know that  

 x(t) = ( )itxe f x dx




 = 
0

.itx xe e dx




  

 = (1 )

0

xite dx


 

  = 
0

(1 )

(1 )

x

x

e it

it





 
 
  

 

 = x(t) = (1 - it)-1 

 Now the rth moment about origin can be obtained by 

 E(xr) = 1
r = 

0

( ) ( )
x

r
xr

t

d
i t

dt




 
 

 
 

  E(x) = 1
1 = 

0

( ) ( )r
x

t

d
i t

dt




 
 

 
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  = 1 1

0

( ) (1 )
t

d
i it

dt




 
  

 
 

  = 2

0
( ) (1 ) ( )

t
i it i



       
= 1 

  E(x) = 1
1 = 1  Mean = 1 

 Also E(x2) = 1
2 = 

2
2

2

0

( ) ( )x

t

d
i t

dt




 
 

 
 

  = 
2

1
2

0

( 1) (1 )
t

d
it

dt




 
  

 
 

  = 2

0

( 1) (1 )
t

d
i it

dt




 
    

 
 

  = 3

0
( 1) 2 (1 ) ( )

t
i it i



       
 

  = (-1) (-2) = 2 

  E(x2) = 1
2  = 2 

  Variance = 2 = 1
2 - 1 2

1 = 2 - (1)2 = 2 - 1 = 1 

Example 3: Find the characteristic function of the random variable x having density function 
given by  

  (x) = 2 , | |

0 ,

x

a x a

otherwise


 



 

Sol. The characteristic function is given by  

 E(eiwx) = ( )iwxe f x dx




  

  = 
1

2a

a
iwx

a

e dx


  

  = 
1

2a

aiwx

a

e

iw


 
 
 
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  = 
2

iaw iawe e

iaw


= 

sin aw

aw
 

 using Euler's formula with  = aw. 

Example 4: Find the density function (x) corresponding to the characteristic function  

  (t) = 
1 | | , | | 1

0 , | | 1

t t

t

 



 

Sol. We know that  

 (x) = 
1

2
( )itxe t dt







  

  = 
1

2

1

1

(1 | |)itxe t dt



  

  = 
1

2

0

1

(1 )itxe t dt



 + 
1

0

(1 )itxe t dt   .......(1) 

 =
1

2

0 1

2 2 2 2

1 0

(1 ) (1 )
itx itx itx itxe e e e

t t
ix i x ix i x

   



          
           

            

 

 = 
1

2 2 2 2 2

1 1 1 1
0 0

ix ixe e

ix ix x x ix ix

       
              

            
 

 = 
1

2 2 2 2 2

1 1 1 1ix ixe e

ix x x x ix x

 
      
 

 

 = 
1

2 2 2

2 ix ixe e

x x

 
 

 
 

 = 
1

 2

1 cos x

x

 
 
 

, - < x < . 

Self Check Exercise  

Q. 1 What is the characteristic function of random variable x which takes values -1 

and 1 with probability 
1

2
. 
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Q. 2 Find the characteristic function of the random variable having p.d.f. as  (x) = 
ce=a|x|,- < x < , where a > 0, and c is a suitable constant.  

10.7 Summary 

 We conclude this unit by summarizing what we have covered in it:-  

1. Defined cumulant generating function. 

2. Derived the series expansion of cumulant generating function. 

3. Discussed and proved properties of cumulants. 

4. Defined characteristic function. 

5. Derived the series expansion of the characteristic function 

6. Discussed in detail different properties of characteristic function. 

7. Some examples are given related to each topic so that the contents be clarified 
further. 

10.8 Glossary: 

1. Cumulant generating function is defined as : 

 Kx (t) = loge Mx (t) = ln [Mx (t)]  

 provided the right hand side can be expanded as a convergent series in powers 
of t. 

2. characteristic function is defined as x (t) = E (eitx) 

   = 
( ) (for continuous probability distribution)

( ) (for discrete probability distribution)

itx

itx

x

e f x dx

e f x










 

10.9 Answer to Self Check Exercise 

 Ans.1  x (t) = cost 

Ans.2 E (eitx) = 
2

2 2

a

a t
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10.11 Terminal Questions 

1. Show that  

 eitx = 1 + (eit - 1) x(1) + (eit - 1)2 . 
(2)

2

x
 + ....... 

 + (eit - 1)n +.....
( )rx

r
  

  where x(r) = x (x - 1) (x -2) ........ (x - r + 1) 

  Hence show that  

  1
r  = [Dr  (t)]t=0, where D = 

( )it

d

d e
 

  and 1
r  is the rth factorial moment. 

2. Show that the characteristic function of Laplace distribution 

 (x) = 
1

2
e-|x|, -  < x < 

 is x (t) = 
2

1

1 t
 

 Find also the mean, the variance and mean deviation about the mean. 

---------   
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Unit - 11 

Binomial Distribution 

Structure 

11.1 Introduction 

11.2 Learning Objectives  

11.3 Discrete Uniform Distribution and its Properties  

11.4 Bernoulli Random Variable  

11.5 Binomial Distribution   

 Self Check Exercise-1 

11.6 Mean and variance of Binomial Distribution  

11.7 Moment Generating Function of Binomial Distribution 

11.8 Moments 

11.9 Mode of the Distribution 

11.10 Standard Binomial Variate 

 Lelf Check Exercise - 2 

11.11 Summary 

11.12 Glossary 

11.13 Answers to self check exercises 

11.14 References/Suggested Readings 

11.15 Terminal Questions 

11.1 Introduction 

Binomial distribution is a discrete probability distribution that describes the number of 
successes in a fixed number of independent Bernoulli trials, where each trial can result in either 
success or failure with a constant probability of success. In Binomial distribution (B. D.) the 
number of trials, denoted as n, is fixed and known in advance. Here each trial is independent of 
the others and has only two possible outcomes : success or failure. The probability of success 
in each trial of B.D., denoted as p, is constant and does not change throughout the trials.  

The binomial distribution used in a variety of real0world scenarios. In manufacturing, the 
binomial distribution can be used to model the number of defective items produced in a fixed 
number of units inspected e.g. monitoring the number of defective light bulbs in a batch of 100 
light bulbs produced. In medical research, the binomial distribution is used to model the number 
of patients who experience a certain outcome (e.g. recovery, adverse effect) in a clinical trial 
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with a fixed number of participants. When conducting surveys, the binomial distribution can be 
used to model the number of respondents who answer a particular question in a certain way, 
given a fixed sample size e.g. estimating the proportion of voters who support a particular 
candidate in a few examples of the many real-world applications of the binomial distribution. The 
key is that the situation involves a fixed number of independent trials, each with a constnat 
probability of success or failure.  

11.2 Learning Objectives: 

 After studying this unit, students will be able to:    

 Define discrete uniform distribution. 

 Discuss properties of discrete uniform distribution 

 Define Bernoulli Variate and Bernoulli distribution. 

 Discuss probability density function of Bernoulli distribution  

 Discuss moments and moment generating function of a Bernoulli Variate. 

 Define and discuss Binomial distribution 

 Find the mean and Variance of Binomial distribution. 

 Discuss moment generating function of Binomial distribution. 

 Discuss moments, central moments and mode of binomial distribution. 

 Define standard binomial Variate and able to discuss theorem related to it.  

11.3 Discrete Uniform Distribution and Its Properties 

 A random variable x is said to have a discrete uniform distribution over the range [1, n] if 
its probability mass function is expressed as: 

 P(X = x) = 

1
1,2,.....,

0

forx n
n

otherwise








  .....(1) 

 Here n is known as the parameter of the distribution and lies in the set of all positive 
integers. The given distribution is also called a discrete rectangular distribution.  

 Such distributions can be conceived in practice of under the given experimental 
conditions, the different values of the random variable becomes equally likely. Thus for a dice 
experiment and for an experiment with a deck of cards such distribution is appropriate.  

Properties: 

 (i) E(X) = 
1

n 1

n

x

x


 = 
1

2

n 
 

  E(X2) = 
1

n
2

1

n

x

x


 = 
( 1)(2 1

6

n n 
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 (ii) V(X) = E(X2) - [E(X)]2 = 
( 1)( 1

12

n n 
 

 (iii) The moment generating function of X is : 

  MX(t) = E(etX) = 
1

n 1

n
tx

x

e


 = 
(1 )

(1 )

t nt

t

e e

n e




 

11.4 Bernoulli Random Variable 

 A random variable X which takes two values 0 and 1, with probabilities q and p 
respectively, i.e., P (X = 1) = p, P(X = 0) = q, where q = 1 - p is called a Bernoulli variate and is 
said to have a Bernoulli distribution. 

 It is a discrete distribution and is usually written as X B (1,p) so that  

  

( 1)

( 0) 1

where 0 1

P X p

P X q p

p

  


    
  

    

x P(X = x) 

1 p 

0 1-p 

P.D.F of a Bernoulli Distribution   

The p.d.f. of X can be written as  
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(x) = 

1 ,   0

,     1

    0 ,   elsewhwere

p x

p x

 






 

 = 
1(1 ) , 0,1

      0         ,    elsewhwere

x xp p x  



 

 = 
1 , 0,1

    0      ,   elsewhwere

x xp q x 



 

where q = 1 - p. 

The graph of p.d.f. of Bernoulli's distribution is shown in the figure. 

C.D.F. of a Bernoulli Distribution 

 
 The cumulative distribution function of Bernoulli's distribution is given by  

 F(x) = P(X < x) 

 When x < 0, F(X) = P(X < 0) - 0, 

 When 0< x < 1, F(X) = P(X = 0) = q. 

 When x > 1. F(X) = P(X = 0) + P(X = 1) 

   = q + p = 1 

  F(X) = 

0, 0

, 0 1

1, 1

for x

q for x

for x




 
 
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 The graph c.d. . F(x) is shown in figure.  

Moments and Moment Generating Function of a Bernoulli Variate 

 The rth moment about origin is  

 '
r  = E(X') = ( ( )rx P X r = 0r  (1 - p) + 1r  P = p, 

 where r = 1, 2, 3, 4 

 
'
r  = Mean = p    ......(1) 

  '
2 = 02  (1 - p) + t2  p = p 

  '
3  = 03  (1 - p) + t3  p = p 

  '
4  = 04  (1 - p) + 14  p = p 

 and so on. 

 Variance = '
2 - '2

1 = p - p2 = (1 - p) = pq  [  q = 1 - p] 

  Variance = pq 

  3 = '
3 - 3 '

2
'
1  + 2 '3

1 = p - 3 p.p + 2p3 = 2p3 - 3p2 + p   

  = p (p2 - 3 p + 1) 

 4 = '
4 - 4 '

3
'
1 + 6 '

2
'2
1 - 3 '4

1 = p - 4p2 + 6p3 - 3 p4 

 The moment generating function about origin is  

 Mx (t) = E (etX) = tXe .P(X = x) = et0 (1 - p) + et1 p = 1 - p + et p 

 MX(t) = 1 + p (et - 1) = q + pet    .......(2) 

11.5 Binomial Distribution 

 Binomial distribution was discovered by James Bernoulli (1654 - 1705) in the year 1700 
and was first published posthumously in 1713, (eight years after his death). Let a random 
experiment be performed repeatedly and let the occurrence of an event in a trial be called a 
success and its non-occurrence a failure. Consider a set of n independent. Bernoullian trials (n 
being finite), in which the probability 'p' of success in any trial is constant for each trial. Then q = 
1 - p, is probability of failure in any trial.  

 The probability of x successes and consequently (n - x) failures in n independent trials, 
in a specified order (say) SSFSFFFS......FSF (where S represents success and F failure) is 
given by the compound probability theorem by the expression: 

 P (SSFSFFS........FSF) = P(S)P(S)P(F)P(S)P(F)P(F)P(F)P(S) ....... P(F)P(S)P(F) 

  = p . p . q . p . q . q . q . p .......q . p . q 
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  = (p . p .......to x factors) (q . q ...... to n x  factors) = px qn-x 

 But x successes in n trials can occur in 
n

x

 
 
 

ways and the probability for each of these 

ways is px qn-x. Hence the probability of x successes in n trials in any order whatsoever is given 
by the addition theorem of probability by the expression: 

  
n

x

 
 
 

 px qn-x 

 The probability distribution of the number of successes, so obtained is called the 

Binomial probability distribution, the probabilities of 0, 1, 2, ......, n successes, i.e., qn, 
1

n 
 
 

 qn-1 

p, 
2

n 
 
 

 qn-2 p2,......, pn, are the successive terms of the binomial expansion (q + p)n.  

 Definition. A random variable X is said to have binomial distribution if it assumes only 
non-negative values and its probability mass function is given by  

  P(X = x) = p(x) = 
; 0,1, 2,....., ; 1

0

x n xn
p q x n q p

x

otherwise


 

   
 



 

 The two independent constants n and p in the distribution are known as the parameters 
of the distribution 'n' is also, sometimes, known as the degree of the binomial distribution. 

 Binomial distribution is a discrete distribution as X can take only the integral values, i.e. 
0, 1, 2,....., n. Any variable which follows binomial distribution is known as binomial variate.  

 The probability p(x) is also sometimes denoted by b(x ; n, p) or (x ; n, p) or (x). 

Let us consider the following examples to clear the idea:- 

Example 1: If, on the average, 1 ship in every 10 is sunk, find the chance that out of 5 ships 
expected, 4 at least will arrive safely.  

Sol. Let p be the probability that a vessel will arrive safely.  

  p = 
9

10
 = 0.9 

  q = 1 - p = 1 - 0.9 = 0.1 

 Now n = 5, p = 0.9, q = 0.1 

 Let X be the number of ships reaching safely. 

 The probability that out of 5 ships, x ships will arrive safely is  
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  (x) = b(x ; 5, 0.9 = 
5

x

 
 
 

(0.9)x (0.1)5-x, x = 0, 1, 2, 3, 4, 5 

 Required probability = P(X > 4) 

   = P(X = 4) + P(X = 5) 

   = (4) + (5) 

   = 
5

4

 
 
 

(0.9)4 (0.1)1 + 
5

5

 
 
 

(0.9)5 

   = 
5

1

 
 
 

(0.9)4 + 1(0.9)5 = 
5

1
 (0.9)4 + 1  (0.9)5 

   = (0.9)4 [5 + 0.9] = (0.9)4 (5.9) = (5.9) (0.9)4 

Example 2: From a lot containing 20 items, five of which are defective, four items are drawn 
with replacement. What is the probability of getting. 

 (i) exactly one defective item? 

 (ii) at least one defective item? 

Sol. Let X be the random variable denoting the number of defective items drawn. Then the 
possible values of X are 0, 1, 2, 3, 4 

 Let p be the probability of defective item drawn.  

  p = 
5

20
= 

1

4
 

 and q = 1 - p = 1 - 
1

4
 = 

3

4
 

 Now n = 4, p = 
1

4
, q = 

3

4
 

  (x) = b(x ; n, p) = (x; 4 
1

4
) 

  = 
4

x

 
 
 

1

4

x
 
 
 

4
3

4

x
 
 
 

, x = 0, 1,2,3,4 

 (i) Probability of getting exactly one defective item  

  P(X = 1) = (1) 
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  = 
4

1

 
 
 

1
1

4
 
 
 

3
3

4
 
 
 

 

  = 
4

1
 

1

4
 

27

64
 

  = 
27

64
 

 (ii) Probability of getting at least one defective item = P(X > 1) 

  = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) 

  = (1) + (2) + (3) + (4) 

  = 1 - (0) 

  = 1 - 
4

0

 
 
 

 
0

1

4
 
 
 

 
4

3

4
 
 
 

 

  = 1 - x  1  
81

256
 

  = 
175

256
 

Example 3: If m things are distributed among 'a' men and 'b' women. Find the chance that the 
number of things received by men is odd. 

Sol. Probability that the man gets a thing = 
a

a b
= p. Probability that the woman gets a thing = 

b

a b
= q Probability that r things are received by men = P(r) = 

rcm pr qm-r. 

 Since men are to receive odd number of things i.e. 1 or 3 or 5 or....., there required 
probability is = P(1) + P(3) + P(5) +........ 

  = 
1c

m  p.qm-1 + 
3cm p3 qm-3 + 

5cm p5 qm-5 +............ 

  = 
1

2
 ( ) ( )m mp q q p     1

b a
p q andq p

a b

 
     

 

  = 
1

2
1

m
b a

a b

   
  

   

 

Example 4: A pair of dice is thrown 4 times. If a doublet is considered a success, find the 
probability of 2 successes.  
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Sol. Here a pair of dice is thrown 4 times.  

  n = 4 

 Let p be the probability that doublet is obtained.  

  p = P{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)} 

  = 
6

36
= 

1

6
 

 and q = 1 - p = 1 = 
1

6
 = 

5

6
 

  Required probability = P(2) = 
2

4c

2
5

6
 
 
 

2
1

6
 
 
 

 

  = 
4 3

1 2




  

25

36
  

1

36
 

  = 
25

216
 

Example 5: A coin is tossed 5 times. What is the probability that head appears an odd number 
of times? 

Sol. Here a coin is tossed 5 times.  

  n = 5 

  p = P (head in one toss) = 
1

2
 

 and q = 1 - p = 1 = 
1

2
 = 

1

2
 

 Now P (head appearing odd number of times) 

  = P(r = 1, 3, or 5) 

  = P(1) + P(3) + P(5) 

  = 
1

5c

1
1

2
 
 
 

 
5 1

1

2



 
 
 

+ 
3

5c

3
1

2
 
 
 

5 3
1

2



 
 
 

+ 
5

5c

0
1

2
 
 
 

 
5

1

2
 
 
 

 

  = 
5

1
  

1

16
  

1

2
 + 

5 4 3

1 2 3

 

 
  

1

4
 

1

8
 + 1  1  

1

32
 

  = 
1

32
 (5 + 10 + 1) 
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  = 
16

32
 = 

1

2
 

Example 6: There are 5 percent defective items in a large bulk of items. What is the probability 
that a sample of 10 items will include not more than one defective item? 

Sol. Here p = 
5

100
 = 

1

20
, 

  q = 1 - p = 1 - 
1

20
 = 

19

20
 

  and n = 10 

 Now Required probability = P(no defective) +P (1 defective)  

  = 
0

10c

10
19

20
 
 
 

 + 
1

10c

9
19

20
 
 
 

1
1

20
 
 
 

 

  = 1  
10

19

20
 
 
 

 + 
10

1
  

9
19

20
 
 
 

 
1

20
 

  = 
9

19

20
 
 
 

 
19 10

20 20
 

 
 

 

  = 
9

19

20
 
 
 

  
29

20
 

Example 7: Fire cards are drawn successively with replacement from a well shuffled deck of 52 
cards. What is the probability that  

 (a) all the five cards are spades? 

 (b) only three cards are spades?   

 (c) none is spade? 

Sol. Here p = P(spade) = 
13

52
 = 

1

4
, 

 q = 1 - p = 1 - 
1

4
 = 

3

4
, 

 and n = 5 

 (a) (5 spades) = 
5

5c  
5

1

4
 
 
 

= 1  
1

1024
 = 

1

1024
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 (b) P (3 spades) = 
3

5c

3
1

4
 
 
 

2
3

4
 
 
 

 = 
2

5c  
1

64
  

9

16
 

  = 
5 4

1 2




  

1

64
  

9

16
 = 

45

512
 

 (c) P (none is spade) = P(0) = 
0

5c

5
3

4
 
 
 

= 1  
243

1024
 

   = 
243

1024
 

Example 8: A pair of dice is thrown 7 times. If getting a total of 7 is considered a success, what 
is the probability of  

 (a) no success?   (b) 6 successes? 

 (c) at least 6 successes?  (d) at the most 6 successes?  

Sol. Here n = 7 

 Let p be the probability of getting a total of 7. 

  p = 
3

36
 = 

1

6
 

 and q = 1 - 
1

6
 = 

5

6
 

 (a) P (no success) = P(0) = 
0

7c

0
1

6
 
 
 

7 0
5

6



 
 
 

 

   = 
7

5

6
 
 
 

 

 (b) P (6 successes) = P(6) = 
6

7c

6
1

6
 
 
 

7 6
5

6



 
 
 

 

   = 
7

1
  

5

6
  

6
1

6
 
 
 

 

   = 36 
7

1

6
 
 
 

 

 (c) P (at least 6 successes) = P(6) + P(7) 
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  = 
6

7c

6
1

6
 
 
 

7 6
5

6



 
 
 

+ 
7

7c

7
1

6
 
 
 

7 7
5

6



 
 
 

 

  = 7  
5

6
  

6
1

6
 
 
 

 + 1  1  
7

1

6
 
 
 

 

  = 36  
7

1

6
 
 
 

 

  = 
5

1

6
 
 
 

 

 (d) P (at the most 6 successes) = P (not 7 success) 

  = 1 - P(7) 

  = 1 -  
7

7c

7
1

6
 
 
 

7 7
5

6



 
 
 

 

  = 1 - 
7

1

6
 
 
 

 

Example 9: The probability that a bulb produced by a factory will fuse after 150 days of use is 
0.05. Find the probability that out of 5 such bulbs.  

 (a) none   (b) not more than one 

 (c) more than one  (d) at least one 

 will fuse after 150 days of use. 

 
Sol. Here  

 p = 0.05 = 
5

100
 = 

1

20
, 

 q = 1 - p = 1 - 
1

20
 = 

19

20
, 

 and n = 5 

 (a) P (none will fuse after 150 days) 

  = P(0) = 
0

5c

0
1

20
 
 
 

5 0
19

20



 
 
 
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  = 1  
5

19

20
 
 
 

 1 = 
5

19

20
 
 
 

 

 (b) P (not more than one bulb will fuse after 150 days) 

  = P(0) + P(1) 

  = 
0

5c

0
1

20
 
 
 

5 0
19

20



 
 
 

 + 
1

5c

1
1

20
 
 
 

5 1
19

20



 
 
 

 

  = 1  
5

19

20
 
 
 

 + 
5

1
  

1

20
 

4
19

20
 
 
 

 

  = 
4

19

20
 
 
 

19 5

20 20
 

 
 

 = 
4

19

20
 
 
 

  
24

20
 

  = 
6

5
 

4
19

20
 
 
 

 

 (c) P(more than one bulb will fuse after 150 days) 

  = 1 - [P(0) + P(1)] 

  = 1 - 
6

5

4
19

20
 
 
 

  [  of (b)] 

 (d) P (at least one bulb will fuse after 150 days) 

   = 1 - P(0) = 1 - 
5

19

20
 
 
 

  [  of (a)] 

Self Check Exercise-1 

Q.1 A box contains 100 tickets each bearing one of the numbers from 1 to 100. If 5 
tickets are drawn successively with replacement from the box, find the probability 
that all the tickets bear numbers divisible by 10. 

Q.2 In a family of five children, what is the probability that there will be exactly two 
boys, assuming that the sexes are equally likely? 

Q.3 The probability of a man hitting a target is 
1

4
. He fires 7 times. What is the 

probability of his hitting at least twice the target? 

Q.4 A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn one by 
one with replacement, what is the probability that  

 (i) none is white?  (ii) all are white? 



161 
 

 (iii) only 2 are white? (iv) at least one is white? 

11.6 Mean and Variance of Binomial Distribution  

 Let X be the random variable of the binomial  

  (x) = 
n

x

 
 
 

 px qn-x, x = 0, 1, 2,......n 

 Mean = E(X) = 
0

( )
n

x

x f x


  

  = 
0

n

x

x



n

x

 
 
 

px qn-x 

 = 0. 
0

n 
 
 

p0 qn + 1.
1

n 
 
 

 p1 qn-1 + 2. 
2

n 
 
 

 p2 qn-2 +.......+ n. 
n

n

 
 
 

 pn q0 

 = 0 + n qn-1 + 2 
( 1)

1.2

n n 
p2 qn-2 + 3 

( 1)( 2)

1.2.3

n n n 
p3 qn-3 +.......+ npn  

 = n p 1 2 2 2 1( 1)( 2)
( 1) ........

1.2
n n n nn n

q n p q p q p     
     

 
 

 = n p 1 ( 1) 2 1 2 2 1 1
1 2 1........n n n n n n n

nq C p q C p q C p      


       

 = n p (q + p)n-1      [  p + q = 1] 

 = n p (1)n-1 

 = n p (1) = np 

   = n p 

 Variance = E(X -)2 

  = E(X2) - [E(X)]2 

  = 2 2

0

( )
n

x

x f x 


 = 
0

[ ( 1)
n

x

x x x


  .
n

x

 
 
 

px. qn-x - 2 

  = 
0

n

x

x


 . nCx p
x qn-x + 

0

n

x

x


 (x - 1) nCx px qn-x - 2 

  = n p + 2.1 nC2 p
2 qn-2 + 3.2 nC3 p

3 qn-3 +........+ n (n - 1) pn - 2 

  = n p + 2  1  
( 1)

1 2

n n 


p2 qn-2 
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  + 3  2  
( 1)( 2)

1 2 3

n n n 

 
 p3 qn-3 +......+ n (n - 1) pn - 2 

  = n p + n(n - 1) p2 [qn-2 + (n - 2) qn-3 p +......+ pn-2] - 2 

  = n p + n (n - 1) p2 [qn-2 + n-2C1 q
n-3 p +.......+ n-2Cn-2 p

n-2] - 2 

  = n p + n(n - 1) p2 (q + p)n-2 - 2 

  = n p + (n2 - n) p2 (1)n-2 - 2   [  p + q = 1] 

  =n p + (n2 - n) p2 - (n p)2   [   = n p] 

  = n p + n2 p2 - n p2 - n2 p2 = n p - n p2 = n p(1 - p) 

  Variance = n p q    [  q = 1 + p] 

11.7 Moment Generating Function of Binomial Distribution 

 Mx(t) = E(etx), where t is real  

  = 
0

n
tx

x

e



n

x

 
 
 

px qn-x 

  = 
0

n
tx

x

e



n

x

 
 
 

(pet)x qn-x 

  = 
0

n 
 
 

qn + 
1

n 
 
 

(pet) qn-1 + 
2

n 
 
 

(pet)2 qn-2 +.......+ 
n

n

 
 
 

 (pet)n 

  = (q + pet)n 

11.8 Moments 

 The first four moments about origin of binomial distribution are obtained as follows: 

 '1 = E(X) = 
0

n

x

x



n

x

 
 
 

px qn-x = n p 
0

1

1

n

x

n

x

 
 

 
 px-1 qn-x 

  = n p(q + p)n-1 = n p(1)n-1 = n p 

 '2 = E(X2) = 2

0

n

x

x



n

x

 
 
 

px qn-x 

  = 
0

{ ( 1) }
n

x

x x x


 
( 1)

( 1)

n n

x x





2

2

n

x

 
 

 
px qn-x 

  =  n(n - 1) p2 2

0

2

2

n
x n x

x

n
p q np

x
 



  
  

  
  
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  = n (n - 1) p2 (q + p)n 2 + n p = n(n - 1) p2 + n p 

 '3 = E(X3) = 3

0

n

x

x



n

x

 
 
 

px qn-x 

  = 
0

{ ( 1)( 2) 3 ( 1) }
n

x

x x x x x x


     px qn-x 

  = n (n - 1) (n - 2) p3 
0

3

3

n

x

n

x

 
 

 
 px-3 qn-x 

  + 3n (n - 1) p2 
0

2

2

n

x

n

x

 
 

 
  px-2 qn-x + n p 

  = n (n - 1) (n - 2) p3 (q + p)n-3 + 3n (n - 1)p2 (q + p)n-2 + n p 

  = n (n - 1) (n - 2) p3 + 3 n (n - 1) p2 + n p 

Similarly 

 x4 = x (x - 1) (x - 2) (x - 3) + 6x (x  -1) (x - 2) + 7x (x - 1) + x 

 (Let x4 = Ax (x - 1) (x - 2) (x - 3) + Bx (x  - 1) (x - 2) + Cx (x 1) + x  

 By giving to x the values 1, 2 and 3 respectively, we find the values of arbitrary constant 
A, B and C] 

 '4 = E(X4) = 4

0

n

x

x



n

x

 
 
 

px qn-x 

 = n (n - 1) (n - 2) (n - 3) p4 + 6n (n - 1) (n - 2) p3 + 7 n (n - 1) p2 + n p 

Central Moments of Binomial Distribution 

 2 = 1
2 - 1 2

1  = n2 p2 - np2 + np - n2 p2 = np (1 - p) = n p q  

 3 = 1 1
3 - 3 1

2
1
1 + 2 1 3

1  

 = {n (n - 1) (n - 2) p3 + 3n (n - 1) p2 + n p} - 3 {n (n - 1) p2 + p} np + 2 (np)3 

 = np [- 3np2 + 3np + 2p2 - 3p + 1 - 3npq] 

 = np [3np (1 - p) + 2p2 - 3p + 1 - 3npq] 

 = np [2p2 - 3p + 1] = np (2p2 - 2p + q) 

 = npq (1 - 2p) 

 = npq (q + p - 2p) 

 = npq (q - n) 

 4 = 1
4  - 4 1

3
1
1  + 6 1

2
1 2
1

1 2
1 - 3 1 4

1  
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 = npq [1 + 3 (n - 2) pq] 

Now  

 1 = 
1 2
3
1 3
2




= 

2 2 2 2

3 3 3

( )n p q q p

n p q


= 

2( )q p

npq


= 

2(1 2 )p

npq


 

 2 = 4
2 3
2




= 2 2 2

{1 3( 2)npq x pq

n p q

 
 

  = 
1 3( 2)x pq

npq

 
= 3 + 

1 6 pq

npq


 

 V1 = 1 = 
q p

npq


= 

1 2 p

npq


, V2 = 2 - 3 = 

1 6 pq

npq


 

11.9 Mode of the Distribution 

 Let random variable x has a discrete distribution for which the probability function is (x), 
then the value of x for which (x) is maximum is called the mode of the distribution. If same 
maximum value of x is attained at more than one value of x, then all such values of x are called 
modes of the distribution.  

Mode of Binomial Distribution 

 Suppose that the mode of the binomial distribution lies at X = r.  

  P(X = r - 1) < P (X = r) > P (X = r + 1) 

 i.e. 
1rcn


pr-1 qn-r+1 < 
rcn pr qn-r > 

1rcn


pr+1 qn-r-1 

 i.e. 
1 1

n

r n r  
pr-1 qn-r+1 < 

n

r n r
 pr qn-r > 

1 1

n

r n r  
 pr+1 qn-r-1 

 i.e. 
1

r

n r 
 

p

q
 < 1 > 

1

n r

r




 

p

q
   ....(1) 

Now 
1

r

n r 
 

q

p
 < 1 

 r q < n p - p r + p 

 (p + q) r < (n + 1) p 

 r < np + p      ......(2) 

Also 1 > 
1

n r

r




 

p

q
 

 rq + q > np - pr 
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 (p + q) r > np - q 

 r > np - q     ......(3) 

 From (1), (2), (3), we get  

 (n + 1) p - 1 < r < (n + 1) p 

 Now two cases arise:- 

Case I:- (n + 1) p = k, where k is an integer 

  there are two modes and the distribution is said to be Bimodal. 

 Two modes are at points np - q and np + p 

Case II:- (n + 1) p = k + , where k is an integer and  is a proper fraction.  

  x = k = [(n + 1) p] = [np + p] 

 Where [np + p] mean greatest integer < (np + p) 

11.10 Standard Binomial Variate  

 Let a random variable X have binomial distribution with mean np and variance npq. Then 

the random variable > = 
X np

npq


having binomial distribution with mean 0 and variance 1 is 

called standard binomial variate.  

Theorem:- If a random variable X has binomial distribution with mean np and variance npq; 

prove that the random variable Z defined by > = 
X np

npq


 has a binomial variate with mean 0 

and variance 1. 

Proof: Here Z = 
X np

npq


 

 E(Z) = E 
X np

npq

 
  
 

 

  = 
1

npq
 E (X - np)  [  E(a x) = a E(X)] 

  = 
1

npq
 [E(X) - np E (1)] 

  = 
1

npq
 [np - np (1)]   [  E(X) = np, E (1) = 1] 
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  = 
1

npq
(np - np) = 

1

npq
 (0) 

  E(Z) = 0 

  Mean of Z is 0 

 Var (Z) = Var 
X np

npq

 
 
  

 

  = 
1

npq
 Var (X - np)   [  Var (aX) = a2 Var(X)] 

  = 
1

npq
 Var (X)    [  Var (X + a) = Var (X)] 

  = 
1

npq
 npq = 1 

  Variance of Z is 1 

 Let us improve our understanding of these results by looking at some of the following 
examples:- 

Example 10: The mean and variance of a binomial distribution are 4 and 
4

3
respectively. Find 

P(X > 1) 

Sol. We have  

  np = 4   .... (1) 

 and npq = 
4

3
  ....(2) 

 Dividing (2) by (1), we get  

  q = 
1

3
 

  p = 1 - q = 1 - 
1

3
 = 

2

3
 

  from (1), n
2

3
 
 
 

 = 4 

  n = 6 

 Now P(X > 1) = 1 - P(X = 0) = 1 - qn 
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   = 1 = 
6

1

3
 
 
 

 

   = 1 - 
1

729
 = 

728

729
 

Example 11: The m.g.f. of a random vairable X is 
9

2 1

3 3
te

 
 

 
. Show that  

 P (- 2 < X <  + 2) = 
5

1x


9

x

 
 
 

1

3

x
 
 
 

9
2

3

x
 
 
 

 

Sol. We have  

 Mx(t) = 
9

2 1

3 3
te

 
 

 
= (q + pet)n 

  n = 9, q = 
2

3
, p = 

1

3
 

  = np = 9  
1

3
 = 3 

 
2 = npq = 9  

1

3
  

2

3
 = 2 

  = 2  

  - 2 = 3 - 2 2  = 3 - 2  1.4 = 3 - 2.8 = 0.2 

and  + 2 = 3 + 2 2  = 3 + 2  1.4 = 3 + 2.8 = 5.8 

 P ( - 2 < x <  + 2) = p (0.2 < X < 5.8) 

 = P (1 < X < 5) 

 = 
5

1

( )
x

p x


  = 
5

1x
 xcn px qn-x 

 = 
5

1x
 9

xc

1

3

x
 
 
 

 
9

2

3

x
 
 
 

 

Example 12: If X  B (n, p), show that  
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 E
2

x
p

n
 

 
 

 = 
pq

n
 ; Cov ,

x n x

n n

 
 
 

= - 
pq

n
 

Sol. Since X  B (n, p), E(X) = np 

 and Var (X) = npq 

  E
x

n
 
 
 

 = 
1

n
E(X) = 

1

n
. np = p 

 Var 
x

n
 
 
 

 = 2

1

n
 Var (X) = 

pq

n
   .....(1) 

(i) E
2

x
p

n
 

 
 

 = E 

2
x x

E
n n

  
   

  
= Var 

x

n
 
 
 

 = 
pq

n
 [From (1) 

(ii) Using Cov (X, Y) = E [X - E (X)] [Y = E(Y)] 

 Cov. ,
x n x

n n

 
 
 

 = E .
x x n x n x

E E
n n n n

        
        

       
 

 = E
x x n x n x

E E
n n n n

       
       

      
 

 = E 1 (1 )
x x

p p
n n

   
      

   
 

 = E
x x

p p
n n

     
       

     
 

 = - E 
2

x
p

n
 

 
 

 

 = - Var 
x

n
 
 
 

 

 = - 
pq

n
 

Example 13: Bring out the fallacy, if any, in the statement: 

 "The mean of a binomial distribution is 5 and its variance is 9". 

Sol. Mean = 5 

  np = 5 
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 Variance = 5 

  mpq = 9   ....(1) 

 Dividing (2) by (1), we get  

  q = 
9

5
 

 This is not possible as 0 < q < 1 

  The given statement is wrong 

Example 14: Determine the binomial distribution whose mean is 9 and whose standard 

deviation is 
3

2
. 

Sol. Now mean = 9, S.D. = 
3

2
 

  np = 9   ......(1) 

 and npq  = 
3

2
 

  npq = 
9

4
  ......(2) 

Dividing (2) by (1), we get  

  q = 
1

4
 

  p = 1 - q = 1 - 
1

4
 = 

3

4
 

Putting value of p in (1), we get  

  n 
3

4
 = 9 

  n = 9  
4

3
 = 12 

  n = 12 

  Binomial distribution is 
12

4 3

3 4
 

 
 
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Example 15: Compute the mode of a binomial distribution b
1

7,
2

 
 
 

 

Sol. Binomial distribution is b 
1

7,
2

 
 
 

 

  n = 7, p = 
1

2
 

  q = 1 - p = 1 - 
1

2
 = 

1

2
 

 Let 'r' be the mode of the binomial distribution. We know that  

 np + p - 1 < r < np + p 

Now np + p = 7 
1

2
 
 
 

 + 
1

2
 = 

7

2
 + 

1

2
 = 

8

2
 = 4 

and np + p - 1 = 4 - 1 = 3 

  from (1), 

  3 < r < 4 

  r = 3 or 4 

Example 16: The m.g.f. of binomial variate about origin was found to be 
8

3 1

4 4
te

 
 

 
, Find 

 (i) Mean, S.D. and coefficient of variation 

 (ii) Mode 

 (iii) P (X = 3) 

Sol. We know that if X  B (n, p), then its moment generating function is  

  Mx(t) = (q + pet)n 

 Comparing with 
8

3 1

4 4
te

 
 

 
, we have  

  q = 
3

4
, p = 

1

4
, n = 8 

 (i) Now, mean = np = 8  
1

4
 = 2 
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  Variance = npq = 8  
1

4
  

3

4
 = 

3

2
 

  S.D. = 
3

2
 

 and coefficient of variation = 

3
2

2
= 0.612 

 (ii) The mode is given by (n + 1) = (8 + 1)  
3

4
 

  = 9  
3

4
 = 

27

4
 = 6.75 

  which is not an integer 

  The only mode = Integer part of (n + 1) q = 6 

  Mode = 6 

 (iii) By definition P(x = 3) = 
3

8c

3
1

4
 
 
 

5
3

4
 
 
 

= 0.2076 

Self-Check Exercise-2 

Q.1 In eight throws of a die, 5 or 6 is considered a success. Find the mean number of 
success and its standard deviation.  

Q.2 Find the binomial distribution whose mean is 10 and standard deviation 2 2 . 

Q.3 If X is binomially distributed with parameters n and p. Find m.g.f. of Y = n - X. 

11.11 Summary: 

 We conclude this unit by summarizing what  

 1. We have covered in it : 

2. Defined Bernoulli variate and Bernoulli distribution. Discussed probability density 
function of Bernoulli distribution. 

 3. Discussed in detail the moments and m.g.f. of a Bernoulli variate. 

 4. Defined and discussed in detail Binomial distribution. 

 5. Find the mean and variance of Binomial distribution. 

 6. Discussed m.g.f. of Binomial distribution 

 7. Discussed moments, central moments and mode of Binomial distribution. 

 8. Defined standard binomial variate and prove a theorem related to it. 
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 9. Did some examples related to each topic so that the contents be clarified further.  

11.12 Glossary: 

1. A random variable X is said to have a discrete uniform distribution over the range 
[1, n] if its probability mass function is expressed as: 

  P (X = x) = 

1
1,2,.....,

0

forx n
n

otheresiwe








 

2. A random variable X which takes two values 0 and 1, with probabilities q and p 
respectively, i.e. P(X = 1) = p, P(X = 0) = q where q = 1 - p is a Bernoulli variate 
and is said to have a Bernoulli distribution. 

3. A random variable X is said to have Binomial distribution if it assumes only non-
negative values and its probability mass function is given by  

  P(X = x) = p(x) = 
, 0,1,...... ; 1

0

x n xn
p g x n q p

x

otheresiwe


 

   
 



 

The two independent constants n and p in the distribution are known as the 
parameters of the distribution 

4. Let a random variable X have binomial distribution with mean np and variance 

npq. Then the random variable Z = 
X np

npq


 having binomial distribution with 

mean 0 and variance 1 is called standard binomial variate.   

11.13 Answer to Self Check Exercise 

Self-Check Exercise-1 

 Ans.1 
5

1

10
 
 
 

 

 Ans.2 
5

16
 

 Ans.3 
4547

8192
 

 Ans.4 (i) 
81

256
  (ii) 

1

256
 

  (iii) 
27

128
  (iv) 

175

256
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Self-Check Exercise-2 

 Ans.1 Mean: 
16

9
 and standard deviation: 

4

3
 

 Ans.2 Binomial distribution is 
50

4 1

5 5
 

 
 

 

 Ans.3 Y = (n - x) ∽ (n, q) 

11.14 References/Suggested Readings 

1. Robert V. Hogg, Joseph W. Mckean and Allen T. craig, Introduction to 
Mathematical statistics, Pearson Education, Asia, 2007. 

2. Irwim Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 

3. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007. 

11.15 Terminal Questions 

 1. With the usual notation, find p for a binomial variate x, if  

  n = 6 and 9P (x = 4) = P(x = 2) 

2. A bag contains 10 balls each marked with one of the digits 0 to 9. If four balls are 
drawn successively with replacement from the bag, what is the probability that 
none is marked with the digit 0? 

3. A coin is tossed 5 times. What is the probability that head appears: 

 (i) an even number of times 

 (ii) an odd number of times 

  (You may regard 0 as an even number).  

4. A and B play a game in which their chances of winning are in the ratio 3:2. Find 
A's chance of winning at least three games out of the five games played. 

5. Comment on the following: 

 "The mean of a binomial distribution is 3 and variance is 4". 

6. If a random variable X follows binomial distribution with parameters n and p, 
prove that  

 P(X = even) = 
1

2
[1 + (q - p)n]  

7. Determine the binomial distribution for which mean is 4 and variance 3 and also 
find its mode. 
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8. Obtain the m.g.f. of Binomial distribution with n = 7, p = 0.6. find the first three 
moments of the distribution.  

----- 
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Unit - 12 

Poisson Distribution  

Structure 

12.1 Introduction 

12.2 Learning Objectives  

12.3 Derivation of Poisson Distribution From Binomial Distribution 

 Self-Check Exercise-1 

12.4 Mean And Variance of Poisson Distribution 

12.5 Moment Generating Function of Poisson Distribution 

12.6 Moments of the Poisson Distribution 

12.7 Mode of Poisson Distribution 

12.8 Property of the Poisson Distribution 

 Self-Check Exercise-2 

12.9 Summary 

12.10 Glossary 

12.11 Answers to self check exercises 

12.12 References/Suggested Readings 

12.13 Terminal Questions 

12.1 Introduction 

 Poisson distribution was discovered by the French Mathematician and physicist. Simeon 
Denis Poisson (1781 - 1840) who published it in 1837. The Poisson distribution is a discrete 
distribution that is used to model the number of events occurring in a fixed interval of time or 
space, when the events occur with a known constant mean rate and independently of the time 
since the last event. It assumes that the events occur independently of each other, meaning the 
occurrence of one event does not affect the probability of another event occurring. Poisson 
distribution is a limiting case of the binomial distribution under the following conditions: 

 (i) n, the number of  r         er    r e   e    →  

 (ii) p   he c        pr               cce     r e ch  r           e     e    m      e  p → 0 

 (iii) np = , say is finite.  

 Poisson distribution is used to model the arrival of customers or requests in queuing 
system, such as call centers, traffic flow, and computer networks. It can also be used to model 
the number of claims or events in insurance and finance, such as the number of insurance 
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claims in a given period or the number of defaults in a portfolio of loans. Some instances where 
Poisson distribution may be successfully employed are : Number of deaths from a disease such 
as heart attack or cancer in a large city; Number of suicides reported in a particular city; Number 
of printing mistakes at each page of the book, Number of defective material in a packing 
manufactured by a good concern etc.  

12.2 Learning Objectives 

 After reading this unit, you should be able to: 

 Define Poisson distribution 

 Derive Poisson distribution from Binomial distribution 

 Find the mean and variance of Poisson distribution 

 Find the m.g.f., moments and mode of Poisson distribution  

 Discuss property of Poisson distribution 

12.3 Derivation of Poisson Distribution From Binomial Distribution 

Poisson Distribution - Def.  

 A random variable X is said to have a Poisson distribution with parameter , if its 
probability function is given by 

 (x) = (x ; ) = P(X = x) = 
xe

x



, x = 0, 1, 2,...., x > 0 ....(1) 

 Here  is known as the parameter of the distribution. 

Note 1. m, instead of , is also sometimes taken as the parameter of the distribution. 

Note 2. Sum of probabilities = 
0x






xe

x



 

  = e- 
0x






x

x


= e- 

21
.....

0 1 2

  
   

 
    

  = e-
2

1 .....
1 2

  
   

 
= e-(e) = e0 = 1 

Derivation of Poisson Distribution from Binomial Distribution 

In the Binomial distribution, the probability of x successes is given by 

 (x) = nCx px qn-x 

  = 
n

x n x
px (1 - p)n-x  [  q = 1 - p] 
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  = 
( 1)( 2).....( 1)n n n n x n x

x n x

    


 px (1 - p)n-x 

  = 
( 1)( 2).....( 1)n n n n x

n x

   


 

x

n

 
 
 

1
n x

n




 
 

 
 

  = 
( 1)( 2).....( 1)n n n n x

x

   
. 

x

xn


. 1

n x

n




 
 

 
 

  = 
( 1)( 2).....( 1)n n n n x

x

   
. 1

n x

n




 
 

 
 

x

x


 

  = 
n

n
 
 
 

1n

n

 
 
 

2n

n

 
 
 

........
1n x

n

  
 
 

1
n x

n




 
 

 

x

x


 

  = (1) 
1

1
n

 
 

 

2
1

n
 
 

 
......

1
1

x

n

 
 

 
1

n

n

 
 

 
1

x

x




 
 

 

x

x


 

  e    →  

  each of 
1

1
n

 , 
2

1
n

 ,...... 
1

1
x

n


 , 1

x

n




 
 

 
→   

 Also 
n
Lt


1
n

n

 
 

 
= 

n
Lt


1

n

n






 

     
 

= e- 
1

1
x

n

e
xLt



  
   

   

 

  (x) = (1) (1 - 0) (1 - 0) (1 - 0) ...... (1 - 0) e- (1) 
x

x


 

 or (x) = 
xe

x



 

The following examples will illustrate the idea more clearly: 

Example 1: If a bank receives on the average 6 bad cheques per day, what is the probability 
that it will receive four bad cheques on any given day. 

  (Use e-6 = 0.0025) 

Sol. Here  = 6 

 Required probability = P(X = 4) = (4) 
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  = 
4(6)

4

e 

   ( )
xe

f x
x

 
 

 
 

  = (0.0025)  
6 6 6 6

4 3 2 1

  

  
= (0.0025)  54 = .135 

Example 2: Find the probability that at the most 5 defective fuses will be found in a box of 200 
fuses, if experience shows that 2% of such fuses are defective.  

  (e-4 = 0.0183) 

Sol. We have 

 n = 200, p = 
2

100
= 0.02 

   - n p = 200  
2

100
 = 4 

Probability that at the most 5 defective fuses are found = P(X < 5) = 
5

0x
 (x) 

  = 
5

0x


xe

x



= e-4 
5

0x


(4)x

x
 

  = e-4 
2 3 4 54 4 4 4

1 4
2 3 4 5

 
     

 
 

  = e-4 
2 23 3 128

1 4 8
3 3 15

 
     

 
 

  = (0.0183) 
643

15
 
 
 

= 0.785 

Example 3: A car fire firm has cars which it hires out by the day. The number of demands for a 
car on each day is distributed as a Poisson distribution with mean equal to 2. Calculate the 
proportion of days on which none of the cars is used, and proportion of days on which some 
demand is refused.  

Sol. Let X denote the number of demand for a car on each day. 

 It is given that X is a Poisson variate with mean  = 2 

 Therefore, its probability distribution is given by  

 P(X = x) = 
22x e

x



, x = 0, 1, 2,...... 
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 Proportion of days on which none of the cars is used = Probability that there was no 
demand for a car  

  = P (X = 0) 

  = 
0 22

0

e

= e-2 = 2

1

e
 

 Also, Proportion of days when some demand is refused = Probability that there were 
more than 3 demands for cars 

  (  the firm has only 3 cars) 

 = 1 - [Probability that the demand was for either no car or one car or two cars or for three 
cars] 

 = 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)] 

 = 1 - 
0 2 1 2 2 2 3 22 . 2 . 2 . 2 .

0 1 2 3

e e e e    
   

 
 

 = 1 - e-2 
19

3
 
 
 

 

 = 1 - 2

19

3e
 

Example 4: Assuming the probability that a bomb dropped from an airplane will strike a certain 

target is 
1

5
. If 6 bombs are dropped, find the probability that at least 2 will strike the target. 

  [Use e-1.2 = 0.3012] 

Sol. Here p = 
1

5
, n = 6 

  m = np = 6  
1

5
 = 1.2 

 Probability that at least 2 will strike  

  = 1 - [P(0) + P(1)] 

  = 1 - 
0 1

1.2 1.2(1.2) (1.2)

0 1
e e  

 
 

 

  = 1 - e-1.2 [1 + 1.2] 

  = 1 - (0.3012) (2.2) 



180 
 

  = 1 - 0.6626 

  = 0.3374 

Example 5: A typist on the average makes three errors per page. What is the probability of 
typing a page 

 (i) with no errors? 

 (ii) with at least two errors? 

Sol. Here m = 3 

 (i) P (No error) = 
0(3)

0
e-3  ( )

x
mm

P x e
x

 
 

 
 

  = 
1

1
  (0.04979) = 0.04979 

 (ii) P (at least two errors) = P(2) + P(3) 

  = 1 - [P(0) + P(1)] 

  = 1 - [0.04979 + 3 (0.04979)] 

  = 1 - 0.19916 = 0.80084 

Example 6: Assume that the probability of an individual coal-miner being killed in a mine 

accident during a year is 
1

2400
. Using Poisson distribution, calculate the probability that in a 

mine employing 200 miners there will be at least one total accident in a year.  

Sol. Here p= 
1

2400
, n = 200 

  m = np = 200  
1

2400
= 

1

12
= 0.083 

 Now P(x) = 
x mm e

x



 

  P(0) = 
0(0.083)

0
e-0.083 = e-0.083 = 0.92 

 P (at least one total accident) = 1 - P (no total accident) 

  = 1 - P(0) 

  = 1 - 0.92 

  = 0.08 
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Self-Check Exercise-1 

Q.1 Six coins are tossed 6400 times. Using the Poisson distribution, find the 
approximate probability of getting six heads r times. 

Q.2 If a random variable X has a Poisson distribution such that P(X = 1) = P(X = 2), 
then compute P(X = 4) 

Q.3 If 5% of the electric bulbs manufactured be a company are defective, use 
Poisson distribution to find the probability that in a sample of 100 bulbs:- 

 (a) none is defective  

 (b) 5 bulbs will be defective 

  (use e-5 = 0.007) 

12.4 Mean and Variance of Poisson Distribution 

 Mean = E(X) = 
0x





 x
xe

x



 

  = e- 
0x






1

1

x

x

 


=  e- 

2 3

1 ......
1 2 3

   
    

 
 

  =  e- (e) =  e0 =   

  mean of Poisson distribution is . 

 Variance = E(X - )2 

  = E(X2) - [E(X)]2 

  = 
0x





 x2 (x) - 2 = 
0x





 [x (x - 1) + x] 
xe

x



- 2 

  = e- 
0x





 x(x - 1) 
x

x


+ 

0x





 x
xe

x



- 2 

  = 2 e- 
2

0 2

x

x x

 



 
 

 
 +  - 2 

  = 2 e-
2 3

1 ......
1 2 3

   
    

 
+  - 2 

  = 2 e- (e) +  - 2 

  = 2 +  - 2 = 

  Variance =  
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Note : Mean and Variance are equal. 

12.5 Moment Generating Function of Poisson Distribution 

 We have  

  Mx(t) = E(etx) 

  = 
0x





 et x (x) = 
0x





 et x 
xe

x



 

  = e- 
0x






( )t xe

x


= e- 

2 3( ) ( ) ( )
1 ......

1 2 3

t t te e e   
    

 
 

  = e-  
tee = 

tee
 

= e (et - 1) 

12.6 Moments of the Poisson Distribution  

 '
1 = E(X) = 

0x





 x (x, ) 

  = 
0x





 x.
xe

x



= e-
1

0 1

x

x x

 



 
 

 
  

  =  e- 
2 2

1 ......
2 3

 


 
    

 
=  e- . e = 

 Hence the mean of the Poisson distribution is . 

 '
2 = E(X2) = 

0x





 x2 (x, ) = 
0x





  {x(x - 1) + x}
xe

x



 

  = e-


0x





 x(x - 1)
x

x


+

0x





 x
xe

x



 

  = 2 e- 
2

2 2

x

x x

 



 
 

 
 +  = 2 e- e +  = 2 + 


'
3 = E(X3) = 

0x





 x3 (x, ) = 
0x





 {x(x - 1) (x - 2) + 3 x(x - 1) + x}
xe

x



  

 = 
0x





 x(x - 1) (x - 2) 
xe

x



+ 3
0x





 x(x - 1) 
xe

x



+
0x





 x
xe

x


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 = e- 3
3

3 3

x

x x

 



 
 

 
 + 3 e- 2

2

2 2

x

x x

 



 
 

 
  +   

 = e- 3 e + 3 e- 2 e +  = 3 + 3 2 + 


'
4 = E(X4) =

0x





 x4 (x, )  

 = 
0x





 {x(x - 1)(x - 2)(x - 3) + 6x (x - 1)(x - 2) + 7 x (x - 1) + x}
xe

x



 

 = e- 4
4

4 4

x

x x

 



 
 

 
  + 6 e- 3

3

3 3

x

x x

 



 
 

 
  

 + 7 e- 2
2

2 2

x

x x

 



 
 

 
  + 

 

(e- e) + 6 3 (e- e) + 7 2 (e- e) +  = 4 + 6 3 + 7 2 + 

 Now 2 = '2
1 = (2 + ) - 2 = 

 Thus the mean and the variance of the Poisson distribution are each equal to 

  = '
3 - 3 '

1
'
2 + 2 '3

1  

  = (3 + 32 + ) - 3 (2 + ) + 23 = 

  = '
4 - 4 '

3
'
1 + 6 '

2
'2
1 - 3 '4

1  

  = (4 + 63 + 72 + ) - 4 (3 + 32 + ) + 62 (2 + ) - 34 

  = 32 + 

 Co-efficient of skewness and kurtosis are given by 

  1 = 
2

3
3

2




= 

2

3




= 

1


and = 1 = 

1


 

 Also 2  = 4
2

2




= 3 + 

1


and 2 = 2 - 3 = 

1


 

 Hence the Poisson distribution is alwyas a skewed distribution 

 Proceeding to the limit as  → , we get  

  1 = 0 and 2 = 3 

12.7 Mode of Poisson Distribution  
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 We know that the mode is that value of x for which P(X = x) is greater than the P(X = x + 
1) and also P(X = x - 1). If x is the mode of Poisson distribution, then 

  P(x - 1) < P(x) > P(x + 1) 

 i.e. 
1

1

xe

x

 


 < 

xe

x



 > 
1

1

xe

x

 


 

  
1

1

xe

x

 


 < 

xe

x



 or 
xe

x



> 
1

1

xe

x

 


 

  1 < 
x


 or 1 > 

1x




 

 i.e. x <  or x >  - 1 

 Thus, if x is an integer, then both x - 1 and x represent modes. 

 And if x is not an integer, then mode is the integral value between  - 1 and . 

12.8 Property of the Poisson Distribution  

 If X1 and X2 be independent variates having Poisson distribution with means 1 and 2, 
respectively, then their sum X1 + X2 is again a Poisson variate with mean 1 + 2. 

Proof: Let M1(t), M2(t) and M(t) be the moment generating functions of the variates X1, X2, and 
X1 + X2 respectively. 

 Then, M1(t) = exp {1 (e
t - 1)} 

  M2(t) = exp {2 (e
t - 1)} 

 Now, the moment generating function of X1 + X2 is given by 

 M(t) = M1(t)  M2(t) 

  = exp {1 (e
t - 1)} exp {2 (e

t - 1)} 

  = exp {1 (e
t - 1) + 2 (e

t - 1)} 

  = exp {((1 + 2) e
t - (1 + 2)} 

  = exp [(1 + 2) {e
t - 1}] 

 Which we know is the moment generating function of a Poisson distribution having mean 
1 + 2. 

 Hence the result 

 Dear students let us improve our understanding of these results by looking at some 
following examples:- 

Example 7:- If X is a Poisson variate such that P(X = 1) = 2 P(X = 2), find  

 (i) P(X = 0)  (ii) E(X) (iii) V(X) 
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Sol. Here 

 P(X = 1) = 2 P(X = 2) 

  
.

1

e  

= 2
2

2

e  
 
 

 

  
1

e 

= 2x
2

2

e 

 

   = 2  
2 -  = 0  ( - 1) = 0 

   = 0, 1 

   = 1   [   > 0] 

 (i) P(X = 0) = 
1 0

0

e 

= 
11

1

e

= 
1

e
 

 (ii) Now E(X) = Mean =  = 1 

 (iii) V(X) =  = 1 

Example 8: Find the m.g.f. about mean of the Poisson distribution and from it derive the first 
four moments about the mean. 

Sol. Let X be a Poisson variate with mean , then the m.g.f. of X about  is 

 Mx- (t) = e-t Mx(t) 

 Where Mx(t) is the m.g.f. of X about the origin 

 But Mx(t) =


( 1)tee 



 Mx-(t) = e-t e (et - 1) 

   = e (et - 1 - t) 

  1 + 1 t + 2 
2

2

t
+ 3 

3

3

t
+....... = e 

2 3 4

......
2 3 4

t t t 
   

 
 

 = 1 +  
2 3 4

......
2 3 4

t t t 
   

 
 + 

2

2

t 2 3

......
2 3

t t 
  

 
+...... 

 Equating coefficient of t, 
2

2

t
, 

3

3

t
, 

4

4

t
, ........, we get 

  1 = 0 

  2 =  
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  3 =  

  4 =  + 32  

Example 9: Show that in a Poisson distribution with unit mean, the mean deviation about its 

mean is 
2

e
 times the standard deviation. 

Sol. Let X be a Poisson variate having mean  = 1  

 and p.f. = 
xe

x



, x = 0,1,2,3,...... 

  Mean deviation = E |(X - )| 

  = 
0x





 |x - | (x) = 
0x





 |x - |
xe

x



 

  =  
0x





 |x - 1| 
11xe

x



 

  = 
1

e 0x






1x

x


 

  = 
1

e
1 2 3

1 0 ......
2 3 4

 
    

 
 

  = 
1

e

1 1 1
1 1 ......

2 2 3

   
       
    

 

   
( 1) 1 1 1

1 1 1

n n

n n n n

  
   

   
 

  =
1

e
[1 + 1] = 

2

e
 

  = 
2

e
  1 

  = 
2

e
  () = 

2

e
 (standard deviation) 

Example 10: If x is a Poisson variate with mean m, what would be the expectation of e-kx, where 
k is a constant. Find also the expectation of e-kx kx. 
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Sol: The probabilities of x variate in Poisson distribution are given to be successive terms of 
x mm e

x



,  

 Where x = 0,1,2,3,....... 

 The expectation of e-kx is  

 E(e-kx) = 
0x





 e-kx 
x mm e

x



 

  = e-m 

0x






( )k xme

x



 

  = e-m 
21 ( )

.......
1 1 2

k kme me  
    

 
 

  = . (1 ).
k k km m e m me m ee e e e

         

 Further E( kxkxe )=
0x






kx x mkxe m e

x

 

 

  = mke

1x





 1

kx xe m

x




 

  = mke
2 2 3 2

.......
1 2

k k
k m e m e

me
 

 
   

 
 

  = .
km k meke me e

   

  = ( )
km k memk e

    

  = (1 )( )
km e kmk e

    

Example 11: if X and Y are independent variates such that P(X = 1) = P(X = 2) and P(Y = 2) = 
P(Y = 3) Find the variance of X - 2y. 

Sol. Let X  P() and Y  P (). Then we have  

 P(X = x) = 
xe

x



, x = 0,1,2,......,  > 0 

 and P(Y = y) = 
ye

y



, y = 0,1,2,......,  > 0 
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 Since P(X = 1) = P(X = 2) and P(Y = 2) = P(Y = 3) (given) 

  e   = 
2

2

e  

 and 
2

2

e  

 = 
3

3

e  

 

 Solving these, we get 

 e- ( - 2) = 0 and 
2 e- ( - 3) = 0 

  = 2 and  = 3 ; since  > 0,  > 0 

 Now Var (X) =  = 2 and Var (Y) =  = 3 

  Var (X - 2Y) = 12. Var(X) + (-2)2. Var (Y) 

  [Using V(ax + by) = V(ax) + V(by) = a2V(X) + b2V(Y)] 

 Covariance term vanishes since X and Y are independent. 

Thus, we have Var (X - 2Y) = 2 + 4  3 = 14 

Self-Check Exercise-2 

Q.1 If X and Y are two independent Poisson variates having means 1 and 3 
respectively, then find V(3x + y) 

Q.2 If a Poisson distribution has a double mode at x = 1 and x = 2, find the probability 
that X. will have one or the other of these two values. 

Q.3 If the variance of the Poisson distribution is 2, find the distribution for x = 1,2,3,4 
and 5. (use e-2 = 0.1356) 

12.9 Summary 

 We conclude this unit by summarizing what we have covered in it: 

 1. Defined Poisson distribution and derived Poisson distribution from Binomial 
distribution. 

 2. Find the mean and Variance of Poisson distribution. 

 3. Discussed the m.g.f., moments and mode of Poisson distribution and derived the 
formula to calculate each. 

 4. Discussed property of Poisson distribution 

 5. Did some examples related to each topic so that the contents be clarified further.  

12.10 Glossary: 

1. A random variable X is said to have a Poisson distribution with parameter , if its 
probability function is given by  

  (x) = (x ; ) = P(X = x) = 
xe

x



, x = 0,1,2,...., x, x > 0. 

2. Mean of Poisson distribution is . 
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3. Variance of Poisson distribution is . 

4. Moment generating function of Poisson distribution is e (et - 1) 

 

12.11 Answer to Self Check Exercise 

Self-Check Exercise-1 

 Ans.1 P(X = r) = 
100.(100)re

r



; r = 0,1,2,......  

 Ans.2 P(X = 4) = 2

2

3e
  

 Ans.3 (a) P(none is defective) = 0.007 

  (b) P(5 defective bulbs) = 0.1822 

Self-Check Exercise-2 

 Ans.1 V(3X + Y) = 12 

 Ans.2 P(X = 1 or X = 2) = 0.542 

 Ans.3 Required distribution  

  = (0.1358) 
2 3 52 2 2 24 2

1 2 3 4 5

 
    

 
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12.13 Terminal Questions 

1. A block has 200 pages and 200 misprints distributed at random. What is the 
probability that a page contains 

  (a) exactly two misprints ? 

  (b) fewer than two misprints ?  

  (Use e-1 = 0.09195) 

2. Suppose the probability that an item produced by a particular machine is 
defective equals 0.2. If 10 items produced by this machine are selected at 
random, what is the probability that no more than one defective item is found.  
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  (Use e-2 = 0.01353) 

3. In a book of 520 pages, 390 type-graphical errors occur. Assuming Poisson 
distribution for the number of errors per page, find the probability that a random 
sample of 5 pages will contain no error. 

4. If X is a Poisson variate such that P(X = 2) = 9 P(X = 4) + 90 P(X = 6)  

 Find (i) , the mean of X and variance  

  (ii) , the coefficient of skewness,  

5. Bring out the fallacy, if any, in the following statement:- 

  "The mean of a Poisson distribution is 5 while its standard deviation is 4". 

6. A Poisson distribution has a double mode at x = 4 and x = 5. Find the probability 
that x will have either of these values. 

7. If X is a Poisson variate with parameter m and r is the rth central moment, prove 
that  

  
1 21 2 0.........

rc r c r cm r r r   
     = r+1. 

----- 
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Unit - 13 

Uniform Distribution 

Structure 

13.1 Introduction 

13.2 Learning Objectives  

13.3 Definition And Characteristics of Uniform or Rectangular Distribution 

13.4 Properties of a Uniform Distribution 

 Self-Check Exercise 

13.5 Summary 

13.6 Glossary 

13.7 Answers to Self-Check Exercise 

13.8 References Suggested Readings 

13.9 Terminal Question  

13.1 Introduction 

 A continuous probability distribution is a type of probability distribution that describes the 
probability of a random variable taking on a value in a continuous range. Unlike discrete 
probability distributions, which deal with random variables that can only take on specific, 
countable values, continuous probability distributions deal with random variables that can take 
on any value within a specified interval. 

 The uniform or rectangular continuous distribution is a probability distribution where the 
random variable can take on any value within a specified interval, and all values within that 
interval are equally likely to occur. In other words, the probability density function (PDF) of a 
uniform distribution is constant over the interval. The uniform distribution is often used in various 
fields, such as computer science (for generating random numbers), decision-making (for 
modeling uncertainty), and physics (for describing the distribution of particles in a container). 
The uniform distribution is a continuous probability distribution, which means that the random  
variable can take on any value within the specified interval, rather than just discrete values. 

13.2 Learning Objectives  

 After reading this unit, you should be able to: 

 Define uniform (rectangular) distribution 

 Discuss characteristics of uniform distribution 

 Discuss properties of uniform distribution  
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13.3 Definition and Characteristics of Uniform or Rectangular Distribution  

 Def:- A random variable X is said to follow a continuous uniform (rectangular) distribution 
over interval (a, b) if its probability density function is constant k (say) over entire interval or 
range  

 (x) = 
,

0,

k a x b

otherwise

 



 

 For (x) to be a probability density function, we must have  

 ( ) 1
b

a

f x dx    1
b

a

k dx    k = 
1

b a
 

  (x) = 

1
,

0 ,

a x b
b a

otherwise


 





  ....(1) 

Characteristics:- 

 1. a and b, (a < b) are the two parameters of the distribution. The distribution is 
called uniform distribution on (a, b) since it assumes a constant (uniform) value 
for all x in (a, b). 

 2. The distribution is also known as rectangular distribution, since the curve y = (x) 
describes a rectangle over the x-axis and between the ordinates x = a and x = b 

 3. A uniform or rectangular variate X on the interval (a, b) is written as  

  X ∽ ∪ [a, b]  or X ∽ R [a, b] 

 4. The cumulative distribution function F(x) can be calculated as follows:- 

Case I: When x < a 

 F(x) = P[X < x] = ( )
x

f x dx


  = 0 0
x

dx


   

Case II: When a < x < b 

 F(x) = P[X < x] = ( )
a

f x dx


  + ( )
x

a

f x dx  

  = 0
a

dx


  + 
1x

a

dx
b a = 

x a

b a




 

Case III: When x > b 
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 F(x) = P[X < x] = ( )
a

f x dx


  + ( )
b

a

f x dx  + ( )
x

b

f x dx  

  = 0
a

dx


  + 
1b

a

dx
b a  + 0

x

b

dx  = 
b a

b a




 = 1 

  The cumulative distribution function F(x) is given by 

  (x) = 

0 ,

,

1 ,

x a

x a
a x b

b a
x b





 




 

 Since F(x) is not continuous at x = a and x = b, it is not differentiable at these points. 

Thus 
d

dx
F(x) = (x) = 

1

b a
 0, exists everywhere except at the points x = a and x = b and 

consequently probability density function (x) is given by (1). 

 5. The graphs of uniform probability density function (x) and the corresponding 
distribution function F(x) are given below:- 

 

 6. For a rectangular or uniform variate X in (-a, a), the probability density function 
(p.d.f.) is given by 

  (x) = 

1
,

2
0 ,

a x a
a

otherewise


  




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13.4 Properties of a Uniform Distribution 

Property I : Moments of Rectangular Distribution 

 Let X ~ U [a, b] 

 1
r  = E(Xr) = ( )

b
r

a

x f x dx = 
1

b a

b
r

a

x dx  = 
1

b a

1 1

1

r rb a

r

  
 

 
 

In particular 

On taking r = 1; '
1 = 

1

b a

2 2

2

b a 
 
 

= 
2

b a
 

 Mean = 1
r = 2

a b
 

and on taking r = 2; '
2 = 

1

b a

3 3

3

b a 
 
 

= 
1

3
 (b2 + ab + a2)  

 Variance = '
2 - '2

1  = 
1

3
 (b2 + ab + a2) - 

2
1

( )
2

b a
 

 
 

 

 Variance = 2 = 
1

12
 (b - a)2 

Property II: Moment generating function of Rectangular Distribution is given by  

 Mx(t) = E[et x] = ( )
b

tx

a

e f x dx = 
b tx

a

e
dx

b a = 
( )

bt ate e

t b a




, t  0 

 = 

2 2 2 2

1 ....... ....... 1 ....... .......
2! ! 2! !

( )

r r r rb t b t a t a t
bt at

r r

t b a

   
             

   


 

 = 

2 1
2 2 1 1( ) ( ) ....... ( ) ( ) .......

2! ! 1!
( )

r r
r r r rt t t

b a t b a b a b a
r r

t b a


          




 

 1
r = Coeff. of 

!

rt

r
= 

1 1

( )( 1)

r rb a

b a r

 

 
 

 In particular on taking r = 1,2,3,4,.....; we get  
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 1
1  = 

2

a b
 

 1
2  = 

1

3
 (b2 + ab + a2) 

 1
3  = 

1

4
(b + a) (b2 + a2) 

 1
4  = 

1

5

5 5

( )

b a

b a




= 

4 3 2 2 3 4

5

b b a b a ba a   
 

 Various order Central moment are  

 1 = 1
1  - 1

1  = 0 

 2 = 1
2  - ( 1

1 )2 = 
3( )

12

b a
 

 3 = 1
3  - 3 1

2
1
1  + 2( 1

1 )3 = 0 

 4 = 1
4  - 4 1

3
1
1  + 6 1

2 ( 1
1 )2 - 3( 1

1 )4 = 
4( )

80

b a
 

 Coeff. of skewness = 1 = 
2
3
3
2




 = 

3
2

0


 = 0 

 Coeff. of Kurtosis = 2 = 4
2
2




= 

4

2 2

( ) / 80

[( ) /12]

b a

b a




 = 

2(12)

80
 

  = 
9

5
 = 1.8 

Also 1 = 1 = 0  = 0 

and 2 = 2 - 3 = 1.8 - 3 = - 1.2 < 0 

 Thus, rectangular distribution is symmetrical and platykurtic in nature.  

Property III: Characteristic Function of Rectangular Distribution is given by: 

 X(t) = ( )
b

it x

a

e f x dx = 
( )

ibt iate e

it b a




, t  0 

Property IV: Mean Deviation about Mean (M.D.) of Uniform Distribution is given by 
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 M.D. = E|X - Mean| = | | ( )
b

a

x Mean f x dx
b

a
 2

a b
x




1

b a
dx 

  = 
1

b a

b

a
 2

a b
x


 dx 

 On taking x - 
2

a b
= t 

 dx = dt, we get  

 M.D. = 
1

b a

( )/2

( )/2

| |
b a

b a

t dt


 

  

 M.D. = 
1

b a
2 

( )

2

0 4

b a

b a
t dt




  

 M.D. = 
4

b a
 

Property V: The quartiles of uniform distribution are given by: 

 First Quartile Q1 is given by 

  
1 1

( )
4

Q

a

f x dx   



1 1 1

4

Q

a

dx
b a


  1 1

4

Q a

b a







 Q1 = a + 
1

4
 (b - a) 

Second Quartile Q2 or Median is given by  

 
2 1

( )
2

Q

a

f x dx   

 
2 1 1

2

Q

a

dx
b a


   2 1

2

Q a

b a





 

 Q2 = Median = a + 
1

2
(b - a) 
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Third Quartile Q3 is given by  

 
3

( )
Q

a

f x dx = 
3

4
 

 
2

1 3

4

Q

a

dx
b a


   3Q a

b a




= 

3

4
 

 Q3 = a + 
3

4
 (b - a) 

 Let us improve our understanding of these results by looking at some following 
examples:- 

Example 1: If X is uniformly distributed with mean 1 and variance 
4

3
, find P(X < 0). 

Sol. Let X ∽ ∪ [a, b], so that (x) = 
1

b a
, a < x < b 

 Now Mean = 1 [Given] 

 
1

2
(b + a) = 1  b + a = 2  ....(1) 

 And Variance = 
4

3
  [Given] 

 
1

12
(b - a)2 = 

4

3
 

 (b - a)2 = 16 

or b - a = + 4 

 Since a < b, so b - a is always positive  

 Therefore, b - a = 4, 

 On solving (1) and (2), we get a = -1 and b = 3 

 (x) = 
1

4
; -1 < x < 3 

 Thus, P(X < 0) = 
0

1

( )f x dx = 
0

1

1

4
dx



  =  
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  = 
1

4

0

1
x


 

  = 
1

4
 

Example 2: Suppose X is uniformly distributed over (-a, a), where a > 0. Determine a so that 

P
1

2
X

 
 

 
 = 0.3 

Sol. Since the random variable X follows uniform distribution over (-a, a), a > 0. Therefore, its 
p.d.f. is given by 

 (x) = 

1
;

2
0 ;

a x a
a

otherwise


  





 

Now P
1

2
X

 
 

 
= 0.3 

 
1/2

( )
a

f x dx


  = 0.3 

 
1/2 1

2a

dx
a



 = 0.3 

 

1
2
2

a

a


= 0.3 

 0.5 + a = 0.6 a 

 a - 0.6 a = -0.5 

 0.4 a = - 0.5 

 a = -
5

4
 

Example 3: A random variable X has a uniform distribution over (-3, 3). Find k for which P(X > 

k) = 
1

3
 

Sol: Since the random variable X follows uniform distribution over (-3, 3). Therefore, its p.d.f. is 
given by  
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 (x) = 

1
; 3 3

6
0 ;

x

elsewhere


  





 

Given P(X > k) = 
1

3
 

 
3

( ) 1
k

f x dx   

 
3 1

6k

dx = 
1

3
 

 
3

6

k
 = 

1

3
 

 3 - k = 2 

 k = 1 

Example 4: For rectangular distribution (x) = 1, 1 < x < 2. Find A.M., G.M. H.M. and S.D. and 
show that A.M. > G.M. > H.M. 

Sol. Given (x) = 1; 1 < x < 2 

 i.e. a = 1, b = 2 

 A.M. = E(X) = 
2

1

. ( )x f x dx  = 
2

1

x dx = 

22

1
2

x 
 
 

= 1.5 

 Variance = E[X - E(x)]2 = E[X - 1.5]2 = 
2

2

1

( 1.5) ( )x f x dx  

 = 

23

1

( 1.5)

3

x 
 
 

 = 
1

3
 

3 3
1 1

2 2

    
     

     

 = 
1

12
 

 S.D. = 
1

12
 

 If G is G.M., then 

 loge G = E (loge X) = 
2

1

(log )e x dx =  
2

1
logex x  - 

2

1

1
.x dx
x  
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 = 2 2loge - 
2

1
x  = 2loge - 1 = 2  0.6931 - 1 = 0.3862 

 G.M. = Anti log (loge G) = Antilog (0.3862) = 1.4713 

 If H is H.M., then 

 
1

H
 = E

1

H
 
 
 

= 
2

1

1
( )f x dx

x = log 
2

1
x  

  = 2loge - 1loge  = 0.6932 

 H = 
1

0.6931
 = 1.4427 

 Hence A.M. = 1.5; G.M. = 1.4713; H.M. = 1.4427 

 or A.M. > G.M. > H.M. and S.D. = 
1

12
 

Example 5: If X and Y are independent uniform (rectangular) variates on [0, 1], find the 

distribution of (i) 
x

y
 and (ii) xy.  

Sol. We are given that X ∽ ∪ [0, 1] and Y ∽ ∪ [0, 1], therefore the p.d.f. is of X and Y can be 

written as 1(x) = 1, 0 < x < 1 and 2(y) = 1, 0 < y < l. 

 Since X and Y are independent variables, the joint p.d.f. of X and Y is given by 

 (x, y) = 1(x) 2(y) = 1, 0 < x < 1, 0 < y < 1  ......(1) 

 (i) To find the p.d.f. of 
x

y
, we transform the system in terms of U and V where u = 

x

y
 and V = y i.e. x = u v and y = v 

 Here J = 
( , )

( , )

x y

u v




 = 

x y

u u
x y

v v

 

 

 

 

= 
0

1

v

u
 = V 

 The limits x = 0 maps to u = 0, v = 0; 

  x = 1 maps to uv = 1 (Rectangular hyperbola); y = 0 maps to v = 0; and y = 1 

 maps to v = 1 

 Then the joint p.d.f. of U and V is given by  
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  y(u, v) = (x, y) |J| 

   = v, 0 < u < , 0 < v < 1 with uv = 1 

 These limits can be shown in the figure below as: 

 

 Now to find marginal p.d.f. of U, we integrate g(u,v) with respect to v, within the specified 
limits. When we integrate w.r.t. v, the area under curve consists of two regions I and II as shown 
in figure. 

 In region I: 

 g1(u) = 
1

0

( , )g u v dv = 
1

0

v dv = 
1

2
, 0 < u < 1 

In region II: 

 g1(u) = 
1/

0

( , )
u

g u v dv = 
1/

0

u

v dv = 
2

1

2u
, 1 < u <  

 Hence the distribution of U = 
x

y
is given by 

  g1(u) = 

2

1
,0 1

2
1

,1
2

u

u
u


 


   


 

(ii) To find the p.d.f. of XY, we transform the system (1) in terms of U and V defined as u = 
xy and v = x 

 i.e. x = v, y = 
u

v
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 Here J = 
( , )

( , )

x y

u v




= 

x y

u u
x y

v v

 

 

 

 

= 

2

1
0

1

v
u

v


 = -

1

v
 

 The limits x = 0 maps to v = 0 ; x = 1 maps to v = 1 ; y = 0 maps to u = 0 and y = 1 maps 
to u = v. The joint p.d.f. of U and V is given by  

 g(u, v) = (x, y) |J| = 
1

v
; 0 < u < 1, 0 < v < 1 with u = v  

 Now, to find marginal p.d.f. of U, we integrate g(u, v) with respect to v as below:- 

 g1(u) = 
1 1

u

dv
v  = 

1
log

u
v  = -log u, 0 < u < 1 

 

Example 6: Find the density function (x) corresponding to the characteristic function  

  (t) = 
1 | |, | | 1

0,| | 1

t t

t

 



 

Sol. We know that  

 (x) = 
1

2
( )itxe t dt







 = 
1

2

1

1

(1 | |)itxe t dt



  
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 = 
1

2
 

0 1

1 0

(1 ) (1 )itx itxe t dt e t dt 



 
   

 
   ....(1) 

 = 
1

2

1

2 2 2 2

0

(1 ) (1 )
itx itx itx itxe e e e

t t
ix i x ix i x

             
           

            

 

 = 
1

2
 2

1 1

ix x

  
  

   
 - 

2
0

ixe

x

 
 
 

 + 
2

0
ixe

x

 
 
 

 - 2

1 1

ix x

  
  

   
 

 = 
1

2 2 2 2 2 2

1 1 1 1ix ix ixe e e

ix x x x x ix x

 
       
 

 

 = 
1

2 2 2

2 ix ixe e

x x

 
 

 
 

 = 
1

2 2 2

2 2cos x

x x
 

 
 

 

 = 
1

 2

1 cos x

x

 
 
 

, - < x < 

Self-Check Exercise 

Q.1 If X is uniformly distributed with mean 
1

2
and variance 

25

12
, find P(x > 0) and P(x 

< 1).  

Q.2 Calculate the mean and variance of the rectangular distribution given by the 

probability density function (x) = 
1

2h
in 10-h < x < 10 + h and 0 elsewhere. What 

is the distribution function of the variable X of which (x) is p.d.f.? 

Q.3 If X has uniform distribution in [0, 1]. find probability distribution function of -2 loge 
X. 

13.5 Summary 

 We conclude this unit by summarizing what we have covered in it: 

 1. Defined continuous uniform (rectangular) distribution over interval (a, b) 

 2. Discussed different characteristics of uniform distribution 

 3. Discussed in detail different properties of uniform distribution 

 4. To improve understanding of different results we did some examples also. 
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13.6 Glossary: 

1. A random variable X is said to follow a continuous uniform (rectangular) 
distribution over interval (a, b) if its probability density function is constant k (say) 

over entire interval or range (x) = 
,

0,

k a x b

otherwise

 



 

2. For (x) to be a probability density function, k = 
1

b a
 

  (x) = 

1
,

0,

a x b
b a

otherwise


 





 

13.7 Answer to Self Check Exercise 

 Ans.1 P(X > 0) = 
3

5
  

  P(X < 1) = 
3

5
 

Ans.2 Mean = 10 

 Variance = 
1

3
h2 

 Distribution function 

  F(x) = 

(10 )
;10 10

2
1 ; 10

x h
h x h

h
x h

 
   


  

 

 Ans.3 Probability distribution function of -2 loge X = 
1

2
2

y

e


; 0 < y <  
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13.9 Terminal Questions 

1. A random variable X has a uniform distribution over (-3, 3). Compute: 

 (i) P(X < 2) and (ii) P(|X-2| < 2) 

2. Let the current (in MA) measured in a copper wire follows uniform distribution 
over the interval [0, 20]. Write down the probability density function of random 
variable X representing the current. Also calculate mean, variance and 
cumulative distribution function of X.  

3. If X ∽ U (-a, a). Show that its m.g.f. is given by Mx(t) = 
1

at
sin h (at) and also show 

that 2n+1 = 0, 2n = 
2

2 1

na

n 
; n is a positive integer. 

4. Find the cumulative generating function of the rectangular distribution and the 
first four cumulants.   

----- 
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Unit - 14 

Normal Distribution 

Structure 

14.1 Introduction 

14.2 Learning Objectives  

14.3 Some Definitions 

14.4 Mean And Variance of Normal Distribution 

14.5 Mode of Normal Distribution 

14.6 Median of the Normal Distribution  

14.7 Moments About the Mean  

14.8 Moment Generating Function of Normal Distribution  

14.9 Moments of Normal Distribution  

14.10 Important Theorems  

14.11 95% Confidence Interval for the Mean of the Population  

14.12 Area Property (Normal Probability Integral) 

 Self-Check Exercise  

14.13 Summary 

14.14 Glossary 

14.15 Answers to Self-Check Exercise 

14.16 References Suggested Readings 

14.17 Terminal Question  

14.1 Introduction 

 The normal distribution occupies the central position in probability and statistics. The 
normal distribution is the most frequently used of all probability distributions. The normal 
distribution was first discovered in 1733 by English Mathematician De-Moivre, who obtained this 
continuous distribution as a limiting case of the binomial distribution and applied it to problems 
arising in the game of chance. The normal distribution is a continuous probability distribution 
that is symmetric about the mean, and has a bell-shaped curve. It is defined by two parameters 
mean and standard deviation. Many natural and man-made phenomena follow a normal 
distribution, such as heights, IQ scores, measurement errors etc. In statisfical inference, the 
sampling distribution of many test statistics (e.g. sample means) follow a normal distribution, 
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enabling the use of powerful statistical methods. It is widely used to model continuous random 
variables in fields like finance, engineering, biology and more. Its mathematical properties make 
it tractable for analysis and modeling.  

14.2 Learning Objectives 

 After studying the unit, you should be able to: 

 Define Normal distribution; Beta-function; Gamma-function 

 Find relation between Beta and Gamma function 

 Find mean and variance of normal distribution 

 Discuss mode of normal distribution 

 Discuss median, moments about the mean and m.g.f. of normal distribution 

 Find moments of normal distribution 

 Prove some theorems related to normal variate.  

 Discuss 95% confidence interval for the mean of the population 

 Discuss Area property (Normal probability integral)  

14.3 Some Definitions 

Normal Distribution 

 A continuous random variables X is said to be normally distributed if its p.d.f. is given by 

 (x; , = (x) = 
21

21

2

x

e




 

 
  

  , -  < x < , - <  < ,  > 0. 

 Here  (called mean) and 2 (called variance) are parameters. 

 Now we have to prove that (x) = 
21

21

2

x

e




 

 
  

  , - < x < ,  > 0 is a p.d.d. 

 Now (x) > 0 for all x  

 and ( )f x dx




 = 
1

2 

21

2

x

e




 
  

 



 dx 

  = 
1

2 

2

2

y

e dy
 





  

  [Put 
x 




= y so that dx =  dy] 
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  = 
1

2

2

2

y

e dy
 





  

  = 
1

2
2  = 1 

  ( ) 1f x




  

  (x) satisfies the conditions of being a p.d.f. of continuous random variable. 

 Hence (x) is a p.d.f. 

Beta-Function  

 Beta - function is defined as  

 B(l, m) = 
1

1 1

0

(1 )l mx x dx   

 Take l = 
1

2
, m = 

1

2
 

  B
1 1

,
2 2

 
 
 

 = 
1

1/2 1/2

0

(1 )x x dx   

 Put x = sin2 Q 

  B 
1 1

,
2 2

 
 
 

= 2 
/2

0

1 do


  B 
1 1

,
2 2

 
 
 

=   

Gamma - Function 

 Gamma function is defined as  

 Γ(l) = 1

0

, 0x le x dx l


    

 It can be proved that  

 Γ(l) = (l - 1) Γ(l - 1) 

Relation between Beta and Gamma Function 

 B (l, m) = 
( ) ( )

( )

l m

l m

 

 
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  B 
1 1

,
2 2

 
 
 

 = 

1 1
2 2
(1)

 


 

   = 

2
1

2

  
  
  

   [  Γ(1) = 1] 

  Γ
1

2
 
 
 

=   

Note 1: The normal distribution with mean  and variance 2 is abbreviated with the symbol N(, 


2). 

Note 2: Since (x) is a p.d.f. 

  ( ) 1f x dx




  

  total area under the curve (x) and above the x-axis is equal to 1. 

Note 3: The graph of y = (x) is known as the normal probability curve or simply normal curve. It 
is a bell-shaped curve. The top of the bell is directly above the mean . For large values of , 
the curve tends to flatten out and for small values of , it has a sharp peak. 

14.4 Mean and Variance of Normal Distribution 

 We have  

 Mean = E(X) = ( )x f x dx




  

  = 
21

21
.

2

x

x e




 

 
  

 



 dx 

 Put 
x 




= y or x -  =  y 

  dx =  dy 

  Mean = 
1

( )
2

y 
 






2

2

y

e




. dy 

 =  





1

2

2

2

y

e


dy +  




 y
1

2

2

2

y

e


dy 
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  Mean = 
2










2

2

y

e


dy + 
2










2

2

y

e


y dy  ....(1) 

 Let I1 = 





2

2

y

e


dy 

 Also I1 = 





2

2

x

e


dx 

  (I1)
2 = 






1

2e


 (x2 + y2) dx dy 

  = 
2

0





2

2

0

r

er dr d




  (changing to polar coordinates)  

  = 
2

0

d




2

2

0

r

er dr


  

  = (2 - 0) 
2

2

0

r
e


 

  
 

  = - 2 (- 1 - 0) 

  = 2 

  I1 = 2  

 Let I2 = 





2

2

y

e




y dy  

= 0   [  integrand is an odd function] 

  from (1), we get  

 Mean = 
2




2  + 

2




. 0 

  =  

 Var (X) = E (X - )2 = 2( )x 




 (x) dx 

  = 
2( )x 





 . 
1

2 
.

1 2

2

x

e dx






 
  

 


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 Put 
x 




= y or x -  =  y 

  dx =  dy 

  Var (X) = 




  
2

y
1

2

2

2

y

e




dy 

  = 
2

2





0




2y

2

2

y

e




dy 

  = 
22

2



 0




2y

2

2

y

e


dy   [  integrand is even function] 

 Put 
2

2

y
= z or y2 = 2z 

  2ydy = 2 dz  dy = 
1

y
dz  dy = 

1

2z
dz 

  Var (X) = 
22

2



 0



 (2z)e-z 

2

dz

z
 

  = 
22

 0




1

2ze z dz 

  = 
22

 0




3

1
2ze z


 dz 

  = 
22


Γ

3

2
 
 
 

= 
22



1

2
Γ

1

2
 
 
 

 

  = 
2


 = 2 

  Var (X) = 2 

14.5 Mode of Normal Distribution  

 The p.d.f. of a normal distribution is given by  

  (x) = 
1

2 

21

2

x

e




 
  

   

 Taking logarithm, we have  
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 log (x) = -log  2  - 
2

1

2
(x - )2 

Differentiating w.r.t. x, we get 

 
'( )

( )

f x

f x
 = -

2

1

2
 (x - ). 2 

 or '(x) = -
2

x 




 (x)  ......(1) 

Again differentiating w.r.t. x, we get  

 "(x) = 
2

1


  '( ) ( )x f x f x     

  = -
2

1



 
2

( ) ( ) ( )
x

x f x f x





 
   
 

 [  of (1)] 

  = 
 

2

f x



2

1
x 



  
  
   

 

 From (1), '(x) = 0  x =  

 Also ["(x)]at x= = -
2

1


[f(x)]at x= 

  = 
2

1



1

2 

 
 
 

= - 
3

1



1

2
< 0 

 Thus, mode of the normal distribution is , the mean of the distribution.  

14.6 Median of the Normal Distribution  

 Let ∝be the median of the normal distribution 

 Then ( )f x dx




 = 
1

2
= ( )f x dx





  

 or 
21

21

2

x

e




 

 
  

 



 dx + 
1

2  




21

2

x

e




 
  

  dx = 
1

2
 

 or 
1

2
+ 

1

2  




21

2

x

e




 
  

  dx = 
1

2
 

  [Ist integral may be evaluated be putting x = ] 
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 or 
1

2  




21

2

x

e




 
  

  dx = 0 

  ∝

 Thus, the median of the normal distribution is equal to , the mean. 

 Hence, for the normal distribution all the three median, mode and mean coincide.  

14.7 Moments About the Mean  

 In a normal distribution  

 (i) all the odd moments about the mean  vanish. 

and (ii) all the even moments about the mean are given by 2n = (2n - 1) 2 2n-2. 

 The even order moments about the mean  of the normal distribution are given by 

 2n = (2n - 1) 2 2n-2. 

 The even order moments about the mean  of the normal distribution are given by 

 2n = 2( ) nx 





1

2 

21

2

x

e




 
  

  dx 

  = 
2

2

n



21
2 1 2.

znz ze dz







 Putting Z=
x 



 
 
 

 

  = 
2





21
2 1 2

znz e








 
 
 

+ 
2

2

n

n


(2n - 1) 

21
2 1 2

znz e dz







  

  = 
2




(0) + [2n - 1] 2 2n-2. 

  = (2n - 1) 2 2n-2 

 Thus, 2n = (2n - 1) 2.2n-2 

 Successively applying the recurrence formula, we get  

 2n-2 = (2n - 3) 2 2n-4 

 ....................................... 

 ....................................... 

 4 = 3 . 2 2 

 2 = 0
2 0 = 2.1 

 Thus 2n = (2n - 1) (2n - 3)..........3.1.2n 
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 Hence 2 = 2, 4 = 34 

 The odd order moments about the mean , are given as  

 2n+1 = 2 1( ) nx 







21

21

2

x

e




 

 
  

  dx 

  = 
2 1

2

n



 21
2 1 2

znz e dz







   Putting Z=
x 



 
 
 

 

  = 
2 1

2

n





  0   [  Integrant is an odd function of z] 

  = 0 

14.8 Moment Generating Function of Normal Distribution 

 We have  

 MX(t) = E (etx) = ( )txe f x dx




 = 

2
1

21

2

x
txe e dx





 

 
  

 



  

  = 
1

2 






 

2 22

1
( 2 ]2 x txe  


 

dx 

 Now (x - )2 - 22 t x = x2 - x ( + 2 t) x + 2 

  = [x - ( + 2 t)]2 + 2 - ( + 2 t)2 

  = [x - ( + 2 t)]2 - 2  2 t - 4 t2] 

  Mx(t) = et + 
2 2

2

t

221 (

21

2
dx

x t

e

 



 

      
  



 
 
 
 
 

  

  Mx(t) = 

2 2

2

t
ut

e




221 (

21
1

2
dx

x t

e

 



 

      
  



 
 
 
  

  

Cor. Put  = 0, 2 = 1 

  Mx(t) = 

2

2

t

e  

  If X is a standard normal variate i.e. X is N (0, 1), then its p.d.f. and m.g.f. are 
respectively given by 



215 
 

 (x) = 
1

2

2

2

x

e


, - < x <  and Mx(t) = 

2

2

t

e  

14.9 Moments of Normal Distribution 

 The m.g.f. (about mean) is given by E[et(x-)] = e-t E (etx) = e-t Mx(t) where Mx(t) is the 
m.g.f. (about origin) 

  Moment generating function (about mean)  

= e-t 
2 2 /2t te   = 

2 2 /2te   

= 
2 2 2 2 2 3 2 2

2 2 ( / 2) ( / 2) ( / 2)
1 ( / 2) ..... ...

2 3

nt t t
t

n

  


 
      

 
  ...(1) 

 The coefficient of 
!

rt

r
  in (1) gives r, the rth moment about mean. Since there is no term 

with odd powers of t in (1), all moments of odd order about mean vanish. 

 i.e. 2n+1 = 0; n = 0, 1, 2, .......      ...(2)  

 and 2n = coefficient of 
2

(2 )

nt

n
 in (1) 

  = 
2 2

2 .

n

n

n

n

 
 

  = 
2

2 .

n

n n


 [2n (2n - 1) (2n - 2) ......... 4.3.2.1] 

  = 
2

2 .

n

n n


[1. 3. 5. ..... (2n -1)] [2.4.6. .... (2n -2) 2n] 

  = 
2

2 .

n

n n


 [1.3.5. ..... (2n -1)] 2n [1.2.3. ..... 4] 

  2n = 1.3.5. .... (2n -1) 2n      ....(3) 

14.10 Important Theorems  

Theorem 1 : If x is a normal variate with mean  and variance 2 > 0, then show that a new 

random variable z defined by Z = 
x 




 is a variate with mean 0 and variance 1. Also find the 

m.g.f. of Z. 
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Proof : Here Z = 
x 




 

 Mean = E(Z) = E 
x 



 
 
 

 = 
1


 E(X - ) 

 = 
1


[E(x) -  E(1)]  = 

1


[ -  (1)] = 0 

 Var (z) = Var 
x 



 
 
 

= 
2

1


 Var (x - ) 

  = 
2

1


 Var (x)  = 

2

1


 2 = 1 

 The m.g.f. of Z is  

 Mz (t)  = xM 




(t) = 

t

e






Mx 
t



 
 
 

 

  = 
t

e






.
t

e


  + 
2

2

t
 

  = 

2

2

t

e  

Theorem 2 : If x1, x2, x3, ....... xn are independent variables having the same distribution with the 
mean  and the variance 2, then  

 E   ) =      V r    ) = 
2

n


. 

Proof :    =  1 2 .... nx x x

n

  
 

 E   ) = E 1 2 .... nx x x

n

   
 
 

 = 
1

n
 E(x1, x2, x3, ....... xn) 

  = 
1

n
 [E(x1) + E(x2) + ....... +E(xn)] 

  = 
1

n
[] 

  = 
1

n
 [ to x terms] 
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  = 
1

n
 . n =

V r    ) = Var 1 2 .... nx x x

n

   
 
 

 

  = 
2

1

n
 Var (x1+ x2+....... xn) 

  = 
2

1

n
 [Var (x1) + Var (x2) +....... + Var(xn)] 

  = 
2

1

n
 [2 + 2 + ..... + 2] 

= 
2

1

n
 . n 2 

= 
2

n


 

14.11 95% Confidence Interval for the Mean of the Population 

 To introduce the idea of a confidence interval by mean of an example, let us refer to the 
  mp e     r           for random samples of size n from a normal population with the mean 
and the known variance 2.  

    is distributed normally with the mean  and the variance 
2

n


 i.e. x is  

 N 
2

,
n



 
 
 

 or Z = 
/

x

n






 is N (0, 1) 

 Now P(-1.96 < Z < 1.96) 0.95 

or P (-1.96 < 
/

x

n






 < 1.96) = 0.95 

 r       - 1.96 
n


<     + 1.96

n


) = 0.95 

 here    is value of     h ch  e  c             e         mp e  

Hence 95% confidence interval for the mean () of the population is  

     - 1.96 
n


      + 1.96

n


) 
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14.12 Area Property (Normal Probability Integral) 

 If X ~ N (, 2), then the probability that random value of x will be between x =  and x = 
x1 is given by :  

 P( < x < x1) = 
1

( )
x

f x dx
  = 

1

2 
 

2 21 ( ) /2x xe dx 



 

  

 
Put  

x 




= z  x -  = z 

 Also when x = , z = 0 and X = x, Z = 1x 




 = z1 (say) 

 P ( < X < x1) = P (0 < Z < z1) = 
1

2

21 /2

0

z ze dz

  

  = 
1

0
( )

z
z dz  

 Where (z) = 
1

2
 

2 /2ze , is the probability density function of the standard normal 

variate. The definite integral 
1

0
( )

z
z dz  is known as normal probability integral and gives the 

area under standard normal crurve between the ordinates Z = 0 and Z = z1, 

 

 x=-3 x=-2 x=- x= x=+ x=+2 x=+3

 Z= -3 Z= -2 Z= -1 Z= 0 Z= 1 Z= 2 Z= 3 

In particular 

 (i) The probability that a random value of x lies in the interval ( - ,  u + ) is given 
by 

 P ( -  < x < u + ) = ( )f x dx
 

 



  

  P ( -1 < Z < 1) = 
1

1
( )z dz

  
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[ z = 
x 




] 

 = 2 
1

0
( )z dz       [By symmetry] 

 = 2  0.3413 = 0.6826 (From tables) 

(ii) P ( - 2 < x < u + 2)  

 = P ( -2 < Z < 2) = 
2

2
( )z dz

  

 = 2 
2

0
( )z dz       [By symmetry] 

 = 2  0.4772 = 0.9544  

(iii) P ( - 3 < x < u + 3)  = P ( -3 < Z < 3)  

= 
3

3
( )z dz

  

 = 2 
3

0
( )z dz   = 2  0.498665  

= 0.9973 

 Thus the probability that a normal variate x lies outside the range  + 3 is given by : 

 P(|x - | > 3 ) = P(|z| > 3) = 1 - P(-3 < Z < 3) 

   = 0.0027 

Let us improve our understanding of these results by looking at some following 
examples: 

Example 1 : Suppose the height of 1000 soldiers in a regiment are distributed normally with 
mean 68.22 inches and variance 10.8 inches. How many soldiers have height- 

 (i) Over 6 feet  (ii) below 5.5 feet? 

Sol. : We have been given that  

  = 68.22 and  = 10.8  = 3.29 

(i) for x = 6 feet = 72 inches 

  z = 
x 




 = 

72 68.22

3.29


 = 

3.78

3.29
 = 1.15 

  P (x > 72) = P (z > 1.15) = 0.5 - 0.3749 

  = 0.1251 
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  Number of soldiers with height more than 72 inches  

 = 1000 x 0.1251 = 125.1 = 125 

(ii) for x = 5.5 feet = 65 inches 

  z = 
x 




 = 

65 68.22

3.29


 = - 

3.22

3.29
 = -0.9787 

  P(x < 65) = P (z < -0.9787) = 0.5 - P(0< z < 0.98) 

  = 0.5 -03365 = 0.1635 

 Number of soldiers with height below 65 inches  

 = 1000  0.1635 = 163.5 = 163 

Example 2 : Estimate the 95% confidence interval for the mean of a normal population having 
the variance 2    00       r    m   mp e       e     25   e       = 67.33 

Sol. We have been gives that  

 
2    00       25     = 67.53 

 95% confidence interval for the mean  of the normal population is  

 1.96 , 1.96x x
n n

  
  

 
 

or  
10 10

67.53 (1.96) ,67.53 (1.96)
5 5

    
     

    
 

or  67.53 - 3.92, 67.53 + 3.92) 

or  (63.61, 71.45) 

Example 3 : Let x be a normal random variable with mean 10 and standard deviation 4. 
Determine the probability. 

 (i) P(12 < x < 15)  (ii) P(x > 7) 

Sol. : (i) Here  = 10,   = 4 

 For x = 12, we have 

 z = 
x 




 = 

12 10

4


 = 

2

4
 = 

1

2
 = 0.5 

 For z = 15, we have 

 z = 
x 




 = 

15 10

4


 = 

5

4
 = 1.25 
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 P(12 < x < 15)  = P(0.5 < z < 1.25) 

 = P(0 < z < 1.25) - P(0 < z < 0.5)    

 = 0.3944 - 0.1415 = 02029 

(ii) Here  = 10,  = 4 

 For x = 7, we have 

 z = 
x 




 = 

7 10

4


 = - 

3

4
 = -0.75 

 P (x > 7) = P(z > -0.75) 

 = P(-0.75 < z < 0) + P (z > 0) 

 = 0.2734 + 0.5 

 = 0.7734 

Example 4 : Let x denote the number of scores of a feet. It is normally distributed with mean 
100 and standard deviation 15, find the probability that x does not exceed 130. 

Sol. : Here  = 100,  = 15 

 Let x be changed into standard normal variable z. 

  z = 
x 




 = 

100

15

x 
 

 When x = 130, z = 
130 100

15


 = 

30

15
 = 2 

Now P(x < 130) = P (z < 2) = F(2) = 0.9772 

Example 5 : Find the mean and S.D. of an examination in which grade of 70 and 88 
corresponding to standard score of -0.6 and 1.4 respectively. 

Sol. : Let z be the normal variable corresponding to x when  is mean and  is standard 
deviation. 

  x = 70, z = -0.6 and x = 88, z = 1.4 

  z = 
x 




 gives 

 - 0.6 = 
70 




  70 -  = -0.6  ....(1) 

 and 1.4 = 
88 




  88 -  = 1.4   ...(2) 

 Subtracting (1) from (2), we get 
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 18 = 2    = 9 

 From (1), 70 -  = -5.4   75.4 

   = 75.4 and  = 9 

Example 6 : The marks obtained by students in an examination are normally distributed. If 10% 
students have marks more than 75 and 60% have marks more than 50, find mean and variance 
of the distribution. 

Sol. Let the mean be and S.D. by . 

 Probability of students getting marks more than 75 = 
10

100
 = 0.1 

 Probability of students getting marks between mean and 75 = 0.5 - 0.1 = 0.4 

  Value of Z corresponding to area 0.4 from the table is Z, = 1.29 

 Similarly probability of getting marks more than 50 = 
60

100
 = 0.6 

  Probability of getting marks between mean and 50 = 0.6 - 0.5 = 0.1 

  Value of Z corresponding to area 0.1 is Z2 = 0.25  

  Now Z1 = 
X 




 

 or 75 =   = 1.29    .....(1) 

 and Z2 = 
50 




 

  - 0.25 = 
50 




 

 or 50 -  = - 0.25    .....(2) 

 Subtracting (2) from (1), we get  

  25 = 1.54    = 16.23 

 From (1), 75 -  = (1.29) (16.23) 

  or 75 -  = 20.94 

  or  = 75 - 20.94 

   = 54.06 

  Mean  = 54.06 and  = 16.23 

Example 7: If X has the m.g.f. exp (2t + 32t2), then find the mean and variance of X.  
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Sol. Given m.g.f. of X is Mx(t) = 
22 32t te    .....(1) 

 We know that m.g.f. of normal variable X with mean  and variance 2 is 

  Mx(t) = 

2 2

2

t
t

e


 

    ......(2) 

 From (2) and (1), we get  

 

2 2

2

t
t

e


 

= 
22 32t te     = 2, 

2

2


 = 32 

   = 2, 2 = 32  2  1   = 2, 2 = 64 

  Mean = 2 and Variance = 64  

Self-Check Exercise 

Q.1 If the level of education among adults in a certain region is normally distributed 
with mean 8 and S.D. 5, what is the probability that in a sample of 100 adults, 
you will find an average level of education 

 (i) between 10 to 14 years  

 (ii) more than 14 years 

Q.2 If X is a normal variable with mean 25 and standard deviation 5, find the 
probability that  

 (i) X < 10  (ii) 15 < X < 30 (iii) |X - 30| > 10 

Q.3 In a sample of 200 cases, the mean of a certain test is 14 and standard deviation 
is 2.5 Assuming normal distribution, find  

 (i) how many condidated score between 12 and 15? 

 (ii) how many score below 8? 

  [Given Z : 0.4 0.8 2.4 P(Z) : 0.1554 0.2881 0.4918] 

Q.4 In a normal distribution 31% items are under 45 and 8% are over 64. Find the 
mean and standard deviation of the distribution.  

14.13 Summary 

 We conclude this unit by summarizing what we have covered in it: 

 1. Defined normal distribution; Beta function; Gamma - function. 

 2. Derived the relation between Beta and Gamma function. 

 3. Discussed mean and variance of normal distribution and derived the formulae for 
these. 
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 4. Discussed mode, median, moments about the mean, m.g.f. and moments of 
normal distribution and derived the formulae for these.  

 5. Proved some theorems related to normal variate.  

 6. Discussed in detail 95% confidence interval for the mean of the population 

 7. Discussed in detail the area property normal property integral.  

 8. Did some examples related to each topic so that the contents be clarified further.  

14.14 Glossary: 

1. A continuous random variable X is said to be normally distributed if its p.d.f. is 
given by  

 (x; , ) = (x) = 
1

2 

2
1

2

x

e




 
  

  ,  < x < , - <  < ,  > 0 

2. Beta - function is defined as  

 B(l, m) = 
1

1 1

0

(1 )l mx x dx   

3. Gamma - function is defined as  

 Γ(l) = 1

0

x le x dx




 , l > 0 

4. If X is a normal variate with mean  and variance 2 > 0, then a new random 

variable Z defined by Z = 
x 




 is a variate with mean 0 and variance 1. 

14.15 Answer to Self Check Exercise 

 Ans.1 (i) Number of students between 10 to 14 years = 23 

  (ii) Number of students with more than 14 years = 12 

 Ans. 2 (i) P (X < 10) = 0.0013 

  (ii) P (1 X - 301 > 10) = 0.16 

 Ans. 3 (i) Number of students scoring between 12 and 15 = 89 

  (ii) Number of students scoring less than 8 

 Ans. 4  = 50 and  = 10 

14.16 References/Suggested Readings 

1. Robert V. Hogg, Joseph w. Mckean and Allen T. craig, Introduction to 
Mathematical statistics, Pearson Education, Asia, 2007. 
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2. Irwim Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 

3. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007. 

14.17 Terminal Questions 

1. In a distribution, exactly normal, 7% of the items are under 35 and 89% are under 
63. What are the mean and standard deviation of the distribution? 

2. The mean weight of 500 male students at a certain college is 65.6 kg and the 
standard deviation is 10 kg. Assuming that the weights are normally distributed, 
find how many students weigh  

 (i) more than 75.5 kg 

 (ii) between 55.5 and 75.5 kg 

3. In a statistics examination the mean score was 78 and S.D. was 10. 

(i) Determine standard score of school boys whose score was 93 and 62 
respectively. 

(ii) Determine the score of students standard deviation of whose score was -
0.6 and 1.4 respectively   

4. Estimate the 95% confidence interval for the mean of a normal population having 
the variance 2 = 225 and a random size        20   e         64 3 

----- 

 



226 
 

Unit - 15 

Exponential Distribution 

Structure 

15.1 Introduction 

15.2 Learning Objectives  

15.3 Exponential Distribution-Definition 

15.4 Properties of Exponential Distribution 

15.5 Some Important Theorems  

 Self-Check Exercise 

15.6 Summary 

15.7 Glossary 

15.8 Answers to Self-Check Exercise  

15.9 References/Suggested Readings 

15.10 Terminal Questions  

15.1 Introduction 

 The exponential distribution is a fundamental probability distribution in statistics and 
probability theory. It is widely used to model the time between independent, randomly occurring 
events, such as the time between arrivals in a Poisson process or the time between failures in 
reliability engineering. It is a continuous probability distribution, meaning it can take on any 
value greater than or equal to 0-. It has the memory less property, which means that the 
probability of an event occurring in a given time interval is independent of the time elapsed since 
the last event. This makes the exponential distribution suitable for modeling processes where 
the occurrence of events is random and independent of time. This distribution is characterized 
by a single parameter, known as the rate parameter (), which determines the average rate of 
occurrence of the events.  

 It is commonly used to model the time between events in a wide range of fields, such as 
reliability engineering, queuing theory, and survival analysis. It is closely related to the Poisson 
process which is a model for the occurrence of independent, randomly occurring events. It is 
mathematically tractable, meaning that it has simple and well-understood properties, which 
makes it useful for analytical and computational purposes in various fields of study.  

15.2 Learning Objectives  

 After studying this unit, you should be able to: 

 Define exponential distribution 
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 Discuss different properties of exponential distribution. Properties like distribution 
function, moment generating function, characteristic function, cumulant 
generating function, Quartiles, mean deviation about mean, you should able to 
discuss  

 Discuss some important theorems of exponential random variables.  

15.3 Exponential Distribution-Definition  

 A continuous random variable X assuming non-negative values is said to follow an 
exponential distribution with parameter  > 0, if its probability density function (p.d.f.) is given by 

  (x) = 
; 0

0 ;

xe x

otherwise

  



 

 A random variable is called exponential random variable if its probability function follows 
exponential distribution.  

15.4 Properties of Exponential Distribution 

 Property I. Distribution Function:- The distribution function of exponential random 
variable is given by 

 Fx(x) = P(X < x) = 
0

( )
x

f x dx =  
0

1
x

x xe dx e     

  Fx(x) = 
1 ; 0

0 ;

xe x

otherwise

  



 

 Property II. Moment Generating Function: The m.g.f. of the exponential distribution 
about origin is given by  

 Mx(t) = E(etx) = 
0

( )txe f x dx


  

  =  
0

tx xe e dx 


 
( )

0

t xe dx



 

  

  = 
t



 
 

  Mx(t) = 
1

t





 
 

 

 = 
1

1
t





 
 

 
 

  = 1 + 
t


 + 

2
t



 
 
 

 + 
3

t



 
 
 

+.......... 
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  = 
0

r

r

t







 
 
 

  

  Mx(t) = 
1

1
t





 
 

 
= 

0

r

r

t







 
 
 

  

Property III: The constants of exponential distribution are : 

 Mean = 
1


; Variance = 

2

1


; coefficient of skewness V1 = 2 and coefficient of kurtosis V2 

= 6       

Property IV: Characteristic Function: The characteristic function of the exponential 
distribution about origin is given by 

 x(t) = E[eitx] 

  = 
0

( )itxe f x dx


  =  
0

.itx xe e dx





  

  =  ( )

0

it xe dx



 

  = 
it



 
 

  x(t) = 
it



 
 = 

1
it






 
 

 

 = 
1

1
it





 
 

 
 

  = 1 + 
it



 
 
 

 + 
2

it



 
 
 

+ 
3

it



 
 
 

+........... 

  = 
0

r

r

it







 
 
 

  

  x(t) = 
0

r

r

it







 
 
 

  

Property V: The cumulant generating function: 

 The cumulant generating function is  

 Kx(t) = log Mx(t) = - log 1
t



 
 

 
 

  = 
t



 
 
 

+ 
1

2

2

2

t


+.......+ 

1

r

2

2

t


 + ............. 
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 or Kx(t) = 
1


. t + 

2

1


. 

2

2

t
 + 

3

2


 . 

3

3

t
+ 

4

3


. 

4

4

t
+ .......+ 

1
r

r




. 

rt

r
 + ....... 

  Kr = 
1

r

r




; r = 1, 2, 3,....... 

 Mean = coeff of t = K1 = 
1


  

 Variance = coeff of 
2

2

t
= K2 = 

2

1


 = 2 

 Coeff. of 
3

3

t
 = K3 = 3 = 

3

2


 

 Coeff. of 
4

4

t
 = K4 = 

4

3


 = 

4

6


 

 or 4 = K4 + 3 2
2K  = 

4

9


 

Property VI: Quartiles: 

 Here (x) = e-x, x > 0 

 If Q1 and Q3 be the lower and upper quartiles respectively, then for the lower quartile  

  
1

0

( )
Q

f x  = 
1

4
 

  
1

0

Q
xe dx 

 = 
1

4
 

  
1

0

Qxe 




 
 

 
 = 

1

4
 

   1 1Qe 
   = 

1

4
 

  1Qe 
 = 

3

4
 

  Q1 = - 
1


loge 

3

4
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For the upper quartile  

  
3

0

( )
Q

f x dx  = 
3

4
 

   
3

0

Q
xe dx

  = 
3

4
 

  
1

0

Qxe 




 
 

 
= 

3

4
 

  3Qe 
 + 1 = 

3

4
 

  3Qe   = 
1

4
 

  - Q3 = loge 
1

4
 
 
 

 

  Q3 = 
1


loge 4 

Property VII: Mean deviation about mean: 

 The mean deviation about mean is given by M.D. = 
2


 e-1 

Proof: Let X ∽ exp () 

  E (X) = Mean = 
1


 

 M.D. about mean = E (|X - E(X)|) = E (|X - mean|) 

  = E 
1

X


  

  = 
0

1
( )X f x dx





  

  =  
0

1 xX e dx





  = 
0

| 1| xx e dx


  
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 Put x = y  dx = 
dy


 

  M.D. = 
1

 0

| 1| yy e dy


  = 
1

 0 1

( 1) ( 1)y yy e dy y e dy
 

 
 

   
 
   

  = 
1


[e-1 + e-1] = 

2


 e-1 

Property VIII: Graphs for Exponential Distribution: 

 The graph of exponential probability density function and distribution function are as 
under: 

x 0 1 2 3 ........  

(x) = e-x  
e- e-2 e-3 ........ 0 

Fx(x) = P(X<x) = 1 
- e-x 

0 1-e- 1-e-2 1-e-3 ........ 1 

 

15.5 Some Important Theorems  

Theorem 1: If X1, X2, ....., Xn are n independent exponential random variables with parameters 
1, 2, ......., n respectively. Show that Z = Min (X1, X2, ...., Xn) has exponential distribution with 

parameter  = 
1

n

i
i

x


 . 

Proof: Let Xi ∽ exp (i) ; i = 1, 2, ......, n and  Xi is are independent 

 Define Z = Min (X1, X2, ......., Xn) 
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 The distribution function G of random variable Z is  

 Gz(z) = P (Z < z) = 1 - P (Z > z) 

  = 1 - P [Min (X1, X2,....., Xn) > z) 

  = 1 - [P (X1 > z)   P (X2 > z)   ........   P (Xn > z)] 

  = 1 - 
1

( )
n

i
i

P X z


   [  Xi is are independent] 

  = 1 -  
1

1 ( )
n

i
i

P X z


   

  = 1 - 
1

1 ( )
i

n

X
i

F z


    

 Where F is cumulative distribution function of random variable xi 

  = 1 - 
1

1 (1 )i

n
z

i

e 



     

  = 1 - 
1

i

n
z

i

e 



  

  = 1 - 1ze  . 2 ze  . 3ze  ........ n ze   

  = 1 - 1 2( ....... )nze        

  = 1 - 1

n

i
i

z

e




 
 
 
 


 

  The cumulative distribution function of random variable Z is  

 Gz(z) = 1 - 1

n

i
i

z

e




 
 
 
 


for z > 0 

 The probability density function of random variable Z is  

 gz(z) = 
d

dz
Gz(z) = 

1

n

i
i




 
 
 
 exp 

1

n

i
i

z


  
  
  
  for z > 0 

  Z = Min (X1, X2,....., Xn) is exponential with parameter  = 
1

n

i
i




  

Theorem 2: The exponential distribution is a 'lacks memory' distribution i.e. if X is a exponential 
random variable, then for every constant  > 0, 

 P (Y < x 1 X > ) = P (X < x) for all x, where Y = X - . 
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Proof: Let X ∽ exp (X). Therefore probability distribution function of random variable X is  

  (x) = e-x ; x > 0 

 

  P (Y < x   X > ) = P (X -  < x   X > )  [  Y = X - ] 

  = P (X < x +    X > ) 

  = P ( < X < x + ) 

  = ( )
x c

c

f x dx


  

  = 
x c

x

c

e dx





  

  =  
x c

x

c

e dx





  

  = e-c (1-e-x) 

 Also P(X > c) = ( )
c

f x dx


 = x

c

e dx




  = x

c
e 


    = e-c 

  P (Y < x 1X > ) = 
( )

( )

P Y x X

P X

 


 

    = 
)(1 xe e

e

 



 




 = 1 - e-x 

  P (Y < x | X > ) = 1 - e-x 

 Also P(X < x) = 
0

( )f x dx


  = 
0

xe dx




  
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  = 
0

xe 


    = 1 - e-x   .....(2) 

 From (1) and (2), P(Y < x | X > ) = P (X < x) 

 Hence, exponential distribution is a lacks memory distribution. 

 The following examples will illustrate the idea more clearly:- 

Example 1: A random variable X follow the following probability law  

  (x) = 
44 ; 0

0 ;

xe x

otherwise

 



 

 Find (i) P (X < 3) (ii) Coefficient of Variation.  

Sol. The random variable X has the following probability law 

  (x) = 
44 ; 0

0 ;

xe x

otherwise

 



  [Given] 

 (i) P(X < 3) = 
3

0

( )f x dx  = 
3

4

0

4 xe dx

  = 
34

0

xe    

  = [e-12 - e0] 

  = 1 - e-12 

 (ii) Coefficient of variation (C.V.) = 
. .S D

Mean
 

  Mean = E(X) = 
0

( )xf x dx


  = 4

0

4 xx e dx




  

  = 4
4 4

0
( 4) 16

x xe e
x


  

 
 

= 4
1

0 0
16

  
   
  

 = 
1

4
 

 Also E(X2) = 2

0

( )x f x dx


  = 4 2 4

0

xx e dx




  

  = 4 
4 4 4

2

0

2 2
4 16 64

x x xe e e
x x


        

       
       

 

  = 4 
2

0 0 0
( 64)

  
    

  
 = 

1

8
 

 Variance = E(x2) - [E(x)]3 
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  = 
1

8
 - 

2
1

4
 
 
 

 = 
1

16
 

 and thus standard deviation S.D. = Variance  = 
1

4
 

 Coefficient of variation = 
. .

Mean

S D
 = 

1/ 4

1/ 4
 = 1 

Example 2 : The daily consumption of petrol in Delhi in excess of 50,000 liters is distribution as 

exponential with parameter  = 
1

10,000
. The city has stock of 30,000 liters of petrol. Find the 

probability that there is shortage of petrol on a particular day. 

Sol. : Let x be the random variable represents the consumption of petrol on a particular day in 
Delhi. Since, given the daily consumption of petrol in excess of 50,000 liters is follows 

exponential distribution with parameter  = 
1

10,000
. Therefore, the probability law for random 

variable x is  

 P(x)  = 
10,0001

, 0
10,000

0 , otherwise

x

e x







 

  Required probability = P (there is a shortage of petrol) 

 = P (Consumption is more than 30,000 liters) 

 = P (x > 30,000) 

 = 
30,000

( )p x dx


  

 = 10,000

30,000

1

10,000

x

e dx




 . 

Example 3 : What are the p.d.f., the mean, and the variance of x, if the m.g.f. of x is given by 

M(t) = 
1

1 3t
, t < 

1

3
 

Sol. Given the random variable x has the m.g.f. M(t) =
1

1 3t
 = 

1
3

1
3

t
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 It is of the form 
t



 
, where  = 

1

3
, the m.g.f. of the exponential distribution with 

parameter  = 
1

3
 

 Therefore by uniqueness theorem on m.g.f. of the random variable x follows exponential 

distribution with parameter  = 
1

3
 

   (x) =  e-x; 0 < x <  

 i.e.  (x) = 
1

3
3

x

e


; 0 < x < 

  Mean (x) =
1


 = 

1

1/ 3
 = 3 

 and variance (x) = 
2

1


 = 

 
2

1

1/ 3
 = 9 

Example 4 : The mileage (in thousand of miles), which the car owners get with a certain kind of 
tyres is a random variable having probability density function. 

  (x) = 
0.100 10 ; 0

0 ; otherwise

xe x  



 

 Find the probability that one of these tyres will last 

 (a) almost 5000 miles  and (b) between 8,000 and 12,000. 

Sol. : Let x be the random variable representing the mileage (in thousand miles) which a car 
owner can get with a certain kind of tyres. 

   (x) = 
0.100 10 ; 0

0 ; otherwise

xe x  



 

 (a) Required probability = P (almost 5000 miles) 

  = P (x < 5) 

  =  
5

0
( )f x dx  = 

5 0.10

0
0.10 xe dx

  

  = 

30.10

0
( 1)

xe


 = 1 - e-0.5 = 1-0.6065 

  = 0.3935 

 (b) P (between 8,000 and 12,000) 
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  = P (8 < x < 12)  

  = 
12

8
( )f x dx  = 

12 0.10

8
0.10 xe dx

  

  = 

120.10

8
( 1)

xe


  

  = e-0.8 - e-1.2 = 0.4493 - 0.3012 

  = 0.1481 

Self-Check Exercise 

Q.1 A random variable x has exponential distribution with parameter  = 3. Find 

 (i) P (x > 4)  

 (ii) Find S. D. and coefficient variation. 

Q.2 Suppose that the life is a certain type of electronic component has an exponential 
distribution with mean life of 500 hours. If x denotes the life of this component. 
Suppose that the component has been in operation for 300 hours. Find the 
conditional probability that it will last for another 600 hours.  

15.6 Summary 

 We conclude this unit by summarizing what we have covered in it: 

 1. Defined  exponential distribution. 

 2.  Discussed in detail different properties of exponential distribution. Properties 
discussed are distribution function, moment generating function, characteristic 
function, cummulant generating function, Quartiles and mean deviation about 
mean. 

 3. Discussed and proved some important theorems of exponential random 
variables. 

 4. Some examples are given related to each topic so that the contents be clarified 
further.  

15.7 Glossary: 

1. A continuous random variable x assuming non-negative values is said to follow 
an exponential distribution with parameter  > 0, if its probability density function 
is given by 

 (x) = 
; 0

0 ; otherwise

xe x  



 

2. The distribution function of exponential random variable is given by 
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 Fx (x) = 
1 ; 0

0 ; otherwise

xe x  



 

3. The characteristic Function of the exponential distribution about origin is given by 

 x (t) = 
0

r

r

it







 
 
 

  

15.8 Answer to Self Check Exercise 

 Ans.1 (i) P(x > 4) = 
12

1

e
 

  (ii) S.D. = 
1

3
 

   Coefficient of variation = 1 

 Ans. 2 (i) Required probability = conditional probability that it will last for another 

   600 hours =  e-6/5 
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Reprint, 2007. 

15.10 Terminal Questions 

1. If families are selected randomly in a certain thickly populated area and their 
monthly income in excess of Rs. 4,000 is treated as exponential random variable 

with parameter  = 
1

2000
. What is the probability that 3 out of 4 families selected 

in the area have income in excess of Rs. 5,000?   

2. What are the p.d.f., the mean and the variance of x if the m.g.f. of x is given by  

 M(t) =  
3

3 t
, t < 3.  

3. Customers arrive in a certain shop according to an approximate poisson process 
at a mean rate of 20 per hour. What is the probability that the shopkeeper will 
have to wait more than 5 minutes for the arrival of the first customer? 

----- 
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Unit - 16 

Joint Distribution 

Structure 

16.1 Introduction 

16.2 Learning Objectives  

16.3 Joint Distribution  

 Self Check Exercise-1 

16.4 Summary 

16.5 Glossary 

16.6 Answers to self check exercises 

16.7 References/Suggested Readings 

16.8 Terminal Questions 

16.1 Introduction 

In probability theory and statistics, the joint distribution refers to the combined probability 
distribution of two or more random variables. It describes the likelihood of various combination 
of values for the random variables occurring together. The joint distribution of two random 
variables x an y is typically denoted as P(x, y) or  (x, y), depending on whether the variables 
are discrete or continuous. For discrete random variables, the joint probability mass function 
(PMF) gives the probability of each possible combination of values of x and y. For continuous 
random variables, the joint probability density function (PDF) describes the relative likelihood of 
different combinations of values for x and y. The individual probability distributions of the 
random variables x and y can be obtained by summing/integrating the joint distribution over the 
other variable. If the joint distribution factors into the product of the individual distributions, then 
the variables are independent. Understanding joint distributions is essential for analyzing 
relationships between multiple random variables, as well as for constructing and working with 
multivariate probability models.  

16.2 Leaning Objectives  

 After studying the Unit, you should be able to :  

 Define two dimensional random variable. 

 Discuss discrete and continuous cases of two dimensional random variable. 

 Discuss and find joint distribution function for discrete case. 

 Discuss and find joint distribution function and marginal density functions for 
continuous case. 
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16.3 Joint Distributions 

 The ideas an distribution developed previously can be easily generalised to two or more 
random variables. To understand the idea of a Joint Distribution, we consider the typical case of 
two random variables that are either both discrete or both continuous. Before proceeding 
further, let us define a two dimensional random variable. Let x and y be two random variables 
defined on the same sample space s, then the function (x, y) that assigns a point in R2 (x  R), 
is called a two dimensional random variable. 

 We shall now consider discrete and continuous cases separately.  

(a)  Discrete Case : Let x and y be two discrete random variables. We define the joint 
probability function of x and y b 

 P (X = x, Y = y) =  (x, y)     ....(1) 

where  

 (i)   (x, y) > 0 

 (ii) ( , ) 1
x y

f x y   

i.e. the sum over all values of x and y is one. 

 Suppose that X can assume any one of the m values x1, x2,......., xm and y can assume 
any one of the n values y1, y2, ......, yn. Then the probability of the event that X = xj and Y = yk is 
given by 

 P(X = xj, Y = yk) = (xj, yk)   .......(2) 

A joint probability function for X and Y can be represented by a joint probability table as 
below:  

            Y 

    X 

y1 y2 ....... yn Total 

 

x1 (x1, y1) (x1, y1) ...... (x1, yn) 1(x1) 

x2 (x2, y1) (x2, y2) ...... (x2, yn) 1(x2) 

 ...... ..... ..... ...... ..... 

xm (xm, y1) (xm, y2) ...... (xm, yn) 1(xm) 

T     → 2(y1) 2(y2) ...... 2(yn) 1 

 The probability that X = xj is obtained by adding all the entries in the row corresponding 
to xj and is given by  
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 P(X = xj) = 1(xj) - j k
1

(x , y )
n

k
   .....(3) 

 for j = 1, 2, ....., m, these are indicated by the entry total in extreme right hand column or 
margin of the above table.  

 Similarly, probability that Y = yk is obtained by adding all entries in the column 
corresponding to yk and is given by  

 P(Y = yk) = 2(yk) = j k
1

(x , y )
m

j

f


    .....(4) 

 for k = 1, 2, ......, n, these are indicated by the entry total in the bottom row or margin of 
the above table.  

 Since, the probabilities (3) and (4) are obtained from the margins of the table, we often 
refer to 1(xj) and 2(yk) [or simply 1(x) or X(x) and 2(y) or Y(y)] as the marginal probability 
functions of X and Y respectively. It should also be noted that  

 1 j
1

(x ) 1
m

j

f


 , 2 k
1

(y ) 1
n

k

f


     ......(5) 

 which can be written      

 
1

m

j
 k

1

( , y ) 1
n

j
k

f x


      ......(6) 

 This is simply the statement that the total probability of all entries is 1. The grand total of 
1 is indicated in the lower right hand corner of the table.  

 The joint distribution function of X and Y is defined by  

 F(x, y) = P(X < x, Y < y) = ( , )
u x v y

f y v
 

   .....(7) 

 In the above table, F(x, y) is the sum of all the entries for which xj < x and yk < y.  

 (b) Continuous Case : The joint probability density function for the random 
variables X and Y (or, as it is more commonly called, the joint density function of X and Y) is 
defined by  

 (i) (x, y) > 0 (ii) ( , ) 1f x y dx dy
 

 

   

 Graphically z = (x, y) represents a surface, called the probability surface, as shown in 
the following figure.  
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 The total volume bounded by this surface and the XY plane is equal to 1 in accordance 
with property (ii) above. The probability that X lies between a and b while Y lies between c and d 
is given graphically by the shaded volume of the figure and mathematically by  

P(a < X < b, c < Y < d) = ( , )
b d

x a y c

f x y dx dy
 

      ....(8) 

 More generally, if it represents any event, there will be a region RA of the XY plane that 
corresponds to it. In such case we can find the probability of A by the following integral.   

 P(A) = ( , )
R A

f x y dx dy        ....(9) 

 The joint distribution function of X and Y in the continuous case is defined by 

 F(x, y) = P(X < x, Y < y) = ( , )
yx

u v

f u v du dv
 

     ....(10) 

 it is to be noted that  

  
2F

x y



 
= (x, y)       ....(11) 

 i.e., the density function is obtained by differentiating the distribution function w.r.t. x and 
y.  
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 From (11), we obtain 

 P(X < x) = F1(x) = ( , )
x

u v

f u v du dv


 

      ....(12) 

 and P(Y < y) = F2(y) = ( , )
y

u v

f u v du dv


 

      .....(13) 

 We call F1(x) and F2(y) as the marginal distribution functions, or simply the distribution 
functions, of X and Y, respectively. The derivatives of (12) and (13) w.r.t. x and y are then called 
the marginal density functions, i.e. 

  1(x) = 1dF

dx
= ( , )

v

f x v dv




      .....(14) 

 and 2(y) = 2dF

dy
= ( , )

u

f u y du




      .....(15) 

 it is to be noted that the individual distributions can be obtained from the joint distribution 
but the converse is not true. 

 Further, we also use the notations X(x) and gY(y) for 1(x) and 2(y) respectively.  

 The following examples will illustrated the idea more clearly:- 

Example 1: For the following bivariate probability distribution of X and Y, find: 

 (i) P(X < 1, Y = 2) (ii) P(X < 1) 

 (iii) P(Y < 3)  and (iv) P(X < 3, Y < 4)  

           Y 

X 

1 2 3 4 5 6 

0 0 0 1

32
 

2

32
 

2

32
 

3

32
 

1 1

16
 

1

16
 

1

8
 

1

8
 

1

8
 

1

8
 

2 1

32
 

1

32
 

1

64
 

1

64
 

0 2

64
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Sol: The distribution table can be written as  

            Y 

X 

1 2 3 4 5 6 

x
  

0 0 0 1

32
 

2

32
 

2

32
 

3

32
 

8

32
 

1 1

16
 

1

16
 

1

8
 

1

8
 

1

8
 

1

8
 

10

16
 

2 1

32
 

1

32
 

1

64
 

1

64
 

0 2

64
 

8

64
 

y
  

3

32
 

3

32
 

11

64
 

13

64
 

6

32
 

16

64
 

1 

(i) P(X < 1, Y = 2) = P(X = 0, Y = 2) + P(X = 1, Y = 2) 

(ii) P(X < 1) = P(X = 0) + P(X = 1) = 
8

32
 + 

10

16
 = 

7

8
 

(iii) P(Y < 3) = P(Y = 1) + P(Y = 2) + P(Y = 3) = 
3

32
 + 

3

32
 + 

11

64
= 

23

64
 

(iv) P(X < 3, Y < 4) = P (X = 0, Y = 1) + P (X = 0, Y = 2) + P(X = 0, Y = 3) + P(X = 0, Y = 4) + 
P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 1, Y = 3) + P(X = 1, Y = 4) + P(X = 2, Y = 1) + P(X = 2, 
Y = 2) + P(X = 2, Y = 3) + P(X = 2, Y = 4)  

 = 
1 2

32 32
 

 
 

 + 
1 1 1 1

16 16 8 8
 

   
 

 + 
1 1 1 1

32 32 64 64
 

   
 

 = 
9

16
 

Example 2: The joint probability distribution of random variables (X, Y) is given by  

             X 

Y 

1 2 3 4 5 6 

0 0 0 1

32
 

2

32
 

2

32
 

3

32
 

1 1

16
 

1

16
 

1

8
 

1

8
 

1

8
 

1

8
 

2 1

32
 

1

32
 

1

64
 

1

64
 

0 2

64
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Find: 

(i) P(X = 2, Y < 1) (ii) P(Y < 1) 

(iii) P(X = 3)  (iv) P(X < 3) 

(v) P(X < 4, Y < 3) 

Sol: The distribution table can be written as  

          X 

Y 

1 2 3 4 5 6 

x
  

0 0 0 1

32
 

2

32
 

2

32
 

3

32
 

8

32
 

1 1

16
 

1

16
 

1

8
 

1

8
 

1

8
 

1

8
 

10

16
 

2 1

32
 

1

32
 

1

64
 

1

64
 

0 2

64
 

8

64
 

y
  

3

32
 

3

32
 

11

64
 

13

64
 

6

32
 

16

64
 

1 

Now 

(i) P(X = 2, Y < 1) = P(X = 2, Y = 0) + P(X = 2, Y = 1) = 0 + 
1

16
 = 

1

16
 

(ii) P(Y < 1) = P(Y = 0) + P(Y = 1) = 
8

32
 + 

10

16
 = 

28

32
 

(iii) P(X = 3) = 
11

64
 

(iv) P(X < 3) = P(X = 1) + P(X = 2) + P(X = 3) = 
3

32
 + 

3

32
+ 

11

64
 = 

23

64
 

(v) P(X < 4, Y < 3) = P(X = 1, Y = 0) + P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 2, Y = 0) + 
P(X = 2, Y = 1) + P(X = 2, Y = 2) + P(X = 3, Y = 0) + P(X = 3, Y = 1) + P(X = 3, Y = 2) + {(X = 4, 
Y = 0) + P(X = 4, Y = 1) + P(X = 4, Y = 2) 

 = 
1 1

0
16 32

 
  

 
 + 

1 1
0

16 32
 

  
 

 + 
1 1 1

32 8 64
 

  
 

 + 
2 1 1

32 8 64
 

  
 
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 = 
3

32
 + 

3

32
 + 

11

64
 + 

13

64
 = 

36

64
 

Example 3: The joint probability distribution of two random variables X and Y is given by 

 P(X = 0, Y = 1) = 
1

3
, P(X = 1, Y = -1) = 

1

3
 

and P(X = 1, Y = 1) = 
1

3
 

 Find marginal distribution of X and Y 

Sol: The joint probability distribution of two random variables X and Y is given as follows:  

            X 

Y 

0 1 

x
  

1 1

3
 

1

3
 

2

3
 

-1 0 1

3
 

1

3
 

y
  

1

3
 

2

3
 

1 

Now 

 Marginal distribution of X is  

 

Y P(Y = y) 

1 2

3
 

-1 1

3
 

Total 1 
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Marginal distribution of Y is  

Y P(Y = y) 

1 2

3
 

-1 1

3
 

Total 1 

Example 4: Determine the value of k for which the function given by p(x, y) = k x y for x = 1, 2, 3 
and y = 1, 2 can serve as joint probability mass function. 

Sol: The probabilities for different values of X and Y can be written in the table as  

          X 

Y 

1 2 3 

1 k 2k 3k 

2 2k 4k 6k 

For p(x, y) = k x y to be the joint probability mass function, we must have  

 
x


y
 p(x, y) = 1  k + 2k + 3k + 2k + 4k + 6k = 1 

  18k = 1 

  k = 
1

18
 

Example 5: If the non-negative function g(x) has the property that  

  
0

( ) 1g x dx


  

then show that 
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 (x1, x2) = 

 2 2
1 2

1 22 2
1 2

2
,0 ,0

0 ,

g x x
x x

x x

elsewhere



 
      
 



 

 satisfies the conditions of being a probability density function of two continuous type 
random variables X1 and X2. 

Sol: Clearly (x1, x2) > 0 

 Now, to find  

 
 2 2

1 2

2 2
0 0 1 2

2g x x

x x

  


  dx1 dx2 

 Put x1 = r cos , x2 = r sin  

 therefore, |J| = r. Also r varies from 0 to  and  varies from 0 to 2
 . 

Thus, we get 

 
2

0 0

2 ( )

r

g r
r dr d

r










 

  = 
2


2

0
0

( )
r

g r dr







  

  = 
2


. 

2



0

( )
r

g r dr




 = 1, 

 by using given value. 

 Therefore, (x1, x2) satisfies the conditions of probability density function.  

 Hence the required result 

Example 6: For what value of k the function (x, y) = kx (x - y) for 0 < x < 1, -x < y < x is a joint 
p.d.f. Also, find both the marginal probability density functions. 

Sol: By def, for (x, y) to be joint p.d.f., we must have  

  ( , ) 1f x y dy dx
 

 

   

 i.e. 
1

0

( , ) 1
x

x

f x y dy dx


   
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  
1

0

( ) 1
x

x

k x x y dy dx


    

  k 
1

2

0

| |x xx xy y dx = 1 

  k 
1

2

0

(2 )x x dx = 1 

  2k 

14

0
4

x
= 1 

  
2

4

k
= 1 

  k = 2 

Marginal p.d.f. of X = X(x) = ( , )
x

n

f x y dx


  

 = 2 ( )
x

n

x x y dy


  

 = 2x 2 x

x
xy y


  

 = 2x (x2) = 2x3 ; 0 < x < 1 

Similarly, Marginal p.d.f. of Y = gY(y) 

 = 
1

0

( , )f x y dx = 
1

0

2 ( )x x y dx  

 = 2 

13 2

0
3 2

x x y
  

 = 2 
1

3 2

y 
 

 
 

 = 
2 3

3

y
; - x < y < x, 0 < x < 1. 
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Self Check Exercise  

 Q.1 The joint probability distribution of a pair of random variables is given by 

          X 

Y 

0 1 2 

-1 0.1 0.1 0.2 

0 0.2 0.1 0.1 

1 0.1 0.1 0.0 

Find (i) The marginal distributions of X and Y  

   (ii) P(X + Y < 2) 

 Q.2 Find k so that (x, y) = k x y, 1 < x < y < 2 will be the probability density function. 

16.4 Summary 

 We conclude this unit by summarizing what we have covered in it: 

 1. Defined two dimensional random variable. 

2. Discussed in detail discrete two dimensional random variable case and find the 
marginal probability function and joint distribution function of two random 
variables.  

3. Discussed in detail continuous two dimensional random variable case and find 
the marginal density functions and joint distribution function of two random 
variables.  

4. Some examples are given related to each topic so that the contents be clarified 
further. 

16.5 Glossary: 

1. Let X and Y be two random variables defined on the same sample space S, them 
the function (X, Y) that assigns a point in R2 (R  R) is called a two dimensional 
random variable. 

2. Let X and Y be two discrete random variables. Then the joint probability function 
of X and Y is given by P(X = x, Y = y) = (x, y) 

 where (x, y) > 0 and ( , ) 1
x y

f x y   

3. The joint probability density function for the random variables X and Y is defined 

by (x, y) > 0 and ( , ) 1f x y dx dy
 

 

   
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16.6 Answer to Self Check Exercise 

 Ans.1 (i) The marginal distribution of X is  

X 0 1 2 Total 

P(X=x) 0.4 0.3 0.3 1 

 The marginal distribution of Y is  

Y -1 0 1 Total 

P(Y=y) 0.4 0.4 0.2 1 

 (ii) P(X + Y < 2) = 0.8 

 Ans. 2 k = 
6

5
 

16.7 References/Suggested Readings 

1. Robert V. Hogg, Joseph w. Mckean and Allen T. craig, Introduction to 
Mathematical statistics, Pearson Education, Asia, 2007. 

2. Irwim Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 

3. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007. 

16.8 Terminal Questions 

1. The joint probability distribution of random variables (X, Y) is given by 

                X 

Y 

-1 1 

-1 1

8
 

1

2
 

0 0 1

4
 

1 1

8
 

0 

Find the marginal distribution of X and Y. 
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2. Let the joint p.m.f. of X and Y be  

 p(x, y) = 
, 1,2,3; 1,2

21
0 , otherewise

x y
x y


 





 

3. A gun is aimed at a certain point (origin of the coordinate system) and because of 
the random factors, the actual hit point can be any point (X1, X2) in a circle of 
radius R about the origin. If the joint density of X1 and X2 is constant in this circle 
given by 

  (x1, x2) = 
2 2 2
1 2,

0 , elsewhere

k for x x R  



 

Then (a) Compute k; and  

 (b) show that  

  1 (x1) = 

1
2 2

1
1

2
1 ,

0 , elsewhere

x
for R x R

R R

          
    



 

----- 
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Unit - 17 

Conditional Distribution 

Structure 

17.1 Introduction 

17.2 Learning Objectives  

17.3 Discrete Case 

17.4 Continuous Case  

 Self Check Exercise 

17.5 Summary 

17.6 Glossary 

17.7 Answers to self check exercises 

17.8 References/Suggested Readings 

17.9 Terminal Questions 

17.1 Introduction 

In probability theory and statistics, the conditional distribution refers to the distribution of 
a random variable given the value of one or more other random variables. Formally, if we have 
two random variables X and Y, the conditional distribution of Y given X = x is denoted as P(Y|X 
= x) or (y|x). The conditional distribution describes the probability or probability density function 
of Y when the value of X is known. It provides information about the relationship between the 
two variables and how the distribution of one variable changes based on the value of the other. 
Conditional distributions are essential for drawing inferences about the relationship between 
variables. They allow as to predict the likely values of one variable (the dependent variable) 
based on the known values of the other variable (3) (the independent variable (1)). Conditional 
distributions play a crucial role in Bayesian inference, where they are used to update the prior 
beliefs about a parameter or a random variable based on observed data. Conditional 
distributions can also help us model complex relationships between variables, especially in 
multivariate settings.  

17.2 Learning Objectives  

 After studying this unit, you should be able to: 

 Discuss the conditional distribution for the case of two dimensional discrete 
random variable 

 Define conditional distribution function  

 Discuss the conditional distribution for the case of two dimensional continuous 
random variable  
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17.3 Discrete Case  

 Let (x, y) be a two dimensional discrete random variable. Then the conditional discrete 
density function or the conditional probability moss function of x, given Y = y, denoted by  

 x/y (x/y) or simply  (x/y) is denied as  

 x/y (x/y) = Px/y (x/y)  

  = 
( , )

( )

P X x Y y

P Y y

 


 = 

2

( , )

( )

f x y

f y
     ...(1) 

 Simply for y and given X = x, we have  

 y/x (y/x) = Py/x (y/x) =  
( , )

( )

P X x Y y

P X x

 


 

    = 
1

( , )

( )

f x y

f x
     ...(2) 

 It is to be noted that 

 
x


2

( , )

( )

f x y

f y
 = 

2

1

( )f y
 

x
 (x, y) = 2

2

( )

( )

f y

f y
 = 1 

 and 
2

( , )

( )

f x y

f y
 > 0  x, y for which 2(y)  0 and this (1) respondents a probability function. 

Similarly (2) is also a probability function. 

17.4 Continuous Case 

 We firstly define the conditional distribution function and then differentiate to obtain the 
conditional density function. 

 The conditional distribution function  

 F (y/x) (or Fy/x (y/x)) denotes the distribution function of Y when X has already assumed 
the particular value of x i.e. 

 Fy/x (y/x) = P(Y < y/ X = x) = 

( , )

( , )

u v
x dx

u x v

f u v du dv

f u v du dv

 

 

 

 

 

 

 

 and a similar expression for FX/Y(x/y). 

 The conditional probability density function of Y given X for two random variables X and 
Y which are jointly continuously distributed is defined as follows for two real numbers x and y as: 
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 Y/X(y/x) = 
y




 FY/X(y/x) =  

 It can also be written directly as  

 Y/X(y/x) = 
1

(x, y)

( )f x
 

 Where (x, y) is the joint density function of X and Y and 1(x) is the marginal density 
function of X. 

 Let us improve our understanding of these results by looking at some following 
examples:- 

Example 1: The joint probability distribution of a pair of random variables is given by 

                     X 

Y 

0 1 2 

-1 0.1 0.1 0.2 

0 0.2 0.1 0.1 

1 0.1 0.1 0.0 

 Find the conditional distribution of X given Y = 0 

Sol: The probability distribution table can be written as  

                     X 

       Y 

0 1 2 
x
  

-1 0.1 0.1 0.2 0.4 

0 0.2 0.1 0.1 0.4 

1 0.1 0.1 0.0 0.2 

y
  0.4 0.3 0.3 1 

 Now, we have 

 P(X = x/y = 0) = 
( 0)

( 0)

P X x Y

P Y

 


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  P(X = 0/Y = 0) = 
( 0 0)

( 0)

P X Y

P Y

 


 = 

0.2

0.4
 = 

1

2
 

  P(X = 1/Y = 0) = 
( 1 0)

( 0)

P X Y

P Y

 


= 

0.1

0.4
= 

1

4
 

and P(X = 2/Y = 0) = 
( 2 0)

( 0)

P X Y

P Y

 


 = 

0.1 1

0.4 4
  

  conditional distribution of X given Y = 0 

X/Y = 0 P(X = x/y = 0) 

x = 0/y = 0 1

2
 

x = 1/y = 0 1

4
 

x = 2/y = 0 1

4
 

Total 1 

Example 2: Find marginal p.m.f's of X1 and X2 whose joint p.m.f. is  

 

 0 1 2 

0 1

12
 

1

6
 

1

24
 

1 1

4
 

1

4
 

1

40
 

2 1

8
 

1

20
 

0 

3 1

120
 

0 0 

 Also find conditional distribution of X2 given X1 = 0 
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Sol: The distribution table can be written as  

                     X 

       Y 

0 1 2 
x
  

0 1

12
 

1

6
 

1

24
 

7

24
 

1 1

4
 

1

4
 

1

40
 

21

40
 

2 1

8
 

1

20
 

0 7

40
 

y
  56

120
 

28

60
 

8

120
 

1 

(i) The marginal p.m.f. of X1 is 

X1 P(X1 = x1) 

0 56

120
 

1 28

60
 

1 8

120
 

Total 1 

(ii) The marginal p.m.f. of X2 is 

X2 P(X2 = x2) 

0 56

120
 

1 28

60
 

1 8

120
 

Total 1 
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(iii) The conditional distribution of X2 given X1 = 0 

X2/X1 = 0 
P(X2=x2/x1=0) = 2 2 1

1

( 0)

( 0)

P X x X

P X

 


 

x2 = 0/x1 = 0 

2 1

1

( 0 0)

( 0)

P X X

P X

 


=

1
12
56

120

=
10

56
 

x2=1/x1=0 

2 1

1

( 1 0)

( 0)

P X X

P X

 


=

1
4

56
120

=
30

56
 

x2=2/x1=0 

2 1

1

( 2 0)

( 0)

P X X

P X

 


=

1
8

56
120

=
1

56
 

x2=3/x1=0 

2 1

1

( 3 0)

( 0)

P X X

P X

 


=

1
1120

56 56
120

  

Total 1 

Example 3: If the joint p.d.f. of X and Y is given by 

 p(x, y) = 

1
(2 );0 1,0 2

4
0 ;

x y x y

otherwise


    





 

Find (i) marginal density functions 

 (ii) the conditional density of Y given X = 
1

4
 

Sol: The joint p.d.f. of X and Y is given by 

 p(x, y) = 

1
(2 );0 1,0 2

4
0 ;

x y x y

otherwise


    




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 (i) Marginal density function of X is  

  1(x) = ( , )f x y dy




  

  = 
1

4
 

22

0

2
2

y
xy   = 

1

4
 (4x + 2) 

  = 
2 1

2

x 
 

  1(x) = 
2 1

2

x 
; 0 < x < 1 

 (ii) Marginal density function of Y is  

  2(y) = ( , )f x y dx




 = 
1

0

1
(2 )

4
x y dx  

  = 
1

4

12

0
x xy  = 

1

4

y
 

  2(y) = 
1

2

y
; 0 < y < 2 

(iii) The conditional density of Y given X = 
1

4
 

 = Y/X
1

/
4

y x
 

 
 

= 

1

1
4

1
4

f Y y x

f x

 
  

 

 
 

 

 = 

1

1
( ( , ))

4
1
4

f x y x

f



 
 
 

 

 = 

1 1
2

4 4
1

2 1
4
2

y
  

  
  

 
 

 

 = 
 2 1

3
2

y 
 

  Y/X 
1

/
4

y x
 

 
 

= 
2

3
 (2y + 1); 0 < y  < 2 

Example 4: Given the joint density of X1 and X2 as  
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 (x1, x2) = 
3

1 2(1 )

k

x x 
, for x1 > 0 and x2 > 0, 

  = 0, elsewhere  

 Find the value of k and the marginal densities of X1 and X2. Also find the conditional 
density of X1 given that X2 assumes the value x2.  

Sol: We must have  

 1 23
1 20 0

1
(1 )

k
dx dx

x x

 


    

or -
1

2
k 12

1 20 0

1
(1 )

k
dx

x x

  
 

  
  

or - 
1

2
k 12

10

1
1

(1 )
dx

x




  

or - 
1

2
k 

10 0

1
1

1 x

  
 

 
  

or 
1

2
k = 1 

or k = 2 

 Now, the marginal density of X1 is  

 1(x1) = 1 2 2

0

( , ) 2f x x dx


 23
1 20

1

(1 )
dx

x x



   

 = - 2
1 2 0

1

(1 )x x



 
 

  
 

 = 
2

1

1

(1 )x
, for x1 > 0 

and 0, elsewhere  

Similarly, it can be shown that the marginal density of X2 is 

 2(x2) = 
2

2

1

(1 )x
, for x2 > 0 
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  = 0, elsewhere  

 Further, the conditional density of X1 given X2 assumes the value x2 is  

 
1 2/x xf (x1/x2) = 1 2

2 2

( , )

( )

f x x

f x
 

  = 2(1 + x1 + x2)
-3 (1 + x2)

2, for x1 > 0 and 0, elsewhere 

Example 5: The joint probability function of the two dimensional random variable (X, Y) is given 
by 

 (x, y) = 

8
;1 2

9
0 ;

xy x y

elsewhere


  





 

 (i) Find the marginal density functions of X and Y 

 (ii) Find the conditional density functions of Y given X = x and of X given Y = y. 

Sol: Given, the joint p.d.f. of random variable's (X, Y) is  

 (x, y) = 

8
;1 ,1 2

9
0 ;

xy x y y

elsewhere


   





 

 (i) Marginal density function of X = X(x)  

  = ( , )f x y dy




 = 
2

1

8

9
dy dy  

  = 
8

9
 x 

22

1
2

y
 = 

8

9
x 

3

4
 
 
 

 = 
2

3
x 

 (ii) Marginal density function of Y = gY(y) 

  = ( , )f x y dx




  

  = 
1

8

9

y

xy dx = 
8

9
y 

2

1
2

y
x

 

  = 
4

9
y (y2 - 1); 1 < y < 2 

 (iii) Conditional density function of Y, given X = x 
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  Y/X (y/x) = 
( , )

( )x

f x y

f x
 =

8
9
2
3

xy

x
= 

4

3
y ; 1 < y < 2 

 (iv) Conditional density function of X given Y = y 

  gX/Y(x/y) = 
( , )

( )y

f x y

g y
 = 

2

8
9

4
( 1)

9

xy

y y 

= 2

2

1

x

y 
; 1 < x < y 

Self-Check Exercise  

Q.1 The joint probability mass function of discrete random variable's (X, Y) given by 
p(1,1) = 0.5, p(1,2) = 0.1, p(2,1) = 0.1, p(2,2) = 0.3 

  Find Conditional p.m.f. of X given Y = 1. 

Q.2 Obtain the marginal and conditional probability functions, if the joint density 
function is 

  (x, y) = 
2(2 );0 1

0 ;

x y x y

elsewhere

    



 

17.5 Summary 

 We conclude this unit by summarizing what we have covered in it: 

1. Discussed the conditional distribution for the case of two dimensional discrete 
random variable and find the formulae for conditional discrete density function or 
the conditional probability mass functions of X, given Y, and for Y given X = x. 

2. Defined conditional distribution function.  

3. Discussed the conditional continuous random variable.  

4. Some examples are given related to each topic so that the contents be clarified 
further.  

17.6 Glossary: 

1. If we have two random variables X and Y, the conditional distribution of Y given X 
= x is denoted as P(Y/X = x) or (y/x). 

2. The conditional distribution function F(y/x) (or FY/X) denotes the distribution 
function of Y when X has already assumed the particular value of x. 

3. Conditional probability mass function of X, given Y = y, denoted by X/Y(x/y) or 
simply (x/y) is defined as  
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 X/Y(x/y) = PX/Y(x/y) = 
( , )

( )

P X x Y y

P Y y

 


 = 

2

( , )

( )

f x y

f y
 

17.7 Answer to Self Check Exercise 

 Ans.1 Conditional p.m.f. of X given Y = 1 is  

X/Y = 1 
P(X=x/y=1) = 

 ( 1)

( 1)

P X x Y

P Y

 


 

x=0/y = 1 5

6
 

x=1/y=1 1

6
 

Total 1 

 Ans. 2 Marginal probability function of X 

   = 3x2 - 6x + 3, for 0 < x < 1 

  and 0, elsewhere 

 Marginal probability function of Y 

   = 4y - 3y2, for 0 < y < 1 

  and 0, elsewhere 

 Conditional density function of Y given X 

  (0 < x < 1) is 
2

2(2 x y)

3 6 3x x

 

 
, 0 < y < 1 

 and conditional density function of X given Y, 

  (0 < y < 1) is 2

2(2 x y)

4 3y y

 


, 0 < x < 1 

17.8 References/Suggested Readings 

1. Robert V. Hogg, Joseph w. Mckean and Allen T. craig, Introduction to 
Mathematical statistics, Pearson Education, Asia, 2007. 

2. Irwim Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 
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17.9 Terminal Questions 

1. If a two-dimensional random variable (X1, X2) have a bivariate distribution given 
by  

 (x1, x2) = 
1

27
(2x1 + x2) 

 Where x1 and x2 can assume only the integer values 0,1,2. 

 Then find the conditional distribution of X2 for X1 = x1 

2. Two discrete random variables X and Y have the joint probability function as  

 (x, y) = 
(1 )x y x ye p p

y x y

  


; y = 0, 1, 2,......, x = 0, 1, 2,....... 

 where , p are constants with  > 0 and 0 < p < 1. 

 (a) Find the marginal probability functions for X and Y. 

 (b) Find the conditional probability functions for X and Y.  

----- 
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Unit - 18 

Stochastic Independence  

Structure 

18.1 Introduction 

18.2 Learning Objectives  

18.3 Stochastic Independence-Definition  

18.4 Theorem On Stochastic Independence 

 Self Check Exercise 

18.5 Summary 

18.6 Glossary 

18.7 Answers to self check exercises 

18.8 References/Suggested Readings 

18.9 Terminal Questions 

18.1 Introduction 

Stochastic independence is a fundamental concept in probability theory and statistics. It 
describes a situation where the occurrence or non-occurrence of one random event does not 
influence the probability of another random event. In other words, if two events are 
stochastically independent, the knowledge of one event occurring or not occurring does not 
provide any information about the liklihood of the other event. Formally, two events A and B are 
said to be stochastically independent if the probability of their joint occurrence is equal to the 
product of their individual probabilities. Stochastic independence is a stronger condition than 
uncorrelation, which only requires the correlation coefficient between the two events to be zero. 
When events are stochastically independent, it simplifies the calculation of probabilities, as the 
joint probability can be expressed as the product of individual probabilities. Stochastic 
independence is an important assumption in many statistical techniques, such as hypothesis 
testing, regression analysis, and time series analysis.  

18.2   Learning Objectives  

 After studying this unit, you should be able to: 

 Define stochastic independence of two random variables 

 Prove the theorem on stochastic independence of two random variables 

 Do questions related to stochastic independence.  
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18.3 Stochastic Independence Definition  

 Two random variables X and Y with joint probability density function (or probability mass 
function) XY(x,y) (or (x,y)) and marginal probability density functions (or p.m.f. is) X(x) and 
gY(y) respectively are said to be stochastically independent if and only if  

 XY(x, y) = X(x) gY(y)  x and y i.e. two random variables X and Y are said to be 
independent or stochastically independent if their joint probability function is equal to the product 
of their individual probability functions. 

 Further, in terms of the distribution function, two jointly distributed random variables X 
and Y are stochastically independent if and only if their joint distribution function F(x, y) is the 
product of their marginal distribution function FX(x) and GY(y) i.e. FXY(x,y) = FX(x) GY(y)  x and 
y. 

 The variables which are not stochastically independent are said to be stochastically 
dependent.  

18.4 Theorem on Stochastic Independences  

 The random variables X and Y with joint probability density function XY(x, y) are 
stochastically independent if and only if XY(x, y) can be expressed as the product of a non-
negative function of x alone and a non-negative function of y alone i.e. if  

  XY(x, y) = hX(x), kY(y)  .......(1) 

 where HX(x) > 0 and kY(y) > 0  x and y.  

Proof: If X and Y are independent, then by definition 

 XY(x, y) = X(x). gY(y)  .......(2) 

 where x(x) and gY(y) are the marginal probability density function of X and Y 
respectively. Thus the condition (1) holds, then we have to prove that X and Y are independent 
i.e. we have to show that  

  XY(x, y) = X(x) gY(y) 

 i.e. the joint probability function is equal to the product of individual probability functions.  

 Now, for continuous random variables X and Y, the marginal probability density functions 
are given by: 

  X(x) = ( , )f x y dy




 = ( ) ( )h x k y dy




  

  = h(x) ( )k y dy




  

  = c1 h(x), where c1 = ( )k y dy




  ......(3) 
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 and gY(y) = ( , )f x y dx




  = ( ) ( )h x k y dx




  

  = k(y) ( )h x dx




  

 c2 k(y), say where c2 = ( )h x dx




    .......(4) 

 Here c1 and c2 are constants independent of x and y. 

Moreover,  

  ( , ) 1f x y dx dy
 

 

    ( ) ( ) 1h x k y dx dy
 

 

    (x, y) = h(x) k(y)] 

 ( )h x dx




 
 
 
  ( )k y dy





 
 
 
  = 1 

 c1 c2 = 1    ......(5) 

Since    [By (3) and (4)] 

 XY(x, y) = hX(x) kY(y) = c1 c2 hX(x) ky(y) 

  = [c1hx (x)] [c2kY (y)] 

  = X(x) gY(y) 

 where X(x) is the marginal probability density  

 function of X and gY(y) is the marginal probability density function of Y. 

 X and Y are stochastically independent.  

 The following examples will illustrate the idea more clearly:- 

Example 1: The joint density function of (X, Y) is  

 (x, y) = 
;0 ,0

0 ; otherwise

x yAe x y y      



 

 (i) Determine A 

 (ii) Find the marginal density function of X 

 (iii) Find the marginal density function of Y 

 (iv) Examine if X and Y are independent 

 (v) Find the conditional density function of Y given X = 2 

Sol: The joint density function of (X, Y) is given by 
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 (x, y) = 
;0 ,0

0 ; otherwise

x yAe x y y      



 

 (i) Since (x, y) is the joint density function of (X, Y), we must have  

  ( , ) 1f x y dx dy
 

 

   

  
0 0

1
y

x yAe dx dy


     

  A 
( )

0
1

yx ye  



 
 

 
  dy = 1 

  A 2( ) 1y ye e dy


 



   

  A 
 

2

0
1 2

y ye e


  
 

  
 = 1 

  A  
1

0 1
2

  
    
  

 = 1 

  A 
1

2
 
 
 

 = 1 

  A = 2 

(ii) Marginal density function of X = 1 (x) = 

 = ( , )f x y dy




  = ( )2 x y

x

e dy


 

  

 = 2 
( )

1

x y

x

e


  
 

 
 

 = 2[0 + e-2x] 

 = 2e-2x ; 0 < x <  y, 0 < y < 

(iii) Marginal density function of Y = 2(y)  

 = ( , )f x y dx




  
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 = ( )2
y

x y

x

e dx 

  = 2 
( )

0
1

yx ye  
 

 
 

 = 2[-e-2y + e-y] ; 0 < y < 

(iv) Since (x, y)  1(x) 2(y) 

 Therefore X and Y are not independent 

(v) Conditional density function of Y given X = 2 is  

 (Y/X = 2) = 2

1

[ ( , )]

( 2)
Xf X Y

f X



 = 

2

2(2)

2

2

ye

e

 


 

  = e2-y ; 0 < y < 

Example 2: The joint density function of the random variables X and Y is given by  

 (x, y) = 
8 ,0 1,0

0 ; otherwise

xy x y x   



 

 (a) Find the marginal density of X 

 (b) Find the marginal density of Y 

 (c) Find the conditional density of X given Y 

 (d) Find the conditional density of Y given X 

 (e) Check whether X and Y are independent.  

Sol: (a) To obtain the marginal density of X, we ix x and integrate w.r.t. y from 0 to x  

 i.e. X(x) = 
0

8
x

y

xy dy


 = 4x3 for 0 < x < 1  

  and for all other values of x, X(x) = 0 

 (b) Similarly, the marginal density of Y. 

  gY(y) = 
1

8
x y

xy dy


 = 4y (1 - y2), 0 < y < 1 

  and for all other values of y, gY(y) = 0 

 (c) The conditional density function of X is, for 0 < y < 1 

  X/Y(x/y) = 
( , )

( )Y

f x y

g y
 =  2

2
, 1

1

0 ; otherwise

x
y x

y


 





 

  where gY(y)  0 
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 (d) Similarly, 

  Y/X(y/x) = 
( , )

( )X

f x y

g x
 = 2

2
;0

0 ; other y

y
y x

x


 




 

  where X(x)  0 

 (e) Here (x, y) = 8 xy, X(x) = 4x3, gY(y) = 4y (1 - y2) 

 Therefore, (x, y)  X(x) gY(y) and hence X and Y are dependent i.e. not independent.  

Example 3: Let (x1, x2) = 
1 2

1 2 1 2( );0 ( , ) 1

0 ; otherwise

xc x x e x x   



 

 (i) Determine c 

 (ii) Examine whether X1 and X2 are stochastically independent  

Sol: The joint probability function of variables X1 and X2 is given by 

 (x1, x2) = 
1 2

1 2 1 2( );0 ( , ) 1

0 ; otherwise

xc x x e x x   



 

 Since (x1, x2) is the probability function. Therefore, we must have  

 1 2 1 2( , ) 1f x x dx dx
 

 

   

 1

1 1

1 2 1 2

0

( ) 1x

x

c x x e dx dx    

 c
1

0
 1

12
1

2

0
2

xx
x e

 
 

 
dx2 = 1 

 c 
1

0


12

2

x
e

 
 

 
dx2 = 1 

 c 

14

2

0
4

x
ex

 
 

 
 = 1 

 c 
1

4
e

 
 

 
 = 0  c = 

4

1 4e
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 (x1, x2) = 
1

1 2 1 2

4
( );0 ( , ) 1

1 4
0 ; otherwise

xx x e x x
e


  





 

(ii) The random variables X1 and X2 are statistically independent if  

 (x1, x2) = 
1Xf (x1) 

2Xf  (x2) 

i.e. the joint probability function is equal to the product of marginal probability functions. 

 The marginal probability function of X1 = 
1Xf (x1) = 1 2 2( , )f x x dx





  

i.e. 
1Xf (x1) = 1

1

1 2 2

0

4
( )

1 4
xx x e dx

e


  

  = 
4

1 4e
1

12
2

1 2

0
2

xx
x x e
 

 
 

 

  = 
4

1 4e
 11

2
xx

e
 

 
 

; 0 < x2 < 1 

The marginal probability function of X2 =
2Xf (x2) 

 = 1 2 1( , )f x x dx




  

i.e. 
2Xf (x2) = 

1

1

1 2 1

0

4
( )

1 4 xx x e dx
e


  

 = 
4

1 4e

2 1
2

x
e

  
   

  
; 0 < x1 < 1 

 Since (x1, x2)  
1Xf (x1) 

2Xf (x2)  

 Variables X1 and X2 are not stochastically independent. 

Example 4: Let random variables X1 and X2 have the joint probability density function 

 (x1, x2) = 

1 2 2 1

2

12 (1 );0 1

0 1

0 ,

x x x x

x

elsewhere

  


 



 

 Show that the random variables are independent.  
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Sol: Here 1 (x1) = 
1

1 2 2 2

0

12 (1 )x x x dx  

  = 12 x1 
2

1
2

2

0

( )x x dx  

  = 12 x1 

12 3
2 2

0
2 3

x x 
 

 
 

  = 12 x1 
1 1

2 3
 

 
 

 

  = 12 x1 

 2(x2) = 
1

1 2 2 1

0

12 (1 )x x x dx  

  = 12x2 (1 - x2) 

12
1

0
2

x 
 
 

 

  = 12x2 (1 - x2) 
1

2
 

  = 6x2 (1 - x2) 

 By using these values, we conclude that  

  (x1, x2) = 1 (x1) 2(x2) 

 Hence, the random variables X1 and X2 are independent  

Example 5: The random vriables X and Y are jointly distributed as  

  (x, y) = e-(x+y), x > 0, y > 0 

 (a) Are X and Y independent? 

 (b) Find P(X > 1) 

 (c) Find P(X < Y/X < 2Y) 

 (d) Find P(1 < X + Y < 2) 

Sol: Here X(x) ( )

0

x y

y

e dy


 



 = e-x 
0

ye dy




 = e-x 

 and Y(y) = ( )

0

x y

x

e dx


 



 = e-y 
0

xe dx




 = e-y 
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 (a) Here (x, y) = e-(x+y) = (e-x) (e-y) 

   = X(x) y(y) 

 which implies that X and Y are independent 

 (b) P(X > 1) = 
1

( )Xf x dx


 = 
1

xe dx




  = 
1

1

xx


 
 
 

= 
1

e
 

 (c) P(X < Y/X < 2 Y) 

  = 
( 2 )

( 2 )

P X Y X Y

P X Y

 


 

  = 
( )

( 2 )

P X Y

P X Y




 

 

Now, P(X < Y) = ( )

0 0

y
x y

y x

e dx dy


 

 

   

  = 
0

y

y

e






  
0

y
xe dx

 
 
  
 dy 

  = - 
0

( 1)y y

y

e e dy


 



  

  = 
2

0
2

y
ye

e



 

 
 
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  = - 
1

0 1
2

  
    
  

 = 
1

2
 

 and P(X < 2Y) = 
2

( )

0 0

y
x y

y x

e dx dy


 

 

   

  = 
0

y

y

e







2

0

y
xe dx

 
 
  
  dy 

  = 
0

y

y

e






 (e-2y-1) dy  

  = 
3

0
3

y
ye

e



 

 
 

 = 1 - 
1

3
 = 

2

3
 

 Therefore, P(X < Y/X < 2Y) = 
1/ 2

2 / 3
 = 

3

4
 

 (d) P(1 < X + Y < 2) = ( , )f x y dxdy  + ( , )
II

f x y dxdy
 

 

  = 
1 2

0 1

( , )
x

x

f x y dy




 
 
 
  dx + 

2 2

1 0

( , )
x

f x y dy
 

 
 
   dx 

  = 
2 2

1 1

x
x y

x

e e dy


 



 
 
 

   dx + 
2 2

1 0

x
x ye e dy



 
 
 
 

  dx 
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  = 
1

0 1

xe

  (ex-2 - ex-1) dx + 
2

1 1

xe

  (ex-2-1) dx  

  = - (e-2 - e-1) 
1

0

1dx - 
2

2

1

( )xe e dx   

  = - (e-2 - e-1)  
1

0
x  - 

22

1

xe e     

  = 
2

e
 - 

2

3

e
 

Self-Check Exercise  

Q.1 The joint probability density function of a two-dimensional random variable (X, Y) 
is given by  

  (x, y) = 
2,0 1,0

0 ,

x y x

elsewhere

   



 

 (a) Find the marginal density functions of X and Y. 

 (b) Find the conditional density function of Y given 

  X = x and conditional density function of X given Y = y. 

 (c) Check for independence of X and Y. 

Q.2 Let X1 and X2 be jointly distributed with probability density function  

  (x1, x2) = x1 + x2, 0 < x1 < 1, 0 < x2 < 1 

   = 0, elsewhere  

 show that the random variables X1 and X2 are not independent.  

18.5 Summary 

 We conclude this unit by summarizing what we have covered in it: 

1. Defined stochastic intendance of two random variables. 

2. Discussed stochastic independence of two random variables in detail.  

3. Proved the theorem on stochastic independence of two random variables. 

4. Examples are given related to each topic so that the contents be clarified further.  

18.6 Glossary: 

1. Two random variables X and Y with joint probability density function (or 
probability mass function) XY(x, y) (or (x, y)) and marginal probability density 
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functions X(x) and gY(y) are said to be stochastically independent if and only if 
XY(x, y) = X(x) gY(y)  x and y. 

2. Two jointly distributed random variables X and Y are stochastically independent if 
and only if their joint distribution function F(x, y) is the product of their marginal 
distribution function FX(x) and GY(y) i.e. FXY(x, y) = FX(x) GY(y)  x and y.  

18.7 Answer to Self Check Exercise 

 Ans.1 (a) The marginal probability density function of X is X(x) = 2x, 0 < x < 0 

          = 0, other x.  

   The marginal probability density function of Y is 

    gY(y) = 2(1 - y), 0 < y < 1 

     = 0, other y 

  (b) The conditional density function of Y given X, 

   (0 < x < 1) is Y/X(y/x) = 
1

x
, 0 < y < x  

   The conditional density function of X given Y, 

   (0 < y < 1) is X/Y(x/y) = 
( , )

( )Y

f x y

g y
= 

1

1 y
, y < x < 1 

  (c) X and Y are not independent  

 Ans.2 (x1, x2) = x1 + x2, 0 < x1 < 1, 0 < x2 < 1 

   = 0, elsewhere  

  1(x1) = x1 + 
1

2
, 0 < x1 < 1 

   = 0, elsewhere  

  2(x2) = 
1

2
 + x2, 0 < x2 < 1 

   = 0, elsewhere  

  (x1, x2)  1(x1) 2(x2) 

   X and Y are not independent  

18.8 References/Suggested Readings 

1. Robert V. Hogg, Joseph w. Mckean and Allen T. craig, Introduction to 
Mathematical statistics, Pearson Education, Asia, 2007. 
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2. Irwim Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 

3. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007. 

18.9 Terminal Questions 

1. The joint probability function of two discrete random variables X and Y is given by 

  (x, y) = 
(2 ),0 2,0 3

0 ,

x y x y

elsewhere

     



 

 (a) Find the value of the constant  

 (b) Find P(X = 2, Y = 1) 

 (c) Find P(X > 1, Y < 2) 

 (d) Find the marginal probability function of X 

 (e) Find the marginal probability function of Y 

 (f) Find (y/2) 

 (g) Find P(Y = 1/X = 2) 

 (h) Show that X and Y are dependent 

2. Let X1 and X2 be jointly distributed with probability density function 

 (x1, x2) = 1 2 1 2

1
(1 ),| | 1,| | 1

4
0 ,

x x x x

elsewhere


  





 

 Show that X1 and X2 are not independent whereas 2
1X  and 2

2X  are independent. 

3. Given the independent random variables X1, X2 and X3 with probability densities:- 

  1(x1) = 
1

1, 0

0 ,

xe x

elsewhere

 



 

  2(x2) = 
22

22 , 0

0 ,

xe x

elsewhere

 



 

  3(x3) 
33

33 , 0

0 ,

xe x

elsewhere

 



 

 Find P(X1 + X2 < 1, X3 > 1) 

----- 
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Unit - 19 

Expectation of Function of Two Random Variables  

Structure 

19.1 Introduction 

19.2 Learning Objectives  

19.3 Bivariate Expectation Definition   

19.4 Theorems of Expectation 

 Self Check Exercise 

19.5 Summary 

19.6 Glossary 

19.7 Answers to self check exercises 

19.8 References/Suggested Readings 

19.9 Terminal Questions 

19.1 Introduction 

Bivariate expectation, also known as the expected value of a bivariate random variable, 
is a fundamental concept in probability and statistics that deals with the joint distribution of two 
random variables. It is a generalization of the univariate expectation, which is the expected 
value of a single random variable. In the case of a bivariate random variable (X, Y), the bivariate 
expectation is denoted as E[XY] and is defined as the average or expected value of the product 
of the two random variables, X and Y. In probability and statistics, bivariate expectation is an 
essential concept. It helps in understanding the relationship between two random variables and 
their joint distribution. It is used in the calculation of covariance and correlation, which are 
measures of the linear relationship between two random variables. It is a fundamental building 
block for more advanced statistical concepts, such as regression analysis and multivariate 
analysis.  

19.2  Learning Objectives  

 After studying this unit, you should be able to: 

 Define bivariate expectation 

 Prove addition theorem of expectation for two random variables 

 Prove multiplication theorem of expectation for two random variables  

 Prove theorem of expectation of a linear combination of random variables 

 Prove some other important theorems of two random variables.  
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19.3 Bivariate Expectation-Definition  

 Let (x, y) be a function of two dimensional random variable. (X, Y) and p(x, y) denotes 
the joint p.m.f. or joint p.d.f. of random variables (X, Y). The joint expectation of function (x, y_ 
of two random variables (X, Y) is denoted by E[(X, Y)' and is defined as  

 E[(X, Y)] = 

( , ) ( , ); . .'

( , ) ( , ) ; . .'

i j

f x y p x y if X and Y arediscreter r v s

f x y p x y dx dy if X and Y arecontinuous r v s
 

 









 
 

 provided exist.  

19.4 Theorems of Expectation 

Theorem I: Addition Theorem of Expectation  

 If X and Y are random variables, then  

 E(X + Y) = E(X) + E(Y) 

 provided all the expectations exist. 

Proof: Let X and Y be continuous random variables with joint p.d.f. h(x, y) and marginal 
probability density functions (x) and g(y) respectively. Then by definition 

 (x) = ( , ) ( )h x y dy and g y




  

 ( , )h x y dx




  

and E(X) = ( )x f x dx




    .....(1) 

and E(Y) = ( )y g y dy




    ......(2) 

 E(X + Y) = ( ) ( , )x y h x y dx dy
 

 

   

  = ( , )x h x y dx dy
 

 

   + ( , )y h x y dx dy
 

 

   

  = ( , )x h x y dy
 

 

 
 
 

   dx + ( , )y h x y dx
 

 

 
 
 

  dy 
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  = ( )x f x dx




  + ( )y g y dy




  

 E(X + Y) = E(X) + E(Y) 

 Hence the result 

Generalization: The mathematical expectation f the sum of n random variables is equal to the 
sum of their expectations, provided all the expectations exist. Symbolically, if X1, X2, ....., Xn are 
random variables, then  

 E(X1 + X2 + ........ + Xn) = E(X1) + E(X2) + .......+ E(Xn) 

or E
1

n

i
i

X


 
 
 
  = 

1

( )
n

i
i

E X


 , if all the expectations exist. 

Theorem II: Multiplication Theorem of Expectation  

 If X and Y are independent random variables, then E(XY) = E(X) E(Y) 

Proof: Let h(x, y) be the joint probability density function of X and Y.  

 Let (x) and g(y) be the marginal probability density functions of X and Y respectively. 
Since X and Y are independent, therefore, 

 h(x, y) = (x) g(y)   ....(1) 

 E(XY) = ( , )x y h x y dx dy
 

 

   

 = ( ) ( )x y f x g y dx dy
 

 

    [  X, Y are independent] 

 = ( )x f x dx




 ( )y g y dy




  

 E(XY) = E(X) E(Y) 

 When X and Y are independent 

 Hence the result 

Generalization: The mathematical expectation of the product of a number of independent 
random variables is equal to the product of their expectations i.e. if X1, X2,......, Xn are n 
independent random variables then 

 E(X1, X2, ....., Xn) = E(X1) E(X2) ...... E(Xn) 

i.e. E
1

n

i
i

X


 
 
 
  = 

1

( )
n

i
i

E X


  

 provided all the expectations exists.  
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Theorem III: Expectation of a Linear Combination of Random Variables  

 If X1, X2, ....., Xn be any n random variables and if a1, a2, ........, an are an n constants, 
then  

 E 
1

n

i i
i

a X


 
 
 
  =  

1

n

i i
i

a X


 , provided all the expectations exist.  

Proof: Since E(a X) = a E (X) 

 and E  ix  =  iE x  

 E
1

n

i i
i

a X


 
 
 
  =  

1

n

i i
i

a X


 =  
1

n

i i
i

a E X


  

 Hence the result 

Theorem IV: If X and Y are two random variables s.t. X > Y, then E(X) > E(Y), provided that 
the expectations exist.  

Proof: Since X > Y,  X - Y > 0 

 Hence, E(X - Y) > 0   [  if X > 0 then E(X) > 0] 

 Since E(X - Y) = E(X) - E(Y) 

  E(X - Y) > 0 

 E(X) - E(Y) > 0 

 E(X) > E(Y) 

Theorem V: |E(X)| < E|X|, provided all the expectations exist.  

Proof: By Theorem IV, we note that since  

 E(X) < E|X|, X < |X| 

 and - X < |X|   .......(1) 

 E(-X) < E|X| 

i.e. - E(X) < E|X|    ......(2) 

 from (1) and (2), we get  

 Max {E(x), - E(X)} < E|X| 

 |E(x)| < E|X| 

Theorem VI: If X and Y are independent random variables, then  

 E[h(X). k(Y)] = E[h(X)] E[k(Y)] 
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 where h is a function of X alone and k is a function of Y alone, provided expectations on 
both sides exist.  

Proof: Let 1(x) and 2(y) be the marginal probability density functions of X and Y respectively. 
Since X and Y are independent, their joint probability density function (x, y) is given by  

  (x, y) = 1(x) 2(y) 

 By definition 

 E[h(X) k(Y)] = ( ) ( ) ( , )h x k y f x y dx dy
 

 

   

   = 1 2( ) ( ) ( ) ( )h x k y f x f y dx dy
 

 

   

 Since E[h(X) k(Y)] exists, the R.H.S. is absolutely convergent and thus the order of 
integration can be changed to get  

 E [h(X) k(Y)] = 1( ) ( )h x f x dx




 
 
 
 2( ) ( )k y f y dy





 
 
 
  

 E [h(X) k(Y)] = E [h(X)] E [k(Y)] 

 Hence the result  

 Let us consider the following examples to clear the idea: 

Example 1: Show that the expected value of X is equal to the expectation of the conditional 
expectation of X given Y. Symbolically, 

  E(X) = E{E(X/Y)} 

Sol: We shall prove this result for discrete case. 

 By definition  

 E{E(X/Y)} = E ( / )i i j
i

x P X x Y y
 

  
 
  

  = E 
( )

( )
i j

i
i j

P X x Y y
x

P Y y

   
 

  
  

  = 
( )

( )
i j

i
j i j

P X x Y y
x

P Y y

    
  

    
   P(Y= yj) 

  =  i i j
j i

x P X x Y y   
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  = ( )i i j
i j

x P X x Y y
  

   
   

   

  = ( )i i
j

x P X x  

  = E(X) 

 Hence the result 

Example 2: Let A and B be two mutually exclusive events, then  

 E(X/A∪B) = 
( ) ( / ) ( ) ( / )

( )

P A E X A P B E X B

P A B


 

Sol: By definition 

 E(X/A∪B) = 
1

( )P A B
 

i

i i
x A B

x P X x


    ......(1) 

 Fince A and B are mutually exclusive events,  

  
i

i i
x A B

x P X x


  =  
i

i i
x A

x P X x


  +  
i

i i
x B

x P X x


  

 Using this in (1), we have  

 E(X/A∪B) = 
1

( )P A B
   

i i

i i i i
x A x B

x P X x x P X x
 

 
   

 
   

 =  
1

( )P A B
 

   
( ) ( )

( ) ( )
i i

i i i i
x A x B

x P X x x P X x

P A P B
P A P B

 

  
 

 
 
 

 
 

 E(X/A∪B) = 
( ) ( / ) ( ) ( / )

( )

P A E X A P B E X B

P A B


 

 Hence the result 

Example 3: The joint probability distribution function of two discrete random variables X and Y 
is given by  

 (x, y) = 2

2
;0 2,0 3

4
0 ;

x y
x y

elsewhere


   




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Find 

 (i) E(X)  (ii) E(Y)  (iii) E(XY) 

 (iv) E(X2)  (v) E(Y2)  

Sol: (i) E(X) = ( , )
x y

x f x y  = 
x

x ( , )
y

f x y
 
 
 
  

  = 
2 3

0 0

(2 )

42x y

x x y

 


  

  = 
2

0x

x



2 2 1 2 2 2 3

42 42 42 42

x x x x   
   

 
 

  = 
2

0

2 6

42x

x
x



 
 
 

  

  = 0.
6

42
 + 1.

14

42
 + 2.

22

42
 

  = 
58

42
 = 

29

21
 

(ii) E(Y) = ( , )
x y

y f x y  = ( , )
y y

y f x y
 
 
 

   

 = 
3 2

0 0

(2 )

42x y

y x y

 


  

 = 
3

0y

y


  
2 4

42 42 42

y y y  
  

 
 

 = 
3

0y

y



6 3

42

y 
 
 

 

 = 0. 
6

42
 + 1. 

9

42
 + 2.

12

42
 + 3. 

15

42
 

 = 
78

42
 = 

13

7
 

(iii) E(Y) = ( , )
x y

xy f x y  = 
2 3

0 0

2

42x y

x y
xy

 

 
 
 

  
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 = 
2

0x


(2 1) 2 (2 2) 3 (2 3)
0

42 42 42

x x x x x   
   

 
 

 = 
2

0x


212 14

42

x x 
 
 

 = 0 + 
12 14

42


 + 

48 28

42


 

 = 
102

42
 + 

17

7
 

(iv) E(X2) = 2

x y

x (x, y) = 2

x

x ( , )
y

f x y
 
 
 
  

 = 02. 
6

42
 + 12. 

14

42
+ 22. 

22

42
 

 = 
102

42
 = 

17

7
 

(v) E(Y2) = 2

x y

y (x, y) = 2

y

y ( , )
x

f x y
 
 
 
  

 = 02. 
6

42
 + 12. 

9

42
 + 22. 

12

42
+ 32.

15

42
 

 = 
192

42
 

 = 
32

7
 

Self-Check Exercise  

Q.1 The joint density function of two continuous random variables X and Y is given by 

 (x, y) = 

2
;2 6,0 5

210
0 ;

x y
x y

elsewhere


   





 

 Find 

 (i) E(X)  (ii) E(Y)  (iii) E(XY) 

 (iv) E(X2)  (iv) E(Y2)  

Q.2 If X and Y are two random variables s.t. X > Y, then prove that E(X) > E(Y), 
provided that the expectations exists.  
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19.5 Summary 

 We conclude this unit by summarizing what we have covered in it: 

1. Defined joint expectation of function (x, y) of two random variables (X, Y). 

2. Proved addition theorem of expectation of two random variables. 

3. Proved multiplication theorem of expectation of two random variables. 

4. Proved theorem on expectation of a linear combination of random variables. 

5. Proved some other important theorems of expectations of two random variables.  

6. Some examples are given related so that the contents be clarified further.  

19.6 Glossary: 

1. Let (x, y) be a function of two dimensional random variable (X, Y) and p(x, y) 
denotes the joint p.m.f. or joint p.d.f. of random variable (X, Y). The joint 
expectation of function (x, y) of two random variables (X, Y) is denoted by E[(X, 
Y)] and is defined us  

 E[(X, Y)] = 

f(x,y)p(x,y);if X and Y arediscrete r.v.'s

f(x,y)p(x,y)dx dy;if X and Y arecontinuous r.v.'s

i j

 

 









 
 

2. If X and Y are random variables, then E(X + Y) = E(X) + E(Y), provided all the 
expectations exist. 

3. If X and Y are independent random variables, then E(XY) = E(X) E(Y) 

19.7 Answer to Self Check Exercise 

 Ans.1 (i) 
268

63
  (ii) 

170

63
  (iii) 

80

7
 

  (iv) 
1220

63
  (v) 

1175

126
  

19.8 References/Suggested Readings 

1. Robert V. Hogg, Joseph w. Mckean and Allen T. craig, Introduction to 
Mathematical statistics, Pearson Education, Asia, 2007. 

2. Irwim Miller, Marylees Miller and John E. Freund, Mathematical Statistics with 
Application, 7th Ed., Pearson Education, Asia, 2006. 

3. Sheldon Ross, Introduction to Probability Model, 9th Ed., Academic Press, Indian 
Reprint, 2007. 
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19.9 Terminal Questions 

1. Let X and Y be two random variables each taking three values -1, 0 and 1, and 
having the joint probability distribution. 

 

X 

Y 

-1 0 1 Total 

-1 0 0.1 0.1 0.2 

0 0.2 0.2 0.2 0.6 

1 0 0.1 0.1 0.2 

Total 0.2 0.4 0.4 1.0 

Show that X and Y have different expectations. 

2. State and prove addition theorem of expectation. 

3. If X1, X2, ......., Xn be any n random variables and if a1, a2, ....., an are any n 
constants, then prove that  

 E
1

n

i i
i

a X


 
 
 
  = 

1

( )
n

i i
i

a E X


 , provided all the expectations exist.  

----- 
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Unit - 20 

Covariance, Conditional Expectations and Conditional 

Variance  

Structure 

20.1 Introduction 

20.2 Learning Objectives  

20.3 Covariance 

20.4 Variance of a Linear Combination of Random Variables 

20.5 Conditional Expectation And Conditional Variance  

 Self Check Exercise 

206 Summary 

20.7 Glossary 

20.8 Answers to self check exercises 

20.9 References/Suggested Readings 

20.10 Terminal Questions 

20.1 Introduction 

Covariance is a measure of the strength and direction of the linear relationship between 
two random variables. It is defined as the expected value of the product of the deviations of two 
random variables from their respective means. The covariance can take positive, negative or 
zero values, indicating a positive, negative or no linear relationship between the variables, 
respectively. It is useful in portfolio optimization, risk management and multivariate statistical 
analysis.  

Conditional expectation is the expected value of a random variable given the value of 
another random variable or set of random variables. It is a powerful tool in statistical inference 
as it allows us to make predictions about one variable based on the information provided by 
another variable. It is also used in the calculation of conditional variance and the derivation of 
regression models.  

Conditional variance is the variance of a random variable given the value of another 
random variable or set of random variables. It measures the spread or dispersion of the 
distribution of X around its conditional mean, given the value of Y.  

 These concepts are fundamental in probability theory, statistics and many areas of 
applied mathematics and data science. Understanding and applying them effectively can 
provide valuable insights and enable more informed decision making.  
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20.2 Learning Objectives  

 After studying this unit, you should be able to: 

 Define covariance 

 Discuss properties of covariance  

 Prove theorem of variance of a linear combination of random variables 

 Define conditional expectation and conditional variance for discrete random 
variables 

 Define conditional expectation and conditional variance for continuous random 
variables.  

20.3 Covariance  

 Definition: If X and Y are two random variables, them the covariance between them is 
defined as  

 Cov(X, Y) = E[{X - E(X)} {Y - E(Y)}] 

 provided the expectations exist 

Properties of Covariance  

Property I: Cov (X, Y) = E(XY) - E(X) E(Y) 

Proof: Cov (X, Y) = E[{X - E(X)} {Y - E(Y)}] 

 = E[XY - XE (Y) - YE (X) + E(X) E(Y)] 

 = E(XY) - E(X) E(Y) - E(Y) E(X) + E(X) E(Y) 

 Cov (X, Y) = E(XY) - E(X) E(Y) 

 Hence the result  

Cor. : If X and Y are independent, then  

 E(XY) = E(X) E(Y) 

 Cov (X, Y) = E(XY) - E(X) E(Y) 

 = E(X) E(Y) - E(X) E(Y) 

 = 0 

 Cov. (X, Y) = 0 

Property II: Cov (aX, bY) = ab Cov (X, Y) 

Proof: Cov (aX, bY) =E[{aX - E(aX)} {bY - E(bY)}] 

 = E[a {X - E(X)} b {Y - E(Y)}] 

 = abE [{X - E(X)} {Y - E(Y)}] 

 = ab Cov (X, Y) 
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i.e. covariance is not independent of scale.  

Property III: Cov (X + a, Y + b) = Cov (X, Y) 

Proof: Cov (X + a, Y + b) = E [{(X + a) = E (X + a)}] [{(X + b) - E (X + b)}] 

 = E[{X + a - E (X) - a} {Y + b - E(Y) - b}] 

 = E[{X - E(X)} {Y - E(Y)}] 

 = Cov (X, Y) 

i.e. covariance is independent of change of origin. 

Property IV: Cov ,
X Y

X Y 

 

  
 
 

 = 
1

X Y 
 Cov (X, Y) 

Proof: Follows from property II and III. 

Property V: Cov (aX + b, cY + d) = ac Cov (X, Y) 

or Cov (X + Y, Z) = Cov (X, Z) + Cov (Y, Z)  

or Cov (aX + bY, cX + dY) = ac 2
X  + bd 2

Y  + (ad + bc) Cov (X, Y) 

Property VI: If X and Y are independent, then Cov (X, Y) = 0. However, the converse is not 
true. 

Proof: Let if possible  

 X = U - V and Y = U + V 

      U  - V and      U    V  

   -       U - U   -  V - V   

and   -       U - U      V - V   

 Cov (X, Y) = E[(X - E(X)) (Y - E(Y))] 

   E[   -        -      

   E[  U - U   -  V - V     U - U     V - V     

   E[  U - U  2 -  V - V  2}] 

   E[ U - U  2  - E[ V - V  2] 

 = Var (U) - Var (V) 

i.e. Cov (X, Y) = Var (U) - Var (V) 

 If we choose U and V such that Var (U) = Var (V), then Cov (X, Y) = 0, however X = U - 
V and Y = U + V or X + Y = 2 U i.e. X and Y are dependent. 

i.e. if for two random variables X and Y, Cor (X, Y) = 0, then X and Y need not be 
independent.  

 Hence, converse is not true.  
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20.4 Variance of a Linear Combination of Random Variables  

 Statement: Let X1, X2, ....., Xn be n random variables, then  

 Var 
1

n

i i
i

a X


 
 
 
  = 2

1

( )
i

n

i
i

a Var X


  + 2
1 1

n n

i j
i j

a a
 

 . Cov (Xi, Xj) 

Proof: Let Y = a1X1 + a2X2 + ....... + anXn   ......(1)  

 E(Y) = a, E(X1) + a2E(X2) + .......+ an E(Xn)  .......(2) 

 (1) - (2) implies 

 Y - E(Y) = a1 1 1( )X E X  + a2  2 2( )X E X +.......+ an  ( )n nX E X  

 Squaring and taking expectation of both side, we get  

 E[Y - E(Y)]2 = E[a1 {X1 - E(X1)} + a2 {X2 - E(X2) +........+ an{Xn - E(Xn)}]
2 

 E[Y - E(Y)]2 = 2
1a E [X1 - E(X1)]

2 + 2
2a E [X2 - E(X2)]

2 +........+ 

 2
na E[Xn - E(Xn)]2 + 2

1 1

n n

i j
i j

a a
 

 E[{Xi - E(Xi)} {Xj - E(Xj)}] 

 Var Y = 2
1a Var (X1) + 2

2a  Var (X2) +.......+ 2
na  Var (Xn) + 2 

1 1

n n

i j
i j

a a
 

  Cov (Xi, Xj) 

 Var 
1

i

n

i
i

a X


 
 
 
 = 2

1
i

n

i

a


  Var (Xi) + 2
1 1

n n

i j
i j

a a
 

 Cov (Xi, Xj) 

 Hence the result 

20.5 Conditional Expectation and Conditional Variance 

(i) For Discrete Random Variables:  

 The conditional expectation or mean value of a function g(X, Y) given that Y = yj, is 
defined by  

 E[g(X, Y)/Y = yj] = 
1

( , )i j
i

g x y




 P(X = xi/Y = yj) 

 = 

( , ( (

( )

i j i j
i

j

g x y P X x Y y

P Y y

 




 

In particular, 

 E(X/Y = yj) = 
1

i
i

x




 P(X = xi /Y = yj) 

The conditional variance of X given Y = yj is given by 
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 V(X/Y = yj) = E[{X/Y = yj)}
2 Y = yj] 

(ii) For continuous Random Variables: 

 The conditional expectation of g(X, Y) given Y = y is defined by  

 E[g(X, Y)/ Y = y] = /( , ) ( / )X Yg x y f x y dx




  

   = 
( , ) ( , )

( )Y

g x y f x y

f y





 dx  

In particular,  

 E(X/Y = y) = 
( , )

( )Y

x f x y dx

f y





  

Similarly, E(Y.X = x) = 
( , )

( )X

y f x y

f x





 dy 

The conditional variance of X given Y = y be defined as  

 V(X/Y = y) = E[{X - E(X/Y = y)}2/ Y = y] 

and similarly, 

 V(Y/X = x) = E[{Y - E[Y/X = x)}2] X = x] 

 Let us improve our understanding of these results by looking at some of the following 
examples:- 

Example 1: Two random variables X and Y have the following joint probability density function 

 (x, y) = 
2 ;0 1,0 1

0 ;

x y x y

otherwise

     



 

Find (i) marginal probability density functions of X and Y 

 (ii) Conditional density functions 

 (iii) Var (X) and Var (Y); and  

 (iv) Covariance between X and Y 

Sol: (i) By definition 

 X(x) = ( , )f x y dy




  

  = 
1

0

(2 )x y dy   
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  = 
3

2
- x 

 X(x) = 

3
;0 1

2
0 ;

x x

otherwise


  





 

Similarly, Y(y) = 

3
;0 1

2
0 ;

y y

otherwise


  





 

(ii) By definition  

 X/Y(x/y) = 
( , )

( )
XY

Y

F x y

f y
 = 

(2 )
3
2

x y

y

 

 
 

 

, 0 < (x, y) < 1 

 Y/X (y/x) = 
( , )

( )
XY

X

F x y

f y
 = 

(2 )
3
2

x y

x

 

 
 

 

, 0 < (x, y) < 1 

(iii) E(X) = 
1

0

( )Xx f x dx  = 
1

0

3

2
x x dx
 

 
 

  = 
5

12
 

 E(Y) = 
1

0

( )Yy f y dy  = 
1

0

3

2
y y dy
 

 
 

 = 
5

12
 

 E(X2) = 
1

2

0

3

2
x x dx
 

 
 

 = 

14
3

0

3

6 4

x
x   = 

1

4
 

 V(X) = E(X2) - {E(X)}2 

 = 
1

4
 - 

25

144
 = 

11

144
 

Similarly, V(Y) = 
11

144
 

(iv) E(XY) = 
1 1

0 0

(2 )xy x y dx dy    

 = 
1

0


12 3 2 2

0

2
2 3 2

x

x

x y x y x y




 
  

 
 dy 
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 = 
1

0
 x 22 1

3 2
y y

 
 

 
dy 

 = 

12 3

0
3 4

y y 
 

 
 = 

1

6
 

 Cov (X, Y) = E(XY) - E(X) E(Y) 

 = 
1

6
 - 

5

12
. 

5

12
 = -

1

144
 

Example 2: The joint p.d.f. of bivariate random variable (X, Y) is given by 

 XY(x, y) = 
6 (2 );0 1,0 1 ;0 1

0 ;

xy x y x y y y

otherwise

        



 

Find conditional expectation of X given Y = y where 0 < y < 1.  

Sol: Here Y(Y) = 




 (x, y)dx 

 = 
1

0

6 (2 )xy x y dx   

 = 6y 

12 3

0

(2 )
2 3

x x
y   

 = 6y 
(2 ) 1

0
2 3

y 
  

 
 

 The conditional expectation of X given Y = y is  

E(X/Y = y) = /. X Y

x
x f dx

y





 
 
 

  

= 
( , )

( )
XY

Y

f x y
x dx

f y





  

 = 
6 (2 )

(4 3 )

xy x y
x dx

y y





 

  

 = 
6

4 3y
 

1
2 3

0

(2 )y x x dx   
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 = 
6

4 3y

13 4

0

(2 )
3 4

x x
y   

 = 
6

4 3y

(2 ) 1

3 4

y 
 

 
 

 = 
5 4

8 6

y

y




 

Example 3: The joint probability density function of X1 and X2 is  

  (x1, x2) = 2, 0 < x1 < x2 < 1 

    = 0, elsewhere  

Find, 

 (i) The marginal probability density functions of X1 and X2 

 (ii) The conditional probability density function of X1, given X2 = x2 

 (iii) The conditional mean and conditional variance of X1, given X2 = x2 ; and  

  and P 1

1
0

2
X

 
  

 
 

Sol: (i) The marginal probability density function of X1 is  

  1(x1) = 
1

1

22
x

dx  

   = 12(1 );0 1

0 ;

x x

elsewhere

  



 

 The marginal probability density function of X2 is  

  2(x2) = 
2

1

1

0

2
x

x

dx


  

   = 2x2 ; 0 < x2 < 1 

   -  0 ; elsewhere  

(ii) The conditional probability density function of X1, given X2 = x2, 0 < x2 < 1 is 

  =  =  

  =  ; 0 < x1 < x2 

2/ 1 2( / )
iX Xf x x 1 2

2 2

( , )

( )

f x x

f x 2

2

2x

2

1

x
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  = 0 ; elsewhere 

(iii) The conditional mean of X1, given X2 = x2 is  

 E(X1/X2 = x2) = 
1 21 / 1 2 1( / )X Xx f x x dx





  

  = 
2

1

1 1
20

1
x

x

x dx
x



 
 
 

  

  = 
2
2

2

x
. 

2

1

x
 

 The conditional variance of X1 given X2 = x2 is  

 Var (X1/X2 = x2) = E
2

1

2 2

X

X x

 
 

 
 - 

2

1

2 2

X
E

X x

  
  

  

 

 = 
2

1

2
1

0

x

x

x


  
2

1

x
dx1 - 

2

2

2

x 
 
 

 

 = 
23

1

0
3

x
x

2

1

x
 - 

2
2
22

x
 

 = 
2
2

3

x
 - 

2
2

4

x
 

 = 
2
2

12

x
, where 0 < x2 < 1 

(iv) P 1 2

1 3
0 /

2 4
X X

 
   

 
 = 

1 2

1/2

/ 1 1

0

( / 3 / 4)X Xf x dx  

  = 
1/2

1

0

4

3
dx

 
 
 

  

 P 1

1
0

2
X

 
  

 
 = 

1/2

1 1 1

0

( )f x dx = 
1/2

1 1

0

2(1 )x dx  

 = 
3

4
 

Example 4: Let X1 and X2 have the joint probability density function 



297 
 

 (x1, x2) = 6x2, 0 < x2 < x1 < 1 

  = 0 , elsewhere   

Find 

 (i) The marginal probability density function of X1; 

 (ii) The conditional probability density function of X2, given X1 = x1; 

(iii) If conditional mean of X2 given X1 = x1 is random variable, Y(say), then find the 
distribution function of Y and probability density function of Y; 

(iv) The mean and variance of Y. 

Sol: (i) The marginal probability density function of X1 is  

  1(x1) = 
1

2
2 2 1

0

6 3
x

x dx x , 0 < x1 < 1 

   = 0 ; elsewhere  

(ii) The conditional probability density function of X2, given X1 = x1 is  

 X2/X1(x2/x1) = 1 2

1 1

( , )

( )

f x x

f x
 = 2

2
1

2

3

x

x
 

 = 2
2
1

2x

x
, 0 < x2 < x1 

 = 0 ; elsewhere, where 0 < x1 < 1 

(iii) The conditional mean of X2, given X1 = x1 is  

 E(X2/X1 = x1) = 
1

2 12 / 2 1 2

0

( / )
x

X Xx f x x dx  

 = 
1

2
2 2

10

6

3

x
x

x
x dx2 

 = 
2
1

6

3x

13
2

0
3

x
x

 

 = 12

3

x
, 0 < x1 < 1 

Now, E(X2/X1) = 12

3

x
is a random variable Y. 
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The distribution function of Y = 12

3

x
 is  

 G(y) = Pr(Y < y) 

  = Pr 1

3

2

y
X

 
 

 
, 0 < y < 

2

3
 

From the probability density function 1(x1), we have  

 1(x1) = we have  

 G(y) = 
3 /2

2
1 1

0

3
y

x dx  = 
327

8

y
, 0 < y < 

2

3
 

Also, G(y) = 0, if y < 0 

and G(y) = 1, if 
2

3
 < y. 

Therefore, probability density function of  

 Y = 12

3

x
 is 

 g(y) = G'(y) = 
281

8

y
, 0 < y < 

2

3
 

(iv) Mean of Y 12

3

x 
 
 

 is  

 E(Y) = 
2/3 2

0

81

8

y
dy

 
 
 

  

  = 
81

8

2/34

0
4

y
 = 

1

2
 

 Variance of Y 12

3

x 
 
 

 is  

 Var (Y) = E(Y2) - [E(Y)]2 

  = 
2/3 2

2

0

81

8

y
y dy
 
 
 

  - 
2

1

2
 
 
 
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  = 
81

8

2/35

0
5

y
 - 

2
1

2
 
 
 

 

  = 
81

40

32

243
 
 
 

 - 
1

4
 

  = 
4

15
 - 

1

4
 

  = 
1

60
 

Example 5: Let the joint probability density function of random variables X and Y be  

 (x, y) e-y, 0 < x < y <  

  = 0, elsewhere 

Find moment generating function of this joint distribution and hence find the correlation 
coefficient of X and Y 

Sol: Given joint probability density function is  

 (x, y) = e-y, 0 < x < y < 

  = 0, elsewhere  

 Now, the moment generating function of this joint distribution is  

 M(t1, t2) = E  1 2t x t ye   

 = 1 2

0

t x t y y

x y x

e e e dy dx
 



 

   

 = 1

0

t x

x

e





2(1 )

2(1 )

y t

y x

e

t


 


 

dx  [Here t2 > 1] 

 = 
2

1

(1 )

20

6

1

x t
t x

x

e dx
t

  


   

 = 
2

1

1 t
 1 2(1 )

0

x t t

x

e dx


  



  

 = 
2

1

1 t

1 2(1 )

1 2 0
(1 )

t te

t t


  

  
 

 provided that t1 + t2 < 1. 
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  and t2 < 1 

 = 
2 1 2

1

(1 )(1 )t t t  
, provided that t1 + t2 < 0 and t2 < 1 ......(1) 

Further 

 1 = E(X) = 
1

(0,0)M

t




 = 

2
1 2 2 (0,0)

1

(1 ) (1 )t t t

 
 

   
 

 2 = E(Y) = 
2

(0,0)M

t




= 

2 2
2 1 2 2 (0,0)

1 1

(1 ) (1 )(1 )t t t t

 
 

    
= 2 ; 

 E(X2) = 
2

2
1

(0,0)M

t




 = 

3
1 2 2 (0,0)

2

(1 ) (1 )t t t

 
 

   
= 2 ; 

 E(Y2) = 
2

2
2

(0,0)M

t




 = 6 ; 

 2
1 = E(X2) - 2

1 = 2 - 1 = 1 ; 

 2
2  = E(Y2) - 2

2  = 6 - 4 = 2 ; 

 
2

1 2

(0,0)M

t t



 
 = E(XY) = 3; 

 E[(X - 1) (Y - 2)] = 
2

1 2

(0,0)M

t t



 
- 1 2 

 = 3 - 2 = 1  

Now, the correlation coefficient of X and Y is  

 P = 
 1 2

1 2

)( )E X Y 

 

 
= 

1

2
 

Example 6: Let the two variates X1 and X2 have the joint density function (x1, x2), then prove 
that the conditional mean of X2 (given X1) coincides with (unconditional) mean only if the 
random variables X1 and X2 are independent (stochastically) 

Sol: The conditional mean of X2 given X1 is given by E(X2/X1 = x1) = 
2

2 2 1 2( / )
x

x f x x dx  .....(1) 

 where (x2/x1) is the conditional probability density function of X2 given by X1 = x1. 

 The joint probability density function of X1 and X2 is given by  
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 (x1, x2) = 1(x1) (x2/x1) 

or (x2/x1) = 1 2

1 1

( , )

( )

f x x

f x
 

 where 1(x1) is the marginal probability density function of X1 

 Substituting this value in (1), we get  

 E(X2/X1 = x1) = 
2

2 1 2

1 1

( , )

( )x

x f x x

f x

 
 
 

 dx2  .....(2) 

 unconditional mean of X2 is given by 

 E(X2) = 
2

2 2 2 2( )
x

x f x dx    ......(3) 

 From (2) and (3), we conclude that the conditional mean of X2 (given X1) will coincide 
with unconditional mean of X2 only if  

 1 2

1 1

( , )

( )

f x x

f x
 = 2(x2) 

i.e. if (x1, x2) = 1(x1)2(x2) 

i.e. if X1 and X2 are independent (stochastic tally)  

 Hence the required result 

Self-Check Exercise  

Q.1 The joint p.d.f. of (X, Y) is given by XY(x, y) = 
( )4 ( ) ;0 ,0

0 ;

x yy x y e x

otherwise

       



 

 Find E(X/Y = y) 

Q.2 If the random variable X have the marginal density 

  1(x) = 1, -
1

2
 < x < 

1

2
  

 and the conditional density of the vairable Y is  

 (y/x) = 

1
1, 1, 0

2
1

1, 1 ,0
2

x y x x

x y x x


     


      


 

 then show that variables X and Y are uncorrelated. 
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Q.3 Let (x, y) = 
2 320 ;0 1

0 ;

x y x y

otherwise

   



 

 be the joint p.d.f. of X and Y. Find the conditional mean and variance of X given 
Y = y, 0 < y < 1 

20.6 Summary 

 We conclude this unit by summarizing what we have covered in it: 

1. Defined covariance 

2. Proved different properties of covariance  

3. Proved theorem of variance of a linear combination of random variables 

4. Defined conditional expectation and conditional variance for discrete random 
variables 

5. Defined conditional expectation and conditional variance for continuous random 
variables 

6. Some examples are given related to each topic so that the contents be clarified 
further.  

20.7 Glossary: 

1. If X and Y are two random variables, then the covariance between them is 
defined as 

 Cov (X, Y) = E [{X - E(X)} [Y - E(Y)}], 

 provided the expectations exists 

2. The conditional expectation or mean value of a function g(X, Y) given that Y = yj, 
is defined as  

 E[g(X, Y)/Y = yj] = 1
1

( , )j
i

g x y




 P (X = xi/Y = yj) 

  = 
1 1( , ) ( )

( )

j j
i

j

g x y P X x y

P Y y

 




 [For discrete random variables] 

The conditional variance of X given Y = yj is given by 

V(X/Y = yj) = E[{X - E(X/Y = yj)}
2Y = yj] [For discrete random variables) 

3. The conditional expectation of g(X, Y) given Y = y is defined as  

 E[g(X, Y)/Y = y] = X/Y( , ) ( / )g x y f x y dx




  
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 = 





( , ) ( , )

( )y

g x y f x y

f y
dx [For continuous random variables] 

In particular 

 E(X/Y = y) = 
( , )

( )y

x f x y
dx

f y





  

Similarly, E(Y/X = x) = 
( , )

( )x

y f x y
dy

f y





  [For continuous random variables] 

The conditional variance of X given Y = y is defined as  

 V(X/Y = y) = E[{X - E(X/Y= y)}2/Y=y] 

and similarly, 

 V(Y/X = x) = E[{Y - E (Y/X = x)}2/X = x] [For continuous random variables] 

20.8 Answer to Self Check Exercise 

 Ans.1 E[X/Y = y] = 
2

1

y

y




 

 Ans. 2 P(X, Y) = 0, hence variables X and Y are uncorrelated. 

 Ans. 3 Conditional mean of X given Y = y 

  = 
3

4
 y, 0 < y < 1 

 Conditional variance of X given Y = y 

  = 
23

80

y
, 0 < y < 1 
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20.10 Terminal Questions 

1. Let X and Y are two independent random variables, then show that the 
correlation coefficient of X and Y is zero. 
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2. Joint density function of Bivariate random variable (X, Y) is given by  

 XY(x, y) = 

1
;0 ,0 2

2
0 ;

xyye x y

otherwise


    





 

 Find E 2 / 1
x

e Y
 

 
 

 

3. Let the random variables X and Y have the joint probability density function 

 (x, y) = 2, 0 < x < y, 0 < y < 1 

  = 0, elsewhere  

 Then, show that  

 (i) The conditional means are, respectively, (1 + x)/2, 0 < x < 1 and 
2

y
, 0 < y 

< 1 ; 

 (ii) The variance of the conditional distribution of Y given X = x is  

  
2(1 )

12

x
, 0 < x < 1 

 and the variance of the conditional distribution of X, given Y = y is 
2

12

y
, 0 < y < 1 

4. If the joint probability density function of X and Y is given by 

 (x, y) = 

1
(2 ) , 0 1,0 2

4
0 ,

x y x y

otherwise


    





 

 Find the conditional mean and conditional variance of Y given X = 
1

4
. 

----- 


