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1.1 Introduction

Dear students, before proceeding to the concept of vector spaces, Basis and

dimensions, Quotient spaces, Linear Transformation etc. it is important to understand some
basic concepts like composition (Binary composition, algebraic Structure, Fields etc.)

1.2

1.3

Learning Objectives:

The main objective of this unit are

1. to define what are call as a binary composition.
2. to define algebraic structure and types of composition.
3. the concept of fields and its properties.

Composition

Binary composition (Operation)-
Let A be a non-empty set.

Define a function f:

A x A — A. Then f is called a binary composition (or internal composition) or simply a
composition on A.

The function f corresponds to each ordered pair (X, y) € A, a unique element f (X, ¥); X, y

€ A. We notice the following points.

(1) We can use any convenient notation for a composition but the most commonly
used are *, 0, ®, O, +, ..... etc.



Set * be a composition on a non-empty set A. then
* (X, y)orx *y, X,y € A, denotes the image of (x, y) under .

(i) If * is a composition on A, then we write it as (A, *). Here A is a set with operation
* If @, O are two compaosition on A then we write (A, @, O). Here A is a set with
two operation @ and O.

Set us give some examples of Binary Operations
Example 1. Set R be the set of reals and

f R x R —rbe defined as

fXY)=xyvV{xy eRxR,x,yeR.

then f is a binary composition on R.
2. Set N be the set of naturals and * :

N x N — N be defined as

X*y=X+y,XYyeN.

SincevVx,yeN=x+yeN=x#*yeN.
3. Define = :

NxN — Nas

X*y=X-Y,X,yeN

Setx=3,y=5. Then

3+5=3-5=-2¢N

~Xxy g Nforallx,yeN

.. subtraction is a not a binary composition on N.
Algebraic Structure

A set having one or more binary composition is called Algebraic structure.
Types of Compositions

We shall here discuss some important types of binary compositions which are uesful in
defining structure such as Groups, Rings, Fields and Vector spaces.

() Commutative Composition
A binary composition * on a set A is called commutative compaosition iff.
X*y=y*xXVXyeA

For instance, the addition composition in the set of real is commutative, since.



X+y=y+xXVXVyer.
(1 Associative Composition
A binary composition * on a set A is called associative composition iff.
x*xy)*z=x*x(y*2)VX,yzeA
For example
0] The addition composition in the set of reals is associative. Since
xX+y)+z =x+(y+2) VXYV, zeR.
(i) The composition *, defined as
*:RxR—>R

X*y=X+2y:X Y e Ris notassociative

Since

(xxy)*xz  =(x+2y)*z
=(x+2y) 2z
=X+2y+2z

and

X*(y*z)  =x=(y+22)
=X+2(y+22)
=X+2y+4z

Thus (X *y) * Z# X * (Y * 2).
(1) Composition with identity element

A binary composition * on a set A is said to be a composition with identity element iff 3 E
€ a, such that

exX=X*e=evxeA
The element e here is called identity element of A and is always unique.
For example
(1) In R, the set of reals, 0 is the identity element under addition composition since
X+0=x=0+xVXx €A

(ii) The set of natural numbers N does not have the identity element under the
composition of addition, since there is no natural number e such that

a+te=aVvaeN (.. 0¢N).



(IV)  Invertible element

Set e be the identity element of set A under the composition '+' on the set A. Set a € A,
then B € Ais called an inverse element of o, iff

oL * B —e= B * QL.
Then the composition '+' is a composition with inverse element, which is always unique.

For example
0] In the set | of integers, 0 is the identity element under addition compositin and
each element a e | has its additive inverse (-a) < I,
Since
at(-a)=0=(a)+a
Thus every element of | is invertible
(i) In natural number set N, 1 (one) is the identity element under multiplication

composition but there is no element other than | which is invertible.
V) Distributive Operations

Set * and @ be two binary operations on a set A. Then we say that the operation * is
distributive with @ if

X*¥(y@2)=(X*y)®(X*2) VX, yzZeA
(left distributive law)

and
Y@2)+x=(Y*X) @ (z*y) VX, Y,z A

(Right distributive law)
If the composition * is commutative then
Left Distributive Law = Right Distributive Law

For example

In the set of naturals multiplication composition is distributive over addition composition.
Since

X.(y+2)=x.y+x.zVX,y,zeN.
Fields

A non-empty set F having atleast two elements with two binary compositions 't' and .
(addition and multiplication) is called a field iff the following postulates are satisfied.

() Properties of Addition
(1) Va,beF=a+beF (closure property)

(i) Vab,ceF=(a+h)+c=a+(b+c) (Associative property)

4



(iii) VaeF30eFs.t.
a+0=0+a=1 (Existence of additive identity)
(iv) VaeF,3=aeFs.t.
a+(-1)=0=(-a) +ta (Existence of additive inverse)
(V) Va,beF=a+b=Db+a) (Commutative property)
()} Properties of Multiplication
0] VabeF=a+beF (Closure property)
(i) Va b, ceF=a(c)= (ab)c (Associative property)
(iii) VaeF31leFst.
l.a=a.l= a, 1liscalledunityof F
(ivy Va(=0)eF,I=beFs.t.
a.b=b.a=1, (Existence of multiplication inverse)
b is called inverse of a.
(V) VabeF=a.b=b.a (Commutative property)
(1 Distributive Laws
vabceF
a.(b+c)=a.b+a.c
(b+c).a=b.a+c.a
Some illustrative Examples
Example 1. A binary operation * is defined on |, the set of integers by
a*b=a+b+1VvVabel
Is * commutative and associative?
Solution: (i) Seta,b el

a*b=a+b+1.Vabel

and

bxa=b+a+l=a+b+1
= a*b=b=xa
= * IS commutative on |



(i) Seta,b,cel
ax*(b=*c) —ax(b+c+1)
=at+(b+c+1)+1
=a+b+c+2 Vahbcel
and
(a*b)=*c =(a+b+1)=*c
=(a+b+1l)+c+1
=a+b+c+2 Vahbcel
Hence * is also associative on 1.
Example 2. A binary operation * is defined on R, the set of real by
a*b=a+2bVabeR.
Is * is commutative and associative? Justify.
Solution: (i) a, b € Rthen
a*b=a+2b
and b=*xa=b+2a
= ax*bzxb=*a
Thus * is not commutative on R.
(i) a, b, c e R.Then

ax(bx*c) =ax*(b+2c)
—a+2(2+2c)
—a+4+4c
and
(a*xb)=*c =(a+2b)*c
—a+2b+2c
a*(b=c) #(@x*b)*c

Thus "+' is not associative on R.
Justification
(i) 1,2,e R=>1%2=1+2x2=51,2eR
2x1=2+2x1=4, 1,2€¢R
1%2+#2%1
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1.6

1.7

1.8

(i) 2,45eR=2x(4%5)=2+2x14=30
and (2 x4)*x5=20

1.4 Self Check Exercises

Q.1 A binary operation * is defined on R, the set of reals by
a*b=Jab] VabeR
Check * for commutative and associative, Justify your answer.
Q.2 Abinary operation * is defined on Q, the set of rational by
a*b=ab+1 VabeQ

Is binary operation * is commutative and associative?

Summary

We have learnt the following concept in this unit.
(1) Binary composition

(i) Algebraic structure

(iii) Types of composition

(iv) Fields and its properties etc.

Glossary

1. Operands : The binary operations are operations performed on two inputs viz.
addition, subtraction, multiplication and division. These inputs are called
operands.

2. Algebraic Structure : A set having one or more binary compositions is called an

algebraic structure.
Answers to self Check Exercises
Ans. 1 Easy to show commutative and associative
Ans. 2 Try yourself. (* is commutative but * not associative on Q.)

Reference/ Suggested Reading

1. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
2. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.
3. David C. Lay, Linear Algebra and its Applications, 3rd Ed.,, Pearson Education,

Asia, Indian Reprint, 2007.



1.9 Terminal Questions
1. A binary operation * is defined on
IxIb(a b)*(c,d)=(a-c,b-d):Vv(a b),(c,d)elxl
is the binary operation * is commutative and associative?
2. A binary operation * is defined on M2 (R), the set of 2 x 2 matrices whose
elements are reals by

1
A*B= (AB-BA)VA B <M (R)

Is * commutative and associative? Justify your answer
3. Set * be an associative binary operation on a set S. Set TCS defined by
T={aeS:a*x=x=*aV X es}.

Prove that T is closed under '+’



Unit - 2

Vector Spaces
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2.1 Introduction

2.2 Learning Objectives

2.3 Binary Compositions

2.4  Self Check Exercise-1

2.5 Vector Spaces

2.6 Summary

2.7 Glossary

2.8  Answers to self check exercises
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2.10 Terminal Questions

2.1 Introduction

Dear students, we have already learnt about the concepts of algebraic structures,
namely, 'Group’, 'Rings' and 'Fields' in our previous classes. In the present unit we shall further
consider another important algebraic system called 'Linear Vector Space' or simply vector
space.

The vector space involves two sets, the set of vectors V and the set of Scalers F (always
a Field). We shall use two operations in defining vector space, one is internal composition on
the element of V and the other is external composition on the element of V by the element of F.

2.2 Learning Objectives:
The main objective of this unit are

1. to define Binary composition where we shall study internal and external
compositions.

2. to define a vector space followed by some important properties like addition
multiplication etc.

2.3 Binary composition

Internal Composition : Let A be a set, then the mapping f : A x A — A is called internal
composition in it.

For example
(1) Let A =R, the set of all reals



If f: R xR — Ris defined as
fX, y)=xyV(X,y) € RxR;Xx,Yy are reals.
Then f is internal composition in R.
(i) Let A = set of all n x n matrices over reals.
If f: Ax A — Ais defined as
f(P,Q=P+Q,V (P, Q) cAxA;P,Qare n x n matrices over reals.
External Composition.

Let A and F be two non-empty sets. Then a mapping f : A x F — A is called an external
composition on A by the elements of F.

For example
Let A = set of all n x n matrices over reals
F = set of all reals
If f: AxF— Ais defined as
f(P,k)=kPforallP e Aandk € P
where k P means the multiplication of matrix P by scalar k.
Then f is an external composition in A over P.
24 Vector Spaces

Vector Space. Let (F, +, .) be a given field and V be a non empty set with two
compositions, one is internal binary composition on V, called addition of vectors and is denoted
by + or @ and the other is external binary composition on V by the elements of F, called scalar
multiplication and is denoted multiplicatively, then the given set V is called a vector space or
linear space over the field F iff the following axioms are satisfied.

l. Properties of Addition :
A-1  Closure Property : VX, y e V
Wehavex+y eV
A-2  Associative Property. VX,y,z e V
we have (X +y) +z=x+(y + 2).
A-3 Existence of Addiative identity.
There exists an element 0 € V
suchthatx+0=0+x=x VxeV
Here 0 is known as zero vector in V or addiative identity.
A-4  Existence of Addiative Inverse.
For each element x € V, there exists an element - x € V such that
10



A-5

X+ (-X)=0=(-x) +X
The element - x is called addative inverse of x.
Commutative Property. VX, y eV
We have x +y =y +X.

Il. Properties of Scalar Multiplication

M-1

M-2.

M-3
M-4
M-5
Remarks
1.
2.

YVaeF,xeVwehaveax eV

Vo, fpeF xeVwehave (a+p)x=ax+pXx
VaeF, x,yeVwehavea (X+y)=ax+ay
Va,BeF xeVwehave (af)x=a(X)

Vv x € V, we have |. x = x where | is the unity element of F.

The properties A-1 to A-5 imply that V is an abelian group under +.

We may not always explicity mention the operations on V and F. Generally, we
shall be writing "V is a vector space over F" or "V (F) is a vector space."

The zero element of V is written as 0 in bold type and the zero element of F is
written as 0.

Generally, we shall use x, y, z .... for elements or vectors of a vector space V and
o, B,v.... for elements (scalars) of the field F.

Let V = {0} be a trivial group and F be a filed.
We definea0=0VaeF

The vector space V (F) is called a rational vector or a real vector space or a
complex vector space according as F is the filed of rational numbers or the field
R of reals or the field C of complex numbers.

Example 1. Let R be the field of reals and V be the set of vectors in a plane. Show that V (R) is
a vector space with vector addition as internal binary composition and scalar multiplication of
the elements of R with those of V as external binary composition.

Solution: Given

V={(x¥y)x,y e R} (The elements of V are ordered pairs as V is a set of vectors in a

plane)

Here, we define addition of vectors in V

as(x, y)+(t z2)=(x+t y+2).forx vyt z e Rand the scalar multiplication of o € V as a (X, y)

=(a X, ay).

l. Properties under addition

A-1 Closure Let (X4, Y1), (X2, ¥2) € V

11



A-2

A-3

A-4

= X1, Y1, X2, Y2 € R

= X1+ X, Y1+Y2€R
(X1, Y1) + (X2, ¥2)) = (Xo + Y2, Y1 +Y2)
e V.
= V is closed under addition.
Associative

Let (X1, Y1), (X2, ¥2), (X3, ¥3) € V
Now [(xl,y1)+(><z, YZ)] + (X3, ¥a)

= [(xl,xl, Vi, yz)] + (X3, ¥a)
= ((%0%)+ %0 (Vi Y2 ) + %)
= (% + (% %) Y+ (Yo + ¥5))

[-.- Associative Property hold in Reals]

= (X1, Y1) + (X2 + X3, Y2 + ¥3)
= (X1, y2) + [(Xw Y,)+ (% Y3)]

= addition is associative in V.
Existence of additive identity
For all (x4, y1) € V, there exists (0, 0) e V
Such that (xq, y1) + (0,0) = (X + 0, y; + 0)
= (X1, Y1)
and (0, 0) + (X1, Y1) = (0 + xq, 0 + y3)
= (X1, Y1)
= (0, 0) is addative identity in V.
Existence of addative inverse.

Let (x, y) be any element of V

= (-, -y) € V [Since x, y € Reals = -X, -y € Reals]
Now (X, y) - (-x,-y) = (x + (-x), y + (-y))

=(0.0)
and (X, -y) - (X, y) = (X + X, -y +y)

=(0,0)

12



A-5

% y) + (% -y) = (0, 0) = (-, -y) + (X, )
= (-x, -y) is the addative inverse of (x, y) for each (x, y) € V.
Commutative
Let (X1, Y1), (X, Y1) € V
Now (X1, Y1) + (X2, ¥2) = (Xi+ X2, Y2 + Y1)

[-.- addition is commutative in reals]

= addition is commutative in V.
Properties under scalar multiplication
M-1 Letaer,(X,¥)eV ;X yeR
Then a (X, y) = (ax, ay)

eV [-aeRandx,yeR = aX ayeR]
M-2  Let o € Rand (xq, Y1), (X2, ¥2) € V

Now o [ (%, ¥)+(%Y,)]
= o [(4+% %+ ;)]
= (a(x+%).2(%+Y,))
= (ax +ax,ay, +ay,)

(ax,ay,)+(ax,ay,)

a (X1, Y1) + a (X2, Y2)
M-3 Let a, B eR and (X]_, yl) eV

Now (o + B) (X1, Y1) = ((OH‘ﬁ)Xl’(OH'ﬁ) yl)

=(ax1+Bx1,ayl+pyl)

= (ax1, ayl) + (B x1, B y1)

=o(x1,yl) + B (x1,y1)
M-4 Leto,peR and (x1,yl)eV

Now (o B) (x,¥) = (@ B)x.(B)Y)
= (a(Bx).a(By)) = o (B, BY)
= (B(x))

13



M-5 LetleR and (X3, Y1) eV
Now 1. (X1, y1) = (1. Xg, 1. y1)

= (X1, Y1)
Hence V is vector space over R.

Note: A plane vector is an ordered pair (X, y) of reals.

The plane vector (x, y) and the directed line segment OP where O is origin

and P < (x, y) are same i.e. OP = (X, y).

Example 2. Let F be an arbitrary field and M., (F) be the set of all m x n matrices over F.
Prove that M., (F) is a vector space over F under the addition of matrices and multiplication of
matrix by a scalar as internal and external compositions in M., (F).

Solution:

A-2

Let A, B, C € Mua (F)

Given My (F) = {AJA = [aj]mxn, @ € F}

Then A= [aij]mxn ,B= [bij]mxn and C = [Cij]mxr‘l

where aj, b, cj € G

Properties under addition

Closure.

Let A, B € M (F)

Now A+ B = [aj]mxn + [Difmxn
= [aj + by)mun

€ Mmxn ['.' ajj, bij eF =

M. (F) is closed under addition.
Associative.
Let A, B, C € My (F)

aj + b € F as F, being field is
closed under addition]

Now A+ B+C) =[ajmn * ([Bilnxn+ [Cilmen)

= [@j]mxn + [0 + CiJmxn

= [a + (B + Cilmxn
= [(a + by) + Cij]mn

[ aij + (b + Cy)

[ = [(aj + by) + cij as associative law holds in field F]

= [aj + by)mxn + [Cijmxn

14



A-4.

=(A+B)+C
= addition is associative in My (F).
A-3. Existence of addative identity:

Let O =[0]mn.n Where 0 is identity element of F

Now A+ O = [@j]mxn + [O]mxn V A € M (F)
= [aj * O]mun
= [@)mn = A
[-- a;+ 0 = a; since 0 is addative identity of F]
A+O=A
Also O+ A = [O]mun *+ [Aj]mxn
= [0 + ay]mxn
= [ai]ma = A
O+A=A

Thus O+A=A+0=A
= O is addative identity in My, (F).
Existence of addative inverse
Let A =[ajmwn € Mmxn (F)
Then - A = [-aj]ma € M (F)
[ a; € FandF is field = -a; € F.]
Now A+ (- A) = [@ilmn + [- Ailmn

= [+ (- @j)lmxn

= [O]mxn

[ &+ (-a;5) = 0 as - a; is addative inverse of a]
=0

A+(-A)=0

Also (' A) +A= [‘ aij]mxn + [aij]mxn

= [(- &) + ajlmxn

= [0]mn = O
-A)+A=0
Thus A+(-A)=0=(-A)+A
= - A'is addative inverse in M., (F)

15



A-5.

Commutative.
Let A, B € Mmxn (F)

M-1.

M-2.

Now

Now

M-4

Now

A+B= [aij]mxn +[bij]m><n

= [aj + bjj]mxn

= [by + &j]imxn [ a; + b= b+ ajas ay, bj € Fand
commutative property holds in a field F]

=B+A

addition is commutative in Mmxn (F)
Properties under scalar Multiplication.
Let o [tif]mxn
= [oatij]msn
€ M (F) [vo,0ieG = o o € F]
Leta,peF and A e My, (F)
(o +B) A= (a+P) [Qilmxn
= [(a + B) &ilmxn
= [ov @ + B &gl
[o @ij]mxn [B @ilmxn
o [iJmxn + B [@jlmn
—aA+BA
(w+B)A=aA+pA.
Leto € Fand A, B € M (F)
o (A + B) = a([aj]mn + [bilmxn)
o[ + Dilmsn)
[oc (@ + By]msn

= [a & + o bijmxn

[ @jlmn + [0 Dylman

o [@j]mxn + 0 [Dj]mxn

aA+aB

a(A+B)=aA+aB VaeF, A B e Myun(F)
Let o,peFandA e My, (F)

(o B) A= (ouP) [@jlmn

16



= [(a B) @jlmxn
= [auB ay)]m«n

[-.- multiplication is associative in a field ..

= a[P @jlmn
= B [@j]mxn)
=apA)
(aB)A=a (B A) \/ o, B eF, AeMpn(F)
M-5. Let 1 be unity element of F
and A =[aj]mn € M (F)
Now 1. A =1 [aj]mxn
= [1. ajlmxn
= [aj]mn = A
1. A=Aforall A € My (F)

Hence M., (F) is a vector space over F.

(aB)aj=oaay]

Example 3. If P (x) is the set of all polynomials in one indeterminate x over a field F. Then
show that P (x) is a vector space over F with addition defined as addition of polynomials and

scalar multiplication defined as product of polynomial by an element of F.

Solution: Given P (x) = {f(X)|f(X) = oo + 0ty X + 0X* + ....... +on X+

= {f(x)| f(X)=>D ax fora, 'se F}
k=0
We define addition and scalar multiplication as.

If £ (x) = iakxk e P(x) and g(x) = i,b’kxk e P (x)
k=0 k=0

Then f () + g = D (a + B, ) X
k=0

0

and af(x) =) (ag )X foracF.

k=0
1. Properties under addition
A-1. Closure. For each f(x), g(x) € P (x)

0+ 900 = (@ + )X

k=0

17



A-2.

A-3

e P (x)

[ ok Bx € F= ok + Bk € F as Fis field and field is closed under addition]

Thus P (x) is closed under addition.
Associative.

For each f (x) = iakxk ,g(x) = iﬂkx" ,h(x) = i 7. Xe P (x)
k=0 k=0 k=0

[f (X) + g()] + h (x) = {iakxk +§;ﬂkxk}+inxk
k=0 k=0 k=0

s

(o + B )X+ D 7 X

?T
I
o
=~
I
o

NgE

((ak+ﬂk)+7/k)xk

T
<}

NgE

(ak+(ﬂk +7k))xk

?T
I
o

[ (@ +B)+ 7= o+

(Be+7¢) as aw By, 7x € F (field)

and associative law holds in a field]

gMS

Z ﬂk+7k
k=0

0

= Zakxk + [iﬂkxﬂiykxk}
k=0 k=0

=

=1 (x) +(9(x) + h(x))
= addition is associative in P (x).
Existence of addative identity

For each f(x) = iakxk +eP (X

k=0

let OX)=0+0x+0X°+...+0x"+.. =

Now f(x)+O(X)= D> X+ > 0x
k=0 k=0

18
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I

s

R
><7¢

T
o

[ O € Fis addative identity of field F = oy - 0 = ay for each oy € F]

=/

and O () +f(X) =D 0X + > ax
k=0 k=0

(0+a, )X

e

T
o

k
aX

[Me

T
o

[~ O € Fis addative identity of field F = 0 + oy = ay for each oy € F]
= f(x)
f)+0 (x) = f(x) =0 (x) + f (x) forall f(x) e P (X)
Thus O (x) is the addative identity of P (X)

Existence of addative inverse

Foreach f (x) = Y o X € P (X)
k=0

let - f00= 2 (- )X
k=0
e P (X [ ok € F= -0k € Fas Fis afield]

Now  f(x) + (-f()) = X X+ X (- )X"
k=0 k=0

= 3 [ + (o )]X Y 0xt

[ - ok is the addative inverse of ax = oy + (—ay) = 0]
=0 (X)

and  (F )+ 100 = Y (Ca)X + Yo
k=0

k=0
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= Yla)+a ¢

0 x

M

=~
I

[ - ax is the addative inverse of ax = ok + (—ok) =0]
=0 (x)
f )+ (-/(¥) - O (x) = (-f(x)) + (%)

Thus addative inverse in P (x) exists.
A-5.  Commutative.

Let 10 = Y arX g0 = 3 X e P (¥
k=0 k=0

Now £ ()+g0) = Y e+ Y X
k=0 k=0

=g () * /(¥
Thus addition is commutative in P(x).

Il. Properties under multiplication

M-1 ForallaeF and f(X)= iakxk e P (X)
k=0
af(x)=a {iakxk}
k=0

= Z‘j: (aak)x"

[~ a eF, ox € F = aok € F as F is a field which is closed under scalar multiplication]
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M-2. Letae Fandf(x),g(X) e P(x)

Now alf ()+g(d]=a [iakxk +iﬁkxﬂ
k=0 k=0

=a |:i(ak +ﬂk)xk}

= i [a(ak +ﬂk)] X"

=af(x)+ag(x)
M-3. Leta,b e Fand f(x) € P (x).

Now (a + b) f (X) = (a + b) [iakxk}
k=0

=af()+bf(Xx).
M-4. Leta,beFandf(x) e P(x)
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2.5

=

M-5.

(ab) /() = (ab) {Z X } S [(ab)ey ]

0
k=0 k=0

= i [a(ba, )] X = a [i(bak)xk}

k=0

= HbZ ax" H = a[bf(x)]

(ab) f(x) = a(bf(x))-
Let 1 be unity element of field F

and f(x) € P (X)

Now 1.f(x) = 1. [iakxk}
k=0

=

=3 La)x*

k=0

a, X = f(x)

M

X
1l
o

1./ (X) = f(x) for all f(x) € P (X).

Hence P (X) is a vector space over F.

Self Check Exercises

Q.1  Explain whether the following statements are true or false

0] A vector space must have attest two elements.

(i) A vector space has always an infinite number of elements.
Q.2  Which of the following sots are vector spaces over reals

0] The set of all polynomials with integral coefficients

(i) All polynomial over R with constant term 2.
Summary

In this unit we have learnt the following

(i)

(i)
(iii)
(iv)

Binary composition
Internal composition and external composition
Vector space or the linear space over the field F.

Properties of addition and properties of scalar multiplication etc.
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2.7

2.8

2.9

2.10

Glossary

1.

2.

Answers to Self Check Exercises

Rational vector space or a Real vector space or a complex vector space-

The vector space V(F) is called a rational, real or complex vector space
according as F is the field of rational, real or the field of complex numbers.

V(F) - V is a vector space over the field F.

Ans.1 (i) False

(i) False

Ans.2 (i) Not a vector space

(i) Not a vector space

Reference/Suggested Reading

1.
2.
3.

S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

Stephan H:, Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 4th
Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2004.

David C. Lay, Linear Algebra and its Applications, 3rd Ed.,, Pearson Education,
Asia, Indian Reprint, 2007.

Terminal Questions

1.

Prove that C, the set of complex numbers is a vector space over the field C.

1
Show that the set of all elements of the kind a+\/§(b) + C(x/§)3, c € Qforma
vector space over Q under and addition and scalar multiplication of reals.
Show that the set of all matrices of the form

a b
{ b } a, b € C is a vector space over C under matrix addition and scalar
-b a

multiplication.

kkkkk
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Unit - 3

Vector Subspaces

Structure

3.1 Introduction

3.2 Learning Objectives

3.3 Vector Subspaces

3.4  Self Check Exercise

3.5 Summary

3.6 Glossary

3.7  Answers to self check exercises
3.8 References/Suggested Readings
3.9 Terminal Questions

3.1 Introduction

Dear students, in unit-2 we have learnt the concept of vector space and its properties

under addition and multiplication. There in this unit we shall extend this knowledge to study the
concept of vector subspaces. In Linear algebra, a linear vector subspace is a vector space that
is a subset of some larger vector space. A linear subspace is simply called a subspace when
the context serves is distinguish it from other types of subspaces.

3.2

3.3

Learning Objectives
The main objectives of this unit are
(@ to study the concept of vector subspace

(ii) to prove some important theorems to show how a non-empty subset of vector
space become a vector space.

(iii) to prove how the intersection of two subspaces of a vector space become a
vector subspace etc.

Vector Subspaces
Definition (Vector subspace)

Let V be a vector space over a given field F and W is a subset of V. The n W is called a

subspace of V iff W itself is a vector space under the operation of addition and multiplication
defined for V.

Two main things to be noted here are as

() The two binary operation in W, i.e., vector addition and scalar multiplication are
same as those in V.
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(ii)

For any V(F), the set { 0 } and the set V, both are subset of V. Also both are
vector spaces under addition and scalar multiplication operation of V(F). Both { O
} and V are subspaces of V, known as trivial (Improper) subspaces and the
subspaces other than { 0 } and V are called proper or non-trivial subspaces of
V(F).

Theorem : Prove that a hon-empty subset W of a vector space V(F) is a subspace of V iff W is
closed under addition and scalar multiplication.

Proof : Given, W is a subspace of V(V).

.. by definition of vector subspace, W is closed under addition and multiplication.

Hence the result holds.

Conversely.

It is given that W is closed under addition and scalar multiplication.

=

Forallx,y e W,a e F

we have x +y e W ..(1)

a eW ...(2)

We have to prove W is a subspace of V (F).
Now -1 e Fand x e W

=

=

(-1)xeW (Using 2)
X e W

[Since x € W implies x € V and (-1) x = -x holds in V]

so that addative inverse of every element in W exists.
AndVxeW, xeW

=

=

X+ (-X) e W (Using 1)
0OeW

so that addative identity exists in W.

X+0=x=0+xV eW

and V x € W, there exists -x € W such that

X+ (-x)=0=(-Xx) + x.

Now, since W < V i.e., all the elements of W are also the elements of V, therefore, we

have

X+y=y+xX.VXx,yeW

X+y)+z=x+(y+t2)VX,y,zeW

a(Xty)=ax+tayVaeF x,yeW
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(a+B)X=ax+BxVa,peF,xeW
1.x=xVxeW,1eF.

Thus W satisfies all the axioms for a vector space
= W is a vector space over F

Hence W is a subspace of V (F).

Theorem : Prove that a non empty subset W of a vector space V(F) is a subspace of V iff (i) V
X,y € W,we have x-y e W.

(i) VoaeF, xeWwehave xa e W.
Proof : Given W is a subspace of V(F).

(@ VX, yeW = X-yeW. [("yeW=-yeWas
W is vector space over F]
=>X+(-y) e W [~ W is closed under addition]
=X-yeW.

(i) VaeF, xeW
= aecF [.- W is a vector space and by def. of a vector
space W is closed under scalar multiplication]
Hence (i) and (ii) hold.
Conversely.
Given the properties (i) and (ii) hold
We have to prove, W is a vector subspace of V(F)
Now -1 e Fand x e W
= () xeW (Using ii)
= X eW [since x e W = x € V and (-1) x = -x holds in V]
So that addative inverse of every element in W exists.
AndVxeWandy e W
= xeWand-yeW
= X-(y) eW [Using property (i)]
= X+yeW
So that W is closed under addition.
Now ¥V x € W and -x e W

= X+ (-X) e W
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= OeW
So that addative identity exists in W.

Now, since W c V i.e., all the elements of W are also the elements of V. Therefore, we
have

X+y=y+X.VX,yeW
X+y)+z=x+(y+t2)vVX,y,ze W
a(X+ty)=axtayVaecF Xyew
(a+B)x=ax+pPxVapeF xeW
1.x-xVxeW,1lekF.

Thus W satisfies all the axioms for a vector space
= W is a vector space over F
Hence W is a subspace of V(F).

Theorem : The necessary and sufficient condition for non-empty subset W of a vector space V
(F) to be a subspace of Visthatax+ By e Wforallo,p € Fand x,y € W.

Proof : The condition is necessary
Let W be a subspace of V (F)
Leta,B e Fandx,y, e W
NowaeF,xeW =axeW
[Since W is a subspace so closed under scalar multiplication]
andBeF,yeW =>ByeW
sinceax,pyeW
= aX+ByeW [-.- W is closed under addition]
Sothatforallo, B e F, X,y eW
= aX+ByeW.
The condition is sufficient
Itisgiventhat Vo, e Fandx,ye W=ax+ByeW ..(1)
To prove that W is a subspace of V
(1) Puttinga =1 and g =-1in, (1) we get,
1.x+(-l))yeW
ie., X-yeW
(ii) Again putting B = 0 in (1), we get,
axXx+t-yeW [+~ 0y=0]
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= aXx+0eW
= axeW
Hence W is a subspace of V(F). [Using Th. 2]

Theorem : Prove that the intersection of two subspaces W; and W, of a vector space V(F) is
also a subspace.

Proof : Leta,B e Fandx,y e W; N W,
Now xe W;NW, = Xx e Wi;and x e W,
and y e W; NW, = yeW;andy e W,
Since W, is a subspace of V
vX,yeWg;a pBeF = aX+ByeW;
Also W, is a subspace of V
VX,yeWsa peF = aX+ByeW,
Sothatax+ByeW,andax+Bye W,
= ax+pByeW;, NW,
Hence W; N'W, is a subspace of V (F).
Remark. (i) W, N W, is the largest subspace contained in W, and W, both.
(ii) The union of two subspaces is not necessarily a subspace.
For example,
Let the vector space V3 (1) ={(x, ¥, 2) | X, ¥, Z € R}
LetW; ={(x,0,0) | x € R}
and W, ={(0,y,0) |y € R}
Firstly, we prove that W, and W, are subspaces of Vs (R)
Letu=(Xg, 0,0)and v = (X,, 0, 0) € W, for same x;, X, € R
ando, B e R
Thenoau+Bv=a(X,0,0)+p (X, 0, 0)
=(a Xy + B Xz, 0,0)
e W, [ a,B, X, X e R ax +B X eR]
LoutpBveW,forallu,veW,andao,p € R
= W, is a subspace of V3 (R).
Similarly we can show W, is a subspace of V; (R)

Now, we shall prove here W1 U W2 is not a subspace of V3 (R)
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Let a p be non zero reals
andw; = (x,0,0) e W3, w, =(0,y,0) e W,
=  wW;=(x,0,0)e Wy UW,,w,=(0,y,0) e W, UW,
aw;+pBw,=a(x,0,0)+p(0,y,0)
[-.-W; and W, both are subsets of W; U W]
=(ax, By, 0)
= aw; +Bw, g Wyaswellasaw; +Bw, ¢ W,
= aw,+pBw, g W UW,
Hence W1 U W2 is not a subspace.

Theorem : Prove that the union of two subspaces is a subspace iff one of them is a subset of
the other.

Or

If W, and W, are subspaces of V (F). Then prove that W, U W, is a subspace of V (F) iff
either W, < W, or W, < W,.

Or

Prove that the union of two subspaces W, and W, of a vector space V(F) is a subspace
of V iff they are comparable.

Proof : Let W; and W, be subspaces of a vector space V(F)
Firstly suppose W - W, U W, be a subspace of V(F)
Now, we wish to prove that either W, < W, or W, c W,

If possible, suppose neither W, ¢ W, nor W, c W,

= there exists x € W; such that x ¢ W, ..(1)
and y € W, such thaty ¢ W, ..(2)
X € W, =xeW,UW, [+ Wi W, UW,)
=>xeW
and yeW, =SyeW,UW, [- W, = W, UW,)
=>yeW
So that X, yeW

=>X+tyeW
[~ W is a subspace of V (by supposition)]
=>Xx+yeW;,UW,
= Eitherx+y eW,orx+yeW, --(3)
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fx+yeW;

Thenx+y,x e W, =>X+y)-xeW;
[~ Wy is a subspace of V (F)]
=>yeW,
which contradicts (2)
Xty eW;
fx+yeW,

Thenx+y,yeW, =(X-y)-yeW,
[~ W, is a subspace of V (F)]
=>Xe W,
which contradicts (1)
Xty e W+
Thusx+ygW,andx+y ¢ W,
which contradicts (3)
.. our supposition is wrong
Hence either W, c W, 0r W, c W,
Conversely
Now suppose either W, c W,or W, c W,
We have to prove that W; U W, is a subspace of V (F)
Since W; W, = W; UW, =W,
and W, c W, = W; UW, =W,
Wi UW, =W, orW,;
= W; U W, is a subspace if V (F)
[~ W1 and W, both are subspaces of V (F)]
Hence W; U W, is a subspace of V(F).
Example 1. Let a, b, c be fixed elements of a field F. Show that
W={(x,y,2)|ax+by+cz=0;Xx%,Y,z eF}
is a subspace of V3 (F).
Solution : Since (0,0,0) e Wasa.0+b.0+c.0=0;0¢F
= W= ¢
Clearly W c V3
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Leta,pe Fandu,ve W

The u = (X1, Y1, Z2) and v = (X, Y2, Z5)

where X, Vi1, Z2, X2, Y2, Zo € F

suchthat ax +by,+cz =0
and ax, +by,+cz,=0

(1)

Now o U + BV = o (X, Y1, Z1) + B (X2, Y2, Z2)
= (o Xg, oY1, & Z1) + (B X2, B Y2, B Z2,)
=(a Xy + B X, Yy, +PB Y2 a0z +P2y)

Here = a(o X1 + B X2) + b(a y1, + B y2) + € (a0 21 + B 2o)

o (0) + B (0)
=0

aaxgtapx,bay,+bBy+caz;+cpz)

a(@axgtby;+cz)+pB(@x, +by,+cz)

[Using (1)]

aU+BV=(aaX,+ BX, oy, +BYy+az+fzy)

e W

Hence W is a subspace of V3 (F).

Remark : The above example implies that any plane passing through (0, 0, 0) is a subspace of

RS,

Example 2 : LetV={A| A=[aj]n«n &j € R} be a vector space over reals. Show that W, the set
consisting of all the symmetric matrices (i.e. matrices [a; .., for which a;j = a;;) is a subspace of

V.

Solution : It is given that V = {A | A = [ai]].«n, &i; € R} is a vector pace over R.

We have to prove W {[a;j].«n, | &i; = g;; for a; € R} is a subspace of V (R)

Clearly O = [Q]oxn € W
= W= ¢
Also W c V
Let P,QeWanda,B eR
P = [pijln«n fOr which pi; = p;;

and Q = [q; jJaxn for which q;; = g
Thena P +BQ=oalpi]+B(aj]

= [o pij + B dij] nxn

[Since 0;;=0=0j; for I <i, j<n]
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[By matrix addition and scalar multiplication]

= [fijJnxn Where 1ij = o pij + B

Here 1 = o Pijt B g
=apji+ P [~ pij=pjiand oij = ;]
=1

. [1ijlnxn IS @ Symmetric matrix

=[r]eW

= oaP+BQeW.

Hence W is a subspace of V (R).

Example 3: Show that U;, U, are subspaces of R*.
(i) Ui={(a, b,c,d)]|b+c+d=0}
(i) U,={(a,b,c,d)]|a+b=0,c=2d}
Solution : (i) Since (1,0,0,0) e U;asb+c+d=0+0+0=0;0 e R.

= U= ¢

ClearlyU, c R*

Leta,p e Rand u,v eU;

Then u = (ay, by, ¢4, d1) and v = (ay, by, ¢y, dy)

Where ay, by, €4, di, 8, by, Cp, d2 € R

Suchthat by + ¢c;+d;=0andb,+c,+d, =0 (1)

Now o u + BV =a (as, by, ¢, di) + B (az, by, Cy, dy)
=(aa;+Payab;+p by acy, Bcyad +pdy)

where (o b; + B by) + (cy + B Cy) + ady + B dy)
=a(by+ cy+dy) + B (b +co+dy)
=a(0) +B(0)=0 (Using 1)

aout+tpfvel

Hence U, is a subspace of R%,

(i) Since (0,0,2,1) eU,asa+b=0+0 =0;c=2,2(1)=2d.

= Uz # ¢

ClearlyU, c R*

Leta,pe Randu,v e U,

Then u = (ay, by, ¢1, d1) and v = (a, by, ¢, dy)
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Where ay, by, ¢1, dy, ap, by, ¢, d; € R
Suchthat a; + b;=0,a,+b,=0andc,=2d;,c,=2d, (1)
Now o u+ B v=a (ag, by, €1, d1) + B (a2, by, Cz, do)
=(aa;+Pazaby+P by, acy, fcy,ad +fdy)
where (va; + B ay) + (aby + B by) -a(ag+by) + paz + by)
= a(0) +B(0)=0
and (aci+Bcy)= (aa2di) +B(2d2) =2(ady + B dy) (Using 1)
au+pvelU,, Hence U, is a subspace of R*.
Example 4 : Let V be a vector space in R®.
Examine whether the following are subspaces or not
0] W ={(a, b, ¢) | cis an integer}
(i) W={@bc)la>b>c}
(iii) W ={(@,b,c)la=b-cand2a+3b-c=0}
Solution : (i) Let (a, b, ¢) € W where c is an integer
and o = \/5 eR

thena (a,b,c)=(aa,ab, ac)
= (v2a, 42 b, V2 ¢)

g W [ cis aninteger. But «/Ec is not an integer]
.. W is not closed under scalar multiplication.
Hence W is not a subspace of V3 (R).
(i) Let(a, b,c) e W, where a,>b>c
anda=-2¢R
Thena (a,b,c)=(aa, ab,ac)
=(-2a,-2h,-2c¢)
g W [sincea>b>c=-2a<-2b<-2(]
.. W is not closed under scalar multiplication.
Hence W is not a subspace of V3 (R).
(iii) aerandx,y ew.
then

X = (ay, by, €1)
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3.4

3.5

y = (ag, by, ¢3) such that

a=Db-c,23+30-¢c=0
and a,=b,-c, 2a,+ 3b,— C,= O}
Now
X-y =(ay, by, ¢1) - (a2 b2, Co)
= (a1 - az by - by, c1-Cy)
such that
a1 -8 = (b1-C1) - (b2-C)
= (b1 - b2) - (€1 - C2)
= (2a; + 3b; - ¢1) - (2a; + 3b; - ¢y)
=0-0=0
X-yeW
and ax=a(a, by, c)= (aay, o by, acy)
such that
oa.a;=o(by-¢c)=ab-ac
and 2(aay) =3.(aby)-(acy)
o (2a; + 3b; - ¢y)
a(0)=0

LaXxeW

Hence W is a subspace of V3 (R).

Self Check Exercises

Q.1  SetV be a vector space in R®.
Examine whether

-(D)

(Using (1))

(Using (1))

W ={(a, b, ¢,), c integer} is a subspace or not?

Q.2 LetR b afield of reals and V is a vector space of all infinite sequences < an >, an
e R. under addition and scalar multiplication defined term wise. Show that

W = {<bn> | {bn? is convergent is a subspace of V.

Summary

We have learnt the following concepts in this unit.

@ Vector subspaces

(i) Some important theorems shows how a non-empty subset of a vector space

become a vector Space
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3.6

3.7

3.8

3.9

(iii) Intersection of his subspaces of a vector space is a vector space.
Glossary

1. Improper subspaces : {0} and V are subspaces of V called improper subspaces
or trivial subspaces.

2. Proper subspaces : Subspaces other than {0} and V are called proper
subspaces or non-trivial subspaces of V(F).

Answers to Self Check Exercises

Ans.1 Take a = \/E e r, then proceed.

Ans.2 Take <an>, <fn> = {omz, <B n? are conversent then proceed.
Reference/Suggested Reading

1. Stephan H:, Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 4th
Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2004.

2. David C. Lay, Linear Algebra and its Applications, 3rd Ed.,, Pearson Education,
Asia, Indian Reprint, 2007.

3. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
4. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.
Terminal Questions
1. Discuss whether or not R? is a subspace of R®.
2. Which of the following are set of vectors
X = (Xg, Xo, ....Xn) € R"
are subspaces of R" ? (n>3)
0] Allxs. t.x<0
(ii) All XS, t. Xo = X;°
(iii) All X s.t. X3 is rational.
3. Prove that set of straight lines passing through origin i.e. sets of the form
L={(x,y)|Ix+my=0,I,meR,*+m?=0}

is a subgroup of R? over R.

*kkkk
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Unit -4

Algebra of Subspaces

Structure
4.1 Introduction
Learning Objectives
4.2 Sum of Subspaces (Linear Sum of Two Subspaces)
4.3 Director Sum of Two Subspaces
4.4 Complementary Subspaces
4.5 Disjoint Subspaces
4.6 Identical Subspaces
4.7 Self Check Exercise
4.8 Summary
4.9 Glossary
4.10 Answers to self check exercises
4.11 References/Suggested Readings
4,12 Terminal Questions
4.1 Introduction

Dear students, having knowledge of vector spaces and vector subspaces from out
previous units, we shall here discuss about algebra of subspaces. In this unit we shall study the
concept of linear sum of two vector subspaces, direct sum of two subspaces and disjoint
subspaces etc.

Objectives
The main objectives of this unit are
(@ to find the linear sum of two subspaces W, and W, of a vector space V(F).
(i) to find the direct sum of two subspaces W, and W, of a vector spaces V(F).

(iii) to define complementary subspaces, disjoint subspaces and identical subspaces
etc.

4.2 Sum of Subspaces

Linear sum of two subspace

Let W, and W, be two subspaces of a vector space V(F). Then linear sum of W, and W,
is denoted by W, + W, and is defined as
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Wi+Wo={u+v|ueW,;veW,}
Note : We have u e W, = u+0O eW;+W,
[O is addative identity of W]
= ueW;+W,
[*- u+ O =u, as O is also addative identity of W]
WicW;+W,
Similarly W, c W + W,
so that W; UW, c W; + W,
For example
0) Let W; ={(1, 3), (2, 0)} and W, ={(1, 1), (-3, 1), (3, 4)}
be subspaces of V, (R).
1.3 +(1D, (13 +(31).(1,3) +(34) }
(2,00+(1,1D,(2,0) +(-3D,(2,0) +(3,4)
={(2,4),(-2,4), (4, 7), (3, 1), (-1, 1), (5, 4)}
(i) Let W;= { X y}x,y,WG R}
0O w

'x 0
sz{ i||X,ZER},
1z 0

Which are subspaces of v, a vector space of 2 x 2 matrices over R.

Then W, + W, = {

2X Yy
Then W, + W, = [X,y,ZzweR; =V
z w

'x 0
andWan2= |ZER
_0 0

'x yl[x 0O
andWluwzz{ }L 0}|X,y,Z,WeR}

0 w|
(iii) Let Wi={vV,2)|x+y+z=0
W, ={X,y, 2) | X = z} be subspaces of Vs (R)

(Prove yourself)

Now any vector (X, Yy, z) € V3 (R) can be written as
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xX,y,2)= (5 -z 2—5] + (5 y+z§j
1y’ 2! 1 2 21 12

X X X X
where | —,-z,Zz—— | e W;and | =, ¥+ 2 —| e W,
2 2 2 2

i.e. V3(R) =W;+W,

Note : The elements of V3(R) cannot be uniquely expressed as sum of elements of W,
and W,.

Theorem : If W; and W, are subspaces of vector space V(F). Prove that W, + W, is a subpace
of V(F).

Proof : Let W; and W, be subspaces of a vector space V(F)
Takew e Wy + W, = w =w; + w, forw; e W, and w, =W,
=W=w; +w, forwy, w, e V (- W, W, V)
=>weV
(- Vis a vector space so closed under vector addition)
W1+W2cV
Now let u;, + u, e W1 and vy, vo € W,
Thenx=u;+tviandy=u, + v, e W; + W,
Foroa,BeFandug, u, e Wy = aup+pu e W,
(-~ W; is a subspace of V)
Ando,BeFandv, v, e W, > avi+B Vv, e W,
(~.- W, is a subspace of V)
au+pueW,andav, +B vy e W,
= (cup+Buy) +(avy+pvy) e Wy +W, (1)
finally, fora,p e F; X,y e W + W,
we have ax+By=a (Up+Vvy) + B (Ux +Vvy)
SaU+avi+tBu+pv;
= (U +Buy) + (v + B vy)
e Wy +W, (Using (1))
Hence W, + W, is a subspace of V(F).
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Note : The above theorem can be extended for n subspaces i.e. if W;, W, ...W,, are
subspaces of V(F). then W, + W, + ..... + W, is also a subspace of V.

Theorem : Prove that W; + W, = <W; U W, >

i.e. the linear sum of two subspaces W; and W, of a vector space V(F) is a subspace
generated by union of W; and W..

Proof : We have u e W; =>u+0eWl+W,

(.- O is addative identity of W,)
=u=W;+W, ((-u+O=u
W1lcW;+W,

Similarly W, c W, + W,
so that W; UW, c W; + W, (1)

Since < W; U W, > is the smallest subspace of V containing W; U W, and W, + W, is a
subspace containing W1 U W, (by i)

sothat<W; UW,>cW; +W, (i)
Now let x = u; + u, e Wy + W, where u; e Wy

So thatu;, u, e W UW, u, e W,

therex=u;+u,=1 .u;+1.u,

i.e. xisalL.C. of elements u;, u, e W; UW,

= Xe<W;UW,>

S Wi+ W, o<W, UWy> ...(ii)
Thus from (ii) and (iii), we get

Wi+W,=<W;UW,>

Hence the result.

Remarks : (i) W, and W, both are contained in W; + W, and is the smallest subspace of V
containing W, and W..

(i) W, +W; =W;and if W, ¢ Wy, then W; + W, = W,.
Theorem : If W, W,, W3 are subspaces of a vector space V such that W; o W,.
Prove: W; N (W, +W3) = W, + (W1 n Wa)
Proof: Let x e W; N (W, + W)
= X e W, and xeW,+Wj;

= X e W, and X = X3 for X2 € W, X3 € W3 ..... (l)
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= X e W, and  X-Xy=X3

Here x, e W, = Xo € Wy (- Wi Wy)
X. Xp € Wy = X-X e€W; (.- Wyis asubspace)
= X3 € W,
so that x; e W, and X3 eW;
= X3 € Wy "W,
D = X=Xy + Xz € Wy + (W11 W,)
sothat Wy m (W, +W3) WL+ (W nW3) L. (2

Further, take y e W, + (W1 N W3)
y=Yy,+zwherey, e W, c W, and zew, nW;

i.e. y=Yy,+zwherey, e W, and zeW;

y e W, (. Y2, Ze Wy and W is asubspace soy, + z € y, € W)
Also y=y,+zeW,+W; (- y2e Wyand z € Wy)

y e Wi N (W, +Ws)
so that W, + (W1 n W3) c W1 (W, + W) ....(3)

Combining (2) and (3) we get W, N (W, + W3) =W, + W; N W3)
4.3 Direct sum of Two Subspaces

A vector space V(F) is said to be direct sum of its two subspaces W; and W, ; denoted
by W, @ W, if every vector v € V can be unequally expressed asV = u, +u, where u, € W,.

Note: V=W, oW, = V =W, + W, but not conversely.
4.4 Complementary Subspaces

Any two subspaces W; and W, of V(F) are said to be complementary if every vector v e
V can be written in one and only one way as

V= +U, where u, € W;and u, € W,
i.e. Vv =W1®W2
For example

(1) In V,(R), W, =< (1, 0) > and W, = <(0, 1)> are subspaces of V,(R). Any vector (X,
y) € V»(R) can be written in one and only one way as

(x,y) + (X, 0) + (0, y) where (x, 0) € Wy and (0, y) € W,
Vz(R) = W]_ @ W2
and hence W; and W, are complementary subspace.
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(i) In V3(R), let W, be the yz-plane and W, be the x-axis.
i.e. Wi, ={(0,y, 2)ly, z € Rtand W, ={(x, 0, 0) X € R}
Any vector (X, Yy, z) € V3(R) can be written in one and only one way as
xX,y,2)=(0,y,2)+(x,0,0 where (0,y, z) e Wyand (x, 0,0) e W,
V3(R) = W; @ W, and hence W, W, are complementary subspaces.
(iii) In V3(R) ; Let W, {X,y,0)] X%,y eR}
W,  {0,y,2)y,ze R}
i.e. xy-plane and yz-plane respectively.

Then Vi #W; @ W, but V; = W, + W, since any vector (X, v, z) € V3(R) can be written

indifferent ways as

4.5

(3 y
x,y,2)= (x, 4 ,Oj+(0,4,z]

where (X,%’,Oj e W; and (o,%,z]ewz

and (XY, 2)= EX’Q’OJJ{O’Q’ZJ where (X,X,Oj e W, and (X’Q’Zj
4 3 4 3

Here W, and W, are not complementary subspaces.

X
(iv) InV = { y} X, y,z,we R} , vector space of 2 x 2 matrices.
zZ w

0 vy x 0
Lethz{{ }|yeR}andW2={[ }|X,Z,a)eR}
00 zZ w

be subspaces of V(R)
Xy : :
Then any elt e V can be written in one and only one way as
zZ w
X y| |0y N x 0
z w| [0 0 zZ w
V= W]_ @ W2

and hence W; and W, are complementary subspace
Disjoint Subspaces
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Any two subspaces W; and W, of a vector space V(F) are said to be disjoint if their
intersection is zero space i.e. W; N W, = {0}.

For example: In examples (i), (i) and (iv) given after Def. 11 ; W, and W, are disjoint
subspaces.

4.6 Identical Subspaces

Two vector spaces U and V (of the same dimension) are called identical iff each is a
subspace of the other.

Theorem. Let W, and W, be subspaces of vector space V(F). Prove that V = W; @ W, if
and only if (i) V=W; + W, (ii) W, N W, = {0}

OR

prove that, the necessary and sufficient conditions for a vector space V(F) to be a direct
sum of its subspaces W, and W, are

(|) V= W]_ + W2 (||) Wl N W2 = {O}
Proof: Firstly, let V=W, ®&W,
V=W;+W, (1)
.- by def. of direct sum, every
vector v € V can be written

uniquely as v = u; + U, where
u; € Wy and u, eW,

which proves (i) necessary condition.

Furtherletv0andv e W; N W,

Also veV (- Wi NW, V)
and v=0+v where 0 e W;and v e W,
v=v+0 whereve W;and 0 e W,
which implies that v € V can be expressed in two different ways, which is a contradiction
to (1)
our supposition is wrong so only 0 e W1 N'W,
i.e. W, N W, = {0}, which proves (ii) necessary condition.
Conversely:

Let V=W, + W, and W; N W, are subspaces of V(F)
Take v € V be any element

VE U +U,= W+ W,
= Up - W3 = Wy - Up

Since W,, W, are subspaces, so u;, w; € W, = u, -w; e Wy
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and u;,w,eW, = W, -u; e W5
= Up-Wo =Wy - Uy € Wy N Wo
But we have W, N W, = {0}
Uy =W =Wr-U,=0 = wi=uiand w,=uU,
so that any vector v € V can be written in one and only one way as
V=u; + U, whereu; e Wy and u, e W,
Hence V=W; @ W,

Theorem: If W, is a subspace of vector space V(F), then prove that 3 a subspace W, of V(F)
such thatV =W; ® W,

OR
Every subspace of a vector space has a direct summand. Prove it.
Proof: Let By = {v1, Va,........ , Vn} be a basis of W, c V.
As B; is L.l. subset of W; and so of V
so extend B; to a basis B = {vy, v, ...... y Vi, Wy, Wo, ..., Wy} of V
Take B, = {wy, Wy, ....... , Wn} and W, be subspace of V generated by elements of B..
WeclamV=W;®W,
0] Let v € V, then as B is basis of V

Sso vzzn:a,-\/i+zm:bjwj fora, b, e F
i=1 j=1
= neW;+W,
sothatVcW; +W, (1)
Also we have W; + W, c V ....(2)
Combining (1) and (2), we get V =W; + W,
(i) Letve Wi "W, = veW,; and veW,

n m
v=>Y av and v=) bw fora,beF

i=1 j=1
n

= > ay = Z; bw,
=

i=1
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n m
av, - >, bw=0
i=1 =1
= ag=0andbj=0forl1<i<n.1<j<masBis L.l setbeing basis of V
v=0
= W; W, = {0}
so (i) and (i) = V=W, ®&W, ie, every subspace of a vector
space has a direct summand.
Some lllustrative Examples
Example: If S and T are any subsets of V(F). prove that
LSUT)=L(S) +L(T)
Solution: Letv € L(S U T) be any element

= FVq, Vo, eeeeee. Vp e SUTand ay, ay, ...... an e F such that

= V=) av=> av+ > ay

wherevise Sand w'seT
- Eachv,isether aneltof Sor andtof T or anelement of both
SandT;sodividing elementsy, int oelementsy; 'sbelonging to
Sandtheelementsy, 'stoT

=  vel(S)+L(T)

L(SUT) < L(S) + L(T) 0
Now let z € L(S) + L(T)
= z=x+ywherex € L(S)andy € L(T)

= z=), aV+ > ay, wherev'seSandvs e Tando, oy e F.

= z=) av(v (}={}Uw
= zelL(SUT)
LS)+L(M) cL(SUT) (1))
From (i) and (ii), we have
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LSUT)=L(S) + L(T)
Hence the result
Example 2: Let V (R) be a vector space of all functions from R to R
Show that W; and W, are subspaces of V (R)

where W, ={f|f e V and  f(-x) = f(X)}
= The set of all even functions
and  W:={f|feV and f(-x) =-f(x)}
- The set of all odd functions
Also show that
(i)  V=W;+W, (iv) W;NW,={0}(v) V=W;®W,
Solution: (i) Given W, ={f|[f eV and f(-x) = f(X)}
Clearly f(X) = X4 + X, € W, [ f(-X) = f(X)]
W is non-empty set
Now leta, B € R and f,geW;
= f(-x) = f(x) and g(-x) = g(x) for all x € R
(af +B9) (-x)
= (af) (-x) + (B9) (-x)
=a.f(-X) + .9 (-x)
=a.f(x) +B.g (x)
= (af) (%) + (B9) (x)
= (af +Bg) (X)
of +pg e Wy
= W1 is a subspace of V.
(i) Given W, ={f|f eV and  f(-xX) = f(X)}
Clearly f(X) =x3+x € W, [ f(-X) =-f(X)]
W, is a nhon-empty set
Nowleta, B € R and f,geW,
=  f(x)=-fx) and g(-x) =9(x)
forallx e R
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(af +B9) (-x)
=(a.f) (:x)+ (B 9) (X
= a.f(-x) + B.g (-x)
a (-f(x)) + B (-9(x)
-(a..f(x) + B.g (X))
-(of + B9) (x)

of -Bg € W,
= W, is a subspace of V.
(iii) To show that V = W, - W,
Let feV

Then, we can write f as

1 1
fx) = E(f(X)+f(-X)+ E(f(X)-f(-X)) vVxeR

=F (0 +G (), wmme=%Um+ﬂm

1
G (x) =5 (fO - £ (X))

Check that F (-x) = F(x)
and G (-x) =-G (x)
F(X) e W, and G X eW,
Hence f=F+ GwhereF e W;and G e W,
V=W, +W,
(iv) Let f e W, NW, = feW,and f e W,
=  f(x)=/x) and f(-x)=-f(X)
= f0=-fx) =  2f()=0
= fx)=0
so that W; N W, = {0}
(V) From (iii) and (iv), we get
V=W;+W,and W; N W, ={0}
= V=W, ®&W,
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Hence the result

Example 3: If

A={0,0,2):zeR}
B={(x,y,X): X,y € R}
Then showthat R®*=A ® B

Solution: Let us take

4.7

4.8

v=(x,y,2) e R®
(xy,2)=(0,0,z-X) + (X, ¥, X)
Here (0,0,zx)eAand (x,y¥,xX)eB
RE®=A+B (1)
Claim: AN B = {0}
Let v=(X,V,z) € AN B be any vector

= x,y,2)eA and (x,y,2)eB

= x=0,y=0 and z=x

= x=0,y=0 and z=0

= v (x,y,2)=(0,0,0)

= ANB={0} ..(2)

Hence from (1) and (2), we have
R°=A®B

Hence the result
Now you can try the following self check exercises.
Self Check Exercises

Q.1 Let V be a vector space of nxn matrices over a field F. Let W; and W, be
subspaces of upper triangular and lower triangular matrices. Find

() Wi+W, () WiNW,

Q2 Let V = F3, X1 = (l, 0, O), Xo = (1, 1, 0) X3 = (l, 1, 1) and Fx1, FXx,, FX3 are
subspaces generated by X1, X, and X3 resp. show that

F= FX]_ @ FX2 @ FX3
Summary

We have learnt the following concepts in this unit.

(1) Algebra of subspaces where we have studied sum of subspaces, direct sum of

subspaces. etc
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4.9

4.10

411

412

(i) Definition of complementary subspaces, disjoint subspaces and identical

subspaces.
Glossary
1. Disjoint Subspaces : Wi, W, € V (F), then W,;, W, are said to be disjoint

subspaces if Wy N W, = {0} i.e. their intersection is zero space.

2. Identical Subspaces : Two subspaces W; and W, of the same dimensions are
called identical subspaces iff each is a subspace of other.

Answers to Self Check Exercises
Ans.1 Take W; ={B : B = [bj]«n, bj=0fori<j
and W, ={C:C=[Cj]pn=Cj=0fori>]j
Now proceed.
Ans.2 First show F3 = Fx, + Fx, + Fxs and then proceed to prove the result.
Reference/Suggested Reading

1. Stephan H:, Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 4th
Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2004.

2. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

4, David C. Lay, Linear Algebra and its Applications, 3rd Ed.,, Pearson Education,
Asia, Indian Reprint, 2007.

Terminal Questions

1. If W1 ={(0, 0, z) : z € R} be a subspace of V3 (R). Show that W, = {(x,y, 0) : X, y
e R} is complements of W1.

2. Produce three examples of subspaces W, W, and W of a vector space V s.t.

Wl(-BW2=W1(-BW3=V,W2¢W3.

3. Let V be a vector space of nxn matrices over the field R and W,;, W, are
subspaces of symmetric and skew symmetric matrices of order n resp. Then
show that
V= W]_ @® W2

*kkkk
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Unit-5

Quotient Spaces

Structure

5.1 Introduction

5.2 Learning Objectives

5.3 Cosets

54 Quotient Space

5.5 Self Check Exercise

5.6 Summary

5.7 Glossary

5.8  Answers to self check exercises
5.9 References/Suggested Readings
5.10 Terminal Questions

5.1 Introduction

Dear students, in this unit we shall learn about another important space namely.
Quotient space. To study the concept of quotient spaces we feel it is important to have the idea
of linear independent vectors dimension and basis of a vector space in brief. The detained
discussion of these ideas shall be taken in the next unit.

5.2 Learning Objectives
The main objectives of this unit are to:
0] Learn about the concept of left cosets and right cosets.

(i) To study the concept of Quotient space for which idea of linear independence,
basis and dimension of a vector space will be taken in brief. However, detailed discussion of
these concepts will be taken up in the next unit.

Linear Independence and linear Dependence of vectors

Let V be a vector space over field F, then vectors.

ARV AN v, € V are called linearly dependent. (LD) if 3 scalars oy, oc; .... o, € F, not all
zero, s.t.

oCg, Vi + Cp Vo + . + oc, v, = 0, fir atleast one of And otherwise they are called linearly
independent (LI) i.e. of oc; vy + oy vo + ... + oc, vy, = 0 for all oci's zero.

Basis - Let V(F) be a vector space. Then a subset B of V is called basis of V iff.
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0] B is linearly independence
(i) L(B) =Vi.e.Bspans V.
Finite Dimensional -
A vector space V(F) is called finite dimensional iff a finite subset S of V s.t.
L(S) = Vi.e. Linear span of Sis equal to V.
Dimension of a vector space -

The dimension of finitely generated vector space (or finite dimensional vector space)
V(F) is defined as the number of element in a basis of V(F) and is denoted by dim V.

If any basis of V contains n elements, we say din V = n and in that case V is called n -
dimensional vector space.

Extension Theorem (Statement only)
Any L.I. setin V(F) can be extended to a basis of V

Note: The extension theorem will be proved in the next unit.

5.3 Cosets
Let W be a subspace of a vector space V (F). For any element v € V, the set
v+W={v+w/oeW}is said to be Left Coset of W in V.

and the set W + v = {0 + v/©o € W} is said to be Right Coset of W in V. Since the vector space V
(F) is abelian under '+'

vito=ot+tvVoeW
= v+W=W+v
so that each set is known as a Coset of W in V generated by v.
Example 1. (i) Let W ={(a, b) |a = b} be a subspace of R?
= W is the line y = x through origin in R?
Take the vector v = (2,0) The setv + W = (2, 0)

V-BX1S
?

<

x
v

—X-AXIS

/ =(2.0)
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The setv + W = (2, 0) + W is viewed as translation of line W, which we shall obtain by
addition of (2, 0) to every point of line W.

Thusv+W istheliney=x-2
Coset of W in R? is the line parallel to W.
(i) Let W ={(x, y, )| 4x - 5y + z = 0} be a subspace
= W is a plane through origin in R®
The cosetsof W are planes parallel to W
ie.v+W={(Xx,Vy,2)|4x-5y+z=K,Ke R}
(i)  LetW={(x,y,2)]z=0,x Yy e R}be asubspace of R®
= W is the x y - plane
The cosets of W are planes parallel to the xy-plane through the point (a, B, y) at "height"
Y
ie. v+W={(XY,2)|z=Y,X Yy e R}
Def. Let the set {v + W/v € V} of all cosets of W in V(F) and it is denoted by V/W.
Def. Now we define vector addition and scalar multiplication in this set of cosets as below:
V+FW)+(V+W)=(v+Vv)+Wforv,v' eV
anda (v+W)=av+Wforalla e Fv eV
Def.4. Letn € V/IW be acoseti.e.n=v+W,forveV
Then v is known as representative of n.
Theorem: Let W be a subspace of vector space V (F) and v, v' € V, prove
v+W=v+Wiffv-v e W.
Proof: Firstly, letv+W -v' + W
= If v+wev+W, then there must be an element v' + W' € v' + W such that

VW=V +W o o W

= v-vizo'-o
As W is a subspace, so o-oecWfore o eW
= v-vieW

Hence the result
Conversely
Letv-veWforv, v eV

Nowforo e W,v+o=0 +v+o=(V-V)+v+o
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=v+(v-V)t+to
=V + o where o= (v-V)+woe W

[as W is a subspace and v - v', ® € W]

= v+toev+W
= viWcv+W
Similarly Vi+Wcev+W

Hence v+ W =Vv'+W
Theorem: Let W be a subspace of a vector V (F). Prove that the set

VIW = {v + W|v € V} of all cosets of W in V is a vector space w.r.t. the vector addition
and scalar multiplication defined as

(vi+ W)+ (va+ W)= (vi+vp) + W
ando (vi+W)=avi+W foraeFandvy, vaeV
Proof: Given W be a subspace of a vector space V (F)
and VIW ={v+W/v € V}
Here vector addition and scalar multiplication is defined as
(vi+t W)+ (v2+ W)= (vi+v2) + W
anda (vi +W)=av; +Wfora e Fand vy, v, e V
Firstly we shall prove these compositions are well defined.
0] Vector Addition is well defined : For this, we shall prove that if
vitW=v,+Wand u, +W =u, + Wwhere vy, v, u;, u, € V
Then (vi+ u)+W=(vo+u,) +W
By Theorem 1. vi+W=v, +W = v, -v, e W
and u +W=u,+W=u -u, eW
But W is a vector subspace
Sothat (vi-v2) - (u, - u,) e W
= (vi+ u,) +W=(v2+ u,) + W)using Theorem 1)
Hence addition is well defined
(i) Scalar Multiplication is well defined:

For this we shall prove if vi + W = v, + W

Thenoavi+W=av,+WforaeF, vy, v, eV
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By Theorem 1. vi +W=v, +W = v;-v, e W
But W is a vector subspace
so that a(vy - v2) e Wforo e F
= avi=avy+W (using Theorem 1.)
Hence scalar multiplication is well defined.
Now, we shall prove that V/W is a vector space
Properties under addition
A-1. Closure : Let vi + W, vo + W € V/W where v, v, € V
As V is a vector space,
sovi+vyeVforvy,voeV
= (vi + vo) +W e VIW
= (vi + W) + (v, + W) € VIW
Thus V/W is closed under addition

A-2. Associative

Let vq, vo, v3 € V
and vi +W, v, + W, v+ W € V/IW
Now [(vi + W) + (v + W)] + (v1 + vo) + W] + (v3 + W)
(By def. of given addition composition)
=[(vi+ vy +vg] +W [By def. of given addition composition as v; + v, € V]
=[(vi+ (va+va)] + W
(Associative property holds for vector space V)
= (vt W) +[(v2 + v5) + W]
= (v + W) + [(v2 + W) + (v5 + W)]
Hence Addition is associative in V/W.

A-3. Existence of addative identity

For each vi + W e V/IW for v, e V
thereisO+W =W E V/W for O € V
suchthat (O + W)+ (vi+W)=(O-vy) +W-v; =W
(.- O is an additive identity of V)
and (vi +tW)+ (O+W)=(vi+O)+W=v; +W
(.- O is an additive identity of V)
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O+W)+ (vi+tW)=(vi-W)+(O+W)=v; +W
= O + W =W is the additive identity in V/W
A-4. Existence of addative inverse
For each v, + W € V/W for v; e V
thereis -v; + W € VIW (- -vy € V as V is vector space)
such that (-vi + W) + (vi + W) = ((-v1) +v)*W =0 + W =W
(- -v, is addative inverse of v; in V)
and (vi+tW)+(-v+W)=(vi +(-v))) +tW=0+W=W
(-vitW)+ (vi+W=(vi+W)+ (-vi+W)=W
= -v1 + W is the addative inverse of v; + W in V/W.
A-5 Commutative:
Letvi+W, vo +W e V/IW for vq, vo EV
Now (vi + W) + (v2 + W) = (vi + v) + W (by def of addition)
=(vatvy)+W
(-~ Commutative Property holds in V)
= (v2+ W) + (v + W)
Hence addition is commutative in V/W.
Il. Properties under scalar Multiplication
M-1lLeta e F,veV =>aveV
> av+WeVW
=a(v+W)eVW
ie,aeFandv+W e VIW = a (v+W) e VIW
V/W is closed under scalar multiplication
M-2 Leta,p e Fand v+ W e VIW
Now (a +B) (v+W) =(a+pB)v+W
=(av +pBv)+W
= (av+ W)+ (Bv+W)
=a(v+W)+pv+W)
(+B) (v+W) —a(vtW)+p(v+W)forv+W e VW

m n—-m
Then v+W= ) aw + > by, +W
k=1 t=1
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=w+ Y By, +W (Zakwk :W:WEW]
t=1 k=1

Sy, + (0 + W)

t=1

n—-m

= > by +w (c o+W=W form e W)
t=1

:bl V1+b2 Vot +bn—m Vn_m+W

= (byvy + W) + (bov, + W) + ..., + (bnm Vaom + W)
(by def of addition in V/W)
=by (vi + W) + b, (vo + W)
+ o +bym+W)forb, e F
= Any element v+ W of V/W can be expressed as a L.C. of vectors in S
= L (S) =VIW
Hence S is a basis of VIW
= dim (V/W) = No. of elements in S = n-m
=dimV -dimW.
Hence the result

Example: Let W be subspace of vector space V; (R) = V generated by (1. 5) Find V/W and its
basis.

Solution: The singleton set {(1, 5)} is L., which forms a basis of subspace W of V
It can be extended to form a basis of V, (R)
Consider the set {(1, 5) (1, 0)}, which is L.l set
It is a basis of V,. (- (1, 0) = A (1, 5) for any nonzero L)
Now V/W ={v+W|veV}
={(o, B) + Wl a, B € R}
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= {(a—gj(l,o)+§(15)+w

a,,BeR}

a,,BeR}
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a,ﬂeR}

{((“‘éj@ 0)+WH§(L 5)“"’}

{a(lO)+W|a:a—§e R} [ (1,5) e W]

= VIW ={a (1,0) +W]a e R}

Its basis is {(1, 0) + W}
Example 2. Let W be subspace of vector space

V = V3 (R) generated by {(1, 0, 0) (1, 1, 0)}

Find V/W and its basis
Solution : The set {(1, 0, 0) (1, 1, 0) is L.I., which forms a basis of subspace W of V.
(- (1,1,0)=A (1, 0, 0)) for any non zero A)

It can be extended to form a basis of v

Consider the set {(1, 0, 0) (1, 1, 0) (0O, 0, 1)}, which is L.I set (check yourself)

= This set is a basis of V3 (R)

Now VIW ={v+W |v e V}

={0(0,0,1) +W | a € R} (--(1,0,0),(1,1,0) W)
= VIW ={(0,0,a) +W |a e R}

Example 3. Let W ={a, 0,0, | o € B} be a subspace V = V3 (R). Find basis of V/W and verify dim
VIW =dim V - dim W.

Solution : The singleton set {(1, 0, 0)} is L., which forms a basis of subspace W of V = V3
By extension theorem, it can be extended to form a basis of V3
Consider the set B ={(1, 0, 0) (0, 1, 0) (0, 0, 1)} which form a basis of V3(R)
(already proved)
Now V/W ={a, B,y) + W}wherev={(a, B,y) €V
={(e, 0, 0) + W) + (at, B, v) + W)}
={(a, 0,0) + W) + (0, B, y) + W)}
={©, B, y) + W} (- (o, 0, 0) € W)
={(0.B,0)+W) +(0,0,v) + W)}
={B 0, 1,00 +W) +(y (0,0, 1) + W)}
={${0.1,0)+W}+v{0,0,1) + W}}
{(0,1,0)+W, (0, 0, 1) + W} form a basis of V/IW
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= din VIW =2
Here dimV =dim V3 =3 and dimW = 1.
= dim V/IW =dim V - dim W is verified
Hence the result.
5.4 Quotient space
The vector space

VIW ={v +W : v e V}is called the quotient space of v with respect to W. In other words,
the set of all cosets of W in v is called as the quotient space of V w.r.t. W.

Dimension of a Quotient space
Theorem : If W is a subspace of a finite dimensional vector space V(F), then show that

dim VIW =dim V - dim W.
Proof : Since W is a subspace of finite dimensional vector space V(F) therefore

W is also a finite dimensional vector space

SetdimV=nanddimW =m, m<n.

Set B = {wy, Ws ....... , Wy} be a basis of w.

By extension theorem, it can be extended to form basis of v.
Set By = {wg, Wy ....... s Wi VI, Vo e, Vamb
having n elements be a basis of v.
(*- dimv=n)

Set as consider

S={vi+W, vo+ W, ccooerririnns , Vo-m + W}, the set of all cosets of w.

Clearly S < V/W and number of elements in

S=n-m

Now our claim is that S is a basis of V/W.

0] We first show that S is sincerely independent (1)

As we known that W is the additive identity in V/W i.e. here zero vector is W.

Consider

o (VvitW) o (va+ W)+ ... +opm (Vam + W)

=0=W

= (g vi+tW)+ (v + W)+ ... (otp-m Vaom + W) =W
= oy vit+opvat........ +onm Vaom + W =W

= aivitoo vt ... +0ln-m Vnom € W
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It can be written as linear combination of elements of basis B of W

= Brwy+Baw, + ... + Bm Wi + (cot) vi + (Fo) va + ... + (-0n-m) Vam =0
=N B1=0,P2=0 ... Pm=0,-01=0, ... -G = O

(-~ Blis al setas itis basis_
= o1 = veeeeeen =on1 =0
so that
o (Vi tW) o (va+ W) + ... +onm (Vam + W) =0
= 01 = 0= e = opm =0 for vi+ W €S

(I<i<n-m)
SisL. I set.

To show L(s) = VIW
Setv +W e V/W be any element, v € v.

As Bl is a basis of v, so that

m n-m
v= Zakwk + Zhut foray, by e F
k=1

t=1

Then

m n-m
v+W =) aw + > by +w
k=1 t=1

n-m
=w+ Y by +W
t=
n-m
= > bo, + (w+Ww)
t=1
n-m
= > hou +W (- w+W=wforw e W)
t=1
= bl v, + b2 Vot bn—m Vi-m TW
= (bl vyt W) + (b2 vy + W) ...... +(bn m Vn-m +W)
=by (vi+tW)+by(va+w) ... + bpm (Voom W) for by € F
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= any element v + W of V/W can be expressed as a linear combination of vectors
inS.

= L(s) = VIW
Hence S is a basis of V/W.
Thus dim (V/W) = no. of elements in S
=n-m
=dimv -dimW.
Hence the proof.
Some illustrative examples
Example 1 : Set W be a subspace of vector space V = V3(R) generated by {(1, 0, 0), (1, 1, 0)}
Find V/W and its basis
Solution : Since (1, 1, 0) # A (1, 0, 0) for any non-zero A, therefore the set
{(1, 0, 0), (1, 1, 0)}is L.I. which forms a basis of subspace W of V.
It can be extended to form a basis of V
Consider the set {(1, 0, 0), (1, 1, 0), (0, 0, 1)} which is clearly L |
= This set is a basis of V3 (R)
Now V/W ={v+tW:v eV}
={a(0,0,1)+W :aeR}
(-~ (1,0,0),(1,1,0) e w)
= VIW ={(0, 0, o) + W:a e R}

Example 2. Set W be a subspace of vector space V, (R) =V generated by (1, 5). Find V/W and
its basis.

Solution : The singleton set {(1, 5)} is L-I. Which form a basis of subspace W of V.
it can be extended to form basis of V2(R)
Consider the set {(1, 5) (1, 0)} which is LI.
It is a basis of v, (*.- (1, 0) # A (1, 5) for any A = 0)
Now V/W ={v+W:veV}
={(a, B)+W, o, B € R}

{2} g o
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5.5

5.6

57

5.8

=

_ {[a_éj(Lo)+§(Ls)+w . fe R}

((+-2)a0rw)-(Lasiw]ases)

{a(LO)+W:a=a—§e R}

VIW ={a(1,0)+W:acR}

Its basis is {(1, 0) + W}
Self Check Exercises

Q1 LetW ={a, 0,0): a e R} be a subspace V = V3 (R). Find basis of V/W and
verify
dim VIW =dim V - dim W.

Q.2 Let W be a vector subspace of V(F) and (vy, vz, ....vp) in Vis L.I. setand W N L
(vi) = {0}
Show that set of cosets {vi + W, v, + W, ...v, + W}in V/IW is L.I.

Summary

In this unit we have learnt the following concepts.

(i)

Concept of cosets (Left coset and right cosets)

(ii) Definition of linearly independence, linearly dependence, dimension and basis in
a vector space.
(iii) the quotient space and dimension of a quotient space.
Glossary
1. Linear Combination of Vectors
Set V be a vector space over F.
If vi, vo oo, vn € V then any element v,
n
Written as v = oyvy + aovo + ..., +o, vy = Zaivi ,a, e F vieV,i<i<niscalled
i=1
linear combination of vector vy, v, ..... vy over F.
2. Identical Subspaces : Two subspaces W, and W, of the same dimensions are

called identical subspaces iff each is a subspace of other.

Answers to Self Check Exercises
Ans.1 Consider set B ={(1, 0, 0), (0, 1, 0), (0, 0, 1)} a basis of V3 (R)
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5.9

5.10

Find VIW, thendim V/IW =2, dimv=3,dmW=1
Ans.2 Consider the set
(v + W) + o (Vo +W) ... + o (Vhsw) =0=W
and proceed.
Reference/Suggested Reading

1. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.
2. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
3. David C. Lay, Linear Algebra and its Applications, 3rd Ed.,, Pearson Education,

Asia, Indian Reprint, 2007.

Terminal Questions

1. Set W be a subspace of vector space V =V, (R) generated by (2, 0). Find V/IW
and its basis.

2. Show that any two cosets u; + U and u, + U of V are either identical or disjoint.

3. Let V be a vector space of all 2x2 matrices over R and

[« Pnrer)

Find a basis of V/W.

*kkkk
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Unit - 6

Linear Combinations of Vectors

Structure

6.1 Introduction

6.2 Learning Objectives

6.3 Linear Combination

6.4 Linear Span

6.5 Generator of a Vector Space
6.6 Smallest Subspace

6.7 Self Check Exercise

6.8 Summary

6.9 Glossary

6.10 Answers to self check exercises
6.11 References/Suggested Readings
6.12 Terminal Questions

6.1 Introduction

Dear students, in this unit we shall study the concept of linear combinations of vectors. A
linear combination is an expression constructed from a set of terms by multiplying each term by
a constant and adding the result. The concept of linear combination is central to linear algebra
and related field of mathematics. In this unit we shall be dealing with linear combinations in the
context of vector space over the field. An important application of linear combination is to wave

function in quantum mechanics.

6.2

6.3

Learning Objectives

The main objectives of this unit are to:

0] to study linear combination

(i) to learn about linear span

(iii) how can we generate a vector space?

(iv) to know about smallest subspace

Each of above concepts will be followed by suitable example for better understanding.

Linear Combination

Let V be a vector space over the field F. As usual we call elements of V vectors and call

elements of F scalars. If
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V=01Vy T opve o +0n Vn
n

=ZOCiUi, aieF, i<i<n
i=1

is called linear combination of vector v4, v, ..... v, over F.

We note the following

0] Since v is a vector space, so by properly of addition and scalar multiplication in v,
we have v € V.

(i) For vectors vy, v ........ vn , We shall get different linear combinations by taking
different set of scalars a4, ay, ....... , Ol

For example

Let F be the field of real numbers R and let the vector space V be the Euclidean space
R®. Consider the vectors.

e;1=(1,0,0),e,=(0,1,0),e3=(0,0, 1)

Then any vector in R® is a linear combination of ey, e,, ;. To see this, take (ay, ap, as) in
R? and write

(a1, @, @) = (a1, 0, 0) + (0, &z, 0) + (0, 0, a3)
=a,(1,0,0)+ a, (0,0, 1) +as (0,0, 1)
=a e +a e +aze;

6.4 Linear Span

If S is a non-empty subset of a vector space V(F), then the set of all linear combinations
of any finite number of elements of S is called the linear span of S.

The linear span of S is denoted by L(S)
S L(S) = {uni v esa eF,1<i< n}
i=1
Note : If S = ¢. then L(S) = {0}.
6.5 Generator of a Vector Space

If S is a non-empty subset of a vector space V(F), then S is called a generator of the
vector space V(F) if each element of V can be expressed as a liner combination of the elements
of S.

Thus, if S is a generator of the vectors space V (F) and if v € V, then there exists,

Vi, V2 eernes vhe S such that
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V= ogvyt vy T, +a, v, for some ai's e F
where 1<i<n
e.g., Let the vector space V;, (R) ={(a, B) | o, B € R}
Take S ={(1, 0), (0,1)} = {e1, €2}
Let v € V, be arbitrary element
Then v = (a, ) forsome o, p € R
Clearly v - (a, B)
=a (1, 0)+B (0, 1)
—oe+tfe;
= v is a linear combination of e;, e, (the elements of S)
S generates V,.

Theorem : Prove that the linear span L (S) of any subset S of a vector space V (F) is a
subspace of V (F).

Proof. Let v, w € L (S)

Thenv= Y aV,where o; € F, vie Sfor1<i<n
i=1

m
and W:ZﬁjoWherijEF,WjESforlEjEm
=1

To show L (S) is a subspace of V (F), we are to show thatfora,b e Fadd v,we L (S)=>av+bweL(S)

Nowav+bw=a (iai\/ij—i-ﬁ (Zm:ﬂjwj)
i1 =1

(aai )vl+
i=1 i

n m
=1

(bB;)w; (By Associative Law)

= a v w is expressed as a linear combination of finite number of vectors

Henceav+bwe L (S)
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Thus, fora,b e Fandv,w e L (S)we haveav+bwe L (S)
Hence L (S) is a subspace of V (F).
Remark: If vi e SThenv,=1.v . fork=1, 2, ...... , N
vk € L (S)
Thus L (S) is a subspace of Vand S c L (S)
6.6 Def. Smallest Subspace

Let V be a vector space over a field F and S < V. Then a subspace W of V(F) is
called smallest subspace of V containing S iff

0) Scw
(i) If W, is a subspace of V(F) such that S c W,
then W < W,.
Notation:

The smallest subspace containing S is denoted by
<S> or {S}
Result:

For every subset S of a vector space V(F), there exists a unique smallest subspace of
V(F) containing S.

Example. To show that L(S) = the linear span of S is the smallest subspace, where S is a
subset of V(F).

Solution: Let W be a subspace of V such that S c W

Take any elementv € L (S)

n
= V:Zai\/i whereaj e F,vie S1<i<m.
i-1
Now ScW= Vi, V2, veenns ,vm e W
= arvitavo+ ... +ammeW

[ W is a subspace of V(F)]

n
= Z:Oti\/i eW
i=1

= veW
L(S)cW
= L(S) is the smallest subspace

Hence L(S) = <S> or {S}
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Theorem: If S and T are any subsets of a vector space V (F), Prove that
(i) ScL(T) = L(S)cL(T)
(i) ScT = L(S)cL(T)
(iii) Sisasubspaceof V(F) < L(S)=S
(iv) L(LE)=L(S)
Proof. (i) Givenis S c L (T)
LetvelL(S) = 3 Vi, V2, oo , Vi, € S50, Oy ... ,on € F
such that v = Zn:aivi
i=1

=X vieL(M)forl<i<n [+ ScL(T)]

= DV eL(Mforl<i<n
i=1

[~ L (T)is a subspace of V (F)]

= vel(T)
L(S)cL(T)
Hence the result
(i) GivenisScT
LetvelL(S)=> 3 Vi, Vo, e ,Vn €Sy, O, ..... ,o, € F
n
suchthatv= Y eV for  1<i<n
i=1
= v = Z:Oti\/i elL (T [ ScTsothat vy, vy, ...... , Vn € T]
L(S)cL(T)
Hence the result:
(iii) Given is S is a subspace of V (F)
We have to prove L (S) =S
LetvelL(S) = 3 v, Vo, e ,Vvn €S
and oy, do, ..... ,o,c F

n
suchthatv = ) av

i=1
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= veS [~ Sis asubspace of V (F) and it is closed
under addition and scalar multiplication]
L(S)cS e (A)
Also obviously ScL(S) ... (B)
[ Ifvg € SThen v =1. v]
From (A) and (B) we have L (S) =S
Hence the result
Conversely.
GivenisthatL (S) =S

Here, we have to prove that S is a subspace of V (F)

As L (S) is a subspace of V (F) [For Proof Theorem 6]

= S is a subspace of V (F) [*- S=L(9)]

Hence the result

(iv) As L (S) is a subspace of V (F) [By Theorem 6]

= L (L(S))=L(S) [By using the result of Part (iii)]

Hence the result
Example 1. Let R®* = {(a, B, y)| o, B, y € Reals}
and  vi=(1,1,1),v.=(1, 2 3), vs=(2, -1, 1)
Express vector v = (1, -2, 5) as a linear combination of vy, v, va.
Solution: Let v = ayv; + auv, + azvs for some scalars oy, oo, os.
= 1,25z (1,1, 1)+l 2 3) +as(2 -1, 1)
= (o, o, o) + (0, 200, 30,) + (203, -0, 03)
= (ot oo+ 20, o+ 200 - O3, O + 30, + 0)

By equality of vectors, we have

ot ot 205 =1 .. (A)
ot 20 - o3 =2 ..(B)
oyt 3ot o3 =5 .. (C)
Now (A) - (B) gives  -a, + 303 =3 ... (D)

(B) - (C) gives -a; - 203 = -7
Further (D) - (E) gives 5 a3 = 10 = o =
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Put in (D), we get
Put values of a,, as in (A), we getoy +3+4=1 = oy = -6
Vv=—0V;+3vy+2v;
Hence v is a linear combination of v4, v, and vs
Example 2. Find the condition on a, b, ¢ such that the matrix

a b
E = b } is a linear combination of the matrices
-b c

1 1 1 1 1 -
A= ,B= and C =
_O —J {—1 0} {O 0}

a
Solution: The matrix E =
-b c

} is a linear combination of give matrices A, B, C

if 3 scalars o+ o+ o5 such that

E=o;A+ apB + 05C.

_ a b] 1 1 1 1 1 -1
if =y + o + o3
5 oele A h o) elo o
y a bl _[a al}{az az}{as aﬂ
-b c| |0 -a -a, 0 0 0
o la b _[arata ata-a
bc] [ & -2,
By equality of matrices, we must have
if ot axtoz=a o (A)
ot Oo- 03 = b (B)
-ap = -b .. (C)
-0 =C (D)

From (C), o, =Db
From (D), o, =-¢C
Put these values in (B),

weget,-c+b-a3=Db

68



6.7

6.8

6.9

6.10

6.11

6.12

=

o3 =-C

Put these values of a4, oz and a;in (A), we have -c+b-c=a

=

a- b+ 2c =0 which is required condition.

Self Check Exercises

Q.1  Examine whether (1, -3, 5) belong to linear space generated by S, where
S={(1,2),(1,1,-1), (4,5, -2)} or not?

Q.2 Find the condition on a, b, ¢ so that the vector v = (a, b, ¢) € R® belongs to the
space generated by v; = (2,1, 0) ; v2 = (1, -1, 2); v3 = (0, 3, -4)

Summary

We have learnt the following concepts in this unit:

(1) Linear combination of vectors

(i) Linear span

(iii) Generator of a vector space

(iv) Smallest subspace

Glossary

1. Sparring Set : A subset S of a vector space V is called a spanning set for V if
span (S) =V

2. Vector Equation : A vector equation is an equation involving a linear

combination of vectors with possibly unlenourn coefficient.

Answers to Self Check Exercises

Ans.1 (1, -3, 5) does not belong to linear space of S.

Ans.2 2a-4b - 3c =0 is the required condition

Reference/Suggested Reading

1.

3.
4.

Stephen H. tried berg, Arndd. J. Insel, Lawrence E. Spence, Linear Algebra, 4th
Ed., Prantice Hall of India Pvt. Ltd., New Delhi, 2004.

David C. Lay, Linear Algebra and its Applications, 3rd Ed.,, Pearson Education,
Asia, Indian Reprint, 2007.

S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

Terminal Questions

1.

which of the polynomials are in

(i) <G, X2+ 2X, X2+ 2, X + 1>
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(i)
(iii)

3 +x+5

X2+ 3x%+3x+7

Write the vector v = (3, 2, 1) as a linear combination of vectors
vli=(2,-1,0),v>=(1,2,1)and vs = (0, 2, -1).

Write the matrix

A=

3 1
1 J as a linear combination of matrices

1 1 00 0 +2
,B= and C =
10 11 0 -1

For what value of A, will the vector

v=(1, 4, -4) € vz (R) is a linear combination of vectors

vi=(1,-3,2)and v, = (2, -1, 1)

*kkkk
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7.1 Introduction

Dear students, in this unit, we shall study the concepts of linear independence and linear
dependence of vectors in a vector space. The concept of linear combination, linear span
discussed earlier will make you comfortable in better understanding of the concepts of L.I. and
L.D resp.

7.2 Learning Objectives
The main objectives of this unit are
0] to study the concept of linear dependence of vectors over a field F.
(ii) to study the concept of linear independence of vectors over the field F

(iii) later, we shall produce another treatment of linearly dependent and linearly
independent vectors.

7.3 Linear Dependent (L.D.)

If V be a vector space over field F, then the vectors vy, v, ...... , vn € V are called linearly
dependence over F if there exists scalars a4, oy, ...... , on € F, not all of them zero (i.e., at least
one of g;'s is non zero) such that
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a1vy + obva + ... +o,vyp =0
For Example

The vectors v, = (2, 3, 4), v» = (1, 0, 0), vs = (0, 1, 0) and v, = (0, O, 1) are linearly
dependent.

Solution: Here Lvi+(-2) va+ (-3) va+ (-4) v4
=1(2,3,4+(-2)(1,0,0)+(-3)(0,1,0) +(-4) (0,0, 1)
=(2,3,4)+(-2,0,0) +(0,-3,0) + (0, O, -4)
=(2,-2,3-3,4,-4)+(0,0,0)=0

So, we have ayvq + opvy + agvs + oavs =0

whereo; =1#0,0,=-220,03=-320,04=-4%0

Hence v,, v,, vs, v4 are Linearly Dependent vectors.
7.4 Linear Independent (L.1.)

If V is a vector space over a field F, then the vectors vy, vy, ..... , Vo € V are called
Linearly Independent over F if there exists scalars a4, ay, ...... , o € F, all of them zero, such that
o1vy + oovo L. + onvh = 0

For Example. The vectors v, = (2, 0, 0)' v, = (0, 3, 0) and v; = (0, 0, 4) are linearly independent.
Solution: Consider oyv; + ovy + ... + anvy = 0 for some scalars ay, a, and o,
= o (2,0,0)+0,(0,3,0)+03(0,0,4)=0
= (201, 3o, 4a3) = (0, 0, 0)
200 =0,30,=0,403=0
= a1=0,0,=0,and a3 =0
Hence vectors vq, vy, vz are L.I.

Note 1. If A = {vi, Vva,.... vpo}. Then we call the set A as linearly dependent set or linearly

independent set according as vectors vi, Vva,......, v, are linearly dependent or linearly
independent.
2. An infinite subspace of A of a vector space is L.I. if every subset of Ais L.I.

Theorem. Let V be a vector space over a field F. Then prove that
(1) Every non zero singleton subset of V is L.I. over F.
(ii) Every set containing only zero vector is L.D. over F.
(iii) Any subset S of V containing zero vector is L.D. over F.
(iv) If a subset S of V is L.I. then it cannot contain zero vector.

(V) Every super set of a L.D. set of vectors is L.D.
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(vi) Any subset of a L.I. set of vectors is L.I.
Proof. (i) Letvz0andv eV

Take oo € Fsuchthatav=0

= eithera=0 or v=0
= a=0 [- a=O,given]
av=0 = a=0

Hence {v} is L.I. set,

(i) LetS={0}cV

Take o be non zero element of F
Thena.0=0fora=0 e F

= Sis L.D. set

(iii) Let S = {vy, va,....., v;} be a subset of vector space V (F) such that one of the
vectors of S is zero vector.

Let v = O for some k, where 1 <k <n.

Choose a; =0z =.... = a1 = 0 = Olgay = .o =—a,and oy =1
ai's € F and not all are zero [ ax=1=0]
Now oqvi + aovs + ... + opVh
=oqvy Hoove oL + Ok1Vik1 T OVk + Olk+1 V1 T -eeee + OnVn
=0vi+0vy+ ... +0wva1t+t1.(0)+0 v +..... + 0 onvn

=0+0+... +0+0+0+...+0

vy + ooV .. + oyv,=0
= Vi, Vo,....., vpare L.D.
= Sis L.D.

(iv) Suppose S is a L.l. subset of V (F)

If S contains zero vector, then S is L.D. which contradicts the given that S is L.I.
S cannot have any zero vector.

= there exists scalars a4, va,....., vs, Not all of them zero such that
vy + agve + .. + apvn=0 .. (A)

Consider T = {v1, Va,.....,Vn, Vi1, Vnezse...,Vnsit D€ @ SUpEr set of S
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Now Equation (A) implies

oqVvy + ova + ... + anVn+ 0 v + 0 v + .. +0vy1=0
where a4, oy, ...., 0, 0, 0, ..... 0, are not all zero
= V1, Vo,eeesViy Vintly «eees , Visiare L.D.

= the set T is L.D.

(vi) Let S ={vy, v,,.....,vm} be L.I. set of vectors

vy + oova + ..., + opvm=0

= M=02=...=0n,=0

Consider T = {vy, v,,.....,vp} Where L <p<m

clearly T is a subset of S

Consider a;v; + o,vp,= 0

= oqvy + oo + ... +0pVpt O vpuy ...+ 0vy=0

= oc1=0L2=....=(xp=O

Hence T is L.I. set.

[+ S={vy, va,.....,vm} IS L.I. set}

Theorem Let V be a vector space over F. Prove that

(1) The set (v}isL.D.iffv=0

.. (B)

- (A)

(ii) The set (v, v} is L.D. iff v; and v, are collinear i.e., iff one is a scalar multiple of

the other.

(iii) The set (vi, vo, v3} is L.D. iff vq, v, and vz are coplanar i.e., iff one is a linear

combination of the other two.
Proof. (i) Letv=0

Take a0 e FThenav=0 [ a. 0=0]
= {v}is L.D. set.
Conversely
Let {v} be I.D. set
= 3 scalar a # 0 such that
av-0
= v=0
Hence the result.
(ii) Let (vy, vo} be L.D. set
= 3 scalars a, B (not both zero, say a # 0) such that
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oavy, Pv2 =0

= avy = - Pv;
= Vi= — vy [ a=0]
a
= vy is a scalar multiple of v,
Hence v,, v, are collinear vectors
Conversely
Let v; and v, be collinear
= one of these, say v; is a scalar multiple of v,
ie., vi k v, for scalar k
= 1.vi-kv,=0
= avy + Bv,=0where a. 1. B =-k

Thus we have scalars a - 1 # 0, 3, not both zero such that
avy +Bv, =0
= v; + v, are L.D. vectors
Hence {vy, vz} is L.D.
(iii) Let {vi, v,, v3} be L.D. set
= 3 scalars a4, oy, as, not all zero (i.e., at least one of them is non To, say a4 # 0)
such that a1vq + 0ovs + 03v3 =0
= Q1V1 - OlpVo - OlgV3

Divide both sides by a1 (= 0)

(24 (04
= \%2 -2 Vo - —_— V3
al al
— 2
= vi= | ——= | v+ | ——|v3
o, o,

v, is a linear combination of v, and vs.
Hence v,, v,, v;are coplanar vectors.
Conversely
Let v, v, and v; be coplanar vectors

= One of these say v, is a linear combination of v, and v;
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3 scalars o, and oz such that
Vi = 0pVo + 03Vvs
= -l.vi+oove+azvs =0
so there exists scalars a; = -1 # 0, o, as not all zero such that
oqvi + oove + ogvy =0
= V1, Vo, vzare L.D. vectors

Hence { vy, v,, v3 }isa L.D. set.

Theorem : If V(F) is a vector space then, prove that the set S of non zero vectors vy, vy, ...., Vi
e V[i.e. S ={vy, va, ... , Vvn } < V] is L.D. iff some element of S is a linear combination of the
others. Also show in this case that

L{vi, va, ... vVt L{vy, v, o, s Vi, Vit ) e Vn}
Proof : Itis given that I. {vq, v,, ...... , Vn}is L.D. set

= 3 scalars {a4, ay, ...... , o, } not all zero such that

o1V + Oovo + ..., anvp =0

Since o4's are not all zero

Let ak # O for i =k

Equation (A) can be written as

oaqvitoovat o toy v, L+ropevetot+1lve+1+.. +ayvy, =0
= vk = (avy +oova + oot o Tvge Lo+ 1w+ 1+ + apvy)

Divide by oy = 0

=

a. (04
R e R e VL e
ay ay ay

Vk-l

a %
+ | =L g o+ | = v,

ay ay
= some vi € s can be expressed as a linear combination of
Vi, V2, ceuens y Vacls Vk#1y «+o+y Vn
Conversely

Let some vy € s can be expressed as a linear combination of

Vi, V2, cenens y Vicls Vk4ls =+oy Vn

e, vk =PBivi+PBava + ot B T v L+ Buvie + Pt L v+ 1+, + By
= Bivi+ Bova + ot Brr Vir t (1) F v+ Bt Lve+ 1+ + Bvy, =0
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= 3 scalars By, B2, -y Brrs Pk=-1#0, P+t .., Pn, NOt all zero
Such that vy + Bova + ...+ Bpv, =0
= Vi, Vo, ...., vy are L.D. vectors
Hence S ={v, vs, ...., vp } is L.D. set.

Note : The above theorem can also be stated as A non empty subset S of a vector space V (F)
is linearly dependent iff there exist v e S such that v € L (S - '{v}).

Theorem : If V (F) is a vector space then prove that the set S of non zero vectors vy, v, ..., Vi
e V is linearly dependent if and only if some vector vm € S, 2 < m < n can be expressed as a
linear combination of its preceding vectors.

Proof : Itis given that S = {v4, va, ...., vs} is L.D.
Then there exists scalars a4, oy, ...., o, € F, not all zero such that
oqvy + ove + .t oy =0 ...(A)
Let m be the largest suffix of a for which oy, # 0
Equation (A) = ayvi + aova + .ot Vi F O vipeg + .o Fovy, =0
= oqvy + oova + .t OV =0 ...(B)
If possible, let m = 1 Then Equation (B) gives
avi =0
= vi=0 [ oz = 0]
which contradicts given that all vectors of S are non zero.

m>lor2<m<n

Equation (B) can be written as

OmVm = -01V1 - 02V2 = ... Om1Vm-1
a o (04
e (e
an, Vi a.,
[+ ap# 0]

vm Can be expressed as a linear combination of vy, va, ..., Vm1

Hence v, can be expressed as a linear combination of its preceding vectors.
Conversely

Let v € S can be expresses as a linear combination of its preceding vectors i.e.,
Vg = Blvl + Bz\/g + ...+ Bk—l vi.1 for scalars Bl, Bz, vy Bk—l eF

= Blvl + Bz\/g + ...t Bk—l Viei- vk =0
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= Bivi + Bava + oot B Vir+ (1) + vk + 0 vy + 0 v+ 2 +.... +0v, =0

3 scalars Bl, Bz, . Bk-l’ Bk: -1 -0,

Bks1=0, ..., Bn =0, not all zero such that
Blvl + Bz\/z + ...t ann =0
= Vi, Vo, ...., vy are L.D. vectors

Hence S ={vy, v, ...., vp } IS L.D. set.
Another treatment for Linearly Dependent and Linearly Independent Vectors.
Let vy = (b, biy, ..., b1n)

v2 = (b1, b2, ..., b2n)

Vo= (bn1, bnz, ..., Bon)
be n vectors of the vector space F" (F).
These vectors are L.D. vectors iff there exists scalars
o4, O, ...., 0y € F, not all zero such that
oqvy + ove + ..t ogvy =0
= oy(b11, b1, ooy b1n) + 02(b21, boy, ..oy bon) + oot o (Brg, bray ..., b)) =0
= a1 b1, ao b+ F o bh1, o b, aob+.+ o, bra,...,
o b1, apbon+.o+ 0y b= (bng, boz, ...y b)) =(0, 0, ..., 0)
o byg, o by +.ot 0y by =0
o b2, Ao b+, 0, br2=0
o1 byn, 0o b+t oy by =0
These homogenous equations must have non-trivial (ai's are not all zero) solution.

By Theory of Equations, we know that above equations will have non-trivial solution iff
the determinant of its coefficient matrix is zero

bll b21 bnl
.. b
i.e., iff bfz b:22 S M=o
bln b2n i bnn
Hence vectors {vi, vo, ...., v, € F" are L.D. over F
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b, By o By

o % =
b by b,
b, b, .. B,
or iff bfl bfz bf”:o
b by b,

[-.- value of det. remains unchanged if rows and columns are interchanged]
and vector are L.l. over F
iff determinant = O.

Example 1: If u, v, w are L.l. vectors in a vector space V (F), then show that the vectors
u+v,u-v,u-2v+warelL.l

Solution : (a) Let ay, a,, az be scalars of F such that

oy (U+tV)+top(V+w)+az(w+u)=0 ()

= (ap+az)u+(og+a) v+ (o +o3) wW=0

= oy toz=0 ... (A) [Since u, v, w are L.I]
a1 +0a;=0 ... (B)
o, toz=0 ... (©)

Now (A) - (B) gives a3 - a, =0 ... (D)

Adding (C) and (D), we get, 2 a3 =0

oroaz;=0

Putting in (A) and (C)wegeto; =0,0,=0
. Equation (l) istrue only if oy =0, = a3 =0
= u+v, (v+w), w+uare L.l. vectors.

(b) Let ay, ap, az be scalars of F such that

o (U-V)+a(U-V)+az(u-2v+w)=0 (D)
= ((11"‘(12"‘(13)U+(OLl'OLQ'20(.3)V+O(,3 w=0
= oy + o +(X,3=0 (A)

[Since it is given that u, v, w are L.I.]
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o -02-203=0 ... (B)
az =0 .. (C)
Put value of a3 from (C) in (A) and (B)
we get oa1-a=0 ... (D)
ar-0,=0 ... (E)
Adding (D) and (E), we get
20.=0 = a, =0
Then (D) implies a, =0
. Equation (l) istrue only if a; =0z, = a3 =0
= u+v, u-v,u-2v+ware L.l. vectors.

Example 2 : If V4, V5, ..., V, are L.I. nx1 column vectors and A is a n x n singular matrix. Prove
that AV,, AV,, ...., AV, are L.D.

Solution : Since Ais n x n matrix and vi (i =1, 2, ..., n) is of type nx1

AV, (fori=1, 2, ..., n) is defined and will be of type n x1
Consider a; (AV,) + a,(AV,) + ... + a, (AV,) =0 ()]
for some scalars a;, ay, ..., a,
= A@Vi+a, Vo, +...+a,V,)=0
= AX=0
where X=a, V; +a, Vo + ...+ a, V,
Since A is a singular matrix, so the equation (II) have a non zero solution
Let X = X; be non zero solution (I1)

X;=a; Vi +a, V, + ... +a,V, for some scalars a,, ay, ..., a,
AsX1#Osothata; Vi +a, Vo +...+a,V, #0

= all of ai's cannot be zero since otherwise X1 will be equal to zero
a; (AV]_) + az(AVZ) + ...+ a, (AVn) =0
= the scalars a;, a,, ..., a, are not all zero

Hence AV,, AV,, ...., AV, are L.D. vectors.

Example 3 : Show that the vectors (a, b) and (c, d) in V2 (C) where C is set of complex
numbers, are Linearly Dependent iffad =b c.

Solution : Itis given that (a, b) and (d, d) are L.D.
= There is complex number A € C such that
(c,d)=A(a,b)=(ra,rb)
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= c=Xia (1)
d=x1b

Ifa=0,(I)givesi=ca'

and

Putting this value of A in (), we get

()

d=(ca)b=b(cal)d=(bc)a'=d=a*(bc)

= ad=bec.

And Ifa=0Then()=c=A(0)=0
ad=0(d)=0
and bc-b(0)=0

= ad=bc
Hencead=bc.

Another Proof : Let a (a, b) + B(c, d) = (0, 0) for any scalars o,

= (ca+pfc,ab+pd)=(0,0)
aa+pfc=0

and ab+pd=0

since given vectors are L.D., so a,  are not both zero.

the above homogeneous equation will have non-trivial solution if

b
‘ifad-bcin.e.adzbc.
c d

Hence the result.
Conversely
Givenad=bc
= b=(ad)c'ifc=0
= b=(achd
= b=xd, r=ac”
Alsothena=Ac
(@a,b)=(c,rd)

= (a, b), (c, d) are L.D. vectors
Nowifc=0=ad=b(0)=0
= eithera=0o0rd=0

If d = 0, then one vector (¢, d) =(0,0)=0
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= (ab) and (c, d) are L.D.
If a =0 then (a, b) = (0, b)
and (c, d) = (0, d)
and one is multiple of other s.t. (0, d) = ab-1 (0, b) where b =0
= (a, b), (c, d) are L.D.
Also if b = 0, then one vector is (a b) = (0, 0) zero vector
= (a, b), (c, d) are L.D.
Hence the result.
Some More lllustrative Examples

Example 4 : Prove that the set of vector (vi, v, ..... vy) form a L.D. set iff atleast one of the
vector is a zero vector.

Solution : Set v, = 0, be a zero vector, and
a1 #20,0s=0fori=2,3,...n
Now

n
Z Vi = ovy + oove L. + OhVn

= a(0) + Ov, +0vs + ..... + Ov,
=0

n

Thus we have scalars a1 #0, a2 = a3 ....an = 0 not all zero s.t. Z avi=0
i=1

or oyvy + opvye + ... + nVh
Therefore the set of vectors {vy, vo + .....+ v} is L.D.

Example 5 : Find A so that the vectors

1 1 A
-1(,| 2 |and | O |are sincerely dependant.
3 -2 1

Solution : Let a4, oy, oz are scalars in R s.t.

1 1 A
(0%} 1|+ (0] 2 |+ o3 0 =0
3 -2 1

Where a4, oy, oz are not all zero and 0 is a 3 x 1 zero matrix.
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=

o, a, Aa, 0
-a, |t| 2a, |[*| O | =10
| 3a, —2a, o, 0
o, +a,+ Aa, 0
= oy ta, =10
| =3, — 2a, + g 0
o toxtAraz=0 (1)
'(11+(12=0 (2)
'3(11 '2(12"‘ o3 = 0 (3)

solving (1) - (3) we get

7.5

7.6

7.7

20L;|_ (

__ljzo

4
A==,
3

since a4 = 0. Hence the result.

Self Check Exercise

Q.1

Q.2

Find the condition on scalar A s.t. the vectors
(*, 1,0), (1,2, 1) and (0, 1, 1) in v3 (R) are linearly dependent.
Prove that the vectors

vi=(1,2,-3),v,=(1,-3,2) and v3 = (2, -1, 5) or v3 (R) is linearly independent.

Summary

We have learnt the following concepts in this unit

(i)
(ii)

Linear dependence and linear independence of vectors.

Theorems are proved to show L.D. and L.I. of vectors over the given field.

(iii) Enough examples are given to understand the above concepts of L.J. and L.D. of
vectors
Glossary

Facts about linear independence -

(1)

(2)
3)

Two vectors are L.D. iff they are collinear i.e. one vector is a scalar multiple of
other vector.

Any set containing zero vector is L.D.

If a subset {v; v, - ....w¢} is L.D. then the set {v; v, - ....w} is L.D. as well.
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7.8

7.9

7.10

Answers to Self Check Exercises
Ans.l -A(2-2%)=0=A=0o0rA?-2is the req. condition.

Ans.2 Try to show ay = a, = 0, which implies vy, v,, vz are L.I.

Reference/Suggested Reading

1.
2.
3.

S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

David C. Lay, Linear Algebra and its Applications, 3rd Ed.,, Pearson Education,
Asia, Indian Reprint, 2007.

Stephen H. tried berg, Arndd. J. Insel, Lawrence E. Spence, Linear Algebra, 4th
Ed., Prantice Hall of India Pvt. Ltd., New Delhi, 2004.

Terminal Questions

1.

Find the condition on scalar A € C so that the vectors
(1-%,1+2),(L+x 1-2)invy(C) are L.D.

If vi, v, are vectors of v(F) and o, B € F.

Show that vq, v, avy + Bv; are L.D.

Prove that the vectors of v3(R) are L.I.

(@ x=(1,-1,2,0); y=(1,1,2,0)
z=(3,0,0,1); w=(2,1,-10)
(i) x=(1,5, 2), y=(0,0,1), z=(1,1,0)
Show that three column vectors of the snatrio
2 7 5
3 6 2
11T T

are L.D. what about its three row vectors?

kkkkk
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Unit - 8

Basis and Dimensions of A Vector Space

Structure

8.1 Introduction

8.2 Learning Objectives

8.3 Basis

8.4 Finite Dimensional

8.5 Ordered Basis

8.6 Existence Theorem

8.7 Invariance of number of Elements of a Basis
8.8 Replacement Theorem

8.9 Self Check Exercise

8.10 Summary

8.11 Glossary

8.12 Answers to self check exercises
8.13 References/Suggested Readings
8.14 Terminal Questions

8.1 Introduction

Dear students, we have already discussed the concepts of linear combination, linear

independence, linear dependence and linear span of vectors in our previous units. Now, it is
time to understand the concepts of basis and dimensions in this unit.

A subset of a vector space is a basis of its elements are L.l. and span the vector space.

Every vector space has atleast one basis, or many in general. Moreover all the basis of a vector
space have the same cardinality, called dimension of the vector space. Basis are fundamental
tool for the study of vector spaces, especially when the dimension is finite. In the infinite
dimensional case, the existence of infinite basis, often called Hamel basis, depends upon the
union of choice. Therefore, it follows that, in general, no base can be explicitly described. For
instance, the real number form an infinite dimensional space over Q (the rationales), for which
no specific basis is known.

8.2

Learning Objectives

The main objectives of this unit are

() to study basis of a vector space.

(i) to learn bout finite dimensional vector space
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8.3

(iii) to define ordered basis

(iv) to prove existence theorem

(v) to study invariance of numbers of elements of a basis.

(vi) to prove replacement theorem

(vii)  to define coordinates of a vector relative to the basis etc.

Basis

Let V (F) be a vector space. A subset B of V is called a basis of V iff

0] B is linearly Independent set

(i) L (B) =V i.e., B generates (spans) V.

or in other words every element in V is a linear combination of the elements of B.
Note : (i) A set of vectors having zero vector is always L.D. set, so it cannot be basis of

a vector space. Thus a zero vector cannot be an element of a basis of a vector space.

(R).

(ii)

(i) Since L(¢) = {0} and ¢ is L.I.
¢ is a basis of {0}
(iii) {0} is not a basis of {0}
e.g., (&) The set B = {(1, 0, 0); (0, 1, 0); (0, O, 1)}, a subset of V3 (R) is a basis set of V3

0] Firstly, we shall prove B is L.I.
Let a, b, ¢ € R such that
a(1,0,0)+b(0,1,0)+c(0,0,1)=0
(a, b,c)=(0,0,0)
a=0,b=0andc=0

the set B is L.I.
To show that L (B) = V3 (R)
We know that L (B) < V3 (R) .. (1)

Now for each (o, B, y) € Vs where o, B, ye R
we have (o, B, 7) = (o, 0,0) + (0, B, 0) + (0, 0, y)
=a(1,0,00+p(0,1,0)+v(0,0,1)
= each element of V3 can be expressed as a linear combination of elements of B
V3 (R) c L (B) ..(2)
From (1) and (2), we get L (B) = V3 (R)

Hence the set B is basis of V3 (R)
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(b) The set B; = {(1, 0, 0), (1, 1, 0), (1, 2, 3), (O, 1, 0)}, a subset of V3 (R) is not a
basis set of V3 (R).

0] To check whether the set B, is L.I. or not.

Let a, b, ¢, d € R such that
a(1,0,0)+b(1,1,0+c(1,2,3)+d(0,1,0)=0 .....(A)

= (@+b+c,b+2c+d,3¢)=(0,0,0)

atb+c=0 ..(1)
b+2c+d=0 .(2)
3c=0 ..(3)

From Eq. (3), se havec =0

Putting in Eq. (1) and (2) we geta+b=0andb+d=0

= a=-b,d=-b

Let b=-k=0real
a=k d=k,c=0

Thus we have scalars a=k, b = -k, ¢ =0, d = k such that Eq. (A) holds.
the vectors (1,0,0); (1,1, 0); (1, 2, 3); (0, 1, 0) are not L.I.

Hence B; is not a basis set of V3 (R).

Note. In general, any subset of V., (F) where F is any field, having more that m elements will be
L. Dependent and so cannot be basis of V..

8.4 Finite Dimensional.

A vector space V(F) is called finite dimensional or finitely generated iff there exists a
finite subset S of V such that L(S) = V i.e., linear span of S is equal to V.

Note. If there exists no finite subset which generates V, then V is called an infinite dimensional
vector space.

e.g., {a}LetB; ={(1,0,0);(1,1,0);(1, 2,0); (0, 1, 0)} be a subset of V5 (R)
We have already shown that B, is not a basis set of V3 (R)
Here, we shall show that L (B;) = V3 (R)
We know that L(B;) c V3 (R) (1)
Let any vector (a4, oy, a3) € V3 (R)
Consider (o, ap, a3) =a(1,0,0)+b (1,1,0)+c(1,2,3)+d(0,1,0)fora,b,c,d e R
=(a+b+c,b+2c+d,3¢)
= at+tb+c =y
b+2c+d =y
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3c = 0Oz
. . A
Solving these equations, we get ¢ = 3

a=oc1-oc2+§(x3+d

b=oa,= % asz-d
Thus a non zero solution exists
(o, ap, ag) € V3 (R) = (0, 0z, ag) € 1. (Ba)
so that V3 (R) < L (By)
From (1) and (2) we get V3 (R) = L (B,)
= Vs (R) is a finite dimensional vector space
Hence the result
8.5 Ordered Basis

An ordered set S = {vy, v, ...... , Vm) Which is basis of finite dimensional vector space V(F)
is called an ordered basis of V.

Def. Co-ordinates of a Vector Relative to the basis :
If S ={vq, vo, wuuu. , Vm) is an ordered basis of V(F) and v € V such that
v=a; vy +ayv, t ... +a, vyfora's e F
Then co-ordinates of v relative to ordered basis S are a;, a,, am and denoted as
[V]s = (a1, @2, @im).

Theorem. Let B = {vy, vy, ...... , Vn) is a basis of finite dimensional vector space V (F) iff every v e
V can be uniquely expressed as

V=01Vt opve + ... +OLnVn,OLi€F,1<i<n.
Proof. Given B = {v4, vs, ...... , vn) be a basis of V (F)
L(B)=V

sothatve V=v e L (B)
= V=0 vitoove o, + ap v, fOr scalars oy, oy, ...... , O

To show uniqueness

If possible, letv =0, vi+ B, va + ...... + Bn vn for scalars By, B2, ... ,BneF
o1 v+ ooV + ... + 0o VA= Prvi+tPavato... + Bn Vi
((11'B1)V1+((12'B2)V2+ ..... +(0Ln'Bn)Vn=o
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{vi, va, ... , vpare L.I. {as {v, ...... , Vn} is a basis set)

sothatoy -B1=0,02-PB2=0, ....... , O - B =
= o1 = B, o2 = P, ... , On = Bn
= every vector v € V can be uniquely expressed as
vV=o0og Vit oove ... + o, vy, 0 € F.
Conversely

Let every vector v € V be uniquely expressed as
V=o0y Vit oove o, +a,vhaeF,1<i<n.
To Prove. B = {vy, vo, ...... , vn) be a basis of V (F)
0] To show B is L.I.
Consider aq vi + oovs + ... + o, v, = O for scalars a4, a,, ..... a, € F (1)
We can also write vector O as
O=0v;+0vy+..... + 0 v, (2
representation of vector O € V is unique
from (1) and (2), we have

a1=0,0,=0,...,0,=0

= the vectors v, vo, ...... , vpare L.I.

the set B ={vy, va, ...... , vt is L.I.
(i) To showthatL (B) =V
We know that L (B) c V ....(3)
Let veV
= by given, there exists ai (L <i<n) e F
such that v = oqvy + aovs + ..., + Vi
= v el (B)

VclL(B) .(4)

From (3) and (4) V =L (B)
Hence B is a basis of V (F)
8.6 Theorem (Existence Theorem)
Prove that there exists a basis for each finitely generated vector space.
OR
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If S ={vq, va, ...... , Vm} Spans a vector space V(F). prove 3 a subset of S which is a basis

of V.
Proof. Let V (F) be a finite dimensional vector space
= there exists a finite subset S = {v4, v,, ...... , vn} Of V such that
L(S)=V w(A)

Without any loss of generality, we may suppose there that all vectors in the subset S are
non zero because contribution of zero vector in any linear combination of the vectors of S is
zero.

Since S = V so either Sis L.I. or L.D.
If Sis L.I., then S is a basis of V (F) [-.- by (A), itis given L (S) = V]
Hence the result

If Sis L.D., then exists m, 2 <m < n such that vm € S is a linear

combination of vy, vy, ...... , Vm- 1

m-1
i.e.,  Vp- Zaivl for ai's e F (B)

i=1
Consider the set

Sl = {V]_, V2, «uuu. , Vm-l, Vm+1, ....... , Vn}

We shall show that L (S;) =V
Clearly S; = S L(S) cL(S)
= L(S)cV (1) [ By (A),L(S)=V]

Now letv e V
= v is a linear combination of the elements of S [ L(S)=V]
VEBivitBavat ... +BrvnforBis e F

=Bvi +Bava + oot + Bt Vit + BmVim + PVt e + Bnva

m-1

= Blvl + BZVZ +....F Bm-l Vma t Bm(z aivij + Bm+1Vm+1 ----- + BnVn

i=1
[Using (B)]

=Bvi+ Bovat oo + Bt Vs T Bm(0ctave + Bove + ... + Om1 V1) * BmetVime+t ----- + Bnvn
= By + Pmot) Vi + (B2 + PBmotz) va + oooo + Bz + PmOm-1) Vit + Pmea Ve + oo + Pavi
= v is a linear combination of the vectors

Vi, V2, eery Vinedy Vimsdy eeees , v Of set S,

vel(S) ..(2)
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sothatVc L (S,))

From (1) and (2), we get L (S1) =V ... (©)
If Sy is L.I., then S; is a basis of V (F)
Hence the result. [ by (C),L(Sy) =V]

If S; is L.D., then proceeding as above we can get a set S, of (n - 2) vectors such that L
(S,) =Vandif S,is L.I., then S, is a basis set. But if S, is L.D., we repeat the above procedure
till we get a set S;,, for some m > 2, m € Naturals which is L.I. and L(S;,) =V, so that S,, is basis
set for V(F)

At the most by repeating the procedure, we are left with a subset having a single non
zero vector which generates V. But we know that a singleton set having non-zero vector is L.l
Hence there exists a basis for each finite dimensional vector space.

Remark 1. The above Theorem is also true for an arbitrary vector space V (F) i.e., each vector
space has a basis set. However its proof is beyond the scope of this syllabus.

2. The basis of a vector space need not be unigue. In fact, a vector space generally
have more than one bases (Later on, we shall give such examples). But the number of elements
in all the bases of a finite dimensional vector space is same, this we shall prove in the next
theorem.

8.7 Invariance of Number of Elements of a Basis

Theorem : Prove that any two bases of a finite dimensional vector space have same number of
elements.

Proof: Let V(F) be a finite dimensional vector space, so it must have a basis set.
(-~ Each finite dimensional vector space has a basis set)
Take Bi1={X1, X2, .eesy Xm}
and  Bo={ys Y2, ..., Y} b€ two bases of V(F)
We have to prove that m = n
If possible, letm > n
Since B; is basis of V, S0 X1, Xy, ...... , Xm € V and B, is also a basis of V.

Each x; (1 <i<m) can be written as a L.C. of elementsof B, ... (*)

X = 1311y1 + ﬁ12 Yot + ﬂln Ya
X, = 1821y1 + ﬂzzyz o + ﬁZn Ya

where B € F

Consider a system of n equations in m unknowns
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8.8

i.e. Bllzl + BZ]_ZZ + .. + Bmz Zn=0

B12Zz + P22Zo + ... +Bm2Zm =0

BinZi + Ponza+ ...... + BmnzZm =0 where B € F
Asm>norn<m
i.e. No. of equations are less than number of unknowns.
The above system of equations have a non zero solution say
Ki, Ko, ... , Kin. not all zero.
so that By Ky + BarKo + ... + B Kn=0
B1oKi + B2oKs + ... +Bm2Kn =0

Bin Ky + Ban Ko + ... + B Kn =0
Multiply these equations by yi, Y», ...., Ya respectively and then adding vertically, we get
Ki(Briys + Buayz + ... +BinYn) + Ko (Baiys + Bay2 + ... + Ban Yn)
+ oo+ Koy By + Bmzyz + oo + Brnn Yn) = 0

= KXy + KoXo + ... + KnXm =
i.e. Kixy + Koxo + ... + KnXm =
where K, K, ...... , K, are not all zero.
= {X1, Xz, ..... , Xm} is L.D. set

which contradicts that B, is a basis of V(F)
our supposition is wrong so that
m¥n
Similarly n»m
Hence m=n

= Any two bases of a finitely generated vector space have the same number of
elements.

Theorem (Replacement Theorem)
If V(F) be a vector space which is generated by a finite set B, of vectors yy, Yz, ...., Yn.

Prove that any linearly independent set of vectors in V contains not more than n elements.

OR
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If B, = {y1, ...., ¥n} Spans V(F), then prove that any (n + 1) vectors in V are L.D.
Proof: Given B, = {y1, V2, ....., ¥n} iS @ generating set of Vi.e. L(B,) =V
Let B = {X1, X2, ....., Xm} be L.l setin V(F)
We shall prove that m < n
If possible, letm > n
Since By is L.I. setin V S0 Xi, X2, ....... Xm € V and given L(B,) =V
Then proceed as in Theorem 17 from step (*) till the end of step (**)
wegetm ¥ n=m<n
Hence the result
Some lllustrative Examples
Example 1: Show that the vectors (1, 1, 0), (1, 0, 1) and (1, -1, -1) of R® form a basis of R® (R).

Solution: Since dim R® = 3, therefore it suffices to show that given three vectors are linearly
independent once R.

Let «(1,1,1)+p(1,0,1)+ %(,-1,-1)=0
for o, B, ¥e R
= (c+Pp+¥,c-%,c+B-%)=(0,0,0)

= c+B+¥=0
c-¥=0
a+B- =0

We can put these eqs in matrix form as

11 17[«] [0
10 -1/ |8|=|o0
11 -1||y| |0

11 1
or Ax=0,A=(1 0 -1

11 -1
11 1
detA={1 0 -1|=10+1)-1(-1+1)+(1-0)=1-0+1=2=%0
11 -1

given vectors are L.l. over R

Hence the given vectors form a basis of R® (R).
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Example 2: show that the set of vectors
S={1,0,0), (0, 1,0), (0,0, 1)} is a basis of R* (R)
Solution: For any a, b, ¢ € R® we have
(a,b,c)=a(,0,0)+b(0,1,0)+c(0,0,1),
so any (a, b, c) € R%is a linear combination of elements in S.
R® = Span (S)
Also S is linearly independent, since
a(1,0,00+b(0,1,0)+c(0,0,1)=(0,0,0)
= a=b=c=0
= set of vectors S form a basis of R® (R)
Hence the result
8.9 Self Check Exercise
Q.1 Show that
B={(1,1,1),(1,-1,0), (0, 1, 1)} is a basis of R®.
Q.2 Examine whether the set of vectors in V3 (R( form a basis or not
0) (1,0,-1), (1, 2,1),(0,-3,2)
(i) 1,1,1),(1,2,3),(1,0,1)
8.10 Summary
We have learnt the following concepts in this unit
0] Basis and dimension of a vector space
(ii) Basis and dimension of a vector space
(iii) Existence theorem and replacement theorems
(iv) Invariance of number of elements of a basis
8.11 Glossary
1. Standard Basis of R" -

A basis of n - triples R" given by set

S={e,e..... en}
where e; = (1,0, ...... 0)
e,=(0,1, .. 0)

is called the standard basis of R".
2. Standard Basis of Vector space of all polynomial of degree m over reals the set
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B={1,x X ... X"} of (m + 1) polynomial is a basis set for the vector space Py,
(R) of all polynomials of degree m over reals (R).

8.12  Answers to Self Check Exercises
Ans.1 Easy to prove
Ans.2 (i) Basis (ii) Not a basis
8.13 Reference/Suggested Reading
1. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.
2. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

3. David C. Lay, Linear Algebra and its Applications, 3rd Ed.,, Pearson Education,
Asia, Indian Reprint, 2007.

8.14 Terminal Questions

1. Extend {(1, 1, 1, 1), (1, 2, 1, 2) to a basis of R* (R)

2. Examine whether the set of vectors in V3 (R) form a basis or not
(1,0,0),(0,1,0) (1,1,0)(1,1,1)

3. Given examples of two different basis of V,(R).

*kkkk
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Unit-9

Basis and Dimensions of A Vector Space (Continued)

Structure

9.1 Introduction

9.2 Learning Objectives

9.3 Maximal Linear Independence Set
9.4 Dimension of A vector Space

9.5 Extension Theorem

9.6 Use of Matrices

9.7 Self Check Exercise

9.8 Summary

9.9 Glossary

9.10 Answers to self check exercises
9.11 References/Suggested Readings
9.12 Terminal Questions

9.1 Introduction

Dear students,in proceeding unit we have discussed the concepts of basis, finite
dimensions and ordered basis. We extend our discussion on basis and dimension of a vector
space here this unit, to study the concept of maroinal linear independent set, dimension of a
vector space and use of matrices etc.

9.2 Learning Objectives
The main objectives of this unit are to study
0] Maximal linear independent set
(i) The concept of dimension of a vector space
(iii) Extension theorem
(iv) The use of matrices, echelon matrices etc.
9.3 Maximal Linearly Independent Set

Let T be a subset of a vector space V(F). Then T is called a maximal linearly
independent subset of V if there is no superset of T, other than T itself which is L.I.

Theorem : Let V(F) is a finitely generated vector space, prove that any maximal linearly
independent subset of V is a basis of V.

Proof: Let T ={uy, uy, ....... , Up} be a maximal L.I. setin V.
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9.4

ie. Tis L.L
To show T is a basis of V, it is sufficient to show that L(T) =V
GivenTisal.l. setinV

i.e. TcV

L(McV ...() (- Vis a vector space)
Let v € V be any element
As T ={uy, ....... , Un} is @ maximal linearly independent set
sothat S = {uy, ...... , Un, v}is L.D.
= 3 scalars a4, 0 ....... oy, o not all zero] (1))
s.t. oqUg + opUy + ... +o,u,+av=0 (1))
Ifa=0, Then o; u; + oLV, + ....... +oup,=0
= o1 =02 = ..oue.ee =a,=0 (-~ TisL.T.)
sothatoy =0y = ....... =o,=a=0

which contradicts (ii)

az0
so (iii)) = V= (—ﬂj u; + (—ﬁj Us + ... + (—ﬂ] Un
[94 (24 (04
= visaL.C. of uy, uy, ...., Uy
= visalL.C.ofeltsof T
= v e L(T)

VcL(T) (V)
From (i) and (iv), L(T) =V
Hence the result
Dimension of a vector space

The dimension of a finitely generated vector V(F) is defined as the number of elements

in a basis of V (F) and is denoted by dim V.

i.e. if any basis of V contains n elements we say dim V - n and thus V is n-
dimensional vector space.

e.g. If V=R", then dim V = n since B ={ey, e, ...... , €n} Where

ei=(0,0, ... 1, .....0) O occurs at ith place, is a basis of V having n elts.

Thus R" is n-dimensional vector space

Note: (i) dim {0} = 0, as basis of zero space is empty set which contains no element.
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9.5

(i) If vector space V(F) is not a finitely generated vector space, then it is called to be

infinite dimensional vector space and dim V = .

(iii) The dimension f V is always less than or equal to number of elements in any
generating set of V, as a basis can be chosen from the given generating set for

vector space V (F).

(iv) If a field F is taken as a vector space over the same field F, then dim F =1 and

{1} is a bases of F where 1 is unity element of F.
Theorem (Extension Theorem)

Let V (F) be a finite dimensional vector space and if

S; = (W1, Wo, ...... , Wp} is any L.I. set of vectors in V, prove that, unless S; is a basis, we
can find vectors Wy.1, Wpi2,....., Wy in V such that
{wq, Wy, ..... Wp, Wps1, ... , Wp4r) IS @ basis of V (F)
(OR)

Prove that any L.1., setin V (F) can be extended to a basis of V.

Proof. Given V (F) be a finite dimensional vector space

= JasetB={vy vy, ... vn} < V, which is a basis of V (F).
ThenBis L.l andL (B)=V
Also, we are given that the set
S = {wg, Wy, ..... , Wp}is L.I. setin V

Consider the set S, = {w1, Wy, ...., Wp, V1, Vo, ...., Vn}.

LetwjeS; = wjeVfor 1<j<p (Since S; V)
= w; can be expressed as L.C. of the elements of B (.- L (B) = V)
= wi=> aV,forl<j<panda;eF .. (1)
i=1
For eachv e V = v=>"a,V, forbs e F (Since L (B) = V)
i=1

= v=>Yhv where 0;=0
i=1

= vis L.C. of wy, wy, ..... » Wp, V1, Vo, ... , Vi

= vel(Sy)

sothatVcL(S,) .. (2)
Also S, — V and V is a vector space

= L(S) cV [by Theorem 7 (i) of Chapter 2] e (3)
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From (2) and (3), we getV =L (S,)
The relation (1) can be written as

ZOW + Za”v wheret=1,2,...,p

t#]

= one element w; of S, can be expressed as a linear combination of the remaining
elements of S,, so that S; is a L.D. set

[because of Theorem 13 of Chapter 2]

= By Theorem 14 of Chapter 2, one of the vectors in S; is a linear combination of
the preceding vectors and this vector cannot be any one of wj's (since S1 is L.I.) so this vector
must be one of the vi's and let it be v € B

p k-1
Vg = Zﬂjo + Zai\/i for o, BJ eF (4)
j=1 i=1
Now consider the set
Sg = {Wl, Wo, ..... » Wpy V1, V2, woeey Vi1, V1) ooeee , Vn}
Clearly S;c S, = L (S3) cL(Sy)

= L(S3)cV (= L(Sp) =V already done) ..... 5)
Now letanyy € V

n
= y = chvi for scalars ¢; € F

i=k izk

= DCV +GV, = D GV +C, LZﬂW +Za J

[Using (4)]

k-1 n k-

1
=+ D cv (Gt chﬂ
1

i=1 i=k+1 i=

k-1 n n

=D (c+aa N + Dav+ Doy + > (6h)w

i=1 i=k+1 i=k+1 j=1

=l

= y is expressed as a linear combination of the vectors of S;.

y € L (Ss) ... (6)
sothatVc L (Sy)
From (5) and (6), we get V =L (S3)

Since S; c V, so either itis L.D. or L.I.
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If Ssis L.I., then Sz is a basis set, which has been obtained by extending L.I. set S; of V.

But if S; is L.D. set, then we go on repeating the above procedure to get a new set Sy
such that Sy is L.I. and L. (Sy) = V.

Thus Sy, which is an extension of S; is basis set of V. Hence any L.I. set in V can be
extended as a basis set.

At the most by repeating this procedure, we shall get the set {w;, w,, ...., wWp} which is
given as L.l. set and so becomes a basis of V.

Theorem: Prove that each finite subset S of a finite dimensional vector space V (F) which
generates V can be reduced to a basis of V i.e. there exists a basis B of V such that B — S.

Proof. As an empty set is L.I. and subset of any set S
S contains a linearly independent subset.

Let p be the largest non-negative integer such that there is a subset B of S, having p
elements and B is L.I.

We wish to show that L (B) =L (S) ()
AsBcS = L(B)cL(S)
Now lety € S

We want to check y € L (B)

If possible, lety ¢ L (B) (D))
Consider a set B; = B U {y}

Letay + by y; + by, + ...... +by,=0,yieBandbeFforl<i<p ... (iii)

y € L (B) which contradicts (ii)
sothata =0

(|||) = bl y1 + b2 Yo + ... + bp Yp = O

= o=by=by=..... =b,=
so that B; = {y, Y1, Y2,....., Yp} having p+1 elements is L.I.
But this is impossible

(-~ A L.I. subset of S cannot have more than p elements)
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our supposition (ii) is false
sothaty € L (B)

SclL(B)
= L(S)cL(L(B))
o L(S)<=L(B) (- LL®B)=L(B)

From (1) and (iv) we have L (B) =L (S)
But givenisthatL (S) =V
L(B)=v

Also B is L.I. set

= B is a basis of VsuchthatB c S

= the set S has been reduced to a basis of V.
Theorem. If a basis of vector space V (F) contains n elements, prove that

@) A subset W of V having more than n elements is L.D.

(b) A L.I. subset W of V cannot have more than n elements

(© A subset W of V which generates V must have atleast n elements

(d) A subset W of V having n elements is a basis iff W is L.I. iff L (W) =V
Proof. (a) Let B = {X, X2, ....., Xn+1} be a subset of W, having (n+1) elements.

We shall show that B is L.D.

If possible, let B be L.I. set

Then either this set B is a basis or can be extended to a basis of V (F) by Extension
Theorem. But, in both cases, the basis will contain (n+1) or more vectors which contradicts
given that a basis of V contains n elements.

B is L.D. set
and BcW or WoB
= W is L.D. set (- super setof aL.D. setis L.D.)

(b) Let W be a L.I. subset of V, if it contains more than n elts then W is L.D. set
[Using part (i)]

Thus, a L.I. subset W of V cannot have more than n elements.

Hence the result

(c) Let K be a subset of V such that V = L (W)

If W is an infinite set, then result is obvious

(- An infinite set always have more than n elements)
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If W is finite set, then it can be reduced to a basis B of V such that
BcW
= number of elements of B = n as a basis of V contains n elements

(By Theorem 7, Each finite subset of a finite dimensional vector space V which
generates V can be reduced to a basis of V)

Nowas B W or WoB
= number of elements in W > n
= W contains at least n elements.

(d) Firstly let K be a basis of V (F)
= KisL.l.and V=L (W)
KisL.l.orL(W)=V
Conversely
LetW be L.I. setor L (W) = V.

If W is L.I. then by Extension Theorem, it can be extended to a basis of V i.e., 3 a basis
B of V such that W < B.

Since any two bases of a vector space have same number of elements.
Thus number of elementsin B=n
Since W c B and both W, B have n elements
W =B
= W is a basis of V (F)
If L (W) =V, then, since a finite subset which generates V can be reduced to a basis of

there exists a basis B of V such that B c W
But number of elements in B =n
Since B = W and both W, B have n elements
W =B
= W is a basis of V (F).
9.6 Use of Matrices
Elementary row and column operations

Let A be any m x n matrix over a field F, then we recall that the elementary row (column)
operations are as below:

(@) Interchange of any two rows (columns) [say ith and jth] of a matrix A and is
denoted as R <> R; (Ci <> C)
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(b) Multiplication of any row (column) [say ith] of a matrix A by a non zero element
(say A) and is denoted as R <> A R; (C; <> C)).

(© The addition to the elements of a row (column) [say ith] by scalar (Non zero
element 1) times the corresponding elements of another row (column) [say jth]
and is denoted as Rj <> R + R; (Ci <> C; + A C)).

Echelon Matrix: Let A = [aj]m«n De a matrix over a field F. Then the matrix A is called an
echelon matrix iff the number of zeros after the non zero elements of a row increases row by
row. The elements of the last row or rows may be all zeros.

1 5 6 7

1 2 3 3
—50300705—23
e.g.,014,000,0091
006000 0O 0O 0O 8
10 0 0 O

are all echelon matrices (or the matrices in the echelon form).

Note. The first non zero entries in the rows of an echelon matrix are called distinguished
entries (elements) of that matrix.

e.g., In the above matrices.
The distinguished elements in the first matrix are -5, 1, 6

and in the second matrix are 1, 7
. . . 3
and in the third matrix are 1, E 9, 8.

Row Reduced Echelon Matrix
An echelon matrix A is called a row reduced echelon matrix iff.
0] The distinguished elements are each equal to 1.

(i) These elements (distinguished) are the only non zero elements in their
respective columns.

015 0 0100
e.g., {O 0 0 J, 0O 01 2
0O 0O0O
1 07 0
and |0 1 7 O0]are all rowreduced echelon matrices.
0 001
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Theorem 9. Prove that the non-zero rows of an echelon matrix are L.I.
Proof. Let Ry, R, ..... , Ry be p, non-zero of an echelon matrix.

If possible, let (Ry, Rpa, ... , R2, R;) be L.D. set. Then one of rows, say R is a linear
combination of the preceding rows

i.e., Rx = o1 Riser + O R + ... + 0py Rp—l + (XpRp (A)

Let us suppose that ith component, of Ry is the first non-zero entry of this row, then by
definition of an echelon matrix, the ith components of Ry.q, ..... Rp1, Ry are all zero

ith component of R.H.s. of Eq. (A) is
okt (0) + oy (0) + ... +ap1 (0)+ 0, (0)=0

which is a contradiction to the assumption that ith component of Ry [i.e., L.H.S. of Eq.
(A)] is non-zero

Hence our supposition is wrong
non-zero rows Ry, Ry, ..... R, of an echelon matrix are L.I.
Some lllustrative Examples
Example 1. Show that the set

B ={e4, e, ..... , en} Where ei = (0, O, ..... , 1,0, ... , 0), 1 occurs at ith place is a basis of
Vi (R)

Solution: We know that
Vi (R) = (vIv = (o, ay, ..... , o) ;o5 € Fwherel<i<n}
0] To Prove B is L.I. set
Leta;e;+a,e; + ... +a,e,=0,fora's eF
-  a,(1,0,...,00+a,(0,1,0, ..,0) +....+a, (0,0, ...., 1) = (0, O, ..., 0)
- (@, 0, ....,0) + (0, @, 0, ....., 0) + ..... + (0, 0, ...., &) = (0, O, ....., 0)
= (a, a, ..... ,an) =(0,0, ..... , 0)
= a;=0,a=0,...,a,=0
Thus B is L.I. set.
(i) To Prove L (B) =V, (R)
Letv e V, (R)
= v = (0, dg, ..... , ap) for ai's e F,where 1 <i<n
= v=(ay, 0, ...... , 0+ (0,0 ..., 00+ ...+ (0,0, ....., o)
=y (1,0,..,00+0,(0,1,....,0)+.... +2, (0, 0, ....., 1)

—oertaoaxert ... + o, en
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= v is a linear combination of ey, e, ...., e,, the elements of B
= v el (B)
Vn (R) c L (B) (1)
Obviously, we have L (B) = V, (R) .. (2)
From (1) and (2), L (B) =V, (R) [as V, (R) is a vector space]
Hence B is a basis of V,, (R)
Note. The above basis is known as standard basis of V, (R).

Example 2: Show that the vectors (1, 1, 1), (1, 0, 1) and (1, -1, -1) of R® form a basis of R* (R).
Also find the co-ordinate vector of (-3, 5, 7) relative to this basis.

Solution: As dim R® 3, thus to show the given three vectors form a basis of R?, it is sufficient to
check these vectors are L.I. over R.

Let o(1,1,1)+b(1,0,1)+c(1,-1,-1)=0fora,b,ceR
= (@a+b+c,a-c,a+b-¢c)=(0,0,0)
at+tb+c=0
a-c=0
a+tb-c=0
These egs. can be put in the form of matrix as
11 1|]a 0
1 0 -1||b|=|0
11 -1f|c 0

11 1

or AX=0OwhereA=|1 0 -1

11 -1
11 1
NowdetA=|1 0 -1
11 1

0 - 1 - 1 0

=1 -1 +1
1 - 1 - 1 1

=10+1)-1(-1+1)+(1-0)
=1-0+1=2+%0

given vectors are L.I. over R.
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Hence the given vectors form a basis of R® (R).
(lind part) Let x, y, z, € R such that
(-3,5,7)=x(1,1,1)+y(1,0,1)+z (1, -1,-1)
=(x+ty+2z,X-2,x+y-2)
X+y+z=-3
X-z=5
X-y-z=7
Solving these, we getx=0,y=2,z=-5
(-3,5,77=0(1,1,1)+2(,0,1)+(-5 (1, -1,-1)
= the required co-ordinate vector is (0, 2, -5)

Example 3. Show that the set B = {1, x, X%, ...., X"} of (m + 1) polynomials is a basis set for the
vector space P, (R) of all polynomials of degree m over R (reals).

Solution: Given the set B = {1, x, X*, ...., X"}

0] Firstly, we shall show B is L.I. set

Let ag, 1 + oy, X + oX> + ... +ax"=0 (zero polynomial)
forais e R,0<i<m

=N do.l+ oy X+ ..+ opX"=0.1+0.X+0.X° + ... + 0.X"

By equality of polynomials,

we have 0y =0, 0, =0, 0, =0, ..... ,om =0
= 1, X, X%, ....., x"are L.I.
Hence B = {1, x, X% ....., X"} is L.I. set

(i) To show L (B) = P, (R)

Let f(x) be a polynomial of degree m over R

i.e. f(X) € P (R)

Then f(x) = b+ by X + byx® + ..... + by, X" for bj's € R

=bo.1l+by.X+byX2+..... + by X™

= f(x) is expressed as L. combination of the elements of B
= f(X) e L (B)
Pm (R) c L (B) . (1)

Obviously, L (B) c Py (R)

(-~ Pn is a vector space)
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From (1) and (2), we have
L (B) =Pn (R)
Hence B is a basis of P, (R)
Example 4: Show that the set
B={a+b,b+c, c+d}isabasis of V3 (R), given that S = {a, b, c} is a basis of V3(R).
Solution: (i) We show that B is L;.
Consider c(a+b)+p(b+c)+¥ (c+d)=0,«,B, ¥ R
= (c+¥)a+PB+oc)b+(P+7%)c=0(0,0,0)
= c+¥=0,p+oc=0,¥+p=0
on solving, we have c =0=03=7%
a+b,b+c,c+darelL.l. vectors
= Bis L.l
(i) To show L(B) = V3 (R)
Let z=(p,q,r) e V53 (R)
The set S = {a, b, c} is a basis of V3 (R)
z can be expressed as a linear combination of elemtns of S i.e.
Z=(xc+¥)a+(c+P)b+P+¥)c
= (atb)+pB(b+c)+¥ (c+a)

= z can be expressed as linear combinations or elements of B

= z € L (B)

=  V3(R)cL(B) e (D
= L (B) Vs (R) e (2)
Hence from (1) and (2) we get

L(B) = Vs (R)

O Thus B is a basis of V; (R).
9.7 Self Check Exercise
Q.1 Show that the matrices

5 2 1 3 -2
of 2x2 matrices over reals.

15 21 4 -2 _ ,
, and 5 form a basis of V(R), where V is a vector space

Also find the coordinate vector of the matrix
107



9.8

9.9

9.10

9.11

9.12

-3 7
A= { . 2} relative to above basis.

B={(1,1,1),(1,-1,0), (0,1, 1)} is a basis of R®.
Q.2 Show that the dimension of the vector space Q (\/5) over Q is 2.

Summary
We have learnt the following concepts in this unit

0] Maximal Linearly Independent Set. we have proved a theorem that any maximal
so | subset of V is a basis of V

(i) Dimension of a vector space

(iii) Extension theorem which proves that any LI set in V(F) can be extended to a
basis V.

(iv) Elementary row and column operations and define what is called an Echelon
Matrix.

Glossary

1. Row Reduced Echelon Matrix -

An Echelon matrix A is called a row reduced Echelon matrix iff
i. The distinguished elements are each equal to 1.
ii. These elements are the only non-zero elements in their respective columns
Answers to Self Check Exercises

7
Ans.1 dim V = 3, coordinate vector of { 2} relative to above basis is (5,—1], gj

Ans.2 consider B = {L \/5} ,

o (o[ =2
Reference/Suggested Reading

1. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

2. David C. Lay, Linear Algebra and its Applications, 3rd Ed.,, Pearson Education,
Asia, Indian Reprint, 2007.

3. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007
Terminal Questions

1. Give examples of this different basis of V3 (R) or R3
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2. Show that set B = {«c + if}, ¥ + 18} is a basis set of ((R) iff «<d = B¥.
3. Find coordinate of the vector (2, 6, 4) relative to the basis
Vi = (1, 1, 2), Vo = (2, 2, 1), V3 = (1, 2, 2)

*kkkk
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Unit - 10

Dimension of Subspace

Structure

10.1 Introduction

10.2 Learning Objectives

10.3 Dimension of A Subspace

10.4 Self Check Exercise 1

10.5 Existence of Complementary Subspace of A finite Dimensional Vector Space
10.6 Self Check Exercise 2

10.7 Summary

10.8 Glossary

10.9 Answers to self check exercises
10.10 References/Suggested Readings
10.11 Terminal Questions

10.1 Introduction

Dear students, continuing our discussion on vector space we shall discuss dimension of
a subspace and existence of complementary subspace of a finite dimensional vector space in
this unit.

10.2 Learning Objectives
The main objectives of this unit are

0] to prove a theorem based on dimension of a subspace. In another theorem we
shall prove that for U;, U, finite dimensional spaces U; + U, is also a finite
dimensional and dim (U; + U,) = dim U; + dim U, - dim (U; N Uy)

(i) to study existence of complementary subspace of a finite dimensional vector
space. Here also we shall prove a result that if dim V (F) = m+n and U; is m -
dimensional vector space of V, then 3 n-dimensional vector subspace U, of V s.t.
V=U; ® U, etc.

10.3 Dimension of Subspace

Theorem: If W is a subspace of a finite dimensional vector space V (F), prove that dim. W <
dim. V. Moreover W =V iff dim. W = dim V.

Proof. Let dim. V =n.
To show W is finite dimensional

If possible, suppose it is not so i.e., W is not finite dimensional
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Take B; be a infinite basis of W
B,is L.I. setin W
= ByisL.l.setV (-WcV)
But the set B; is infinite
Thus B, is a L.I. subset of V having more than n elements.
= B, is L.D. set which is a contradiction
our supposition is wrong
Hence W is a finite dimensional
Take dim. W =p
Now we have to show that p <n
Let B = {wy, Wy, ..., Wp} be a basis of W
= BisL.l.setinW
= BisL.l.setinV (-WcV)

As every L.I. subset of a vector space can be extended to a basis, so there exists a
basis S of VsuchthatB c S

= No. of elts in B < No. of elts in S

= P<N

l.e., dim. W <dim. V

Hence the result

lInd Part. If V=W

Then if W is a subspace of V, V is a subspace of W.

= dim W < dim V and dim V < dim W = dim V = dim W.
and if dim. V = dim. W = n (say)

Let B a basis of W

= L (B) =W and B has n elements

Also B is a subset of V (- BcWcV)
and has n L.I. vectors

= B shall be basis of V

= L(B)=V

Hence V=W

Theorem 2. If Uy, U, are finite dimensional subspaces of a finite dimensional vector space V
(F), Prove U; + U, is also a finite dimensional and
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dim. (U]_ + U2) =dim. U, + dim. U, - dim. (U1 N U2)

Proof. Since it is given that V is finite dimensional vector space and U; + U, N U, are vector
subspace of V (F)

U, + U, and U; N U, are finite dimensional
Let B1 = {wy, Wy, ...., w;} be a basis of U; N U,
sodim, (U NU,) =r
= B, is a L.l. subset of U; N U,
= B, is a L.I. subset of U, and U, both
[+~ U NU,cU;and U; N U, c U]
the set B, can be extended to form a basis of U; and U, both
Let B, = {wy, Wa,...., W,, Ug, U,..., Uny}
and Bs = {wy, Wy, ..... y» Wy, Vi, Vo,.eey Ving}
be bases of U; and U, respectively so dim B, = n and dim B; = m.
Consider the set
S =B, U B3 = {wWy, Wa,.....W,, Uy, Uy, ..... » Uy V1, V2, veesy Vina}
Now, we shall show that S is a basis of U; + U,
(1) Firstly we shall show L(S) = U; + U,
Since B, cU; c U; + Uy
and Bi;cU,cU;+U,
= BoUBz;c U+ U,

= Sc U]_ + U2
= SCU1+U2 ['.' BZU83:S]
= L(S)cU;+U, ()] [by Theorem 7 (i)]

Now, to show U; + U, < L (S)
Let yeU +U,
= y=v: +y,wherey, e Uyandy, € U,
yi1 e U= y1 € L (By) [ B, is a basis of U]

r n-r
= yi1= > aw+ Y bu, forscalars a; and by,

t=1 p=1
[+ y1 can be expressed as L.C. of elements of B,]

andy, e U, = Y2 € L (B3) [ Bsis a basis of Ug]
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r m-r
— y2= Y cw, + Z d,v, for scalars c; and d,
t=1 g=1

[ y» can be expressed as L.C. of elements of B;]

sothaty=y; +y,

= Y (a+a)w+ dbu,+ > dy,
1 -1 o1
= y is expressed as L.C. of wy, Wy, ...., W, Uz, Uy, ..... , Uners V1, wveny Viner
= y is expressed as L.C. of the elements of S
= y e L(S)

Ui+ U, c L (S) ..(2)
From (1) and (2) we have L (S) = U; + U,
(i) Secondly, we shall show that S is L.I. set
Let W1 + oWy + ... + oW, + BiUg + BoUp + ... + Brr Unr
+yvit vt oo Yy Ve = O
for scalars ai's, Bj's, y's € F .. (3)
Put X = a,wy + apwy + ...+ oW, + Baug + Boup + .. + BnrUnr.... (4)
= X € Uy (Since B, c Uy)
(3) becomes X + y1vy + y2vo + oo + Yy Vi = O
= X = -Y1V1 - Y2V2 - Y3V3 = weer = Ymer Vimer ... (5)
= X e U,
[Since vy, v, ...., vinr € Uy and U, is a vector space]
eUNU, [as x € Uy and v € U, both]
= X can be expressed as a linear combination of the elements of B;
[+ B, is a basis of U; N U]

ie., X=tywy+tw,+ ...+t w forscalarsts e F
= -Y1V1 - Y2V2 = €3V3 = oo = ~¥mor Vimr = L1W1 + DLW, + ... + 1w,
[Using (5)]
= tiwg + thw, + ..., + 4 W+ yovy + Yyave o + Ymrve =0
= t1=t=... =t=0=y1=9%= ... = Vmr

[As B3 being basis of V, is L.1. set]
Putting these values in (3), we get
113



oW1 + 0oWso + ..., + oW, + BiUug + BoUx + ... + B U, = O
= Oy =0 = ..... =, =0=B1=B1= ... Bnr

[As B, being basis of U is L.I. set]
So Eq. (3) implies that

=0 =.=0=0,B1=PB2=.... =Br=r0 =171 =y, = ... = ymr Which gives the vectors
Wi, Wa, ..., Wy, Ug, Uy, ..., Unpy V1, V2uueee, Vi @re L.l

i.e., The set Sis L.I. set
Hence S is a basis of U; - U,
dim (U; + U,) = Number of elements in set S
=r+n=r=m-=r
=n+m-=r
=dim U; + dim U, - dim (U; N Uy)
Hence the result

Cor. 1. If U; and U, are finite dimensional subspaces of a finite dimensional vector space V (F)
such that U; N U, = {0}

Then prove that dim (U; @ U,) = dim Uy + dim U,
Proof: dim (U; @ U,) - dim (U; + U,)
=dim U; + dim U, = dim (U N Uy)
=dimU; +dimU,-0 (- given Uy N U, ={0})
=dim U; +dim U,
Hence the result

Cor. 2. If afinite dimensional vector space V(F) is direct sum of its subspaces U; and U,. Prove
dimV =dim U; + dim U,.

Proof: Given V=U; ® U,
= V=U;+U, and U;NU,={0}
= V=U;+U,and dim (U; N U,)=0
dim V = dim (U; + U,) =dim U; + dim U; - dim (U; N Uy)
=dim U; + dim U,
Hence the result

Theorem 3. If U; and U, are finite dimensional subspaces of a finite dimensional vector space
V(F) and V = U; + U,, dim V = dim U, + dim U,

Prove that Vv=U, U,
Proof: LetdimU; = m and dim U, = n
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and  Bj={vy, va,.....vin}, B2 ={wg, Wy, ..., Wy}
be bases of U; and U, respectively.
Let B = {vi, Vo,cccc.¥im, Wy, Wy, ...., Wy}
Now we shall show that B is a basis of V = U; + U,
Letx e V = x=v+wwhereveUjandwe U, ("o V=U; +U,)
Since B, is abases of U; = L (B;) =U;

ve U = Equer.t.v=Zmloci\/i

i=1

Also B, is a basis of U, = L(By=U,

we U, = 3 Bjer.t.W:z,Biwj
=t

m n
sothatx=v+w= Zai\/i + ZIBin
=1

i=1
e L(B)
xeV = XxeL(B) = VcL(B)
ClearlyBcV = L(B) c V (. Vs a vector space)
Hence L(B)
= B is a basis of V
(- B contains m + n elts
and dim V =dim U; + dim U, =m + n)
Further we shall show U; N U, = {0}
Let u e U; N U, be any element

= ueU;andu e U,
m n

= u=)Y av andu=>bw,
i=1 =1

('.' L (Bl) =U; and L(Bz) = U2)

= aivita vot ... +anVm-biwi-bow,....b,w,=0

But B =vy, ... viy, Wy, ...... W} is L.I. set (by i)



= a=0VvVl<i<smandbj=0VvV1<j<n
= u=0
Hence U; N U, ={0}
Sowe have V=U; + U, and U; N U, = {0}
= V=U;®U,
The subspaces U,, U, .... U, of a vector space V(F) are called L.1. iff
up+u,+.... +u, =0,
= Up - Ug = ... -U,-0foruis e U'sforall1 <i<n.
10.4 Self Check Exercise 1

Q.1 LetV=M,={A:Aisnxn matrix over reals} be a vector space over R. Find basis
and dimension of the subspace W of V, where.

W ={A € V: Ais diagonal matrix}
Q.2 Find a basis and dimension of the subspace W-generated by the vectors
1,-1, 1), (8,4,2) (2 2,0), (3,9, -3) of R3
Also extend this basis to a basis of R3
10.5 Existence of Complementary Subspace of a finite dimensional vector space.

Theorem 4. For every subspace U, of a finite dimensional vector space V(F), 3 a subspace U,
of V such that

V =U; ® U,, i.e. 3 a complementary subspace U,
OR

If dim {V(F)} = m+n and U, is m-dimensional vector subspace of V, then prove that there
exists a n-dimensional subspace U, of V such that

V=U ®U,
Proof: Take B = {us, u,, .... un} be basis of U, = B is L.I. subset of V
(v Ui cV)
and by Extension Theorem, it can be extended to form a basis of V.
Take B; = (uy, Uy, ...., Um, V1, Va2, .... Vo} be a basis of V
and take B, = {vy, v», .... vp}, Which generates a vector space U, (say)
=  L(By)=U,LB)=V
NowB,=B; =  L(By) c L(By)
= U, c V and U, is a vector space

= U, is vector subspace of V (F)
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We know every subset of a L.l. setis L.l. so B, is L.l. and B, — B;

= B, is a basis of U, (~- L(B2) = Uy)
dmU,;=n

Hence there exists n-dimensional vector subspace U, of V

Also we have dm U; =manddimV=m+n

= dim V =dim U; + dim U, ()

Now to show V = U; + U,

Let x € V be any element

and L(B)=V

Jscalars ai, BF(L<i<m,1<j<n)

such that X =

M

n
au + Z/ﬁ’jvj
=1

Il
=

=y+zsaywherey= Y aU eL(B)=U;

and z= ) BV eL(B)=U,
xeV = there existsy € Uy, z € U,
= V=U;+ U, .. (i)
From (i) and (ii), dim (U; + U,) = dim Uy + dim U,
= U, N U, ={0}
Hence (ii) and (iii) => V=U; ® U,
Def. : The subspaces Uy, U, ..... U, of a vector space V (F) are called L.1. iff
up+u,+ ... + u, =0,
= Up=Uu,=..... =u,=0foru's e U/sforall1<i<n
Example 1: Show that X=axis is a subspace of R® (R). Find its dimension and a basis.
Solution: Let B = {(1, 0, 0)}, which contains a unit vector of R® along X-axis
B=¢andBcR®
Now Linear span of B =L (B)
={L(1,0,0)| 1 eP}
={(%,0,0) 1 e R}
= The set of all points on X-axis
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But, we know that L(B) is a subspace of R® (R).
IInd Part. Since each set having single non-zero vector is L.1I.

the set B = {(1, 0, 0)} is L.I. and the only independent vector along X-axis is (1, O,
0)

[All other L.I. vectors are scalar multiple of this vector]

= B is a basis of X-axis and dim B = 1.

Hence {(1, 0, 0)} is a basis and dimension of this subspace is].
Example 2: Extend {(-1, 2, 5)} to two different bases of R® (R)
Solution: Let B ={(1, 0, 0), (0, 1, 0), (0, 0, 1)} be a basis of R? (R)

Consider a set S ={(-1, 2, 5), (1, 0, 0), (O, 1, 0), (O, O, 1)}

Given set {(-1, 2, 5)} is L.I.

(Every set having single non-zero element is L.1.)
and (1, 0, 0) ¢ Linear span of this set
(- Linear span = a (-1, 2, 5) = (-a, 2a, 5a)
{(-1, 2, 5), (1, 0, 0) is L.1.
Let S; ={(-1, 2, 5), (1, 0, 0), (0, 1, 0)}

This set Sy is L.I. (check it)
and its contains 3 elements

Hence S1 is a basis of R® (R) [+ dim R® = 3]
Let S, ={(-1, 2, 5), (0, 1, 0), (0, O, 1)}

This set S, is L.I. (check it)

and it contains 3 elements
Hence S, is also a basis of R® (R) [dim R® = 3]
Thus S;={(-1, 2, 5), (1, 0, 0), (0, 1, 0)}
and S,={(-1, 2, 5), (0, 1, 0), (0, 0, 1)}
are basis of R, (R) which are extension of given set {(-1, 2, 5)}.
ALITER
Let B ={(1, 0, 0), (0, 1, 0), (0, 0, 1)} = {e4, e,, es} be a basis of R®* (R)
Given set {(-1, 2, 5) L.I. over R, being non-zero vector

the vectors v, ey, e,, 5 span R® where v = (-1, 2, 5)
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Since dim R® = 3, so any basis of R® contains exactly three L.I. vectors

To find these vectors,

-1 2 5
Let A= 100 Operate R, > R, + R;
0 10
0O 01
-1 2 5]
L 0 25 Operate R; > 2 R3
0 10
10 0 1]
-1 2 5]
] 0 25 Operate R; > R3 - R;
0 20
10 0 1]
-1 2 5]
U 0 25 Operate R; > Ry + 1 R3
0 0 -5 5
|0 0 1]
-1 2 5]
0 2 5
“lo o -5
|0 0 0]

which is echelon form of A, having three non zero rows, so they form a basis of R®
The set B, = {(-1, 2, 5), (0, 2, 5), (0, 0, -5)} is a basis of R® (R).
Also the set B, = {(-1, 2, 5), (0, 1, 0), ), (0, 0, 1)} is a basis of R® (R)
[-.- these form rows of a echelon matrix]
Thus, we have two different basis, which are extension of {(-1, 2, 5)}

Note.- Here answer may differ, since there are infinite such L.I. sets having three vectors
of R®, one of these being the given vector.

10.6 Self Check Exercise-2
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10.7

10.8

10.9

Q.1

Let W, be the subspaces generated by (-1, 2, 1), (2, 0, 1) and (-8, 4, -1) in R® (R)
and W, be the subspaces of all vectors (a, 0, b) for all reals a, b. Find a basis and
dimension of

(1) Wy (i) W, (iii) W1 + W,

Also find dimension of W1 N W,
Let M and N be two subspaces of R,
M={(a,b,c,d):b+c+d=0}

and N={a,b,c,d):a+b=0,c=2d}
Find a basis and dimension of
() M (i) N (i) M N N

Summary

In this unit we have proved the important theorems on subspaces of a finite dimensional
vector space.

0] W is | finite dimensional V (F) then subspace of dim W < dim V. Also W =V iff
dim W =dim V

(i) If Uy, U, are finite dimensional subspaces of a vector space (finite dimensional)
andV =U; + U,, dmV =dim U; + dim U, then V = U; @ U.,.

Glossary

1. The subspaces Ul, U2 ..., Un of a vector space V (F) is called linear
independence iff
U1+U2+....+Un=0
i.e. U=U,=..... =U,=0foru's e U'sforall<i<n

2. If a finite dimensional vector space V(F) is direct sum of its subspaces U; and U,.

Then dim V = dim U; + dim U.,.

Answers to Self Check Exercises
Ans.1 B ={Ey, E;,.... E;} is a basis and

dim W = no. of elements in B = n prove it.

Self Check Exercise - 2

Ans.1 dim Wy = 2, dim W, = 2, dim (Wj_ + W2) =3, dim (Wj_ N W2)
Ans. 2 Basis of sol. space M N N ={(3, -3, 2, 1)} and dim (m N N) = 1.

10.10 Reference/Suggested Reading

1.
2.

S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007

10.11 Terminal Questions
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Find a basis for the row space of matrix

1 3 -1 2

0 11 5 3
A=

2 5 3 1

4 1 1 5

Construct two subspaces of R* (R) s.t. dim w; = 2, dim w, = 2, dim (w, Nw,) = 1

Find ordered basis of V, relative to which the vector (-1, 3, 2, 1) has coordinates
4,1,-2and 7

Show that three finite dimensional subspaces of a vector space are L.I iff sum of
their dimensions is equal to dimensions of their sum.

*kkkk
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Unit - 11

Linear Transformations

Structure

11.1 Introduction

11.2 Learning Objectives

11.3 Linear Transformation

11.4 Self Check Exercise 1

11.5 Properties of Linear Transformations
11.6 Self Check Exercise 2

11.7 Summary

11.8 Glossary

11.9 Answers to self check exercises
11.10 References/Suggested Readings
11.11 Terminal Questions

11.1  Introduction

Dear students, in this unit, we shall discuss about linear transformation. A simple

example if a linear transformation is y = 3x, where the input x is a real number and so is y. Thus
for example an input is 3 units causes an output of units. A linear transformation is also called
vector space homomorphism or linear mapping.

11.2

11.3

Learning Objectives

The main learning objectives of this unit are

0] to define a linear transformation

(i) to define a linear operator and linear functional

(iii) to study the properties of a linear transformation

(iv) to study identity operator and negative of a linear transformation etc.
Linear Transformation:

If V (F) and W (F) are two vector spaces, then a mapping T fromVtoWie,T:V > W

is said to be a linear transformation (or vector space homomorphism or linear mapping) if and

only if

(1) Tv+w)=TW+TW) Vv,weV

i.e.,, T takes the sum v + w of V to the sum of the T-images (which is T (v) + T (w)) in
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(i) T(av)=aT(v)VveVand eF.
i.e., T takes the scalar multiplication a v of V to the scalar multiplication a T (v) in W.

Note. (a) The property (i) is known as Addative Property of T and (ii) is known as
Homogenous Property of T.

(b) A linear transformation is abbreviated as L.T.

Definition Linear Operator : If V (F) is a vector space. Then the linear transformation T
-V — Vs called linear operator (L.O.)

Definition Linear Functional : if V (F) is a vector space. Then the linear transformation
T:V — Fis called linear functional.

Theorem. If V (F) and W (F) are vector spaces. Then prove that
T:V — Wi is a linear transformation if and only if
Tav+pw)=aT (V) +BTW) Vv,weVanda,p, € F.
Proof. Let T : V — W be a linear transformation.
Letv,weVanda,p, e F
T(av+pwW) =T (av) + T (Bw) [By Addative property of T]
=aT (V)BT W)
[By Homogenous property of T]
Thus T (av+pwW)=aT (V) +BTW) Vao,peFandv,weV
Conversely. It is given that
Tav+pw)=aTMV)+BTW) Va,peFandv,weV
Firstly Takea = =1
wegetT (L. v+1w)=1T(v)+ 1T (w)
= TV+w)=T(v)+T (W)
Secondly Take =0
Then given implies that
T (av + 0.wW) = a.T (v) + 0.T (w)
= Tav)=aT(v)
Thus T:V —> W satisfies (i) T (v+w) =T (v) + T (w)
(i T(av)=aTMmforaeF,v,eV
T is a linear Transformation.

Note. (i) We shall use the result of above Theorem to show a given mapping T is a L.t.
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0] If we want to check whether a given mapping is a L.T. or not then we shall check
both properties separately for that mapping.

Some lllustrative Examples
Example 1: Show that the following mapping are linear transformations:
(i) T:R* > R¥defined by T (X, y) = (X +Y, X-V,Y)
(ii) T:R® > Rdefined by T (x,y, z) = x + 3y - 4z
Solution: (i) Let u = (x4, y1) and v = (X5, ¥») € Vs (R) = R?
and a, B be any real numbers
au + Bv =a (X, Y1) + B (X2, Y2)
= (axq, ayi) + (BXz, BY2)
= (aXq - BXz, ay1 + BY2)
Now T (o U + Bv) = T (axy + BXz, ays + BY2)
= ((ax2 + BX2) + (ay1 + BY2), (axy + BX2) - (ay1 + BY2), ay1 + BY2)
[by def. of given T]
= (o (X +y1) +B (X2 +VY2), (o (X - Y1) + B (X2 - ¥2), ays + BY2
(o (X1 + Y1), o0 (Xa - Y1), ayr) + (B (X2 +VY2), B (X2-Y2), BY2)
(X1 +Y1.Xi-Y1.Y1) +B(XatY2.Xe-Y2.Y2)
aT(Xe,y1) +BT (X, Y2)
aT(u) +B T (v)
Hence T is a Linear Transformation.

(ii) Let u = (X, y1, Z1) and v = (X2, Y2, Z2) eR®

and a, B any real numbers

au+pv =a (X1, Y1, 1) + B (X2, Y2, Z2)
= (a Xy, B X2, Y1t B Y2, oz + B 2Z)
Now T (au+ B v) =T (X1, B X2, Y1t Byz azy + B 7))

=Xy, BXot3(aytByr)-4(az+ P 2z;)
[by def. of given T]
=axX,30y:-40z+BX+3PBY.-4P 2
o (X +3y1-421)+PB Xt 3y2-412y)
= o T(Xy, Y1, 21) + B (X2, Y2, Z2)
=aT(u)+BT(v)
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Hence T is Linear Transformation.
Example 2 : Show that the following mappings are not linear transformations :
(i) T:R* > R3®defined by T (x,y) = (X +1, 2y, X + )
(i)  T:R*— Rdefined by T(x, y) = |2x - 3y|
Solution : (i) Let u= (x4, y1) and v = (X, y2) € R?
Tenu+v = (X1, Y1) + (X2, ¥2)
= (Xy, + X2, Y1+ Y2)
e R?
T(u+v) =T (X1, + X2, Y1 +Y2)
= (Xt X+ 1, 2 (Y1 +Y2), (X + %) + (Y1 +Y2))
=X+t xXet L, 2y +2Y,, (X + Y1) + (X2 +Y2)) (1)
and T (u) + T(v) = T(X, Y1) + T (X2, Y2)
=X+ 1, 2yix+y1) + (X2t 1,2y, Xp+ )
=((xi+ 1)+ (Xet+ 1), 2y1+ 2y, (Xt Y1) + (X2t Y2))
=S((Xe+ X2+ 2,2y1+2Ys, (Xg + Y1) + (X2 +Y2)) (1)
From @) and (I T (u+v)=T (v)
Hence T is not a Linear Transformation.
Altier. We know if T: V—>W isalL.T.
Then T takes the zero vector or V into zero vector of W.
Here T(O)=T(0,0) =(0+1,2(0),0+0)

=(1, 0, 0)
=0
Hence T is not a Linear transformation.
(ii) Let u = (Xxg, Y1) and v = (X, ») € R?
u+v = (X1, Y1) + (X2, Y2) = (X1, + X2, Y1 + Y2) € R?
Now T(u +v) =T (Xg, +Y2,Y1+Y2)

=|2(Xe+X2) -3 (Y1 +Y2) |
=|2%X1+2X%X-3y1-3Y; |

= | (2X1 -3 y]_) + (2X2 -3 y2)| (I)
and T (u) + T(V) = T(Xs, 1) + T (X2, Y2)
=12x1-3Yy1|+[2X%z2- 32| ()
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From (1) and (I
TU+Vv)=T (u)+T(V)
[ ]a+b|=|a]|+]|b|does not hold for all reals a, b]
Hence T is not a Linear Transformation.

Example 3 : Let R be the field of reals and V be the space of all functions from R which are
continuous.

Define T by (T f) x = j #(0) dt.

0
Prove T is a linear operator from V into V.
Solution : Let f (x) and g (x) be two functions in V
and a, B be any real numbers

Theno f(X) +B g(x) e V [~ Vis a vector space]
And (af +Bg) (X) =o f (X) +B g (x)

(Taf+pa) () = [(af +Bg)(t)dt
= [(@f @)+ Aot
= j (af (t)dt + j Bg(t))dt

=a

O ) <

f(t)dt+ J)E g(t))dt

=a (Tf) (X) +B (T 9) (x).
Hence T is a linear transformation.

Example 4. Show that the mapping T : V(R) — P,(x) where V is the vector space of square
matrices defined by

TA) =a+PB+y)E+dxfor A= {a
4

a
Solution: Let A = [a 'B}and B= { ! ﬂl} eV
y o 7 O

ﬂ} eVisalL.T

anda, b, e R

126



ocA+bB={aa aﬁ}{bal bﬂl}

ay ad by, bo,

aa+ba, ap+bp;
- [ay+b7/1 a5+b5j
= T(aA + bB) = aa + boy + (@B + bpy + ay + By1) & + (0d + pS,)X
= aa + by + (@B +y) + b(B1 + 1)) X + (ad + bd,)x*
=(ao+a (B+7y)x+adx’)+ (bay + b(By +v1) X+ b &y X°
= a0+ (B +7)x+8x) +b (ay + (By +71) X B X%)
=aT(A) +bT(B)
Hence T:V (R) » P,(X)isa L.T.
Example 5. If V and W are two vector spaces over the same field F.
ShowT:V->WisalL.T.
ffTAAvi+v)=AT(v) +T(v)) Vvimv,eVanda € F
Solution: LetT:V—>WbealL.T.
Take vy, v, eVand A € F
T(ve+v2) =T (Avy) + T(v2) (By addative property of T)
= A T(vy) + T(vo) (By Homogonous property of T)
= TOvi+Vv)=AT(v)+T(v)) Vv, voeVanda e F
Conversely it is given that
TOAvi+v)=AT(v) +T(v)) VA e Fand vy, vo e V
Firstly Take A = 1, we get
T(L. vi +v5) = L.T(vy) + T(vo)
= T(vi + vo) = T(ve) + T(v)
Secondly Take v, =0 e V
Then T(Avy + 0) = AT(vy) + T(0)
= T(wl) =AT(v1) +0
[ T(O)=T(0+0)=T(0) + T(0) = 0+ T(0) = T(0) + T(0) = T(0) = 0]

=  T@-1)=AT(1) ... (i)
so (i)and (i) > Tisa L.T.
= aX+pByeV [ Vis vector space]
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T(ax+PBy)=0 [by def. of T]
=o.0+pB.0
=aTX)+BT(y) [~ of (1)]
Hence T is a linear transformation
Note: It is called Zero Transformation denoted by O
ie. OxX)=0VxeV
Theorem Identity Operator :

If V (F) is a vector space, then the mapping T defined as T (X) = X V X € V is linear
operator on V

Proof. Letx,y e Vand o, € F,sothatT (x)=xand T (y) =y ()
= oX+ By eV [~ Vis a vector space]
T (ax + By) = ax + By [by def. of T]
=aT (x) + BT (y) [~ of (1)]

Hence T is a linear operator
Note. It is called identity operator denoted by 1
i.e. I(X)=xVXxeV

Theorem 4. Negative of a linear Transformation. If V (F) and W (F) are vector spacesand T : V
— W is a linear transformation, Then show that mapping - T : V — W defined as (- T) (x) = - [T
(X)] V x € Vis a linear transformation.

Proof. Given T : V — W is a linear transformation
T(X) eWforx eV
= -T(X) e W [~ W is a vector space]
Leto,pe Fandx,y e V
= aX+pByeV [~ Vis a vector space]
(- T) (ax + By) = - [T(ax + By)] [by def. of T]
= [TX)+BT(Y)
(v Tis Linear)
=-xcT(X)-BT(Y)
= (-TMX)+B (T V)
= -T:V —> W is a Linear Transformation
Theorem. Zero Transformation (or operator)

If V (F) and W(F) are vector spaces then a mapping
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T:V —> W defined as

TX)=0VxeV

is a linear transformation protect

Proof. Setx,y € V, «, B € F so that

TX)=0and T (y)=0 .. (1)

xcX+BytV

T (ex+By)=0=cc.(0) +p.(0)
=cTX)+BT(Y)

T is a Linear transformation

Note: This is called zero transformation denoted by O, i.e.,
OX)=0VxeV.
11.4 Self Check Exercise - 1

Q.1

Q.2

Find out which of the following are L.T.

(i) T: R > R?defined by T (x) = (2%, 3X)

(ii) T:R®*—> Rdefined by T (x,y) =x-y

Show that the following maps are not L.T.

0] T:V3(R) - V, (R), defined by
T(xy.2)=(lyl, 0)

(ii) T : R* > R defined by T (x, y) = xy

11.5 Theorem (Properties of linear transformations)

If T:V — W is alinear transformation from V (F) to W (F). Then

(i)
(ii)

T (0) = 0, where 0 on left hand € V and 0 on right hand € W
T(X)=-TX)VxeV

(iii) TX-Y)=TX-TY)VX,yeV
(iv) TEX)=pTX)VXeV,pel
Proof. (i) Let T (x) =wforxV,w e W ()
Then T(X)=T (x+0)
=T X))+ T(0) [~ TisL.T]
= w=w+T(0) [ of (i)]
= w+0=w+T(0) [by cancellation Law]
= 0=T(0)
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= T()=0
(i) TE=T(1)x)

=-1)T®X [~ TisalL.T]
=-T(x)

(i)  TX-y)=TX+(y)
=TX)+T(-y) [~ TisalL.T]
=TX-T(y) [because of (ii)]

(iv) We shall prove this result by principle of induction on p
Case |. When p is a + ve integer
For p=1, T(Q1.x)=T (X) = 1. T (X) so that result is true for p = 1.
Suppose result is true for p = m, mis a + ve integer
e, TmMx)=mT (X
Now T (m+1)=T (mx+ x)
=T(MX)+T(x)
=mT(X)+T(X) [« TMx)=mT (X)]
=(M+1)T(x)
Resultistrueforp=m+1
Hence by induction, T (p x) = p T (x) for all + ve integers p.
Case ll. Whenp=0,thenT(0.x)=T(0)=0=0.T (x)
Result is true forp=0
Case lll. When p is a negative integer, let p = -q where g is a + ve integer
TPEx)-1(a)x)=1(@(-x)
=qT(-x)=q(-T(x)
=(-a) T (x) =pT (X)
Result is true for negative integers p.
Hence the result is true for all integers p.

Theorem. Let V and W be vector spaces over the same field F. Let B1 = {vy, v,, .... v} be a

basis of V and let wy, ws, ...., w, be any vectors in W. Prove then there exists a unique linear
mapping T:V > W suchthat T (vi) =w;, 1 <i<n.
OR

Let T: V — W be a linear transformation of finitely generated vector spaces V and W.
Prove T is completely determined if we know images of a basis of V under T.
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Proof. We shall prove the theorem in three steps
0] Define amapping T:V —-> W suchthat T (vi) =wi, 1 <i<n
(i) To show T is linear
(iii) To show T in Unique

Step (i) Existence of T

Let v € V. Since B = {vy, v,, ...., vn} is @ basis of V, so there exists unique scalars a4, as,
..... ,0n € Fs.t.

v=ogVvitorvet ... + o, Vi
Let T:V —> W be defined as
T (V) = og Wy + aoWs + ... + apW,
a;'s (1 <i<n)are unigue, the mapping T from V to W is well defined

Now each v; € V can be expressed as a linear combination of vectors of basis B

i.e., vi=0vy +0vy + ... +1.vi+ ... + Ov,

[Because of ()]
i.e., T (v)=w, fori, 1, ...... , N.
Step (ii) To show that T is linear
Letu,v e Vand a, B € F where u and v can be written as
u=>bvandv=>cvforb-c'seF
i=1 i=1

[+ B={vy, va ....., v} is @ basis of V]

= TU=>hbw andT (v)= > cw

au+pveV [~ Vis a vector space]

Now T (au+Bv)=T (a'n bv, +ﬁzn:clvij
=7 Sfanv 3 (e

‘n (ah+ﬁC.)ViJ
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= Zn:(ah + B¢ )W [by def. of T]

I
R
oy
=

+
=
o
=

aT(u+p.T(H
Hence T is a linear mapping.
Step (iii) To show that T is unique.
Let S :V — W be another linear mapping such that
Sil)=w,i=1,2, ... n

fv=ogvi+o,ve+...... +an vy eV (F)
ThenS (V) =S (og vi+apva+ ... + o Vi)
=a; S(v) taS(vo) +..... +0an S (vn) [ Sislinear]

=0 Wy + oW, + ..+ oy W,

=T (v) [by def. of T]

SV)=T(v)VveVsothatS=T. Thus T is unique.
Theorem Let T:V (F) > W (F) be a linear transformation.

Prove that (i) if the vectors vy, v,, ..... v, € Vare L.D. over F

Then T (v1), T (v2), «o.... , T (vn) € W are also L.D. over F.
(i) If the vectors vy, va, ..... , Vo € V are such that their images T (vi), T (v2), ... T (vn)
e W are L.l. over F. Then vy, v, ...., v, € V are L.l. over F
OR
Let T: V(F) -» W(F) Prove that image of a L.D. set is L.D. and pre-image of L.I. setis L.I.
Proof: (i) Since vy, vy, ....., vp € V are L.D. over F
3 scalars a4, oy, ...., o, € F, not all zero such that
a1vy + opve t ... +onvn =0
= T (ovy + opva + ... + anvy) =T (0)
= o1 T (ve) +anT(vo) +...... +a, T(vy)=0 [ Tis linear]
Thus T (v1), T (v2), «eeeee , T (vn) € Ware L.D.

Hence the result
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(i) Suppose, 3 scalars a4, ay, ...., o, € F such that
oqVvy + ova + ... +avp=0forviseV(1<i<n)
Then T (opvy + aove + ... + avy) = T (0)
= uTV)+oT(V)+.oot0, T(vn)=0 [~ Tislinear]
Given T (vy), T (v2), .... T (v,) are L.I. over F

o1 -0~ ..... -a,-0
so that V1 + Oova + ..... +ovpn=0=> =0 =...=0,=0
V1, V2, woon. , vpare L.I.

Hence the result
Example 6: Find T (X, y) where T : R, — Rz is defined as
T(2,-5)=(1,2,3)and T (3,4)=(0, 1, 5)

Solution: Firstly we shall show that given vectors (2, - 5) and (3, 4) of domain of T form a basis
for R, (= domain of T).

(o) To show (2, - 5) and (3, 4) are L.I.
Consider a (2, - 5) + B (3, 4) = 0 for a, B any scalars
= (20, -50) + (3B, 4B) = (0, 0)
=  (2a+ 3B, -5a + 4p) = (0, 0)
2a0+3B=0and-5a+4p =0
= a=p=0
Thus (2, - 5) and (3, 4) are L.I.
(b)  Toshow (2, - 5) and (3, 4) span R?
Let (x, y) € R?
Let(x,y)=a(2,-5) +p(3,4)
= (20 + 3B, - 5a + 4p)
20+ 3=xand-5a+4p =y

- o= 4x -3y and p = 5X+ 2y
23
Thus (X, y) = 4X2_33y (2,-5) + oX+2y (3, 4) e (D)

Hence (2, 5) and (3, 4) span R?
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(2,-5)+

Txy)=T (4)(2_33’

5x+2y
>3 3, 4)) [by (]

4x -3y T2 -5+ 5x+ 2y
23

_ 4x -3y (1,2,3)+ SX+2y
23

_ [4x—3y 8x— 6y 12x—9yj+ (0 5X+ 2y 25x+10yj
23 23 ' 23 23 7 23

T(3,4) [~ Tislinear]

(0,1,5) [because of given]

_ (—4x+3y 13x—4y 37x+ yj
23 ' 23 23

—4x+3y , 13x-4y , SIx+y is the required linear transformation.
23 23 23

sothatT (x,y) = (

Example 7: Find a linear transformation T : R> - R? such that T (1, 0) - (1, 1) and T (0, 1) = (-1,
2).

Prove that T maps the square with vertices (0, 0) (1, 0), (1, 1) and (0, 1) into a
parallelogram.

Solution: Let (x, y) € R Firstly we shall find T (x, y) under given conditions T (1, 0) = (1, 1) and
T@O,1)=(-1,2)

We know {(1, 0), (0, 1)} is a basis set for R? (Prove here)

any vector (x, y) € R? can be expressed as a linear combination of elts of this
basis.

And (x,y)=x(1,0)+y(0,1)
= TXy)=T(x(1,0)+y(0,1))

=xT(1,0+yT(0,1) [~ TisaL.T.]

=X, D+y(-1,2 [because of given]

=(X-y,x+2y)

sothat T (X,y) = (X -y, X+ 2y) is the required L.T. v ()
lind Part. Let the vertices of square be P, Q, R, S resp. and their T-images be A, B, C, D resp.

A=T((P)=T(0,0)=(0,0) [+ Putx=0,y=0in (1)]
B=T@Q=T(,0=(,1) [ Putx=1,y=0in (I)]
C=T(R)=T(,1)=(0,3) [ Putx=1,y=1in(I)]
D=T(S)=T(0,1)=(1, 2 [~ Putx=0,y=1in (I)]
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Mid point of [AC] = (@Ej = (0§j
2 2 2

Mid point of [BD] = (MEJ = (OEJ
2 2 2
Mod point of [AC] = Mid point of [BD]
Thus ABCD is a parallelogram
Hence T maps square PQRS into a parallelogram ABCD
Example 8: A linear transformation T : R®* - R® is defined by
T(e)=ei+e,+e; T(e)=e,+es T (e3)=e,-eswhere e, e, e are unit vectors of R®,
(@ Find the transformation (image) of (2, - 1, 3) under T.
(i) Describe explicitly the linear transformation T
Solution: Since ey, e,, e; are unit vectors of R®
sothate; =(1,0,0),e,=(0,1,0)and ez =(0, 0, 1)
Now given T (e;) =e; + e, + €3
= T(1,0,0)=(1,0,0)+(0,1,0)+(0,0,1)=(1,1,1)
T(ey)=e,+e3=(0,1,0)+(0,0,1)

=(0,1,1)
T(es)=e3-e35=7T(0,0,1)=(0,1,0)(0,0,1)=(0, 1, -1)
Also we know ey, e,, e; form a basis of R® [Prove her]

every vector of R® can be uniquely expressed as the | Combination of e, e,, es.
0) Here (2,-1,3)=2(1,0,0)+(-1) (0,1,0) +3(0, 0, 1)
=2e, +(-1)e,+3e;
T(2,-1,3)=T(2e;-e,+3e3)
=2T(e1)-T(e)+3T (e3) [- TisaL.T]
=2T(1,0,0)-T(0,1,0+3T(0,0,1)
=2(1,1,1)-(0,1,1)+3(0, 1, -1)
=(2,4,-2)
so that image (transform) of (2, - 1, 3) under T is (2, 4, -2).
(ii) To find the linear transformation T explicitly
Let (x,y,2) €R®
Then (x,vy,2)=(x,0,0)+(0,y,0)+ (0,0, 2)
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=x(1,0,00+y(0,1,0)+2z(0,0,1)
TXVY, 2)=T((x(1,0,0+y(0,1,0)+2z(0,0,1))
=xT(1,0,00+yT(0,1,00+2zT(0,0,1)

[ TisaL.T]
=x(1,1,1)+y(0,1,1)+z(0,1,-1)
=(X,X+y+z,X+y-2)

Hence T (X,y,2)=(X,X+y+ 2z, X+Y-2z)is the required linear transformation
11.6 Self Check Exercise-2
Q.1 Alinear transformation
T: R® - R? defined by
T(e)=er+ex+e;
T(e))=ex+e;
T (e3) = e, + e3, where ey, e,, €3
are unit vectors of R®
(@ Find the transformation (image) of (2, -1, 3) under T
(i) Describe explicitly the linear transformation T.

Q.2 Find a L.T. which transforms (3, -1, -2), (1, 1, 0), (-2, 0, 2) in R® to twice the
elementary vectors 2e;, 2e,, 2e;, in R®, here e, e,, e; are elementary vectors.

11.7 Summary
We have learnt the following concepts in this unit
0] Linear Transformation, Linear operator, and linear functional.
(i) Zero Transformation (operator)
(iii) Identity operator
(iv) Negative of a linear Transformation
11.8 Glossary

1. Linear operator - If V(F) is a vector space. Thenthe L.T. T :V — Vs called linear
operator L.O.

2. Linear Functional - If V(F) is a vector space. Then L.T. T : V — F is called linear
Functional.

11.9 Answers to Self Check Exercises
Self Check Exercise -1
Ans.1 (i) LT. (i) L.T.
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Ans. 2. Show it
Self Check Exercise - 2
Ans.1 (i) Image of (2, -1, 3) under T is (2, 4, -2)
(i) TX Y 2)=(XX+y+z,Xx+y-2z,X+y-2)isL.T.
Ans.2 T(X,y,2)=(X-y+z,Xx+y+2z Xx-y+2z)isreqd. L.T.
11.10 Reference/Suggested Reading

1. Sliephen H. Friedberg, Arhold J. Insel. Lawrence E. Spence, Linear Algebra, 4th
Ed., Prantice Hall of India. Pvt. Ltd., New Delhi. 2004.

2. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
3. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007
11.11 Terminal Questions
1. Find T (x,y), T: R* - R®defined by T (1, 2) = (3 -1, -5)
and T(0,1)=(1,-1)
2. Find L.T. T:P3(X)— Ps(X)s.t.
TA+x)=1+x
T@+x)=x+3x
T(x)=0
3. FindaL.T.,, T:R* > R’st.
T@1,2)=(3,4)
T(0,1)=(0,0)
4, Let V (R) be a vector space of integrable functions on R. Prove that T : V - R
defined as

d
T(N= [ f(Xdx, feV,c, d € Ris a linear functional.

kkkkk
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Unit - 12

Rank and Nullity of Linear Transformations

Structure

12.1 Introduction

12.2 Learning Objectives

12.3 Range

12.4  Null Space (Or Kernal)

12.5 Self Check Exercise-1

12.6 Rank

12.7  Nullity

12.8 Self Check Exercise-2

12.9 Summary

12.10 Glossary

12.11 Answers to self check exercises
12.12 References/Suggested Readings
12.13 Terminal Questions

12.1 Introduction

Dear students, our aim in this unit is to study the concepts of rank and nullity of a linear
transformation. The rank of a matrix is the number of L.I. row or column vector of a matrix and
the dimension of a null space or kernal of the given matrix is called nullity of the matrix. We shall
first define the concept of range and null space of a linear transformation in a vector space.
Later on we shall prove a theorem, namely Rank-Nullity theorem or Sylyester's Law of nullity.

12.2 Learning Objectives
The main learning objectives of this unit are
0] Range of a L.T.
(ii) Null space or Kernal of L.T.
(iii) Rank of a L.T.
(iv) Nullity of L.T.
(V) Invariant row spaces

(vi) to prove rank-nullity theorem
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12.3 Definition (Range)

If V (F) and W (F) are vector spaces and T : V — W is a Linear Transformation. Then
the image setof Vunder TisR (T) or T (V) i.e., Range T ={T(v) | v € V}

Theorem : Let V (F) and W (F) be vector spaces and T : V — W is a linear trans formation
prove that the range of T is a subspace of W (F) i.e., T (V) is a subspace of W (F) i.e.,, T (V) is a
subspace of W (F).

Proof. We know Range T=T (V) =(w:w=T(v) Vv € V}
Since T : V —» W is a transformation (mapping)
andvVveV=T(v)eW
=>weW
Range T e W
Let wy, W, € Range T, Then
w, e RangeT = 3dvi e Vs.t. T (vy) =w;
and w,eRangeT=3dv,eVstT(vo)=w,
Let o, pBeF =aoavi+PvreV
[.. Vis a vector space]
T(avi+Bva)-aT (vy) +B T (v) [+ TisalL.T]
= oW+ w;
= aw;+Bw, e Range T
so that for wy, w, € Range T and o, B € F we have a w; + B w, € Range T
Hence Range T is a subspace of W (F).
Note. Range T is also called RANGE SPACE
(* R (T) is a vector space)
12.4 Definition (Null space or Kernel)

If V (F) and W (F) are two vector spaces and T : V — W is a linear transformation then
the set of all those vectors in V whose image under T is zero, is called Kernel or Null space of T,
which is denoted by N (T), i.e.,

Null space of T=N(T)={veV;T(v)=0 e W}

Theorem : Let V (F) and W (F) be vector spaces and T : V — W is a linear transformation.
Prove that the null space of T is a subspace of V.

Proof. We know that
Null space of T=N(T)={v:veVandT (v) =0}
Obviously N (T) c V
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Letvi,,voe N(Manda,p eF

T(vy)=0andT (v2) =0 [by def.of N (T)] ... 0]
And vi, v, € N (T) = vi, Vo € V
= a vy +Pvy e V[ Vis a vector space]
T(avi+PBva)=aT(v)+BT(vp) [+ TisL.T]
=oa.0+p.0[Using 1]
=0
= avy + Bv e N (T)

Hence N (T) is a subspace of V.
12.5 Self Check Exercise -1

Q.1 LetV be avector space of 2x2 matrice over R and

L o)
-2 2
Let T:V —> Vbeal.Tdefined by
TA)=PAVAecV
Find basis and dimension of
(@ Null space of T
(i) Range space of T
Q.2 FindaL.T T: R® - R®whose range space is generated by (1, 2, 3) and (4, 5, 6)
12.6 Rank

If V (F) and W (F) be vector spaces and T : V — W be a L.T, then the dimension of
range space of T is called the rank of T and is denoted by P (T)

P(T) = Rank of T = dim (Range T)
12.7  Nullity

If V (F) and W (F) be vector spacesand T : V — W is a L.T. the dimension of null space
of T is called Nullity of T and is denoted by V (T)

V (T) = Nullity = dim (Null space of T)
Theorem: (Range-Nullity Theorem or Sylvester's Law of Nullity)
If V(F) and W(F) are vector spaces and T : V — W is a linear transformation.
Let V is of dimension n (i.e. V is finite dimensional) prove that
Rank T + Nullity T = dim V.

Proof. Since Null space of T (= N (T)) is a subspace of V (F) and V (F) is finite dimensional
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N (T) is also finite dimensional
Let dim. N (T) = p where p <n=dim. V
= Nullity T=p
N (T) has a basis having p elements, say
B1 ={vy, va ..... Vvp) be basis of N (T)
TWv1)=0,T(v2)=0,...T(vp) =0 [by def. of N (T)] ... 0]
Also, we can extend the basis set B; to the basis set B, of V (F), having n elements.
Let B, = {vy, v, ..... » Vpy Vpi1, Vps2, .... Vn}, D€ the basis of V(F).
Consider the set
Bs = {T (Vpsa), T (Vps2) ... T (i)}
We shall now show it to be the basis set of R (T)
In order to prove it, we have to prove that
(1) The set B is L.I.
(i) The set B; spans the range of T (=R (T))
To show Bsis L.I.

Consider apsy T (Vpe1) + @iz T (Vpi2) + ... +a, T (vy) =0 for a's, scalar

= T (Ap+1 Vpe1) + T (Aps2 Vps2) + oo +T(@nvn)=0

[ Tislinear]
= T (Ap+1 Vps1 + Qps2 Vprz + .oo. + 8 V) = 0

[ Tislinear]
= Ap+1 Vpe1 + 8ps2 Vpao + oo F @y vy € N (T)

[by def. of Null space of T]
= v € N (T) where v = 0lpe1 Vps1 + Opsz Vpsz + oo + 0ln Vi
Since B is a basis of N (T)
v € N (T) can be written as linear combination of the elements of B;.

Soletv=b;vi+byvy +..... + byv,, for bi scalars

= Ap+1 Vp+1 + Ap+2 Vp+2 +..t+ta, v, = b]_ vy + bz\/z +....+ bp Vp
= blV1 + bng + ...+ bp\/p - Ap1 Vp+1 - Qp+2Vp+2 = -.. = AnVp = 0
[ Ba={v1, V2, ..., Vp, Vps1, ..., Vn} IS @ basis set so B, is L.1. set]

a.p+1 T (Vp+]_) + ap+2 T (Vp+2) + + an T (Vn) = 0

= a-p+l:01 ap+2201 "--san:O
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The set B; is L. Independent.
To show B; spans R (T)
Lety € R (T) be any element

there exists x € V such thaty =T (x)
Since x € V and B; is a basis set of V

X can be written as linear combination of elements of B,

Let X =oaqvi+ aava+ ... + 0pVp + Ops1 Vper + ... + oty v, fOr o's scalar.
= TX) =T (o2 Vit 0p Vo + .. + 0 Vp + Ope1Vpsr + .ooe + 0lp V)
= y=ou T (vi)+oxT (vo)+ .o +ap T (vp)+ 0per T (Vps1)
+ ... ton T (vn) [ TisL.T.]

=oy.0+0 0+ ..+ 0p O+ opeg T (Vpea)
+ . +on T (V) [Using I]

Z o T (Vpe1) + Ops2 T (Vps2) + oo +an T (V).

so that y is a linear combination of the elements of Bs.
the set B; spans the range of T,

Hence B; is a basis of R (T), having n - p elements
dm R (M) =n-p

= Rank T =n - Nullity T

= Rank T + Nullity T=n

= Rank (T) + Nullity (T) =dim V.

Hence the theorem is proved.

Note. Let B = {v4, v,, .... v} be basis set of V (F),

Then the set T (B) = {T (v1), T (v2), .... T (vm)} spans R (T) and the number of linearly
independent vectors in T (B) is the rank of T.

Theorem: LetT:V —>WbealL.T.
Prove p(T) < Min (dim V, dim W)
Proof: LetdimV =nand dmW =m
R(T) {= range space of T) is a subspace of W
SO dim (R(T)) <dim W
= p(T) <m ()]

Now let any set of n + 1 vectors i.e. Wy, Wy, .... Wy in R(T)
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SO 3 Vi, Vo, oo Vi1 € V
s.t. T(vi)=wforl<i<n+1
Here {vi, v, .... vas1} IS L.D. set [ dimV =n]
= {T(vy), T(vo), ..... , T(vn), T(vns+1), then set of images is also L.D.
= {wg, Wy, ..... , Wh, W1} is a L.D. set
so that R(T) can not have (n+1) L.l. vectors
dmR(M<n = p(T) <n ... (i)
Combining (i) and (ii),
p(T) < Min (m, n) = Min. (n, m)
= p(T) < Min. (dim V, dim W).
Definition (Invariant Subspace)
LetT:V —>Vbeal.T. Let U be subspace of V,
Then U is said to be invariant under T iff for all u € U
= T(ueU
Theorem: Prove that range space and null space of a L, transformation
T:V — V are invariant subspaces under T.
Proof. (i) We have Range of T=R (T) = (ww=T (v) Vv € V]

weR(T = weV [ R (T) is a subspace of V]

= T (W) e R(T) [by def. of T (T)]

so thatw e R (T) = T(Ww) e R(T)

= R (T) is invariant under T.

(i) Now Null space of T=N (T) ={v|ve V, T (v) =0}

Letve N(T) = TV)=0 [by def. of N (T)]
T(T()=T(@O)=0 [ T(0)=0asTis linear]

= T(v) e N(T) [by def. of N (T)]

sothatv € N (T) = T(v) e N(T)

= N (T) is invariant under T.

Some lllustrative Examples

Example 1. Let the linear transformation T : R®* — R be defined as
TXY,2)=(2%,4x -y, 2X+ 3y - 2)
Verify Rank-Nullity Theorem for T.
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Solution: We know that usual basis for R® is

B ={e., e, €3} ={(1,0,0), (0,1, 0), (0, 0, 1)}

0] Firstly we shall find basis for range T

As B is a basis for R®

SO B, ={T(ey), T(e,), T(es3)} generates range T.

Here T (e)) =T (1,0,0)=(2, 4, 2)
T(e;)=T(0,1,0)=(0,-1,3)
T(es)=T(0,0,1)=(0,0,-1) (by def. of T)
B:={(2, 4, 2), (0, -1, 3), (0, 0, -1)} generates range T

To find basis for range T, we have to find the L.I. vectors from T(e,), T(e,), T(es). For this
consider the matrix A, whose rows are generators of T and reduce it to echelon matrix.

2 4 2 1
ie. A=(0 -1 3| ApplyR;— > R:
O 0 -1

(1 2 1]
~10 -1 3 |AppyRi >R ++2R,
0O 0 -1

(1 0 7]
~l0 -1 3
0 0 1

(1, 0,7), (0, -1, 3), (0, 0, -1) form L.l. set of vectors which generals range T which
is basis forrange T

dim (R (T))=3
To find basis for Null space of T
Let (x, Y, z) € R®
such that T (x,y, z) = (0, 0, 0)
= (2x, 4x -y, 2x+ 3y -2)=(0, 0, 0)
2x=0,4x-y=0,2x+3y-z=0

U

= x=0,y=0,z=0
null space of T ={(0, 0, 0)}
= nullity T = dim (null space of T) =0
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Rank T+ Nullity T=3+0=3=dimR?
Hence Rank-Nullity theorem is verified.

Example 2 : Let V be vector space 2 x 2 matrices over R and

1 -2
P=
-2 2
Let T:V — V be a linear transformation defined by
TA)=PAV eV
Find a basis and dimension of (i) Null space of T

(i) Range space of T.

Solution : To find basis of Null space of T

a b
We shall find the matrix A = { d} such that

C
T(A) =0
i.e. PA=0
1 -2][a b] [0 O
- =
-2 2 c d/ |00

a-c b-d | [0 O
| 2a+2c -2b+2b) =[o o}
= a-c=0,b-d=0
and-2a+2c=0,-2b+2d=0
= a-c=0andb-d=0
= a=cand b=d
Here ¢ and d are independent variables

S P R b
“ls ofr[o 3¢

1 0|01
Thus basis of null space of T = and dim.
1 0|0 1

(null space of T) = 2.
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To find basis of range space of T

Rl P O e

= {E,, E, E3, E4} is a basis set of V
e B.={T (E1), T (Eo), T (Es), T (E,)} generates range T
By def. of T,

T (E)=PE 1 -2]|[1 0] [1 O]
YU 2 2]lo o] |2 o
)= PE, 1 -2][o 1] [0 1]
Y7072 2]lo o] |0 -2]
T (Es) = PE,= 1 -2|[0o 0] [-1 0
YOI 2 2|10/ |2 0
T(E)—PE—_l -2|[0 0] [0 -
YT 2 2]lo 1] o 2

To find basis for range T, we have to find the L.I. vectors from T (E4), T (E2), T (E3), T
(E4). For this consider the matrix A, whose rows are generators of T and reduce it to echelon
form

1 0 -2 O
0O 1 0 -2
i.e. A=
-1 0 2 O
0O -1 0 2
Opel’ator R3 - R3 + Rla R4 — R4 + Rz
1 0 -2 O
01 0 -2 o
~ which is echelon form
0 0 O
00 0O O

Thus (1, 0, -2, 0) (0, 1, O, -2) form a set of L.I. vectors which generates Range T.

1 0|0 1
B2 = , is a basis of range T

dim. (R (T)) = 2.
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Hence the result.

Example 3 : Find range, rank null space and nullity for zero transformation and the identity
transformation on a finite dimensional vector space V.

Solution : (a) Let O : V — V be zero transformation, defined as O (v) =0 forallv € V

Null space of zero transformation
={veV|O(v)=0}
={veV|0=0} [by def. of O]
={veV}=V

so that dim. (Null space) = dim. V

= Nullity of zero transformation = dim. V

And Range of zero Transformation
={weV]|w=0 (v)forallv e V}
={we V|w=0} [by def. of O]
= {0}

so that dim. (Range space) =0

= Rank of zero transformation = 0

(b) Let I : V — V be identity transformation, defined as
I(v)=vVveV

Null space of identity transformation
={veV]I(v)=0}
={veV]|v=0} [by def. of I]
={0}

so that dim. (Null space) =0

= Nullity of identity transformation = 0

And Range of identity transformation
={weV]|w=Il(v)forallv e V}
={weV|w=vforv e V} [by def. of 1]
={v|veV}i=V

so that dim. (Range space) = dim. V

= Rank of identity transformation = dim V.
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12.8 Self Check Exercise - 2

Q.1 Find a linear map T : R* — R® whose null space is generated by (Kernal is
spasmed) (0, 1, 2, 3) and (-1, 2, 3, 0).

Q.2 Give an example of a L. T T : V — V s.t. its range space and null space are
identical

12.9 Summary
In this unit we have learnt the following concepts :
0] What is range of a L.T.?
(i) How we define Null space (or kernal) of L.T.
(iii) Rank of a linear transformation
(iv) Nullity of a L.T.

(v) Invariant subspace
12.10 Glossary
1. Range Space : Range T is called range space.
2. Invariant Subspace : If T:V — Vis a L.T. Let U be a subspace of V. Then U is

called an invariant subspace underTiff vue U=T (u). € U.
12.11 Answers to Self Check Exercises

Self Check Exercise - 1

Ans.1 basis of null fT—1001
ns.1 basis of null space of T = 1 ol'lo 1

and dim (Null space of T) = 2
dm (R (T) =2
Ans. 2.T (x,Y, z) = (X + 4y, 2x + by, 3x + 6y) is L.T.
Self Check Exercise - 2
Ans.l T(x,y,z,t)=(-x-2y+2z -6x-3y+t 0)isreq. L.T.
Ans. 2 Set T: R> — R? defined by T (x, y) = (y, 0)
v (X, y) € R*then N(T) = {(x, 0) : x € R}
R(M={0:xeR}..N(T)=R(T)
12.12 Reference/Suggested Reading
1. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007
2. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
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3.

David C. Lay, Linear Algebra and its Applications, 3rd Edition, Pearson
Education. Asia, Indian Reprint, 2007.

12.13 Terminal Questions

1.

Find a linear map T : R* - R® whose null space is generated by (1, 2, 3, 4) and
0,1,1,1).

LetL: R*— R®is defined by
L(X,y,Zz,W)=(X+Y,y-2,Z-W)
verify Rank - Nullity theorem for L.

Find a basis and dimension of (i) range (ii) null space of the Linearmap T:V —
W defined by

(i) T:RESR*stLT(XY)=(X+Y, X-VY,Y)
iy T:RRSRstT(XY,2)=(X+2y-2,y+2 X+y-22)

*kkkk
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Unit - 13

Linear Transformations and Matrices

Structure

13.1 Introduction

13.2 Learning Objectives

13.3 Matrix Representation of a Linear Transformation
13.4  Self Check Exercise-1

13.5 Theorems on Linear Operators
13.6  Self Check Exercise-2

13.7 Summary

13.8 Glossary

13.9 Answers to self check exercises
13.10 References/Suggested Readings
13.11 Terminal Questions

13.1 Introduction

Dear students, in this unit we shall study the concept of linear transformation and
matrices. In linear algebra, linear transformation can be represented by matrices. Matrices allow
arbitrary linear transformation to be displayed in a consistent format, suitable for computation.
This also allows transformation to be composed easily (by multiplying their matrices). A 4 x 4
transformation matrices are widely used in computer graphics.

13.2 Learning Objectives
The main learning objectives of this unit are
0] to study matrix representation of a linear transformation relative to ordered basis.
(i) two important theorems are proved for linear operators.

13.3 Matrix Representation of a Linear Transformation

Matrix representation of a linear transformation relative to ordered basis.

Let T: V — W be a linear transformation, where V and W are vector spaces over a field

and dmV =nand dimW =m.
Let B, = {Vl, V2, vuuny Vn}

and B, = {w1, Wy, ...., W} be ordered bases of V and W respectively
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T:V—->Wisal.T. (i.e., linear mapping) so that for every v € V, we have T(v) € W.

Since B, is a basis of W, so each T (v) € W can be uniquely written as a linear
combination of the elements of B,

In particular, each T (v)) e W where 1 <j <n, can be expressed as follows :

Let T (Vl) = Qg Wy + 0Oy Wo + ...+ a1 Wiy
T (v2) = a2 Wi+ Qoo Wo + ...+ Q2 Wiy
T (vn) = Oin Wi+ OopnWs+ ...+ Omn Wi where o € F

forl<i<m,1<j<n.
e, T(v)= Z%Wi ,1<j<n.
i=1

Then the coefficient matrix of the above equations is

ay Oy O
Qp Oy Ao
L aln 0(2 n e 124 mn _|

The transpose of the above coefficient matrix is defined as the matrix of linear
transformation T, relative to the bases B, and B,.

Notation
The matrix of linear transformation T w.r.t. the basis B; and B, is denoted by
[T : By, B;] or simply by [T]

a0y ay,
Ay Uy Ay,
[T]
| Qg Qg oo O |

i.e., [T] = [(Xij ]m><n-
Particular Case

IfW=Vie., T:V —Visa linear operator then from above discussion, we have the
matrix of w.r.t., basis B = (B, = B) as [T] = [aj ]mxn i-€., matrix of order n x n.
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Theorem : Show that to every matrix [aij] of m n scalars (1<i<m, 1 <j<n)where aij € F (any
field). There corresponds a linear transformation T from V into W, where V and W are vector
spaces of dimensions n and m respectively over a field F.

Proof : Given T:V —>Wbeal.T.
Let B, = {Vl, V2, viuny Vn}
and B, = {wy, Wy, ...., Wy} be ordered bases of V and W respectively

Then [T; By, By] = [aj]m«n Where aij are scalars in F
where T (v) = > oW ,where 1<j<n ..(1)
i=1

Firstly, we shall prove that the above relation completely determines T i.e., T (v) can be
uniquely written as a linear combination of the vectors of B, for all v € V.

Since B; is a basis of V. so each v € V can be uniquely written as a linear combination
of the elements (vectors) of B;

n
ie, v= > byv, whereb'seF
j=1

ThenT(v) =T {Zn:ij]}
j=1

(= Tis linear)

I
]
=)

_I
<

(using (1))

1 |
M= I
=)
—
. —
g
2 s
o) =
3

> piw,pi= > b eF
: =

Since by are unique so that p;'s are also unique.
Hence T (v) can be uniquely written as a linear combination of elements of B..

= T (v) is uniquely defined for all v € V. Secondly, for each linear combination
D> I,W e W, thereis a L.T. from Vinto W s.t.
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T(v)= > oy Wforj=1,2, ...n.
i=1

= for every matrix. [ocj]m.n, 3@ L.T. T : V — W defined by relation (1).

Remark: Here [vi, B4] is the coordinate matrix of v w. r.t. basis B; and [T(v); B,] is the
coordinate matrix of T(v] w. r.t. basis B..

13.4 Self Check Exercise - 1
Q.1  LetT be alinear operator on R? defined by
T (X, y) = (4x - 2y, 2x +y) Find the matrix of T relative to basis B = {(1, 1) ; (-1, 0)}
Also verify that
[T:B][v:B]=[T (v); B] for any vector v € R?
Q.2  LetT be alinear operator on R® defined by
TXY,2)=(Q2y+2z x-4y, 3X)
Find a matrix of T relative to basis
B={( 1,1), (1 1,0), (10,0}
Also verify that
[T:B][v:B]=[T(v):B]
VveR®
13.5 Theorems on Linear Operator

Theorem: Let T : V — V be a linear operator, V is a finite dimensional vector space over F (a
field). Suppose B = (vy, vy, ...., vy) is a basis of V (F). Prove that for any vector v € V

[T;B][v;B]=[T (v); B] for any vector v € V.
Proof. It is given that B = {vy, v,, ..... , vn} is a basis of V (F)
and T :V — Vis alinear operator

Now each element v € V can be uniquely expressed as a linear combination of the
elements of B [** Bisabasisof V=L (B)=V]

Letv=PBivi+Bava+.... + Bn vn for Bj's € F
- Zﬂjvj (D)
j=1

[V ; B] = [Bll BZ! rerey Bn]t

T (vn) =alnvl+a2nv2+ ... + annvn
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= [V; B]: (2)

B

. B ={vy, Vo, ....., v} is @ basis of V
= V1, V2, verns , Vn € \V

= each T (vq), T (v2), ..., T (vn) € V can be uniquely written as linear combination of
the elements of basis B.

Let T (Vl) =01V T oV .. Ty 1 Vn
T (v2) = agavy + Oava + ... + oy 2 Vi

T (Vn) = oynvy + BZnVZ + .... ¥ Oh nVn

e, T(v)= D aV;j=1,2, ...,n . (3)
i=1
_all ap aln_
Ay Oy Ay,
=  [TiBl=[afwn=]| - o e e e (4)
_anl anz ann
Now, we have T (v) = T (Z ,BJ.VJJ [Using (1)]
j=1
= ZﬁjT(vj) [ TisalL.T]
j=1

154



_ < 5 (Z%Vi] [Using (3)]

= T (V) = (01P1 + a1aPs + oooo + AiaPn) Vi + (021B1 + 022Py + ...
WLVBR) V2 + ...+ (0ng B+ 0n2P2 + ... + A Br) Va
[T (v);Bl=[oB1+ s+ .... + P, 021B1 + 0Pz + ...
+ 0Py ooy OaP1 + 0aBa + oo + 0l B’

a, B+ apf,+ +.+ a.p,
anfi+  apf, +. Ay B,

+

aubit apfyt et oy

Q. Oy Ay,
Ay Oy Ay,
| X Qg v K |
=[T;B][v; B] [Using (2) and (4)]

Hence [T (V)] =[T; B][v; B]
e, [TMWI=I[T]V]

Theorem. Let T, and T, be two linear operators on vector space V (F) whose dimension is n.
Let B = {vy, v, ...., vo} be an ordered basis of V (F). Prove that

() [T+ T,; B]=[T.1;B] +[T2; B]
(i) [AT1; Bl =A[Ty; Blforalld e F
@iy  [Ta T =[T4] [T2]

Proof. It is given that B = {vy, v», ....., v} is a basis of V (F)
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ij Vi

n
Let [Ty ; B] = [otlnn Where Ty (v) = D Vi, 1<j<n
i=1

and [T ; B] = [Bilnn Where Tz (v) = Y BV, 1<j<n

i=1

(i) Now (Ty + T2) (vj) = Ta (vj) + T2 (V)

= Zn:aijvi + Zn:ﬁijvi
=2 (@ +A M. 1<i<n

= [Ty + T2 B] = [oy + Byl = o] + [Bi]
=[T.; Bl +[T2; B]

Hence the result

(i) And(AT)(v)=rTi(v)1<j<nandreF

=X Zn: Vi
i-1
= <laij )VI

= [A Ty B] = [Aaij] = A [aij]
=2 (T1;B]

Hence the result

(iif) And (T1 T2) (vi) = Ta (T2 (Vi)

=T (Zn:ﬂkjvkj

{S’ nceT,(v,) = B,V and replace the suffix i by k}
i=1
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= ln (iaikﬂkjjvi

n
[T. T»;B]= [Zaikﬂkj}where 1<i<n,1<j<n
k=1

= [ow] [B] where 1 <i, j, k<n
= [o] B
Hence the result

Theorem. Let V (F) be a vector space and B = {vi, va, ...., v;} be a basis of V (F). Prove that
matrices of linear operators | (identity) and O (zero) and [d;] and [0;] respectively
Li=j .
where 0; = . and0;j=0forl1<i,j<n.
0,1 # |

Proof. It is given that B = {vy, v», ...., vn} is a basis of V (F)
@) To find matrix of identity operator 1 : V — V relative to basis B
Here | (vj) =v;forallj=1, 2, ..., n. [by def. of identity operator]

[(v)=0.vi+0.vo+....+1 v+ ...+ 0v,

= Z&thereé {1"_]

v 0,i # |
1 0 0 .. O]
0 1 0 0
= [I'; B] = [Silnn =
000 .. 1)

which is called unit matrix (or order n)
(b) To find matrix of zero operator O : V — V relative to basis B
Here O (vjy=0forallj=1,2,...,n

=0. V1+0. vyt ... +0Vn

= Z:O”\/i where O;=0,for1<j<n
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[0 0 O 0]

0O 0 O 0
= [O;B]:[Oij]nxnz

0 0 0 .. O,

which is called zero matrix (of order n)

Theorem. Let V (F) be an n-dimensional vector space over the field F and let L (V, V) be the set
of all linear operators on V and M be the vector space of all n x n matrices over F.

Prove that L (V, V) =i.e., L (V, V) is isomorphic to M.
Proof. Since V (F) is an n-dimensional vector space
B = {vi1, vo, ...., vn} is an ordered basis of V
Suppose T be any linear operator on V
e, TelL(V,V)

Let T (v) = D oV, where1<j<n.
i=1

[T]1=[T; B] = [ctiJoxn
= [TleM
Thus TelL(V,V) = TleM
Now we define a function f as
f:L(V,V)>M
such that f(T) = [T] = [o] e M
Suppose T;, T, e L (V, V)
and  [T1] = [an«n [T2] = [0jln n

n n

where Ty (v) = Y Vv, and T, (v) = D bV, forj=1,2, ..,n
i=1 i=1
(1) Firstly to show that f is linear :
Let T, TeL(V,V)anda, B e F
= aTi+BT,eL(V,V) [Since L (V, V) is a vector space]

fla T+ BTo) = [T, + 2]
=[aTy] + [BT]
= o [Tq] + B[T2]
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= af(Ty) + BA(T2)
= fis a L. Transformation
(i) To show that fis 1 - 1 (one - one)
Let T, T, eL(V,V)
such that f(T,) = f(T»)
= [M]=[T]
= [a] = [by] foralli, j=1,2,...,n

n n
= P d'byv forallj=1,2,..,n
i=1 i=1

= Ty (v) =T, (v) for each v; € B
= T,=T,

f is one-one
(iii) To show that f is onto

We know that for each matrix [ai].«n € M, there exists a linear transformation T € L (V,

V) suchthat T (vj) = Zaij\/i; 1<j<n

i=1

= [T] = [ou]
= F(M) =1[T] = [oy]
f is onto

From (i), (i) and (iii), we get L (V, V) is isomorphic to M
e, LMV,V)=M
Some lllustrated Examples
Example 1: Let T be a linear operator on R? defined by
T (X Yy)=(4x-2y,2x+Y)
0] Find the matrix of T relative to the basis B = {(1, 1) [ (-1, 1)}
(i) Also verify that [T ; B] [v ; B] = [T (v) ; B] for any vector v € R®.
Solution: Firstly, we shall express any element
v1 = (a, B) € R? as a linear combination of the element of basis B.
Let (o, B)=a(1,1) + b (-1, 0) for reals a and b
=  (wp)=(a-b,a)

a=a-b,a=a
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= a=pfandb=f-a
(0, B)=P (1, 1)+ (B-0)(-1,0) - (1)
Given T : R — R? defined as
T (X Yy)=(4x-2y,2x+Y)
and B ={(1, 1), (-1, 0)} is a basis of R?
Now T(1,1)=(4-2,2+1)=(2,3)=3(,1)+(3-2)(-1,0)
[Using (1)]
=3(1,1)+1(1,0)
and T (-1,0)=(-1-0, 2 (-1) + 0)
=(-4,-2=(-2) (1, D)+ (-2+4) (-1, 0) [using (1)]
=-2(1,1)+2(-1,0)

3 1 3 -2
[T : B] = =
-2 2 1 2
which is the matrix of T relative to the basis B.

To verify [T; B][v'B] =[T (v) ' B]
Let v=(x,y)eR?

Thenv=(x,y)=y (1, 1)+ (y-x) (-1,0) [Using (1)]
[v;B]=[y,y-x]t=[ Y }
y—X
Now T(v)=T(xY)
= (4x - 2y, 2x +Y) (by def. of T]
=(2x+y) (1, 1) + (2x +y - 4x + 2y) (-1, 0)
[Using (1)]
=(2x+y) (1, 1) + (-2x + 3y) (-1, 0)
. { 2X+ y}
[T(v);Bl=[2x+Yy, -2x + 3y] =
—2X+3Yy

LH.S.=[T;B][v;B]
|3 2 y
11 2 y—X
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_ '3y—2(y—><)}
Y+2(y—X)
2X+

_ Y _ —
= __2X+3y} =[T (v); B]=RH.S.

Hence the result is verified.
Example 2: Let T be a linear operator on R® defined by
T(X Y, 2)=(2y +z, x -4y, 3X)
0] Find the matrix of T relative to the basis
B={(@1,1,1),(1,1,0),(1,0,0)}
(i) Verify that [T : B] [v;B]=[T (v):B] Vv e R®
Solution: (i) Firstly, we shall express any element
vi=(o, B,y) € R® as a linear combination of the elements of basis B
Let (o, B,y)=a(1,1,1)+b(1,1,0)+c(1,0,0)for somereals a, b, c
=(a+b+c,a+h,a)
= atb+c=a,atb=p,a=y
Solving these, we get, o=y, b=p-y,c=a-f
(o BM=vy@L1LD+P-v(@10)+(a-p)(100) e (1)
Given T : R®* > R®is a linear operator defined as
TXVY,2)=Q2y+2z x-4y, 3X)
and B={(1,1,1),(1,1,0),(1,0,0)}is abasis of R®
Now T(,1,1)=(2+1,1-4,3)=(3,-3,3)
=3(1,1,1)+(-3-3)(1,1,00+(3+3)(1,0,0) [Using (1)
=3(1,1,1)+(-6) (1, 1,0) +(6) (1, 0, 0)
T@,1,0=2+0,1-4,3)=(2,-3,3)
=3(1,1,1)+(-3-3)(1,1,0)+(2+3)(1,0,0)
[Using (1)]
=3(1,1,1)+(6)(1,1,0)+5(1,0,0)
T(1,0,00=(0+0,1-0,3)-(0,1,3)
=3(1,1,1)+(1-3)(1,1,00+(0-1)(1,0,0) [Using (1)]
=3(1,1,1)+(-2)(2,1,0)+(-1) (2, 0,0)
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3 6 6 3 3 3
~[T;B]=|3 -6 5|=|-6 -6 -2
3 -2 -1 6 5 -1
(i) To verify that [T ; B] [v;B]=[T(v);B]VveR?
Let v=(x,y,2) eR®
Then v=(X,y,2)=z(1,11)+(y-2)(1,1,0)+(x-y)(1,0,0) [Using (1)]
z
[viBl=[z,y-z,x-y]= | y-z
X-y
NowT (v) =T (X, Y, 2)
=(2y +z,x -4y, 3X)
=(3x(1,1,1)+(x-4v-3x)(1,1,0)+(2y +z-x+4y) (1,0,0) [Using (1)]
=3x(1,1,1)+(-2x-4y) (1,1,0) + (-x + 6y + 2) (1, O, 0)
3X
[T(v);B]=[3x-2x-4y-x+6y+2)=| —2x—4y
—X+06y+2z
LH.S.=[T;B][v;B]
'3 3 3 z
=|-6 6 -2||y-z
6 5 -1||x-y

[ 3z+3(y-2)+3(x-Y)
=|-6z-6(y—2)—-2(x-Y)
| 6z+5(y—-2)-1(x~-Y)

[ 3z+3y—-3z+3x—3y 3x
= | —6z-6y+6z2-2x+2y| =| —2x—-4y
| 62+5y-5z-X+Yy —X+6y+ 2z

13.6 Self Check Exercise - 2

Q.1 Let V(R) be vector space of all 2x2 matrices and T be a linear operator on V(R)

1 2
st. T(v)=Mv,veV(R)and M = {3 4}
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13.7

13.8

13.9

Find the matrix T relative to basis

oo A6 AR e 3

of V (F)
Q.2 LetV =R Find the matrix of standard basis (e; e, ;) relative to
(f1, f2, f3), f1 = (1, cos X, sin x)
f,=(1, 0, 0), f3 = (1, -sin X, cos X)
Summary

In this unit we have learnt the following concepts :

(1) Matrix representation of a linear transformation motive representation of a linear
transformation relative to ordered basis.

Glossary

1. Coordinate Matrix : [v, B,] is the coordinate matrix of v. w.r.t. basis B; and [T (v)

; B,] is the coordinate matrix of T (v) w.r.t. basis B..
2. Notation : The matrix of L.T. T w.r. the basis B; and B, is denoted by
[T ; By, Bo] or simply by [T]

Xy Lpp Ly

| % X %Can

[T1=1 . ) .
L Cm2 o L e

i.e. [T] = [Ocij]mxn
Answers to Self Check Exercises

Self Check Exercise - 1

3 1] [3 -2
Ans.1l [T;B]= 1 2 = 1 2

3 6 6 3 3 3
Ans. 2.[T;B]=|3 -6 5|=|-6 -6 -2
3 2 -1 6 5 -1
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Self Check Exercise - 2

1 020
010 2
Ans.1 [T;B]=
3040
0 304
0 COSX sinx
Ans. 2 Reqd matrix A= |1 SINX—COSX —SiNX—COSX
0 —sin X COSX

13.10 Reference/Suggested Reading

1.
2.
3.

Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007
S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

David C. Lay, Linear Algebra and its Applications, 3rd Edition, Pearson
Education. Asia, Indian Reprint, 2007.

Stephen H. Friedbery, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 4th
Ed., Prantice Hall of India Pvt. Ltd., New Delhi, 2004.

13.11 Terminal Questions

1.

Find the matrix representation of T : R* — R? defined as T (x, y) = (3x - 4y, x +
5y) wr.t. basis B = {(1, 3), (3, 4)}

1
For the matrix , find the corresponding linear operator T on R? relative to

4

wIin NI

basis B = {(1, 0), (1, 1)}

Find the matrix representation of

T : R> — R* defined as

T (X, y) = (2x - 3y, X + y) w.r.t. basis
B={1,2),(23)}

Let V = R3 Find the matrix of Standard basis {el e, e3} relative to (f; f, fs)
where f; = (2, 1, 0), f,= (0, 2, 1), f3 (0, 1, 2)

K*kkkk
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Unit - 14

Linear Transformations and Matrices (Continued)

Structure

14.1 Introduction

14.2  Learning Objectives

14.3 Matrix Of An Inverse Operator
14.4  Self Check Exercise-1

14.5 Change of Coordinate Matrix
14.6  Self Check Exercise-2

14.7 Summary

14.8 Glossary

14.9 Answers to self check exercises
14.10 References/Suggested Readings
14.11 Terminal Questions

14.1 Introduction

Dear students, Continuing our discussion on Linear transformation and matrices, we
shall, in this unit, discuss the concepts of matrix on an inverse operator and change of
coordinate matrix (Transion matrix). Some important theorems to prove the inevitability of a
linear transformations are also discussed in the present unit.

14.2 Learning Objectives
The main Learning objectives of this unit are

0] to study the concept of matrix of an inverse operator. Here we shall find condition
for a linear transformation to be invertible

(i) to study the concept of change of coordinate matrix where the concept of
transion matrix is discussed. We shall prove some theorems here to show that
the transion matrix from basis B; to B, is invertible.

14.3 Matrix of an Inverse Operator

Theorem : Let V(F) be n-dimensional vector space and B = {vy, v, ....v,}, a basis of V(F).
If T be a linear operator on V such that
[T : B] = [aj]nxn for o € F. Prove that T is invertible iff [T]B is invertible
and [T';B]=[T:B]*
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Proof : Let T be invertible

= 3 an inverse operator T'onV

st. T'T=1=TT"

= T =[1=[T T

= [T_l]B [Tle=1=[Tls [T_l]B

= [T]B is invertible

and [T =[T]"

ie. [T':B]=[T;B]"
Conversely

Let [T]g be invertible

and [T*;B]=[T;B]*

Since [T ; B]* is a matrix, so there exists a linear operator S on V such that
[S;B]=[T;B]-1=[T]"
[Sle [Tls = [T]s = [Tle [Sle
[STls = [T]le = [TS]e
ST=1=TS

T is invertible operator

b 4l

Hence the result.

Theorem : Let T : V — W be a linear transformation, where V and W are vector spaces over F
(a field) of dimensions n and m respectively. Prove that for any vector v € V

(TIIVI =T (V)]
Proof : since dimV =nand dmW =m (given)
suppose By ={vi1, v, ..., vn}
and B, = {wy, w,, ...., Wy} be ordered basis of V and W respectively.

Now each element v € V can be uniquely expressed as a linear combination of the
elements of B;

[ Biisabasisof V=L (B;) =V]

Letv=[31 V1+B2V2+ +Bn Vn for Bi's € F

;ﬂj Vi (1)
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By
B,

[v; B = [B1, Bay wvvs Bl = : (2)
P
Since By = {v1, Vs, ...., vp} is a basis of V
= Vi, V2, ve., Vg € V
= each. T (vy), T(v2), ...., T (vn) € W can be uniquely written as linear combination

of the element of basis B..
Let T(v1)=ocll Wi+ oot Wo+ ...+ 01 Why
T (v2) = 012 Wy + 0o Wo + ... + Ol 1 Wiy

T (Vn) = Olan Wi + Olpn Wo + .o + Ol n Wiy for scalars ajj's € F
e, TM)=Dea,;w;j=12.,n ..(3)
i=1
_0511 Uy Oy, ]
Uy Oy o7
= [T;Bu,Ba]l=[cidmxn=1] - v (4)
aml amZ amn
n
Now, we have T (v) =T | > BV, [Using (1)]
j=1
= Zﬂj'r(vj) [ TisalL.T]
j=1

= Zn:ﬁj (Zaiiwij [Using (3)]

167



T (v) = (0111 + 0goPa + oooe + cpnPn) Wi + (021B1 + 0Pt + ..o + QVP,) Wo +
o ¥ (01 B1+ am2 B2 + oo+ O Bn) W
= [T (v);Bal =[P + oafa + - + AP, 001PB1 + 022B2 + ...t 02nPin,
Om1PB1+..c + omn Bl

anfi+  apft et anpfy
anb+ axpf, +.t ap,

APt Ot et |

_an Qp e Oy, | _131—
Ay Oy o Ay || f,
A Oy - Oy || ﬁn_
=[T; By, By [v; Bi] [Using (2) and (4)]

Hence [T (v) : By] = [T ; By, By] [v; B4]
e, [TMW=[TIM

Theorem : Let V(F) and W(F) be finite dimensional vector space of dimensions n and m
respectively and T, and T, be any linear transformations from V into W.

Show that (i) [Ty + T5] = [Ta] + [Ta]
() [AT=A[T]reF

Proof. Since dimV =nand dimW =m

suppose B; = {vy, vs, ..... , vn} and B, = {wy, Wo, ..... , Wy} be ordered basis of V and
W respectively
Since By = {v1, vy, ..... , Vn} is a basis of V
= V1, V2, w.... ,vpn eV
= each Ty (vy), T1 (v2), ..., T1 (vn) € W can be uniquely written as linear

combination of the elements of basis B,.
Let Tl (Vl) =01p Wy 0oy Wy + ... + (lml W
Tl (Vz) =02 Wy F Qoo Wy + ...+ amZ W



Ti(vh) = ol Wy + a2, Wo + ..o+ 0y Wy for scalars ajj's € F

m
e, Ti(v)=D ;W ;j=12 ...,n (1)
i1
_all ap Ay, ]
Ay Uy oo
= [Tl ; B1. Bz] = [aij]mxm = .. (2)
(A O e O |

Similarly each T, (v1), T2 (v2), ...., T2 (vn) € W can be uniquely written as linear
combination of the elements of basis B..

Let T2 (Vl) = B]_]_Wl + Bz]_Wz + ... + Bmle
T2 (v2) = BraWs + BaoWo + .o + By 2 Wiy,

Ti(vn) = BLowy + B2y Wa + ... + B Wy for scalars Bj's € F
m”'nmziimnsz ..... n (3)
_ﬂll ﬂlZ ﬂln |
ﬁZl ﬁZZ ﬁZn
= [T]_ X B]_, Bz] = [Bij]mxn = (4)
_ﬂml ﬂmz ﬁmn_mxn

()  Wehave (T1+T;){v) =Ti(v)+ T2 (v)forl<j<n

m m
=20, W, + Y Bw,
= =

= Zm:(ai i +lBij)Wi

i=1
[T1+ T2 By Byl = [a + Bilmxn fOr 1 <i<m
= [aij]mxn + [Bij]mxn
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=[T1; By, Byl +[T2; By, By
Hence the result
(i) We have (A Ty) (v) A To(v)forh e Fand1<j<n

=3 (a o,

[ T1; By, Bl =[Aajlmmforl<i<smand1<j<n
= }\4 [(Xij]mxn
=A[T1; B1, Bj]
Hence the result

Theorem. Let U (F) and W (F) be three finite dimensional vector spaces of dimensions m, n, p
respectively. Let T, : U —>Vand T, : V — W be linear transformations.

Prove that [T, T4] = [T2] [T4]
Proof. Since dim U =m, dim V = n, dim W = p (given)

suppose B; = {uy, Uy, ...., Un}
Bz = {V]_, V2, viany Vn}
and Bs = {wy, Wy, ..., Wy}

be ordered basis of V, V, W respectively
Since B; ={us, Uy, ...., Un} is a basis of U
= Uy, Uy, ..o, Upy € U
= each Ty (uy), Ty (Up), «...., T1 (Um) € V[ T1: U — Vis a mapping]
can be uniquely written as a linear combination of elements of basis B,
let T (uj) = Zn:aj vV;l<jsm e (1)
j=1
= [T1; By, Ba] = [atinxm
And B; = {vy, v, ..... , Vn} is a basis of V
= Vi, V1, «..., Vg € V
= each T, (vy), T2 (V2), cooes T2 (V) € W
[*" T,:V — W is a mapping]
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can be uniquely written as a linear combination of elements of basis Bs
p
let T, (v) = > B,W ;1<r<n e (2)
t=1

= [T2; B2, B3] = [Burloxn
Since T;:U—-VandT,:V—W are linear mappings
= T, T, is defined
[ range of T, = Domain of T,]
and T, T; : U — W is a linear mapping
Now (T2 Ta) (u) =Tz (T (W)

=T2 [Zn: Q; jVij [Using (1)]

=Y a,T,(v) [ T?is linear]

iy & | [pﬁtivvi]

[Using (2) on replacing r by i]

= i [Zn:ﬂn Qi jWi

t=1 i=1

>

[T, Ty; BBy = [Zﬂ“aij ] where1<t<p
i=1

1<j<m
= [Bt i]p><n [aij]nxm
= [Tz, By, B3] [T1; Ba, By
e, [T2Ti]=[T] [T4]

Hence the result

Theorem. If P be a matrix representation of an operator T on a vector space V (F). Prove that f
(P) is the matrix representation of f (T) for any polynomial f(x) over F.

Proof. Let V (F) be a vector space of dimension n, and L (V, V) be the set of all linear operators
on V and M be the set of all n x n matrices over F.

Let P be matrix of operator T relative to basis Bi.e., [T ; B] =P
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We defineamapG:L(V,V)— Mas
G(M=[T]=P
To show G (f (1)) = [f (T)] = f(P) e (1)
Firstly we shall show that G is a Linear Transformation.
Let Ty, T2 e L(V,V)
and [T,]=P;and [T,] =P,
Suppose o, B € F
Thena T, +BTre L (V,V)
Now G (o Ty +B To)=[a T+ B T (by def. of G)
= [o Ta] + [B T2]
= a [Ty + B [T2]
=aP+BP;
=aG(T)+pG(Ty)
= Gisal.T.
G (T1 To) =[T1 To] = [Ta] [T2] = G (T1) G (T2)
Let f(X) = dg+ 0g X+ oeee + 0 X2 + s + 0l X"
We shall prove the result (1) by induction on n.
Let n =0 Then f(X) = a, for some oy € F
= f(T) = ao I' where I' is identity operator on V
and  f(P) = oo | where | is identity matrix of order n.
Now G (f(T)) = G (o I')
= o I'] [by def. of G]
= ap [
=apgl

(" matrix of identity operator I' is identity matrix 1)

= f(P)
e, G (1) =M= /(P)
= the result holds forn =0

Suppose the result (1) is true for all polynomials over F of degree less than n.
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Now we shall show that the result (1) is true for polynomial f (x) of degree n.
Here G(f(M) =G (oo!'+as T+ .. ¥y T, TV
("G (M1+Ty) =G (Ty) + G (Ty))
=G(ogl'+oas TH+..... + o T + a, G (Ty)
=G (oo l'"+ou T+ oo ¥ 0t T™) + 0,y G (T) G (T™)
(" G(T1T2) =G (T1) G (T2))
=o' +oq T+ oo+ py T + o, [T] [T
(by def. of G)
= (ool + asP + ... + ap  P™) + o, (P) (P™)
(because of (2))
=gl +oyP+....+0n P+ o, P
= f(P)
= GUM)=UMI=1P)
= f(P) is the matrix representation of f (T)
i.e., result is true for polynomial f(x) of degree n.
Hence the result
Some lllustrative Examples
Example 1: Let T : R; — R, be the linear transformation defined by
T(XY,2)=2x+y-2z 3x -2y +42)
Find the matrix of T relative to ordered basis
B, ={(1, 1, 1), (1, 1, 0), (1, 0, O)}
and B, ={(1, 3), (1, 4)} of R3 and R2 respectively
Solution: Given T = R® — R? defined by
TX, Y, 2)=(2x+y -2, 3x-2y +42)
and B;={(1,1,1),(1,1,0),(,0,0)}
B, = {(1, 3), (1, 4)} are ordered basis of R® and R? respectively.
To find [T ; By, B2]

Firstly we shall express any vector v = (a, B) as a linear combination of the elements of
basis B,

Let (o, B) = (1, 3) + b (1, 4) for some scalars a and b
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=(a+b,3a+4b)
= atb=a and 3a+4b=8
= oa=4a-p and b=pf-3a
(o, B) = (4o-B) (1, 3) + (-3 a+P)(1,4)
NowT (1,1,1)=(2+1-1,3-2+4)
=(2,9)
=(8-95 (1,3 +(6+5 (1,4
=3(1,3)+(-1) (1, 4)
T@1,0=(2+1-0,3-2+0)
=31
=(12-1)(1,3)+ (-9+ 1) (1, 4)
=11(1, 3)+ (- 8) (1, 4)
T(,0,00=(2+0-0,3-0+0)
=(2,3)
=(8-3)(1,3)+(-6+3)(1,4)

=5(1, 3) + (-3) (L, 4)

t

3 -1
[T;Bl,Bg]z 11 -8 =

[3 11 5
5 -3

-1 -8 -3

(D)
[by def of T]

[Using (1)]

[Using ()]

[Using (1)]

Example 2: Let T : R® — R2 be the linear transformation defined by

T Y, 2)=(3x+2y-4z,x-5y + 32)

(i) Find the matrix of T in the following bases of R® and R?:

B:={(1,1,1), (11, 0), (10,0}
B, ={(1, 3), (2, 5)}

(i) Verify that the action of T is preserved by its matrix representation

i.e., [T;ByBy][v;Bi]=[T(v);B,]forallveR?

Solution: Given T : R®* — R? defined by
T Y,2)=(3x+2y-4z, x-5y + 32)
and B;={(1,1,1),(1,1,0),(1,0,0)}
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B, = {(1, 3), (2, 5)} be ordered basis for R® and R? respectively
(o) To find [T ; By, B5]

Firstly we shall express any vector v; = (a, ) € R® as a linear combination of the
elements of basis B..

Let (o, B) = a (1, 3) + b (2, 5) for some scalars a, b
=(a + 2b, 3a + 5b)
= a+2b=aqa and 3a+5b=p

= a=-50+23 and b=3a-8

(0, B)=(5a+2B)(1,3)+Ba-P)(2,5) e (1)
Now T(1,1,1)=B3+2-4,1-5+23) [by def. of T]
=(1-1)
=(-5-2)(1,3)+(3+1)(2,5) [Using (1)]

=(-7)(1,3)+4(2,5)
T(1,1,0=(3+2-0,1-5+0)

=(5.-4)

=(-25-8)(1,3)+(15+4) (2,5) [Using (1)]

=(-33)(1,3)+ 19 (2, 5)
T(1,0,00=(3+0-0,1-01-0+0)=(3, 1)

=(-15+2)(1,3)+(9-1) (2,5) [Using (1)]

=(-13)(1,3)+8(2,5)

t

-7 4
-7 -33 -13
[T ; B]_, Bg] =|-33 19| =
4 19 8
-13 8

(i) Toverify [ T; B1,B2][v;B1] =[T (v) ; B2] forall v € R3
To find [v ; B4]
Letv={x,y,2) eR®
Supposev=p(1,1,1)+q(1,1,0)+r (1,0, 0)for some scalars p, q, r
=  Xy,5=(p+q+r,p+q,p)
p+q+r=x,p+q=y,p=2z
= p=z,q=y-2z,r=x-y
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v=z(1,1,D)+(y-2(1,1,0+(x-y)(1,0,0) .. (2
z
= [v:Bi=[zy-zx-y]'=|y-z
X-y
To find [T (v) ; B;]
Here T(V)=T(xy, 2z foralv=(xYy,2z) eR®
=(3x+2y-yz,x-5y+3z)
= TW)=(-5@Bx+2y-4z) +2 (x-5y+32) (1, 3)
+ (3 (3x+2y-4z)-(x-5y+32)(2,5) [Using (1)]
= (- 13x - 20y + 262) (1, 3) + (8x + 11y - 152) (2, 5)
[T[v);B,y]=-13x- 20y + 26z 8x + 11y - 157]
_ {—13x— 20y + 262}
8x+11y—-15z

L.H.S. =[T; By, B)] [v; Bi]

-7 -33 -13]| °
T4 19 8|77

X-y
_[-72-33(y-2)-13(x-y)
- | 4z+19(y-2)+8(x~-Y)

[ —13x— 20y + 262
- = [T (v); B = R.H.S.
| 8x+1ly-15z

Hence the result

14.4 Self Check Exercise -1

Q.1. LetT:V — W be alinear transformation defined as
n
TIFK1= [ f(t) dt
1

V ={F(x) : F (x) is a polynomial over R and def F (x) < 3 or F (x) = 0}
Let B;={1,1+x,1-x+x%}
B ={1, x, x>, x°%}
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Find the matrix representation of T relative of basis B1 and B2.
Q.2 Find alinear map
T : R* — R® determined by the matrix

0 1
A=|1 -1| w.r.t., the ordered basis
2 3

B:={(1, 2), (0,3)}and
B.={(1,1,0),(0,1,1),(1,1,1)}
For R? and R® respectively
14.5 Change of coordinate Matrix
Def. Transion Matrix
Let B1={vy, vo, ....vp}
B, = {wy, w,, ....w,} be bases of vector space V(F)
Wi, Wo, ....W, € V and B; is a basis.
= Each w; can be expressed as a linear combination of the elements of basis B;.
Let Wi =041 V1 T 0oy Vo + ... + 0ln1 Vi
Wo =012 V1 T 0o Vot ...+ 0nh2 Vy

Wph =010 V1 +0on V2t ... ¥ 0nn Vn
n
e, W= >a,v,;1l<j<n
p=1

The coefficient matrix of above equations is

04 (o e Oy
a5y a,, N
= [T;BL Bz]z[aij]mxnz
[y Gy e Gy

Then P = {o; j}, which is the transpose of above coefficient matrix is called transition
matrix from the basis B; to the basis B.,.
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Theorem : Let B1 = {v1, vo, ....va} and B, = {wy, w,, ....w,} be two ordered basis of V(F).
Prove that the transition matrix from the basis B; to B, is invertible.
Proof : Given By = {vy, va, ....v;i}

and B, = {wy, Wo, ....w,} be basis of V(F)

Letwj= > e, v, ,1<j<n (1)
p=1
n

andvy= > B, w ,1<i<n ..(2)
=1

Then P = [o;] and Q = [B;] are transition matrices from basis B, to B, and B, to B;
respectively.

We want to show that PQ = QP =1,

where 1, is unit matrix of order n.

n n n
Nowvi= > B .w => B, (Zamvp]

=1 =1 p=l
n n

=Z (Zapjﬂji]\/p
p=1 j=1

= Zypivahere Yoi= Zapjﬁji
p-1 1=

n
= Vl:zj/pivp
p=1

Since Bl is a basis, so that vy, v,, ....v, are L.l
= vii=landy,i=0forp =i
PQ = [vpi] = In
Hence the result.
Note. The inverse of matrix P, i.e., P is the transition matrix from basis B, to B;.

Theorem : Let By = {vy, v, ....vo} and B, = {wy, W,, ....w,} be two ordered basis of V(F). If P is
transition matrix from bases B; to B,. Then prove P [v; By] = [v; B;] forall v € V.

Proof : Let P = [o] be transition matrix from basis B, to B,

n
sothatwj= > a v, ,1<j<n (1)
p=1
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Take v= Y a,w, forscalara; e F ..(2)

=1

a

a,

[viBy]=[aia,..a)]' = .

a
_all Qyp Q, ] a,
Ay Oyp Ay, a,
sothat L.H.S. =P [v; B,] = :
anl anZ ann aﬂ

Q0 + 0, Tt A,
Ay + A0y +... Ay,

Further v = Za W, Za [Zamv j [Using (1) and (2)]

1
M
7~ N\
-
R
R
N——
TJ<

1
VR
g
R

N
\—_/
<
+
7~ N\
M
R
NQ
\;/
+
VR
M s
|
K
\;/
E

R.H.S. = [V, Bl]

t
n n n

= [Zaj A, D Oy D0 am}
j=1 j=1 i=1
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- .
2o
i -
] o, +aa,+..+aa, |
Dajay | | ey, +aa, +..Faa,,
_ | = _
) o, tao, .t aa,, |
Zaj Ayj
L i=t i
L.H.S.=R.H.S.

Hence Theorem is proved.

Theorem : Let V be a finite dimensional vector space over F and T : V — V be a linear operator.
Let [T; B;] = P and [T; B,] = Q where By, B, are two ordered bases of V (F) prove that Q = A™
PA where A is transition matrix from basis B; to B..

Proof : Let By = {vy, v, ....vp} and B, = {wy, Wy, ....w,} be two ordered basis of V(F).

Take P = [Pyl soT(v)= Y p;V%,1<j<n
i=1

andQ:[qkj]nxn SOT(WJ)= Zq|JV\/| ) 1Sj5n
i=1

n
Take w;= » &, V, SO A = [aj]n., is matrix from basis B, to B,.

n

and v, = Zqiwj so Al= [bj]nxn is matrix from basis B, to B;.
K=1

Tw)=T (Zaéjvﬂj = Za«‘jT(V«)

a,

M:

j Zn:pw i]

¢ 2-1

I
[N

]

o )

(=1 i=1 k=1

(1)

1
TIMs
—
M-
M-
=
B
o
N
=



Already we have T (w) = > q,w, ..(2)

j=1

n n
From (1) and (2), we have g;= ). > bip,a,

i=1 K=1
= Q=A'PA
Hence proved.
Note : The above theorem can also be stated as :
Let V be a finite dimensional vector space over F and T : V — V be a linear operator.

Let [T; B;] = P and [T; B,] = Q where B4, B, are two ordered bases of V(F). Prove P and
Q are similar matrices.

(. Two matrices P, Q (of same order) are similar if 3 invertible matrix A sit Q = A™ PA).
Some lllustration Examples
Example 3 : Consider the following bases of R®

B.={(1,0), (0, 1)}, B2={(1, 2), (2, 3)}

(a) Find the transition matrices P and Q from basis B; to B, and B, to B;
respectively. Verify Q = P,

(b) Show [v : B,] = P [v; B] for any vector v € R

(c)  Show[T:By]=P*[T;B,P

where (i) T(X,y) =(2x-3y,x+Y)
MTHXyY)=0GBx+y,3x-2Y)

(d) Verify that 0) [T;Bal[v: B =[T(v);Bj]

(i)  [T;Bd[v;B=[T(v);Bi
Solution : Let B: ={(1, 0), (0, 1)} = {v1, v2}

B2 ={(1, 2), (2, 3)} = {wy, wa}

@) To find transition matrix P from basis B, to B,

Now w;=(1,2)=1(1,0+2(0,1)=1.v;+2.v;
W,=(2,3)=2(1,00+3(0,1)=2.v;+3.v,

1 2] [1 2
P= =
2 3 2 3
which is the transition matrix from basis B; to B..
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(b)

To find transition Matrix Q from basis B, to B;
Let (a, b) € R?
Let (a, b) =a(l1,2)+p(2, 3
=(a+2p),2a+3p)
oat2f=aand2a+3p=D
a=-3a+2bandpB=2a-b
(a,b)=(-3a+2b)(1,2)+(2a-b)(2,3) (1)
Now v;=(1,0)=(-3+0)(1,2)+(2-0)(2,3) [Using (1)]
=-3(1,2)+2(2,3)
v2=(1,0)=(0+2)(1,2)+(0-1) (2, 3)
=2(1,2)+(-1) (2,3
Q= {_3 2 T {_3 2} which is the transition matrix from B, to B;.
2 - 2 -1
To verify Q = P

1 2][-3 2] [-3+4 2-2 10
Here PQ = - = =1
2 3|2 -1] |-6+6 -4-3 0 1
-3 2|[1 2] [-3+4 -6+6] [1 O
and QP = - = =1
2 1|2 3 2-2 -4-3 0 1
PQ=QP=1
Hence Q = P*

Letv=(a, b) e R?
Thenv=(a,b)=a(l,0)+b(0,1)=av;+bvs

Bi=[abl=|
[viBi]=[abl'=] .

Andv=(a,b)=(-3a+2b)(1,2)+((2a-b) (2, 3)

[because of (1)]
=(-3a+2b)w;+(2a-b)w;

-3a+2b
[v:BjJ]=[-3a+2b2a-b]'= A
2a—-b

RH.S.=P[v:By]
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1 2] [-3a+2b
|2 3| 2a-b
—3a+2b+4a-2b _|a
_Ga+4b+6a-3b| |b

} =[v;BJ]=LH.S.

Hence P [v; By] =[v; B4]
(© () Given T(X,y) =(2x-3y,x+VY)
To find [T ; B4]
Here T(1,00=(2,1)=(1,00+1(0,1)=2v;+ v,
T0,1)=(3,1)=-3(1,00+1(0,1)=-3vi+v,

[2 1}‘ {2 —3}
[T : Bl] = =
-3 1 1 1

To find [T ; By]

Here T (1,2) =(-4,3) [by def of T]
=(12+6)(1,2) +(-8-3) (2, 3) [Using (1)]
=18(1, 2) + (-11) (2, 3) = 18 wy + (-11) w..
T(2,3)=(-5,5)

= (15 + 10) (1,2) + (-10 -5) (2, 3) = 25 w; + (- 15) W,
(18 -11] [18 257
[T X BZ] = o
25 25 ~11 15|

Now R.H.S. =P [T; By P
_[-8 2][2 -3][1 2]
12 1|1 1|2 3]
_[-6+2 9+27[1 2
|l 4-1 -6-1] |2 3
[-4 11)[1 2

13 -7]|2 3

[-4+22 -8+33] [18 25
| 3-14 6-21| |-11 -15

=[T:B, =LH.S.
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Hence the result.
(i) Do yourself.
(d) () Here T(v) =T (a, b)
=(2a-3b,a+h) (by defto T)
=(6a+9b+2a+2h)(1,2)+(4a-6b-a-b)(2, 3)
[Using (1)]
=(4a+11b)(1,2)+(Ba-7b)(2,3)
—4a+1]b}

[T (v); Bal = { -

Now Ty [v gy = | 1B B[22
wT; ;B =
ARl T 11 1| 2a-b
_ [-54a+36b+50a- ZSb}

| 33a—22b-30a+15b

[—4a+11b
| 3a-7b }
=[T (v);Bg]
Hence the result.
(i) T(v) =T(a,b)=(2a-3b,a+hb) [by def of T]
=(a-3b)(1,0)+(a+b)(0,1)

2a-3b

a+b }

2 -3f|a
NOW[T;BI][V;Bl]:|:1 1}{b}

_ 2a-3b
| a+b

=[T (v); Bi]

[T(v);B4= {

Hence the result.
14.6 Self Check Exercise - 2
Q.1 LetT:R?®— R®be alinear operator defined by
TXYy 2)=(X+y+z,x+Yy,72)
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14.7

14.8

14.9

If[T;Bi=Pand[T;B]=0Q
Where
B:.={(,0,0),(,1,0),(,0,1)}
and
B,={(1,1,0),(1,0,1), (0, 1, 1)} are basis of R®.

Then show that P, Q are similar by binding an invertible matrix A such that
Q=A'PA.

Q.2 LetS={(,2),(0, 1) and T ={(1, 1), (2, 3)} be basis for R%. What is the transion
matrix from basis T to basis S.

Summary
We have learnt the following concepts in this unit :
0] matrix of an inverse operator.

(i) change of coordinate matrix where we have studied transion matrix

Glossary
1. If B; and B, are two ordered basis of V(F) then transion matrix from B, to B, is
invertible.

Answers to Self Check Exercises

Self Check Exercise -1

-1 -3/2 -5/6
Ans.1 [T By, By = t A

o 1/2 -1/2

0 0 1/3

—~4X+5y X+4y 2x+ ZyJ

Ans.2.(x,y)=( 3 T3 T 3

Self Check Exercise - 2
Ans.1 Compute T* =, find A™ PA,

111 2 11
P=|1 1 0[,Q=|0 1 1
0 01 0 0O

then P, Q will be similar as 3 an invertible matrix A s.t. Q = A* PA.
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14.11 Terminal Questions

1. If B, = {1, i}

B, = {1+i, 2i+1} are basis of vector space C(R). Find the transition matrix A from
B, to B, and matrix B from B, to B;.

2. Let T : R® - R® be a linear operator defined as
TX Y, 2)=0@x+2z -2x+y, -X+ 2y +4z)
0] Find matrix T relative to basis
B:={(1,0,0), (0, 1, 0) (0, 0, 1)} for R®
&B,={(1,0,1),(-1,2,1) (2, 1, 1)} for R®
(@ Also find transion matrix P from B; to B, and verify that
P [T;B]P=[T;By)

kkkkk
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Unit - 15

Algebra of Linear Transformations

Structure

15.1 Introduction

15.2 Learning Objectives

15.3 Algebra of Linear Transformation
15.4 Self Check Exercise-1

15.5 Product of two Linear Transformation
15.6 Linear Algebra of Algebra

15.7 Self Check Exercise-2

15.8 Summary

15.9 Glossary

15.10 Answers to self check exercises
15.11 References/Suggested Readings
15.12 Terminal Questions

15.1 Introduction

Dear students, we have already learnt the concept of linear transformation, rank and

nullity of L.T., matrix of linear transformations etc. in our previous units. Now, in this unit we
shall learn the concept of algebra of linear transformation where we shall discuss about algebra
of linear transformation (properties due to addition and scalar multiplication) and product to two

L.Ts.
15.2

15.3

Learning Objectives
The main Learning objectives of this unit are

0] to study algebra of linear transformation where properties of addition, scalar
multiplication etc are studied.

(ii) to discuss product of two linear transformations
(iii) some theorems related to above two concepts are also proved.
Algebra of Linear Transformation

Let V and W be vector spaces over the same field F. Let L (V, W) be the set of all linear

transformations from V to W. We share, now see that L(v, w) is also a vector space over the
same field F.
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Theorem : Prove that the set L (V, W) or Hom. (V, W) of all linear transformations from V (F)
into W (F) is a vector space over the field F with addition scalar multiplication defined by

(T1+T2) (X)=T1 (X)+T2 (X)VXeVand T, T, € L(V, W)
(aT)X=aTi(X)VxeVanda e F, T; € L (V,W)

Proof : To show that L (V, W) is a vector space, we have to verify all the properties of a vector
space.

1. Properties due to addition:

(@) Closure property. Let T;:V—>W and T, : V — W be two linear transformations.
Then to show that T, + T, defined as

(Te+T) (X) =T (X) + To(x) forall x e V
is also a linear transformation
Since T, T, e L(V,W)
ie., T, and T, are transformation from V into W
T1(X), Ta(X) e W
= T (X)+T,(X) e W [ W is a vector space]
SO T,+T,:V—Wisamapping
Let o, pB,eFandy,zeV
= ay+pzeV [ Vis a vector space]
(T1+To) (ay +B2z) =Ty (ay +P2) + T2 (ay + p2)
=[aTo(y) + BT1(2) + [oT2 (y) + BT2 (2)]
[** T, and T, are linear transformations]
=a(Ta()+T2(y) +B (T2 (2) + T2 (2)
=al(Te+T2) W] + B [(TL + T2) (2)]
=a [T+ T) W]+ B [Ta+ T2) (2)]
=a(T1+T2) () +B(T1+T2) (2)
T, +T,:V— W is a linear transformation
Hence closure property is verified
e, TyToel(V,W) = Ti+Tiel(V,W)
(b) Commutative Property.
Foreach Ty, T, € L (V, W) and x € V, we have
(Ti+T2) () =T1 (X) + T2 (X)

=T, (X) + Ty (X) [ Addition is commutative in W]
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=(To+ Ty (X)
Hence T, T, =T, + Ty, thus commutative property is verified
(c) Associative Property.
Foreach Ty Ty, Tz e (V,W)and x e V
(Ti+T)+T3](X)=(T1+T) (X)+Tza(X) VXeV
= [T (¥) + T2 ()] + T2 (X)] + Ts (X)
=T, (X) +[T2 (X) + T3 (X)] [ Addition is associative in W]
=T1(X) +(T2+T3) (X)
=T+ (T2 + T3)] (X)
(T1+T)+Ta=Ty + (T2 + Ty)
Hence associative property holds in L (V, W)
(d) Existence of addative identity. Let us define a zero mapping
O:V—>Was
OxX)=0VxeV
Let o,peFandx,y eV
= aX+ByeV [ Vis a vector space]
O(axpBy)=0 [by def. of zero mapping]
=a.0+B.0=a O X)+BO(Y)
so that O : V — W is a Linear Transformation
ie., OelL(V,W)
Now for all T, O € L (V, W)
(T1+O0)X) =T X)+O0OX)VxeV
=T1(x)+0=T1(x)
(Tr+O0)(X)=T:(X) VxeV
And O+T)X)=0(X)+T;(X) VxeV
=0+Ty (X) =Ty (x)
O+T)XN)=T:(X)VxeV
Hence T, +O0=T,;=0+T,
O is additive identity for L (V, W)
(e) Existence of Additive Inverse.
For each T, € L (V, W), we define a mapping,-T,;:V—->Was (-T)) X) Vx eV
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To show, -T; : V — W is linear mapping.

Let o, 'BeFandx,yeV

=  ox+fyeV [** Vis a vector space]
(- Ta) (ax + By) = - Ty (ox + By) [by def. of - Ty
=-[a T () +B T (y)] [*- T1is linear]

=-aTi(¥)-BTu(y)
=a(-T) ) +B(T)(y)
-T,:V — W is a linear transformation
sothat-T; e L (V,W).
Now [Ti+(-TOlX)=T:X)+(-T)X)VxeV
=Ti(X)-T:(X)=0eW
=0 (x)
[Ti+(-TYX)=0X)VxeV
And [T +TX)=(T)X)+T:(X) VeV
=-Ti(X)+T:(X)=0eW
=0 (¥
[(T)+TJX)=0X)VxeV
Thus T+ (-T)=0=(-T)+T,
Hence - T, is the additive inverse of T,
Properties due to scalar multiplication
(f) Closure Property. We have,
(aT)X)=aTiX)VXeV,aeF
Since Ty € L (V, W)

= T, is a mapping from V into W
= T, (X) e Wforallx e V
= aT1:V — W is a transformation

Let s,teFandx,y eV
= sXx+tyeV [ Vis a vector space]

(aT)(sx+ty)=a. Ti(sx+ty)
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= [STi(X)+t Ty ()] [ Tyis linear]
=a[s Ty (X)) + o[t Ty (y)]
=(as) Ta(X) + (at) To (y)
=(50) T (X) + (to) Ty (y)
=s (aTy (X)) +t(aTa(y))
= s [(aTy) (] + t[(a Ta) (V)]
=5 (o Ta) (X) + t (o Ta) (y)
=8 (o Ty) (X) + t(a Ta) (y)
a T is a linear transformation from V into W
Hence a T; € L (V, W)
(9) ForeachT; e L (V, W), a, B € F, we have
[(@a+B)TIX)=(a+P) T (X) VXeV
=a Ty (X)+BT1(x)
[By Property of scalar multiplication]
=(@Ty) () + (B Ty (x)
=laTi+B T (X)
(+B)Ti=aT +p T,
(h) Foreach Ty, T, € L (V, W), a € F, we have
[ (Ti+T)](X)=a(T1+T) (X)) VxeV
= a [Ty (%) + T2 (X)]
=aTi(X)+aTs(X)
[By distributive law in W]
=(aTy) () + (aT2) (x)
=[a T+ a T, (X)
a(Ty+Ty) =aT,+aT,
() Foreach T, e L (V, W) and o, B € F, we have
[(@B) T (X)=(aP) T (X) VX eV
=a [B (T (X)]
=a[(B Ty (¥)]
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=[o (B T1)] (%)
(o) Ty =a (B Ty
(i) For each T; € L (V, W) there exists 1 € F such that
Q. T)X=1LT,X)VxeV
=T:(x)
1. T,=T
Thus all the properties of vector space are satisfied by elements of L (V, W)
L (V, W) is a vector space over F.

Cor. The set L (V, V) of all linear operators on V i.e., linear transformations V into V forms a
vector space with respect to addition and scalar multiplication compositions defined above.

Proof. Replace W by V in the above given proof.
Note. L (V, W) is defined only when V and W are vector spaces over the same field.

Theorem : Prove that, if V (F) and W (F) are finite dimensional, then the vector space of all
linear transformations from V to W is also a finite dimensional and its dimension is equal to [dim.
(V)] [dim. W)].

Proof. We know
L(VW)={T|T:V—->WisalL.T., T(x)eWforall x e V}

Let By = {vi, vo, ...., vo} and B, = {wy, w,, ..., wy} be basis sets for V (F) and W (F)
respectively,

Then dim. V =n and dim. W =m.

Now, define a mapping T; as
Tj:V—->Wsuchthatfor1<i<n,1<j<m
W,i=p

me={'.
Oi=p
We shall prove that Tj is linear transformation

Letx;, xo e Vand a B, e F

n n
X; = Z;apvp and x, = Z;,prp
p=: p=:

[ By is a basis of V (F)]

= aX; + BX = a [Zn:apvpj +B (Zn:ﬂpva
p=1 p=1
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p= p=
= > (aa, + BB, )V, (i)
p=
Also Tij (X]_) = Tij [Zn: apvp} = oG W [by def. of Tij]
p=

and Tij (Xz) = Tij [Zn:ﬂpvpj = Bi W [by def. of Tij]
p=1

n

Tij (X1 + BX2) = Tj [Z(aap +ﬁﬁp)Vp} [Using (i)]

p=1
= (oo + BRI W [by def. of T]
= a0 W + BB W

=a (W) + B (Biwy)

[l o)

= o Tj (X1) + B Ty (x2)
Tj is a linear transformation from V into W
Hence Tj € L (V, W)

Now if we fix j and vary i, we get Ty, Ty, ...., Ty as n linear transformations and if now we
vary j from 1 to m, we shall have in all m n transformations and now we shall prove that these m
n linear transformations form a basis of L (V, W)

To Show Linear Independence.
Let aij be set of m n scalars, where 1 <i<nand1l<j<m
such that Zl“ Z;aij'l'ij =0
i= j=
We have to show that o;; = O for all i and j,
Now v, € Vforeachp=1,2,...n

andO (vp))=0e W
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= Z (Otij.0+OL2j.O+....+0ijWj+....+O(.nj 0)=0

[by def. of Tj]

m
= Z Olpj szo

-1
= apPg W1 + apz Wo + ... + Opnm Wnh=0
= Op1 = Olp2 = ... = Olpm = 0

[ Bz ={wy, Wy, ....Wy} is a basis for W, so L.1]
wherel<p<n
aj=0forl<i<nandl<j<m
the set {T;} is a linearly Independent.
To show {T;} spans L (V, W).

We have to show that any linear transformation T of (V, W) is expressible as a linear
combination of Tj.

Let T € L (V, W) be any linear transformation so that T (vp) e W
and B, ={w;, W, ...., Wy} is a basis of W

Thus T (vp) can be expressed as linear combination of elements of B, and let

T (vp) = Zm‘,ﬂpjwj ... (i)
j=1
Consider S = Zn: Zm:ﬁij'l'ij
=1 j=1

Since S is a linear combination of elements of {T;} < L (V, W) and L (V, W) is a vector
space, so that S is also a linear transformation in L (V, W).

Now we shall prove S=T
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i=1 j=1

We have S (v,) = (Z Zﬁij-rij](vp)

m

= Zn: 2 BT (Vo)

=

(Baj Taj (Vo) + By Taj {vp) + -ooe + By Tj (vp) + ...

M-

0
N

+ Brj Toj (Vp))

(Bij- O+ By .0+ ..+ Bpjwy+ .. +Bnj-)

M-

0
N

(Bpjw; = T(vp) [Using ii ]

M-

0
&

S(vp)=T(vp) forallp=1,2,..n
= S=T.
Thus each element of L (V, W) is a linear combination of Tj.

Hence the set {T;},.._, forms a basis for L (V, W) and it contains a finite number of

I<i<m

elements m n.
L (V, W) is a finite dimensional vector space having m n elements
Thus dim. L (V, W) - m n =dim. W dim. V
Hence the result

Cor. if T:V — Vs alinear operator, Then L (V, V), the vector space of all linear operators on V
is finite dimensional and

dim [L (v, V)] = (dim V)2
Proof : In above proof, letW -Vand m =n.
15.4 Self Check Exercise-1
Q.1 LetT;:R®*—R*andT,:R®— R?be defined by
T (%Y, 2)=(3x+Y, 2)
and
T2(%y,2)=(y+zXx-Y)
Compute Ty + T, 4 T4, 3Ty - To.
Q.2 LetT,and T, be linear operator defined on R? defined by
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T (% y) = (v, X)

T2 (x,y) = (x, 0)

Compute T, +T,,2T,-T,
15.5 Product of Two Linear Transformations
Definition

Let U, V, W be three vectors spaces other the same field Fand T:V—->W,S:U — V be
two Linear transformations. Then the composite mapping.

TS:U—->WorToS: U — W is defined as
ToSU=(TS) (u)=T (S(u)) forallu € U.

Note : TS is defined only when range of S < Domain of T or not otherwise.
In general TS # ST

For example : Let V = vector space of all polynomials ones reals. Define linear operator D and
T as

d ft b
D (f(1) = dt() and T (/(t) = [ /(1) dt
0

Show that DT =1 and TD = |, | is identity operator.
Solution : We have

V={f@):ft)=ap+ast+...... } u's are reals. Then

(OT) (f)) =D [T(f()] = D D f(t)dt}
0

=D J.(a0+a1t+a2t2+....)}dt
LO

3 t
=D {aot+a1 +a2—+ }}
0

-D [aot+a1 ra s j (0+0+...)}

=a0+a1t+a2t+ ...... :f(t)zl(f(t))
OGO =1 ®)
—  DT=IVf(®)eV

Now (TD)(f(®)) =TI[D(f(®)]
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:T[D (a.o+a1t+a2t2+a3t3+ ...... )]

:T[(X1+20L2t+3ot3t2+ ..... ]

t
= [(en+ 20t +30” +.....)ct

0
2 £ ‘

= 1+20,—+3c,—+......
|: 1 2 2 33 :|

—out+alt2+oastt+ ...
#f®
= (TD) f(T) # 1 (V) [ f®=1()]
TD = I.
Hence DT = TD

Theorem : Let U, V, W be vector spaces over the samefield Fand T, :V—->WandT,: U -V
be linear transformations. Prove that T, T, : U — W is a linear transformation.

Proof: Since T; : V—->Wand T, : U — V are linear transformation, so the composite mapping T;
T, : U — W is defined by

[Ty T, is defined as Range T, = Domain T4]
(MiT) (UW)=T,[Ta(W)]VueU

Letuj,u, e Uanda,pB e F

= au+Bu el [ Uis a vector space]
Then (Ty T2) (cuy + B up) =Ty [T2 (auy + Buy)]

=Ta[aTz (ug) + T2 (u2)] [ T, is linear]

=Ty (o To(Uy) + Te (B T2 (up)) [ Tyis linear]

= o Ty (T2 (Ug)) + BTy (T2 (up)) [Ty is linear]
=a Ty To) (Ug) + B (T2 Ty) (U2)
Hence T, T, : U — W is a linear transformation

Theorem : Let U, V, W be three vector spaces over the same field F. Let T, : U — V and
T, : U — V be linear transformations. Also let S; : V - W and S, : V — W be linear
transformations. Then prove

(i) Si(Ti+T)=S1T1+S5, T,
(i) ($1+S) T1=5:T1 +S; Ty
(iii) oa(S1T)=(aS) T1=S;(aTy) fora e F
Proof : (i) For all u € U, we have
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[S1 (T1+T2)] (u) =Sy [(Ty + T2) (u)]
[by def. of composite mapping]
=Sy [Ty (u) + T2 u)]
=S (Ty (u) + S1 (T2 (U)) [ Spisal.T.]
=(S1Ty) (U) +(S1 T2) (U)
=[S; T1+ S1 To] (U)
Hence S; (T1+T)) =S T1+S: T,
(i) For all u € U, we have
[(S1+ S2) Ta] (U) = (S1 + S2) (T2 (u))
=S (T1 (u)) + Sz (T1 (U)
=(S1Ty) (U) +(S2Ty) (u)
=S T1+ S, Ty) (u)
Hence (S1+S,) T1=S, T1+S, T,
(iii) For all u € U, we have
[a(S1 T1) (U) = & (S1 T1 (U)
=a Sy [Ty (u)]
=[(a0 S1) T4] (u) e (1)
Also [Si(a Ty)] (u) = Sy [(aTy) U]
=Sy [o Ty (u)]
=a Sy [Ty (U)]
= [(o0 S1) T4] (u) e (2)
From (1) and (2)
o (S1Ty) = (a0 S1) T1 =Sy (aTy)
Hence the result
Theorem (Properties of multiplication of linear operators)

Let R, s, T be three linear operators on a vector space V (F) and O and | are the zero
and identity operators on V. Then prove that

() RO=0OR=0 (i) RI=IR=R
(iii) R(S+T)=RS+RT (iv) (R+S)T=RT+ST
(V) R(ST)=(RS)T (vi) k (RS) = (kR) S =R (kS)

where k is any scalar
Proof: Letve V.ThenO (v)=0and | (v) =v
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(i) (RO) (V) =R[O(W]=R(©)=0=0(v)

= RO =0

and (RO) W)=O[RW)]=0][vi]=0wherev;=R (v) e V
=0 (v)

= OR=0

Hence RO=0OR =0
(i) RD)M=RUM)=R((v)=R(v)

= RI=R

and (IR)(v)=I(R W) =I(v))wherevi=R (v) eV
=vi=R (V)

= IR=R

Hence IR=RI=R

(i) [RES+T]V)=R[S+T) V)]
=R[S(V)+T W)
=R(S(v)) +R (T (v)) [ RisalL.T.]
=(RS) (v) + (RT) (v)
= (RS +RT) (v)

Hence R(S+T) =RS+RT

(iv) [R+S)T](v) =(R+S)(T (V)
=R(T(v)) +S(T (V)
= (RT) (v) + (ST) (v)
= (RT + ST) (v)

Hence (R+S) T=RT + ST

(v)  [RENMI(V)=RIST) WM =RI[S (T V)]
= [RS][T (v)]
=[(RS) T] (v)

Hence R(ST)=(RS) T

(vi) k(RS (v) =k (RS) (v) =kR (S (v))
=(kR) (S (V) =1kR)S](v)

And  [R(kS)] (v) =R ((kS) (v))
=R (k. S (V)
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=k[R(S )]
=k (RS)] (v)
Hence k (RS)=(kR) S=R (kS)
15.6 Definition (Linear Algebra Or Algebra)

Let V be a vector space over the field F. Then V (F) is said to be an algebra over F if it is
equipped with another composition, known as multiplication of vectors, satisfying the following

() Forall x,y, z € V, (xy) z = x (y z) [Multiplication is Associative]
()} Forallx,y,ze V,x(y+2)=xy+xz
(x+ty)=xz+yz
[Multiplication is distributive]
()  Foralx,yeV,aeF, aXxy)=(ax)y=x(ay)
[Associative under scalar multiplication]

Note. (i) If the elements of V are commutative for multiplication i.e., xy = yx for all X, y €
V, then it is called Commutative algebra.

(i) If there exists an element 1 € V (F) such that
lx=x.1=xforx eV,
then V (F) is called linear algebra with unity.

Theorem : Let V (F) be a vector space. Then L (V, V), the set of linear operators on V is an
algebra with unity. Prove.

Proof: We know that L (V, V) is a vector space

[Prove, Theorem 12 Cor.]
Also by results of Theorem 16, we have

(i) ForR,S, TeL(V,V), (RS)T=R(ST) [Associativity]
(ii) ForR,S,TelL(V,V),R(S+T)=RS+RT
(R+S)T=RT+ST [Distributive]

(iii) ForR,S,eL(V,V),aeF,a(RS)=(aR)S=R (aS)
[Associative under scalar multiplication]
(iv) ForR e L (V, V), thereisl e L (V,V)suchthatRI=R =1IR
Hence L (V, V) is a algebra with unity
Definition
Let T:V — V be a linear operator, V is a vector space over the field F.
We define T?: V- Vas T2 (v) =T (T (v))i.e, T°=T.T
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Similarly T*=T2 T, .. T"=T". T.
Also we define T°=1ifT0and T*=T.

Theorem : If T : V (F) — V (F) is a linear operator, then prove T" : V (F) — V (F) is a linear
operator, for every positive integer n.

Proof: We shall prove it by induction on n.
Step I. Forn=1, T" =T, which is a linear operator on V (Given)
result holds for n = 1.
Step Il. Suppose result is true for n = p, a natural number.
i.e., TP is a linear operator on V.
Step Il Verify that T**! is a linear operator on V
Since TP =TPT
and by Theorem 14, T° T (Product of linear operators)
is a linear operator on V
TP*' is a linear operator on V
resultistrueforn=p+1
Hence by mathematical induction, T" : V — V is a linear operator, for all naturals n.
Note 1.Ty, Ty = Tien @and (T = Trn fOr + ve integers m, n
2. Polynomial linear transformation in T over F, is written
as PMz=apgl+ou T+a, T?+....+o0, T"fora's e F
when p(t) = oo+ ayt+as t? + ... + a, t", @ polynomial in real variable t.
Theorem : Prove that if T1, T, € L (V, W) then
(a) p(aTy) =p(T)fora e F,a=0
(b) p(T) -p (M) <p (Te+T2) <p (T1) +p(T2)
Proof:
@) We know T, (V) i.e. Range space of T, is a subspace of W
sothataT; (V) c T, (V)forO#a e F ()]
Similarly o T; (V) < Ty (V)
= o (ot T (V) ca Ty (V)
= (@ Ty (V) ca T (V)
= Ti(V)ca T (V) .. (ii)
Combining (i) and (ii), we get T, (V) = a T1 (V)
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T1 (V) =(a Ty (V)

Rang space of T; = Range space of aT;

R

dim (range space of T,) = dim (Range space of a.T,)
= p(T1) =p (o Ty)
Which proves
(b) Let v € V be any vector
We have (T;+ Tp) (v) =Ty (v) + T2 (v)
= (Ti+T)) (V) T (V) + T2 (V)
= dim ((Ty + T,) V) < dim (T (V) + T, (V)
= dim ((Ty + T,) V) < dim Ty (V) + dim T, (V)
[dim (W + W,) = dim W, + dim W, - dim (W; N W;) < dim Wy + dim W,]
= dim (range space of (T1 + T,)) < dim (range space of T,)
+ dim (range space of T,)
= p(T1+T2) <p (Ty) p (T2)
FurtherT1= (T, +Ty)-T,
= p(T)=p (T2 +T2) +(-T2))

Sp(TL+To) +p(-To) (Using (iii))
= P(T1) <p (T1+T2) +p (T2) (" p(aTy) =p (T2) Take o =-1)
= p(T1) - p(T2) < p (T1+ To) (i)
Similarly starting with T2, we get
P(T2) - p(T) < p(TL+Ty) (V)
From (iv) and (v), we have | p(T2) - p (T2) | < p (T1 + To) (Vi)

Combining (vi) and (iii), we have | p(T1) - p (T2) | < p (T1) + p(T,) which proves (b)

Theorem : LetT;: U —->W and T, : V — U be linear transformations where U, V, W are vector
spaces over the same field F

Prove p (T1T2) < Min {p (T1), p (T2)}
Proof : AsT;:U—->WandT,:V—U areL.T.'ssothatT,; T,:U—->WisalL.T.
Now p (T,T,) = dim (range space of T,T,)
=dim (TTy) (V)
=dim (T (T2 (V)))
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< Min {dim T, (V), dim W}
<dim (T (V)) = dim (R (T2)) = p (T2)
= p (TiT2) < p (T2) ()
Further (T1T2) (V) = (T1 (T2 (V) = T1 (V) -T2 (V) c L)
= dim ((T1T2) (V)) < dim (T1 (VU))
= dim (range space of T,T,) < dim (Range T,)
= p (TiT2) < p (Ty) ..(ii)
Combining (i) and (i), p (T1T2) < Min (p (T1), p (T2))
Hence the theorem.
Cor : If T, or T, is an isomorphism (i.e. linear, one-one and onto)
Prove p (T1T2) =p (Ty) or p (T>)
Proof : Let T, be an isomorphism so that T,™ exists
T = (TaT2) 2" = p (To) < Min {p (TaT2), p (T2}

= p (T1) < p (TiT2) ()
But p (T1T2) < Min {p (T1), p (T2)}
<p(Ty)
= p (TiT2) < p (T1) ....(ii)

From (ii) and (ii) we have p (T1T,) = p (T1)
Similarly if T1 is an isomorphism
Then p (T1T2) = p (T2).

Lemma : Let W be a subspace of a vector space V(F) and T : V — V is a linear operator prove
dim (T (W)) > dim W - dim (N (T)) where N (T) is null space of T.

Proof : Given W is a subspace of a vector space V so there exists subspace U of V such that V
=Wou

= dimV=dimW + dim U (i)
Also we know

dim (W + U) =dim W + dim U - dim (W N U)

<dimW +dim U
= dim (W + U) <dim W + dim U (i)
SinceV=WoU
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= V=W+U=T(V)=TW + U)
=T(W) + T(U)
(- TisalL.O)
= dim (T (V)) =dim (T (W) + T (U))
< dim (T (W)) + dim (T (U))
= dim (R (T)) < dim (T (W)) + dim (T (U)) ....(iii)
[** T (V) =Range of T and p (T) = dim (Range of T]
T (V) is a subspace of U = dim (T (U)) <dim U
so (iii) = dim (R (T)) < dim (T (W)) + dim U
= dim (R (T)) - dim U < dim (T (W))
= dim W =dim (N (T)) < dim (T (W))

Rank T = Nullity T=dimV =dimW + dim U
= Rank T + dim U =dim W - Nullity T = dim W - dim (N (T))

= dim (T (W) > dim W - dim (N (T))
Hence the lemma.
Theorem : LetT,;:V—->Vand T2 :V — V be linear operators and dim V = n.
Prove (@) p (T:T2) 2 p (T1) +p (T2) - n
(b) v (T{T,) <v (T, + v (T,) where v (T) = Nullity T.
Proof : (a) Using above lemma,
dim (T, (W)) >dim W - dim (N (T1)) (i)
LetW =T, (V)
oo dim Ty (W) =dim T (T, (V) =dim (TT,) (V)
=dim (R (T{Ty))
=p (T1T2)
and dimW =dim T, (V) =dim (R (T,) = p (T>)
so (i) becomes p (T1T2) > p (T2) = v (Ty)
= p (TiT2) 2 p (T2) - (N - p (T1)) (p (Ty) +v (Ty) =dimV =n)
= p(TiTo) = p (T) +p(T2) - n
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(b) Usingp (T)+v(T)=n

We have p (T1T2) =n-v (TiT2), p (T1)) =m-v (Ty)

andp (Ty) =n-v (Ty)
Result (a) becomes
N-v(TT))>n-v(Ty)+n-v(Ty)-n

= v (TiTo) > -v (T - v (To)

= v (T{T,) < v (Ty) +v (TL)

Hence the result.

Note : Result (b) is a Iso known as Sylvester's Law of nullity.

Some lllustrative Examples

Example 1: Let T: R?> > R*and S : R* - R® be Liner Transformations defined by T (x, y, z) =
(x-3y-2z,y-4z)andS(X,y)=(2x,4x-y,2x+3Yy)

Find ST, TS is product commutative.
Solution : Since of S = R® = Domain of T
TS is defined.
and (TS) (x, y) = T[S (x, y)] for (x, y) € R?
=T(2x,4%x-y,2x+3Yy) [by def. of S]
=(2x-3(4x-y)-2(2x+3y),4x-y-42x+3Yy))
[by def. of T]
=(2x-12x+3y-4%x-6y,4x-y-8x-12Y)
=(-14x-3y,-4x-13Yy)
Also Range of T = R* = Domain of S
ST is defined
and (ST)(X,y,z) =SI[T(xY,2z)]for(Xx,y,2z) €R3
=S(x-3y-2z,y-42) [by def. of T]
=(2(x-3y-22),4(x-3y-22)-(y-42),2(x-3y-22)+(y-42)
[by def. of S]
=(2x-6y-42z7,4x-13y-42z,2x-3y-162).

Example 2 : Show that the following linear mappings T, S, U are linearly mappings were T,S, U
e L (R} R) definedas T(x,y,z) = (x+y+2z, X+Y)
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SX,y,2)=QRy+z,x+y)and U (X, Y, 2) = (2x, y).
Solution : Leta T+ S+yU=0forscalarsa, B,y € R

Where O is a zero transformation from R® into R?.

For e;=(1,0,0) e R? we have

(a0 T+BpS+yU)(1,0,00=0(1,0,0)

= aT(1,0,00+BS(1,0,0)+yU(1,0,0)=(0,0)
a(l+0+0,1+0)+p(0+0,1+0)+(2,0=(0,0)
= (o +2y,ap)=(0,0)

at2y,a+pf=0 (1)
For e,=(0,1,0)eR? we have

(@T+BS+yU)(0,1,0)=0(0,1,0)
=  aT(0,1,0+BS(010)+yU(, 1 0)=(0,0)
@ (0+1+0,0+1)+B(2+0,0+1)+y(2(0),1)= (0, 0)
= (0+2pB,a+P+y)=(0,0)

a+t2p=0,a+P+y=0 w(2)

U

J

Solving (1) and (2), we geta =B =y=0
Hence, T, S, U are linearly independent.
15.7 Self Check Exercise - 2
Q.1 LetT;:R*->R?®, T,:R®— R?defined by
Ti(XY,2)=(8x+Yy, 2)
T2 (XY, 2)=(y+zx+y)
Compute T,T,, T,T; if possible.
Q.2 Let T be Linear Operator on R® defined by
TXy)=(X+2y,3x+4y)
Find p (T), p(T) =t*-5t-2
15.8 Summary
In this unit we have learnt the following concepts:
(1) Algebra of Linear transformations
(a) properties due to addition
(b) properties due to scalar multiplication
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15.9

15.10

15.11

(i) Product of two linear transformation
@) Properties of multiplication of linear operators
(b) Linear algebra or algebra etc.
Glossary
1. Linear Algebra with unity - If 3 an element 1 € V (F) s.t.
1.x=x-1l.xforx eV
then V (F) is called linear algebra with unity.
2. LetT:V — V be alinear operator then
Tn:V (F) — V (F) is a Linear operator for every positive n.
3. T?:VoVasT°(x)=T(T(uie T°=T.T
T=TT...T=T""T,7°=1,T=0

Answers to Self Check Exercises
Self Check Exercise - 1
Ans.l (T{+T) (X, VY,2)=Bx+2,x-y+2)
(4T) (X, y,2)=(12x+ 4y, 4 2)
BTi-T) (XY, 2)=O9x+4y-2,-x+y+32)
Ans. 2.(x+Y, X)
Self Check Exercise - 2

Ans.1 T, T, is not defined since Range of T, (= R?) is not a subset of Domain of
T. (= Rs)

-1 0
Ans. 2 p (T) = O, a zero operator on R?. { 1 J

Reference/Suggested Reading

1. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
2. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007
3. David C. Lay, Linear Algebra and its Applications, 3rd Edition, Pearson

Education. Asia, Indian Reprint, 2007.

4. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra, 4th
Ed., Prentice-Hall of India Pvt. Ltd., New Delhi, 2004.
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15.12 Terminal Questions

1.

Let V be a vector space of differentiable functions and
B = {sin x, cos x} as basis of V.

Let D be differential operator on V

Show that Dis a zero of F () =t* + 1

LetT,: R®* > R? T,:R®— R?be two LTs defined as
T1 (%Y, 2)=(3xYy+2)

T2 (X, ¥,2)=(2x-32,Y)

Compute Ty + T, 5Tq,4T1-5T,, Ty Ty, ToTy.

Give an example of a L.T. T s.t.

T#0,T°#0, ... T 20but T"= 0.

If T:V — Vis L. Operator s.t.

T2(-T)=T(-T)

Prove that T is a projection.

*kkkk
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Unit - 16

Dual Spaces, Dual Basis and Double Dual

Structure

16.1 Introduction

16.2 Learning Objectives

16.3 Dual Space

16.4 Dual Basis

16.5 Self Check Exercise-1

16.6 Double Dual

16.7 Self Check Exercise-2

16.8 Summary

16.9 Glossary

16.10 Answers to Self Check Exercises
16.11 References/Suggested Readings
16.12 Terminal Questions

16.1 Introduction

Dear students, in this unit we are going to discuss the concept of dual spaces. In
mathematics any vectors space V has a corresponding dual vector space consisting of a linear
transformation on V, together with vector space structure of pointwise addition and scalar
multiplication of constants. Dual space finds application in tensor analysis with finite dimensional
vector space.

16.2 Learning Objectives

The main Learning objectives of this unit are

0] to define Linear Functional.

(i) dual space or conjugate space of V

(iii) dual basis

(iv) to prove some important theorems related to dual space and dual basis etc.
Linear Functional

Let V (F) be a vector space over a field F, then a function,

f:V — Fis called a linear functional on V iff
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flavi+Bv)=af(vi)+Bf(v)Va,BeF
vi, Vo e V

Theorem : Prove that set V* of all linear functionals 'f* form V to F (where V is a vector space
over field F) is a vector space over the field F with addition and scalar multiplication defined as

(fi+ f2) () =f1(x) + f2(x) VX e Vand fi, f € V*
(af)X)=afi(X)VxeV,aekF, f, e V¥
Proof : Similar to Theorem 13 of chapter 4 (page 367), replace the notation L(V, W) by V*
16.3 Dual Space

The vector space V* of all linear functional from V to F is called dual space or conjugate
space of V.

Note : The other notations for dual space are V' or V

Theorem : Let V be an n dimensional vector space over F and B = {vy, v, ..... vn} is an ordered
basis. Prove that for any ordered set S = {a,, a,, .... a,} of scalars, there is a unique linear
functional f on V such that f (vl)=alfor1<i<n.

Proof : Firstly, we define f : V — F as follows

If v € V, then v can be uniquely expressed as a linear combination of elements of B i.e. 3
unique scalars kg, K, ....k, such that

v = k1V1 + k2 vy + ----ann X ki'S eF
We define f as
f (V) = k]_al + k2 a,+ kn apeF

[ k,aeF= Z ki a; € F as Fis a field]

0) f is well defined
Since ki, ks, ....k, are unique for given v € V
= kia; +k,a,+ ..k, a,eFfora'seF
f(v) is unique element of F for given v € V
f is well defined
(i) To show f (v) = &
Now v; € V can be uniquely expressed as L.C. of elements of B
i.e. vi=0vy +0vy + ..... +0viq+ 1.vi + Oviyy + ... + Ov,
= f(v)=0a;+0a,+.... +0ai1+1.a0+0a+....+0a,
=g forl<i<n

= fv)=4q
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(iii) To show f is linear functional
Letx,ye V;a,peF

= xzilivi andy=imw forl, mie F

109 = Zla and £ (y) = ilema (by def. of )
Now f (ax + B y) = f (agliwﬁgmvi]

:f@(auﬂm)vij

= (el + AM)TW) = (@, + Fm)(@)

ey la+py ma =af()+p ()

= f is linear functional
(iv) To show fis unique
Let h: V — F be another linear functional such that h (vj) =aifor 1 <i<n.

n
ForanyveV,v= ) kv,

i=1

= h(v)=h (ZKVJ = ilﬁh(vi) = ilﬁa =f ()

= hv)=f(V)VveV
sothath=f

= f is unique

Hence the theorem is proved.

Theorem : Let B = {vy, va,.....v,} be a basis of vector space V (F) (of dimension n), prove there
is a basis B* = {f1, f2,.....fn} for V* such that

(1 i=k
fi(Vk)_{o’ i =k
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Proof : As B = {vi, v,,.....vn} is @ basis of V(F) by previous theorem, 3 a unique functional f, on
V s.t.

fivi)) =1, fi(v)=0,2<k<n
where S={1,0,0, ...... 0} is an ordered set of n scalars.
So for each i, 1 <i<n: 3 aunique linear functional f1 on V s.t.
fi (vk 0 = Sik = {J’ =k
0, i=k S, eF
We prove that
B* = {f1, f2,.....fn} iS & basis of V*.

0] We shall show that B* is L.I. set

Letocy f1+ ocofs + ... + ocpfn = O for o € F

= (ocofr +ocpfo+ .. + ocnfn) Vi) = O (u) =0

(. fi's are linear functional)

oc1OK + oc05K + ...+ ocpogy + ...+ e O = 0
ocy (0) + ocp (0) + ... + oo (1) + ... + o, (0)=0
=0 V k=12, ... n

A

B* = {f1, f2..... ; fn}is alL.l. set
(ii) We shall now show that B* span V*.
Let  feV* be any element

and f(w)=okforl<k<n:aeF, vweB.

let vev=v= Zn: bV, [* Bis a basis]
k=1
= W=7 {thk} =>bf(v)= D ba
k=1 k=1 k=1
= f(v)=Y.ba (D)
k=1

Now fi(v) =i [Zn:h(vk}

k=1
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Note. (i)

(i)
(iii)

= kZ;qfi (Vk): Zk&ak

=b1 O+ b O+ ... + by i

=b; (0) + b, (0) +..... +b (1) +.... b, (0)

= by

by = fk (v) (Change suffix i to k)
From (1) we have

flv) = iakfk(v) = [ n (akfk)VJ

=i P
n

f=_af, for scalars. a
k=1

fisalL.C.of fq, fo.... fn

B* span V*

B* is a basis of V*.

As B* contains n element .. dim V*=n
Hence dim V* = dim V.

Since dim V*=dim V, .. V* 2 V*i.e. Vis isomorphic to V*

The above defined &y is known as Kronecker Delta.

16.4 Dual Basis

The basis B* = {fi, f>

basis B = {v1, v, ... vp} of V(F).,

where

Theorem : Let V (F) be n dimensional vector space and B = {vy, v»

ik

fi(Vk):5ik:{oi:k

basis of and V* resp. Then prove that

(i)

(ii)

any vector veV can be expressed as

v:izzl:vifi(v)

any linear functional f € V* can be expressed as
/= Z_ll( f(v))f,
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Proof :Since
B = {v1, v» ... v} is a basis of V and
B* ={f1, f2 .... fn} is a dual basis of B so that

) =k

i Vi) = .
0,i=k
= O

0] As B is a basis of V, so any vector v € V can be expressed as
v =Y ay, for scalars o, € F e (1)

=

= fiM=h {Zajvj}ziajfi(vj)
j=1 =1

(= fiis alinear functional)

= fi(v) =0

= fiV=q

(Changing suffix i by j)

Put value of a;in (I), we get v = Zvi f. (V) vj
j=1

= v = Zn: f.(V)v, = Zn:\/i f.(v)

i=1
Hence the result

(i) As B* is a basis of V*, so any linear functional f € V*, can be expressed as
f= Zn:afi for fi e V*
i=1
= fm=(2fa)m=2afv)=2ad,
= f(vj)=zn:ai5ij:aj forl<j<n
i=1
fv) =0 (Change sulffix j by i)
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Put value of i in (I1), we get f = Zn:(f (v ))fi

L=1
Hence the result

Cor. 1: Let V be a finite dimensional vector space of dim n over the field F and v € V (v # 0),
then show that 3 f € V* such that f (v) =0

Proof : Given v is a non zero vector of V
= {v}is L. I set
It can be extended to form a basis of V
Let B = {v1, v» ... v} be a basis of V (- dimV=n)
call vi=v;

Take {f1, f> ... fn} be corresponding dual basis.

fi(vi) =0 = {i =k
O,ifizk
= filv)=0=1 e (D)
Take f=fi=feV*
and  f(v) = f1(vl) (- v=viand f = fy)
=1
#0

Hence 3 a Linear functional f € V*s.t. f(v) # 0.
Cor. 2. Let V be a finite dimensional vector space of dim n over F, then show that
f(v)=0 v feVr=v=0forvelV.
Proof :If possible letv=0,v e V
then by cor. 1, 3 a Linear functional f € V* s.t.
f(v) # 0. which contradicts the fact that
f(vV)=0VveV
Our supposition is wrong
Hencev =20

Cor. 3 Let V be a finite dimensional vector space of dim n over F. Show that if v;, v, € V (v #
v,) then 3 a linear functional f € V* s.t.

f(vi) = f(va)
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Proof :vq, vo € V, vi # Vs
= vi—wv,z0andv,—v, e V
by cor. 1, 3 a Linear functional f € V* s.t.
f(vi—vy)#0
= f(v)—f(vy)=0 (. fis Linear)
= f)#f(v)
Hence the results
16.5 Self Check Exercise - 1
Q.1  Find the dual basis for
B = {vi, vo} of R, over R, where
vi=(1,2)and v, =(1,5)
Q.2. LetV (R) be vector space of all polynomias of degree < 1 and V* its dual space.
Let ¢ V—->Rand¢,:V—-Rs.t.

b1 () = [, T, 6 ) =, F (et

Find basis {v; v,} of V which is dual is {¢1, ¢2}.
16.6 Second Dual Space or Bidual or Double Space

We know that every vector space V over F has a dual space V*, which is a vector space
having all linear functional on V.

o V* being a vector space, also must have a dual space (V*)* having all linear
functional on V*. This dual space of V* is known as second dual or Bidual or Double space of V
and is denoted by V*.

Note: If V is finite dimensional
Then dim V = dim V* = dim V**
and so V & V**

Theorem : Let V (F) be a vector space of dim n, If v € V is any vector then show that the
function L, on V* defined as L, (f) = f () V f € V*is alinear functional i.e. L, € V**.

Also show that the function v — L, is an isomorphism of V onto V**,
Proof : Firstly to show that L, is a linear functional

We define elements of V** as follows.

If v e Vand f € V* then f(v) is a unique element of F.

The rule defined by
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L, (f) = f(v) ¥V f € V*is a function from V* into F.
To show it is linear
Leta,peF and f,geV*

= of +Bg e V* (* V*is a vector space)
Now L, (af +Bg) = (ouf + B9) (v)

= (af) (v) + (B9) (V)

=af (v)+Bg((v) (" f, g are linear functional)
= L, is a linear functional on V*

Secondly To show the function

H:V->V*definedasH(v)=L, V v € Vis an isomorphism
(1) Firstly to showHis1-1

LetH(v))=H (v)) Vv, va eV

Lvi = Lv,

Lvi (f) = Lva (f) for f € V*

f(v) =1 (v2)

fv)-f(f2)=0

fvi-vy)=0 (* fislinear)

V1=V (because of Cor. 2)

L I

(ii) To show H is onto

We know dim V = dim V**

and H is one-one = H is onto also
o H is onto
(iii) To show H is linear transformation

Leto,Bandu,veV

= oau+pv<V (* Vis a vector space)
H (au + Bv) = Lauspy ()
Now Lyy+py (f) = f (au + Bv) for f e V
=of (U) +Bf(v) (~.* fis linear functional)

=al,(H)+BL () =(alu+ B L) ()
= Lau+[3v =a F(U) + B(V)
so that (1) implies
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H (au + Bv) = a H(u) + B H(v)
= H is a linear transformation

Hence H is an isomorphism of V onto V** i.e. the function v — L, is an isomorphism of V
onto V**,

Note: f(v) is also denoted as [v, f] and V* as V'.
Def. Natural mapping:

The mapping H : V — V** defined as H(v) =L, V v € Vwhere L, (f) = f(v) V f € V*is
known as a natural mapping.

Def 6. Reflexivity:

We have shown in above theorem that natural mapping from V to V** is an isomorphism.
This property of vector spaces is known as Reflexivity between V and V**. The vector spaces V
and V** are called Reflexive.

Remark : If V(F) is not finite dimensional then natural mapping between V and V** cannot be
onto

Theorem. Prove that every finite dimensional vector space is reflexive.
Proof. Reproduce the proof of above theorem and then give definition of reflexivity.
Theorem : Let V(F) be a vector space of dim n and V* be its dual space.

Prove for a linear function L on V*, there exists a unique vector v € V such that L (f) = f(v) V f
e V*

Proof : Reproduce the proof of above Theorem i.e. the function v — L, is an isomorphism (i.e. 1
- 1 and onto) between V and V**

for L € V**, 3 unique vectorv € V
suchthatL =L, = LH=L(H=f(V)V feV*
Hence the result
Some lllustrative Examples
Example 1. Find the dual basis for B = {vy, v,} of R? over R, where v1 = (1, 2) and v, = (1, 5)
Solution: Given B = {v4, v,} is a basis of V = R? over R
dmV*=dimV =2
= Dual basis of V = R? over R contains two functional
Let B; = {¢1, ¢} be the dual basis of B
Let ¢; (X, y) = ox + By and ¢, (x, y) = yx + dy forall (x,y) e R*and o, B, yd € R
lifi=k

By def ¢; (vi) = 0 = {0’ it ¢kforVk cB
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01 (v1) =011 = 1, 01 (v2) =012=0

¢2 (V1) =021 =0, 02 (v2) =022=0
= ¢ (1,2)=1,¢: (1,5 =0,¢.(1,2)=0,¢, (1,5 =1
= at+t2B-1,a+5B-v.y+20=0,y+55=1

Solving,wegetoczg,ﬁz-i :-E o= 1

373773
5 1 2 1
1(x,y)=—- x-=yand X, ¥)=-— X+=
o1 (x,y) 3 %3V 2 (X, Y) 3 XT3y

= §X—Ey,_—2x+1y is dual basis of B.

3 33 3

Example 2. Let V(R) be vector space of all polynomials of degree < 1 and V* its dual space
Let¢; : V— Rand ¢, : V— R such that
1 2

0 (f) = [ F(O)t and ¢ (FO) = || F(t)al

Find basis {vi, v,} of V which is dual to {¢1, ¢2}
Solution: Here V (R) - Vector space of all polynomials of degree < 1
=f{a+ptfo,peR}

Also ¢ (F(1)) = j: f(t)dt and ¢ (F(1)) = joz f (t) dt are given where £(t) < V.

Letv; = o+ Btand v, =y + ot

lifi=k
By def. ¢; (vi) = Oy = 0.if i kfor v e V
(I)l (Vl) = 6ll = 1, (I)l (Vz) = 612 =0
¢2 (VZ) = 621 = 0, (I)z (Vz) = 622 =1

1 t? ! B
But ¢ (vo) = Io(a+ﬂt)dt=at+[3§} =a+

0

2]
d1 (v2) = J:(y+5t)dt=yt+%} =y+ %

0

2 2
02 (v1) = J.Oz(a+ﬂt)dt= oct+’87t} =2a+2B
0
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ot
0= [+t dt=yts o | <2423

sothatoc+£= ,y+é =0
2 2

20+2p=0,2y+20=1

Solving, we get o = 2, B=-2
1
=-=-,0=1
=73

16.7 Self Check Exercise - 2
Q.1 Show that dual of an n-dimemional vector space is n-dimemional
Q.2 LetV be a vector space of are polynomials of degree < 2 over reals. If fi, f2,f3
are linear functional on V given by f1 (¢ (t)) = Egb(t) dt, 2 () =¢ () fort=1
fa@®)=6¢0)0()=cc+Pt+tit eV

and ¢'<t)=%¢(t>=s+2yt

Find basis {01 (t)] ¢z (t), ¢s (1)} which is dual to {f1, f2, fa}
16.8 Summary

We have learnt the following concepts in this unit,
0] dual space and linear functional
(i) dual basis
(iii) double dual or Bidval
(iv) Natural mappings
(v) Reflexivity
16.9 Glossary
1. Natural Imbedding-

The mapping H: V — V** defined as H (v) =L, Vv € V, where L, (f) = f(v) V
feV* is called natural imbedding

2. Reflexivity - The property of vector space of being natural imbedding from V to V*
an isomorphism, is called reflexivity. The vector space V and V** are called
reflexive.
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16.10 Answers to Self Check Exercises
Self Check Exercise - 1

Ans. §x—}y,_—2x+1y is dual basis of B
3 33 3
-1 . .
Ans. {2— 2t,7+t} is a basis of V dual to {1, ¢}

Self Check Exercise - 2

Ans. Prove it.

3 1, 3 3
Ans. {1, b2, 03} = {Bt—étz,—at+zt2,1—3t+§t2}
16.11 Reference/Suggested Reading
1. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007
2. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
3. David C. Lay, Linear Algebra and its Applications, 3rd Edition, Pearson

Education. Asia, Indian Reprint, 2007.

16.12 Terminal Questions

1. Define a non zero functional on a vector space V3 (R) s.t. if v=(1, 1, 1) v=(1, 1,
-)when f(v)=f(v)=0

2. Find a dual basis for B = {e1, e,} on R, over R, where e; = (1, 0) and e, = (0, 1)

3. Let B = {vi, v,, v3} be a basis of R; where

vi=(1,0,-1), vo=(1, 1, 1), vs= (2, 2, 0).
Find a dual basis of B.
4, Let B = (v1, v2, v3) is a basis of vector space V3 (R), where
vi=(1,-2,3), v»=(1,-1,1)and
vs = (2,4, 7). Find its dual basis

K*kkkk
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Unit - 17

Eigen Values and Eigen Vectors

Structure

17.1 Introduction

17.2 Learning Objectives

17.3 Eigen Value And Vectors of Linear Operator
17.4 Self Check Exercise - 1

17.5 Eigen Value And Vectors of A Matrix
17.6 Characteristic Polynomial of A Matrix
17.7 Self Check Exercise-2

17.8 Summary

17.9 Glossary

17.10 Answers to Self Check Exercises
17.11 References/Suggested Readings
17.12 Terminal Questions

17.1 Introduction

Dear students, in this unit we shall discuss the concept of eigen value and eigen vector
of a linear operator the same idea is extended to a matrix. Saler on, over main focus will be to
discuss characterizes polynomial of a square matrix.

17.2 Learning Objectives
The main Learning objectives of this unit are
0] to define eigen vectors and eigen values of a linear transformation
(i) to study eigen values and vectors of a matrix
(iii) to discus chara clerisies polynomial of a matrix
17.3 Eigen Value and Eigen Vectors of Linear Operator-

Definition 1: Let T be a linear operator on vector space V(F). Then a scalar AeF is
called Eigen value of T iff 3 a non-zero vector v € V s.t.

T (v) = Av.

Here, Vector v satisfying above equation is called Eigen Vector of T corresponding to
characteristic root A.
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Note: 1. Characteristic roots are also known as characteristic or proper or spectral or
Latent roots (Values) and similarly eigen vectors are also called characteristic or
proper or spectrol or latent vectors.

2. If v is eigen vector of T corresponding to eigen root A, then for each non zero
keF, kv is also eigen vector of T corresponding to eigen values A.

Since T (kv) = KT (v) = k(Av) = A(kv)
For example
0] Let D be a differential operator on vector space V of all differentiable functions.

Since D (e*) =6 e® for v=e® € V = A = 6 is an eigen value of D and e® is the eigen
vector corresponding to eigen value A = 6.

(i) Let | be the identity operator on vector space V. Since I(v) for each non zero veV
= [ (v)=1v
= A = 1 is an eigen value of | and each non zero vector in V is an eigen vector

corresponding to eigen value A = 1.
Self Check Exercise - 1

Q.1 LetSand T be operator on V(F) and v be any eigen vector of S and T both show
that v is an eigen vector of operator «S + BT, o, B €F

Q.2  For each of the operator T : R> — R?find all eigen values and eigen vectors and
basis of eigen space.

(i) T (x,y) =(3x + 3y, x + 5y)
i TEY=y-X
17.5 Eigen Value And Vectors of A Matrix

Definition 2. Let A be a square matrix of order n over F. Then a scalar A € F is called
eigen value of A if and only if there exists or non-zero vector

X

X
X = | ... | suchthat AX =X ()]

X

Here, the vector X satisfying (i) is called eigen vector of A corresponding to the eigen
vector of a corresponding to the eigen value roots A.

Note

() Eigen values of matrix A are also defined as roots of characteristic equation det
Ma-A)=0
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where |, is identity matrix of order n.
In fact, equation (i) can be written as
AX=AIl, XorO=(A1,-A) X or(Al,-A) =0

which are homogeneous equations and will have non zero solution (X= O) when det
Alh-A)=0

(i) We denote det (A I, - A) as Aa (1) and call it characteristic polynomial of A
(iii) On putting A = O in Ay (A) =det (A I, - A)

we get AA (O) = det (-A) = (-1)n det A, which is constant term of characteristic
polynomial of A.

17.6 Characteristic Polynomial of A Matrix

If X is characteristic vector of A corresponding to characteristic root A, then for each non-
zero scalar k € F, kX is also characteristic vector of X corresponding of characteristic root A
since A(kX) = k(A x) = k(A X) = A(k X) where kX = O.

Definition (Spectrum) The set having elements as characteristic roots of a linear operator T
(matrix A) is called Spectrum of T (A) (matrix A).

Theorem : Let T :V — V be a linear operator on a finite dimensional vector space V (F). Prove

that if v € V is an eigen vector of T, then v cannot be associated with more than one eigen value
of T.

Proof : If possible, let v correspond to two distinct eigen values Ay, A, of T,
TW=lvandT (V) -,V

= 7\,1 v = }\,2 A%
= (}\,1 - }\,2) v=0
= v=0 [-.- Ay and A, are distinct i.e. Ay # A]

which is a contradiction,
as v being an eigen vector must be a non zero vector
our supposition is wrong.
Hence the eigen vector v cannot be associated with more than one eigen value of T.
Another form of Above theorem (For Matrices)

Theorem : If X is a characteristic vector of a matrix A, then prove that X cannot correspond to
more than one characteristic roots of A

Proof : If possible, let X be characteristic vector of a matrix A corresponding to two
characteristic roots A, A, where A # As.

A X=X Xand AX =X, X
= 7\.1X=7\.2X:>(7b1‘)L2)X=0:>7L1'7b2=0 (’.'X?EO)
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=M=
which is a contradiction
Our supposition is wrong
Hence X cannot correspond to more than one characteristic roots of A.
Hence the theorem.

Theorem : Let A be an eigen value of a linear operator T on a vector space V (F). Let V; denote
the set of all eigen vectors of T corresponding to eigen value A. Prove that V, is a subspace of
V (F).

Proof : Here V, = {v € V| vis an eigen vector of T corresponding to eigen value A}
={veV|T(v)=Av}L
Given is that A be an eigen value of T
3 a non zero vector v' such that T (v') = Av'".
sothatv' e V, =V, # ¢
i.e., VA is non-empty set.
Letvy, v, eV anda, B e F.
Sincevy, vo eV =>Tvi=Aviand Tvo = A vy
Now T (avi+tBvy) =T (avy)+ (B Vo) [ TisalL.T]
aT(v)+BT(v2) [ TisalL.T]
o (Av) + B (Avyo)
A (v +Bvy)
T (avi+tPBv)=L (avi+pvy)

= a vi + B v, is an eigen vector corresponding to eigen value A

= avy+pP vy, eV
Hence V, is a subspace of V.

Note. This subspace V, is called the eigen space or the characteristic spaces of the
eigen value A.

Theorem : Prove that the non zero eigen vectors corresponding to distinct eigen values of a
linear operator are linearly independent.

Proof : Let wvi, va, ... vm be m non-zero eigen vectors of a linear operator T : V — V
corresponding to distinct eigen values A4, Ay, .... Ay respectively.
T(V]_) = 7\.1 Vi1, T (Vz) = 7b2 Vo, ... T (Vm) = 7\'m }\.m. (1)
We want to show that vy, vo, ....... v are L.l. vectors.
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We shall prove this result by induction on m.
Step |. Letm =1,
Then v; is L.I. since v, is a non zero vector.
the result is true form = I.
Step II. Assume the result is true for the number of vectors less than m.

Step Ill. Now, we shall show the result is true for m vectors.

Let a;vi+a,vo+...4anvm =0 (2

= T(@ivitava+...va@nvm) =T (0)

= aT(v)+taT(v)+...vanT (vm) =0 [Since Tisa L.T.]
= a;(Av))+a (Aovo) +...ctam (Amvm) =0 [Using (1)]

= aMvita ovot .. +tan Amvm =0 ..(3)

Multiplying (2) on both sides by Am, we get
A Amvita; Amvat ...t am Apvy =0 ...(4)
Eq. (3) - Eq. (4) gives
ai(t-Am) vi+tas (bo-hm) Vot et @am -1 (Am-1-Am) vm-1 =0
=X ai(t-2m)=0, @ (ho-Am) =0, ..o, @m -1 (Am-1-2Am) =0
[ Vi, Vo, e, vm - 1 are L.1. because of Step Il ]
= a, =0, a, =0,...,an,-1=0
[ Aj-Am=0for 1 <i<m-1as A are distinct]
Putting these in (2), we get

am vm =0
= an=0 [ vm = O]
Thuswe havea; = a, =...=a, =0

the vectors vy, vy, ....... v are L.l

Hence the result.
Another form of above Theorem (For Matrices)

Theorem : Prove that the characteristic vectors corresponding to distinct characteristic roots of
a matrix are Linearly Independent.

Proof : Let X3, X 5, ... X p be a characteristic vector of a matrix A corresponding to distinct
characteristic roots A4, A, ..... Ao

AXiZXiXiforlSiSp (l)
To show Xi, X4, ... X, are L.l
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If possible, let Xy, X, ....... X, be L.D.

3k (1 <k<p)suchthat X, X, ....... X are L.I. *)
but X4, X5, ....... Xk Xys1 are L.D.
so J scalars oy, oo, ....... oy, ak+1, not all zero ()]
suchthat oy Xy + o, X, +....... + oy X + orr Xes1= O ...(iii)

Per-multiply both sides by A
= A (0q Xy + 0o Xo +..... + oy Xk + 01 Xir1) =A0 = O
= o (A Xq) + as (A X)) +....... + o (A Xi) + o1 (A Xis1) = O
= o (M Xq) + ap (A Xp) +...e. + oy (e Xi) + et (Akst Xir) = O
(using i) .(iv)
Now, multiply (iii) by A1, we get
Olp Ager X1+ 0o Ager X2 +oee. + ok Ak Xk + Orr (Ager Xir1) = O (V)
SO (iv) - (V) = a1 (Mg - Aer) X1+ 02 (A2 - Ager) X2
Foon, + ok (M - A1) Xk = O

But X;, X2, ....... Xy are L.I. (by *)
o1 (A1 - A1) = 02 (A - Agst) = oo =oyg (A - A1) =0
= O1= O = ...... =ox=0
(" A1y Aoy e A are all distinct = Ay # Ao # Az #.uuvn # Aget)

But in (iii), we get o1 Xke1 =0
= o1 =0 (" Xys1 = O)
0= O = s = ok = ok+1 = 0 which contradicts (ii)

So our supposition is wrong

Hence vectors X4, X, ....... Xy are L.I.
Theorem 4 : Prove that zero is an eigen value of T iff T is singular operator on V (F).
Proof : Zero is an eigen value of T

iff 3 a non zero vector v € V

suchthat T (v)=0.v=0

iff T is singular operator.

Hence the result.

Note. The above result implies that O (zero) cannot be an eigen value of a non-singular
operator.
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Another form of above theorem (For Matrices)

Theorem : Prove that O is an eigen value of an n x n matrix A over a field F if and only if A is
singular.

Proof : Let f (t) -det (t1-A)
Now 0 is an eigen values of A
iff Oisarootof f(t)=0 [by cor.]
iff Oisarootofdet(tl-A)=0
iff det(01-A)=0
iff det (-A)=0
iff (-N)"detA=0
iff detA=0
iff A is singular matrix.
Hence the result.

Theorem : Let A be an eigen value of an invertible operator T on a vector space V (F). Prove
that A is an eigen value of T™.

Proof : Given T be invertible operator

= T is non-singular
= 3 an eigen value A = 0 [because of above Note]
= L exists.

Since A is an eigen value of T, therefore there exists a non zero vector v € V such that
TV =Av [by def. of eigen vector]
Operating T on both sides
= TETV)=T (V)
= v=AaTh(v)
[since T is linear operator = T is also linear operator]
1 .
= 7 v=T"(v)

or T'(v)= =v=Aty

= A'is an eigen value of T™.

Hence the result.
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Theorem : Let A be a non-singular matrix over a field F and A € F be an eigen value of A.
Prove 1! is an eigen value of A™.

Proof : Since A is non singular and A is an eigen value of A.
A#0 (-~ Ois an eigen value of A iff A is singular)
= A-1 exists.
Let non zero vector X be an eigen vector of A corresponding to eigen value A
AX =21 X

= A' (AX) = AT (L X)
= (ATA) X =% (A" D)
= IX =& (AT X)
= X =1 (A X)
= ATX=At (VAT X)
=1(AX)
= At X

e, A'X =a"X
At is an eigen value of A corresponding to the same eigen vector X.
Hence the result.

Theorem : Let T : V — V be a linear operator on a finite dimensional vector space V (F). Prove
that the following statements the equivalent.

0] L € Fis an eigen value of T
(ii) The operator A 1 - T is singular and hence non-invertible
(iii) det. A 1T)=0

Proof : To show (i) = (i)

Since A € Fis an eigen value of T

3 a non zero vector v € V such that

TWV)=Akv
= T(v)= (I1(v)) [ I (v=v for identity operator I]
= TV =M1 (v)
= (A I-T) (v) = O where v is a nhon zero vector
= A | - T is singular operator and hence non-invertible.

To show (ii) = (i)
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Let A | - T be a singular operator on V (F)

= [A 1-T; B]is a singular matrix relative to ordered basis B for V
= det((MI-T;B]) =0

= det(A1-T)=0.

To show (iii)) = (i)

Letdet(A1-T)=0

= det (M- T ; B] =0, where B is an ordered basis for V

= [Al - T] is a singular matrix

= Al - T is a singular operator on V

= AM-T)(v)=Owherev0 eV

= A)v)-T(v)=0

= AlL(W) =T (V)

= Av,=T(v)

= T (v)=A v for non zero vector v € V

= A is an eigen value of T

Thus we have (i) = (i) = (iii) = ® Hence the result.
C_or. bThe eigen values of a linear operator T on a finite dimensional vector space V (F) are
given by

det (A | - A) = 0 where | is identity matirx and A = [T ; B],
where B is ordered basis for V

Proof. Here A is an eigen value of T

iff det (M - T) = 0

iff det [M - T ; B] = 0

iff det ([l ; B] - [T; B]) =0
iff det (M — A) =0

Another Form of above theorem (for matrices)

Theorem :Let A be a matrix of order n over the field F. Prove A € F i.e. characteristic not of A iff
Al - Alis singularie. |Al- Al =0

Proof. Firstly Let A be a characteristic root of a square matrix A

= 3 a non zero column vector X of A
such that AX = AX
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=  AX =X (. IX =X)
=  (“1-A)X=0
= Al - A'is singular ("~ X=0)
= |[M-Al=0

Conversely:

Given Al - A is singular
ie. A -Al=0

= 3 a non zero solution X, such that
(M -A)X=0
or AX = AX
or AX = AX
or AX =AX
= A is characteristic root of A

Hence the result

Theorem : Let T : V — V be a linear operator on a finite dimensional vector space V (F). Prove
that the number of eigen values of T cannot exceed the dimension of vector space V (F).

Proof: Given V is a finite dimensional vector space over F
Let us assume dim V = n.
Now A is an eigen value of T
iffdet(AMl -T)=0
i.e., the eigen values of T are the roots of equation
det(xI-T)=0 e ()
Since dim V = n, so any matrix representation of T is of order n x n
the matrix representation of xI - T is also of order n x n
= The det (xI - T) is a polynomial of degree n in x.
But the eigen values of T are roots of this polynomial. [Because of (1)]
number of eigen values cannot exceed the degree n of the polynomial det (x| - T)
Hence the number of eigen values of T cannot exceed the dim V.
How to find eigen values and eigen vectors of a Linear operator
() Firstly, Let on ordered basis B for vector space V (F)

(ii) Find the matrix T w.r.t. basis B and call it A and solve it for AeF.
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(iii) Let veV be an eigen vector of T corresponding to eigen value A, then
AM-T)Y(v)=0

= [(A-T)w].=0
= [(A1-T)] [v],=0

=  (W-A)X=0, X=[v],

Now solve this matrix equation to find L.I. solution set and this L.I. set of solution will be
a basis for eigen space of A.
Some lllustrative Examples

Example 1. For each of the following matrices find characteristic polynomial

2 3 2
() {3 _q i |05 4
| i
4 5
1 0 1
Solution:
()  LetA 3
i etA=
4 5
.. Characteristic polynomial if A is
t-3 7
[t1-A]=
-4 t-5
=(t-3)(t-5)+ 28
=t* =8t + 43
A(t) =t2 - Bt + 4.
(2 3 2
(i) LetA=|0 5 4
10 1

The Characteristic Polynomial of A is,
t-2 -3 2
Af)=Jtl-A|]=] O t-5 -4
-1 0O t-1

= (t- 2)(t-5) (t- 1) - (12 - 2t + 10)
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=t°-8t°+ 17t- 10 - 22 + 2t
Al)=t3-8t°+19t-32
Example 2. Find all the eigen values and eigen vectors of following matrices

0 0 1
11

@ . (b) 020
0 i

1 0 2

_ 11
Solution: (a) Let, A - {0 J

The eigen values of A are the values of t such that, |t 1 - A|=0
t-1 -1
0 t-i

=

= t-1)(@-i)=0 = t=1,i

t =1, i are the two eigen values of A.
To find eigen vector associated to eigen value t =1 :
Putting,t=1in(tI-A)=0

X
where, X = { } is eigen vector of A associated to eigen valuet=1

—v=0
_y } = y=0

Thus, y = 0, x can have any value

X 1
X = { } = {O} is required eigen vector associated to eigen value t = 1
y

To find eigen vector associated to eigen value t =i :
Puttingt=iin(t1-A)X=0
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X
where, X = {
y

oAb

= (i-1)x-y=0

} is the eigen vector of A associated to eigen value t = i

= y=x(-1)
let, x=k, kz0
Thus, y=(i-1)k.

X 0
= X= = . is required eigen vector associated to eigen value t =i
y (i-Dk
2 01
(b) GivenA=10 2 O
1 0 2

The eigen values of A are the values of t such that |t1- A =0

t-2 O -1

Expand by C,

(t-2)

U

i-2 -1
-1 t—Z‘
(t-2)((t-2)2-1)=0
(t-2) (2-4t+3)=0
(t-2)(t-3)(t-1)=0

t =1, 2, 3 which are eigen values of A.

b4 4 d

To find eigen vector associated to eigen value = 1
Puttingt=21in(t1-A) X=0
X

where X = | Y | is eigen vector associated to eigen valuet=1
z
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X X 1
yi =10 | =|0 | x=> (1, 0, -1) is eigen vector correspondingto A =1
z —X -1

To find eigen vector associated to eigen value = 2
Puttingt=2in(t1-A)X=0

X
where X = | Y | is eigen vector associated to eigen value t = 2

z
0 0 -1||x 0
0O 0 Oyly|=10
-1 0 0|z 0
= -z=0and-x=0
= x =z =0and y can take any value
X 0 0
yi=|y|=1]1ly
z 0 0
= (0 1 0) is eigen vector associated to eigen value t = 2

To find eigen vector of A associated to eigen value = 3
Puttingt=3in(t1-A) X=0

1 0 -1||x 0
= 0 1 Oyly|=10
-1 0 1]|z 0
= Xx-z=0,y=0and-x+z=0
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X X 1
y|=10|=]0]|x
z X 1
= (1, 0, 1) is eigen vector associated to eigen value t = 3

Hence basis of eigen space
17.7 Self Check Exercise - 2
Q.1 find all the eigen values and eigen vectors of the matrix

o

Q.2 Find all the eigen values and eigen vectors of the matrix

2 01
0 20
1 0 2

17.8 Summary

We have learnt the following concepts in this unit :

0] eigen values and eigen vectors of a linear operator

(i) eigen values and eigen vectors of a matrix

(iii) characteristic polynomial of a square matrix

(iv) method to find eigen values and eigen vectors of a linear operator etc.
17.9 Glossary

1. Eigen Space - The subspace VA is called eigen space or the characteristic
spaces of eigen value A.

2. Spectrum - The set having elements as characteristic root of a linear operator T
(matrix A) is called spectrum of T(A) (matrix A).

17.10 Answers to Self Check Exercises
Self Check Exercise - 1
Ans.1 easy to show
Ans. 2. (i) 2,6;{@3, -1} {1, v)}
(i) No eigen value, no eigen vector

Self Check Exercise - 2
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Ans.1 t-1,iaretwo eigen values of A
X 1| ]
and X-= = 0 is req. eigen vector
y

Ans. 2t = 1, 2, 3 are eigen values of A and (1, 0, 1) is the eigen vector

correspondingtot=3

and basis of eigen space
={(1,0,-1), (0, 1,0), (2,0, 1)}

17.11 Reference/Suggested Reading

1.
2.
3.

Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007
S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

David C. Lay, Linear Algebra and its Applications, 3rd Edition, Pearson
Education. Asia, Indian Reprint, 2007.

17.12 Terminal Questions

1.

Find all eigen values and basis for each eigen space of linear operator
T: R® - R®defined by
T(XYy z)=(x+y+2z2y+z 2y+3z)

Find characteristic equation and characteristic roots of zero and identity matrix of
order n.

| Al

If A is a characteristic root of a non-singular matrix A, prove that 7 is a

characteristic voot of adj A.

Find eigen values and eigen vectors of the matrix
311

A=(2 4 2
11 3

kkkkk
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Unit - 18

Diagonalizable of Operators and Matrices Eigen

Values and Eigen Vectors (Continued)

Structure

18.1 Introduction

18.2 Learning Objectives

18.3 Diagonalizable Operators

18.4 Diagonalizable Matrix

18.5 Self Check Exercise

18.6 Summary

18.7 Glossary

18.8 Answers to self check exercises
18.9 References/Suggested Readings
18.10 Terminal Questions

18.1 Introduction

Dear students, continuing our discussion on the topic eigen values and eigen vectors,
we shall, in this unit discuss the concept of diagonalizable of operators and matrices. An
important theorem a linear operator be diagonalizable is also proved.

18.2 Learning Objectives
The main Learning Objectives of this unit are
0] what are diagonalizable operators
(ii) diagonalizable matrix

(iii) A necessary and sufficient condition for a linear operator to be diagnosable
diagonalizable is also proved.

18.3 Definition Diagonalizable Operator

Let T : V — V be a linear operator on a finite dimensional vector space V (F). Then T is
called diagonalizable operator iff there exists a basis of V such that matrix representation of T
relative to this basis is a diagonal matrix.
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18.4 Definition Diagonalizable Matrix

Let A be a matrix of order n. Then A is called diagonalizable iff these exists a non
singular matrix P such that P* AP = B where B is a diagonal matrix i.e. iff A is similar to a
diagonal matrix

.~ Asquarematrix Biscalled similar to A iff
Janonsin gular matrix P suchthat B=P™ AP

Theorem: Prove that a linear operator T : V — V is diagonalizable iff there exists a basis of V all
of whose elements are eigen vectors of V. And in this case, the diagonal elements of matrix of T
are the corresponding eigen values.

Proof. Given T : V — V is a linear operator on V
Suppose dim V =n.
Firstly suppose T is diagonalizable operator

3 a basis B = {vy, vy, ..... , v} Of V such that matrix of T relative to basis B is a
diagonal matrix. [by def.]
d, 0 0 .. O]
0O d 0 .. O
O 0 d .. O
Let [T ; B] =

0 0 0 .. d,]

T(Vl):d1V1+OV2+...+OVn

T(V2)20V1+d2V2+...+OVn

T(v)=0v,+0v,+..... +dp vy,
ie., Tv)=dyv, T(vy))=dava,....., T(vy) =d, vy

= the vectors vy, vs, ...., v, [which are non zero as no element of basis can be a
zero] are eigen vectors of T corresponding to eigen values d;, e, ..... , dn, respectively.

Hence the diagonal elements of [T ; B] are the corresponding eigen values.
Conversely.

Let 3 a basis B = { vy, v», ...., v} Of T such that each of the elements of basis B is an
eigen vector of T
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Suppose d,, dy, ..., d, be eigen values of T belonging to eigen vectors vi, vy, ...., vy
respectively

T(V]_) =d1 V1:d1V1+OV2+ ....+0Vn
T(v2)=dav;=0vi+dyvy+ ...+ 0 vy

d, 0 0 .0] [d O 0 ..0
0 d, 0..0f [0 d O ..0
=  [T:Bl=|w o . .=

0O 0 0 d 0O 0 0 d

= The matrix of T relative to basis B is diagonal and diagonal elements of matrix
are the eigen values of T.

Hence T is diagonalizable operator.
Note: The above eigen values need not necessarily be distinct.
Another form of the Above Theorem

A square matrix A of order n is similar to a diagonal matrix B iff A has n linearly
independent eigen vectors. And in this case, the diagonal elements of B are the corresponding
eigen values.

Proof. Firstly let A be a diagonalizable matrix over the field F

= 3 a nonsingular matrix P such that P™* AP = B where B is a diagonal matrix over
the field F

= P (P" AB) = PB
= (PP AP = PB
= | (AP) = PB = AP = PB . (D)
d, 0 0 ..0]

Let B = diag (dy, d, -.... dy)ie.B=

0 0 0 d,
= The eigen values of B are its diagonal entries dy, d; .... d,
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(*~ A and B are similar and similar matrices have same eigen values)
Let C., C,....C,be ncolumns of P

and det P = 0 (" P is non singular)

= columns Cy, C, ........ Chare L.l [ of a result from matrix theory] ... (i)
d 0 .. O
, 0 d, .. O
0) = A[C,C,....C]=[C1Cs..... Cil
0O O d,
Equating columns on both sides
WegetAC;=d; Ci, AC,=d; Cy, ... AC, =d, C,
= C's (1 <i<n) are eigen vectors of A for corresponding eigen values dis ... (iii)
= Matrix A has n L. eigen vectors (v of ii & iii)

Conversely Now suppose A has n L.l eigen vectors say Xi, X,,.....X, corresponding to
eigen values A4, Ay, .... A, respectively

AXi=au X (A<i<n) e (iv)
Consider a matrix P = [X; X5 ..... Xnl
= P is non singular (v XisareL.l)
so (iv) = AP = PB where B = diag (Ay, A2, ... An)

= P'AP =B

A is similar to diagonal matrix B
= A is a diagonalizable matrix

Note: To find a diagonal matrix B such that A and B are similar, we take B = P AP
where P is the matrix whose columns are linearly independent eigen vectors.

Some lllustrative Examples

Example 1. Diagonalize the matrix

2

Solution: Let us take

s 3
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- el

-1 2
| 3 2-2
= Characteristic equation of Ais|A-A1]=0

1-1 2
or =0
3 2—-1

= 1-2)2-2)-6=0
or Y?-31L-4=0
A=-1,4
= A =-1, 4 are eigen values of A

To find eigen vectors

X
Let X = { } # 0 be eigen vector corresponding to eigen value A = -1, given by
y

AX =X or (A-A)X=0
or A--1)hX=0

1+1 2+0] [x] [0
or o
13+0 2+1] |y 0

2 2] [x 0 ( te R R 3 R1)
or = operate — - =
0 of |y 0 p 2 2m 5 ™

Now coefficient matrix of these equations is of rank 1.

This equation has only one L-I eigen vector corresponding to value -1.
The equn can be written as
2x+2y=0 or X=-y

Take y=-1, -.x=1

1
So X= [ } is an eigen vector of A corresponding to value -1.

X
Similarly the eigen vector X = {

} # O corresponding to value A = 4 is
y
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AX = 4X or (A-4h) X=0.
1-1 2-0| | x 0
- =
3-0 2-4| |y 0
= -3x+2y=0 or X=—=y
Take y=3,Thenx=2,so

2
X= 3} is an eigen vector of A corresponding to A = 4.

1 2
P =
-1 3
To find P!, HeredetP=3+2=5
_ 3 -2 13 -2
adj P = : SLP-1==
1 1 511 1

. 1[3 211 8
Now PLAP==
5/1 1|[1 12

1/-5 0 -1 0 . .
== = which is diagonalizable at A.
5|10 20 0O 4

Example 2. If P is 2x2 matrix over a field F, then show that characteristic eq=n of P is A - t r(P)
A + det (P) = 0, where t, (P) = trace of P, det (P) = Determinant of P.

Solution: Let P = {pﬂ plz} over F
p21 p22 2x2

Characteristiceqg=nof P is

> )

Py APy

= (A - P11) (A - P22) - P12 P21 = 0

= ho-t, (P)A+det(P)=0
[t (P) = sum of diagonal entries = p11 + P2
and = det (P) = p11 P22 - P12 P21]

Hence proved
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18.5

18.6

18.7

18.8

18.9

18.10

Self Check Exercise - 2
Q.1 Forthe matrix A

1 -3 3
A=|3 -5 3|, find an invertible matrix P s.t. P* AP is diagonal matrix.
6 6 4

Q.2 Show that similar matrices have the same determinant
Summary

We have learnt the following concepts in this unit :

(1) diagonalizable operators

(i) diagonalizable matrix

Glossary

Diagonalizable operators-

Let T:V — V be a L.O on a finite binominal vector space V(F). Then T is called
diagonalizable operator iff 3 a basis of V such that matrix representation of T
relative to this basis is a diagonal matrix.

Answers to Self Check Exercises

Self Check Exercise - 1

Ans.1 X1=(1,1,0), X2=(1,01)are L | eigen vectors of A for eigen value -2
and (1, 1, 2) is the eigen vector associated to t = 4.

Ans. 2. Prove it.

Reference/Suggested Reading

1. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007
2. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.
3. David C. Lay, Linear Algebra and its Applications, 3rd Edition, Pearson

Education. Asia, Indian Reprint, 2007.

Terminal Questions

1 2
1. Prove that the matrix A = [O J is not diagonalizable over the field C.

2. Let T: R® — R® be a linear operator defined as T (x, y, z) = (3x + y + 4z, 2y + 6z,
52) Is T diagonalizable?
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Find an invertible matrix P s.t. P AP is diagonal matrix, where

320
A=|2 0 O
1 0 2

Also write the diagonal matrix

Find the matrix of eigen vectors of matrix A, A = Is this

=)
Bk O R
o R

diagonalizable? Give reason.

*kkkk
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Unit - 19

Isomorphism And Invertibility

Structure

19.1 Introduction

19.2 Learning Objectives

19.3 Injective, Surjective And Bijective Transformation
19.4 Singular And Non-Singular Transformations
19.5 Self Check Exercise-1

19.6 Isomorphic Vector Space

19.7 Self Check Exercise - 2

19.8 Summary

19.9 Glossary

19.10 Answers to self check exercises

19.11 References/Suggested Readings

19.12 Terminal Questions

19.1 Introduction

Dear students, in this unit we shall extend our discussion on linear transformations to the
concept of isomorphism and inevitability. An isomorphism is an invert table linear map. Two
vector spaces are called isomorphic if there is an isomorphism from one vector space onto the
other one.

19.2 Learning Objectives
In this unit we shall learn the following concepts
(@ one-one (injective) transformation
(i) onto (Surjective) ttansformation
(iii) one-one onto or bijective transformation
(iv) singular and non-singular transformation
(V) isomorphic vector space etc.
19.3 Injective, Surjective and Bijective Transformation -
Definition - one-one (Injective) Transformation -

Let T:V—->Wbeal.T.thenT is called one-one or injective iff
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forallx,y e V, T(X)=T(y) =>x =Y.
Definition.  Onto (Surjective) Transformation -

Let T:V—>WhbealL.T.then T is called onto or surjective iff for each weW, 3 v € V
st.w=T(v)or

W =Range of T
Definition.  One-one onto or Bijective Transformation -

Let T :V — W be a linear transformation then T is called one-one onto or bijective iff
it is both one-one (injective) and onto (surjective)

Note: Bijective transformation is also called as isomorphism.
19.4 Definition Non Singular Transformation.

ALT., T:(V)— W (F)is said to be non-singular iff the null space of T is the zero space
{0}, i.e., the null space consists of only the zero element.

Thusif T (v)=0 = v=0forallveV
or if v0 = T(v)=0forallveV
Then T is said to be non-singular.

Definition Singular Transformation.

ALT., T:V (F)—> W (F) is said to be singular iff the null space of T contains at least
one non-zero vector.

Thusifv0 = T (v)=0forsomev eV

Thus T is said to be singular.
Theorem 1. Prove that a linear transformation T : V — W is non-singular iff T is one-one.
Proof. Assume that T : V — W is non singular.

To Prove T is one-one.

LetT (vy) =T (vo) for vy, vo e V

= T(v)-T(v2)=0

= T(vi-v2)=0 [ TisL.T.]
= vi-vo=0 [ T is non-singular]
= Vi = Vo
T is one-one.
Conversely.

Let T be one-one
To prove T : V — W is non-singular

Let veVsuchthat T (v)=0
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= T(v)=T(0) [ TisL.T.so0=T (0)]
= v=0
Thus T(v)=0 = v=0forveV

T:V — W is non-singular.

Theorem 2. If V and W are finite dimensional vector spaces such that dim V = dim W. Then
Prove that a linear transformation T : V — W is one-one iff T is onto.

Proof. T is one-one iff T is hon-singular
iff N (T) = {0} where N (T) is the null space of T
iff Nullity T=0
iff Rank T + 0 =dim V =dim W [ dim V =Rank T + Nullity T]
iff Rank T = dim W
iff T is onto
Hence the result

Theorem 3. Let V (F) and W (F) be two vector spaces and T : V — W is a L. Transformation.

Assume that V (F) is finite dimensional. Prove that V and range space of T have the same
dimensions iff T is non-singular.

Proof. Given dim V = dim (Range T) = Rank T
= Rank T = Rank T + Nullity T
= Nullity T=0
= Null space of T = {0}
= T is non-singular
Conversely.
Given T : V — W is non-singular.
Null space of T is the zero space
= Nullity T=0
We know dim V = Rank T + Nullity T
= dimV=RankT+0
= dim V =dim (Range T)
Hence the result

Theorem 4. Prove that a linear transformation T : V — W is non singular iff set of images of a
linearly independent set is linearly independent.

Proof. Suppose T : V — W is non-singular L.T.
Let {vy, v, ..... , vn} be a L.I. subset of V
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We have to show that {T (vi) + o T (v2) + ..... + an T (vy) = 0 for oy's scalar

= T (ogvy) + T (0pvp) + ... + T (agvy) = 0 [ TisalL.T.]
= T (ovi + 0ova + ... +apvy) =0 [+ TisaL.T]
= vy oovat+ ..+ opva =0 [ T is non-singular]
= oL =0 = ... =o,=0 [ Vi, Vo, ..., v} is a L.l set]

Sothato; T(v) +ax T(va) +.... oy T (vy)) =0
= 01 =02 = ..... = o, = 0 for ay's scalar
{T (v0), T (v2), -..., T (v)}is L.I. set

Conversely : Suppose that the set of images of a L.I. setis L.I.
To Prove: T"V — W is non-singular

Suppose v € Vsuchthat T (v) =0

To show T is non-singular, we shall prove v =0

If possible suppose that v = 0

= {v}isalL.l. set

[ In vector space single non zero vector is L.1.]

= {T (v)isalsoalL.l. set [By given]
= {O}isa L.l set [ T(v)=0]
which is a contradiction [ Singleton zero setis L.D.]

our supposition is wrong
sothatv=0
ThusT (v)=0= v=0forveV
= T is non-singular
Hence the result

Theorem 5. Let T : V — W be a linear Transformation. Prove that the following statements are
equivalent

() T is non-singular
(ii) T is one-one

(iii) B is a Linearly Independent subset of V implies that T (B) is a Linearly
Independent subset of W.

Proof. We shall prove (i) = (ii) = (iii) = (i)
(1) = (i) [See Theorem 19]
(i) = (iii) Let B = {vi, v, ...., vn)} be L.I. subset of T
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To show that T (B) ={T (vi), T (v2), ...., T (vn)} is L.I. subset of W

Consider a; T (vy) +ax T (v2) + ..... + an T (vy) =0 for oy's scalar

= T (oqvy + 0ova + ... + agvy) =T (0) [+ TisaL.T]
= vy oovat+ ..+ opva =0 [ T is one-one]
= G=0=..=0y=0 [ Bis L.l set]

Hence T (B) is L.I. subset of W.
(iii) = 0] [See Converse of Theorem 4]
Some lllustrative Examples
Example 1. (i) Show that L.T., T : R®* - R? defined by
TXVY,2)=(Xx-y,y-z)isontobutnotl-1

(ii) Show that L.T., T : R? - R® defined by T (x, y) = (X, X - Y, X + ) is one-one but
not onto.

Solution: (i) Given L.T., T : R®* — R? s defined by
Ty 2)=(X-y,y-2)
To show T is onto Let (a, b) € R? be any element
Tisontoif 3 (x, y, z) € R® such that
TX VY, 2)=(a b)
or (x-y,y-2)=(a,b)
or X-y=ay-z=b
whichistrueifx=a,y=0,z=-b
so there exists (x, y, z) = (a, 0, - b) e R®
suchthatT(x,y,2)=T (@ 0,-b)=(@-0,0-(-b)) =(a, b)
= T is onto
Toshow Tisnotl-1
Let (4, 5, 6) and (8, 9, 10) € R®
suchthatT (4,5,6)=(4-5,5-6)=(-1,-1)
and T(8,9,100=(8-9,9-10)=(-1,-1)
= T(4,5,6)=T (8,9, 10)
where as (4, 5, 6) = (8, 9, 10)
= Tisnotl-1.
(ii) ToShowTis1-1
Let (x, y) and (z,t) € R®suchthat T (x,y) =T (z, 1)
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= X, X-y,x+y)=(z,z-t,z+1)

=  X=Z,X-y=z-tX+y=z+t

= X=zandy=t

sothat T(x, y) =T (z, 1) = x,y)=(z1)
Tisl-1

To show T is not onto

Consider (10, 11, 12) e R® but there is no (x, y) € R? such that T (x, y) = (10, 11, 12)
T (x, y) = (10, 11, 12)

= (x, x-y, x+y)=(10, 11, 12)

x=10,x-y=11,x+y=12

J

= x=10,y=-landy=2
which is impossible
Hence T is not onto
Example 2. Show that linear transformation T : R®* — R? defined by
T(el) =e1-ep T(ey) =2e,+e3 T(eg) =e; + e, + €3
where {e;, e,, e3} is a standard basis of R, is neither one-one nor onto.
Solution: We know e;=(1,0,0),e,=(0,1,0)ande; =(0, 0, 1)
Te)=e1-e, = T(1,0,0)=(1,0,0)-(0,1,0)=(1,-1,0)
T(ey) =2e,+ €3 = T(0,1,0)=2(0,1,0)+(0,0,1)=(0, 2,1)
and T(es)=e;+e,+e;
= T(0,0,1)=(1,0,0)+(0,1,0)+(0,0,1)=(12,1,12)
Now we shall find T
Let (x, y, z) € R® be any vector
Then (x,y,2)=x(1,0,0)+y(0,1,0)+2z(0,0,1)
= 1(x,y,2)-xT(,0,00+yT(0,1,0)+2zT(0,0,1)
=(,-1,00+y(0,2,1)+2z(1,1,1)
=(X+2z,-X+2y+2z,y+2)
Toshow Tisnhotl-1
LetT (x,y,2)=(0,0,0)
= (x+z,-x+2y+z,y+2)=(0,0,0)

Xx+z=0,-x+2y+z=0,y+z=0
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= X=y=-2
Takez=-1, = x=y=1

xv,2)=(1,1,-1)=#0
sothat T (x,y,2)=(0,0,0) = x,y,2)=(0,0,0)
= T is singular
= Tisnotl-1
To show T is not onto
Consider (0, 2, 0) e R® But there is no (x, y, z) € R® such that
T(x,y,z)=(0, 2,0)
T(x,y,2)=(0, 2, 0)
(x+z,-x+2y+z,y+2)=(0,2,0)
X+z2=0,-x+2y+z=2,y+z=0

X+Z-X+2y+z=0+2,y+z=0

A

y+z=1,y+z=0
which is impossible
Hence T is not onto
Note: Another method to show T is not onto
Find a basis for Range T = (R (T))
B ={e,, e,, e} is a basis of R®
= {T(e1), T(e,), T(es)} generates R(T)
= {(1,-1,0), (0, 2,1), (1, 1, 1)} generates R (T)
To find L.I. vectors from this set

Consider matrix A, whose rows are generators of T and reduce it to echelon matrix

110
ie. A=|0 2 1| Operate R, - R,-R;
111
1 -10
~|0 2 1| Operate R; > R3-R;
0 2 1
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1 -1 0
~|10 2 1] whichis echelon form
0O 0 O

(1, -1, 0) (O, 2, 1) form L.I. set of vectors which generates R(T)
= Range space of T = {(1, -1, 0), (0, 2, 1)} c R®
dim (R(T)) =2
= T is not onto.
19.5 Self Check Exercise - 1
Q.1  Show that the L.T.
T: R? - R? defined by
T(X,y)=(Xcos 6 +ysinb, -xsin 6 +ycos 0) is an isomorphism
Q.2 Show that there is no nonsingular L.T. from R* to R®.
19.6 Isomorphic Vector Space

Definition - Two vectors V(F) and W(F) over the same field F are called isomorphic iff 3
a linear transformation T : V — W such that it is one-one and onto.

Notation. V2 W, isread as V is isomorphic to W.

Theorem 6. Prove that, two finite dimensional vector spaces V(F) and W(F) over the same field
F are isomorphic iff they have the same dimensions i.e.

VeWiffdmV=dmW.
Proof. Let vew

= JaL.T.T:V—Ws.t Tis one-one and onto
To show. dim V =dim W.
Since V is finite dimensional, so it has a finite basis set
Let B1={vi, v ..... vn} be a basis of V so thatdimV =n
Now
B, = {T(vy), T(v2) ....., T(vn)}
which is a subset of W, having n elements To show B, is a basis set of W.
To show B, is L.I.
Take ocg T(ve) +oca T(vo) + ... + T (vy) =0
= T(ocyvy) + T (ocova) + oo+ T (ocqvy) =0 ("~ TisL.T. T (0)=0)
= vy + vy + .+ ocivp =0 (0 Blis basis of V = vy, v, ....vq are L)
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T, T(v2) ... T (vn) are L.1
B, is L.I. set
To show B, spans W.
Let yeW = Ixe Vst
y=T(x)
B = {v1, v2 ...., vn} IS @ basis of V, so x can be written as

X=B,vi+Bavat ... + Bnvn, Bi's scalars.

=  y=T()
= sz(B]_V1+62V2+ +ann)
=B1 T (ve) + oo + B T(vn) (v TisL.T.)

y is a Linear combination of elements of B,
Thus B, and W
Hence B, is a basis of W S dimW =n=dimV.
Conversely. LetdimV =dimW =n
To proveV = W
Since dim V = dim W = n, there exists basis of V and W, each having n elements.
Let B1 = {v1, Vo, ceury Vii}
and B, ={w, W,, ..., Wy} be basis of V and W respectively.
LetveV = 3 scalars ay, B2, ..., an € F
such that v = ayvi + oovy + ... + aVvy [ By generates V]
We defined T (V) = ouWy + aoWo + ... + oW,
(@ T is well defined. Since oy, oy, ...., o, are unique scalars
SO a W1 + oW, + ... + oW, iS unique element of W
= T (v) is a unique element of W for given v e V
= T is well defined
(i) TisL.T.Letx,y,eV,o,BeF
X = Zn:awandyz Zn:hvi fora, bje F
i=1

i=1

= ocx+[3y:i:(aa1+ﬂlq)\/i
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(iii)

(iv)

Let

Tx+py)=T (Zn:(aa. +ﬂb|)v,j

= Zn:(aay + b w, [by def. of T]

=aT (x) + BT (y)
T is a Linear Transformation

Tisone-one.LetT(X) =T (y) forx,y e V

(S or(Eov]

= a; = bi
n n
=  Yavi=yhy
i=1 i=1
= X=y
T is one-one

T is onto. Let w € W le arbitrary element

[by def. of T]

[ {wy, Wy,...., wp}is L.I. set]

w is a linear combination of the elements of B,
[ B, is a basis of W]

W=CW; +CW, + ...+ Cc,w, forc;'s e F

VECVi+Cvo + ...+ Cvp e V
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and T (v)=T(civi+Covat ...+ Chvp)
=CiWq + CoW, + ... + CW, [by def. of T]
=w
Thus T is onto
we have a L.T., T : V — W, which is one-one and onto
= V=W,
Theorem: Every n-dimensional vector space over the field F is isomorphic to the space F".
Proof: Let V be an n-dimensional vector space over the field F.
Take B = {vy, v», ...., vo} be an ordered basis for V.
Let F" be the vector-space of all n-tuples of the field F.
F"={(a4, oy, ...., o) |oy's € F}
We have to prove V = F"
For this, we define T :: V — F" as follows:
If v e V, then v can be uniquely expressed as a linear combination of elements of B
= V-0V +oove oo+ anvn [ Bis a basis for V]
for some unique oy, ay, ...., 0, € F
We define T as

T(v) = (o4, Az, ..., o) € F".

0] T is well defined. Since a4, oy, ...., o, are unique for given v e V
= (og, 0, ..., Q) is an element of Fn for given v e V
= T (v) is a unique element of Fn for given v e V
= T is well defined.

(i) Tislinear. Letx,ye V; a,p € F

n
= x= Y aV for some unique as € F
i=1

andy = Zblvi for some unique bi's € F
i=1

T =(ay, a, ---.., an)
and T (y) =(by, by, ...., by)

Andax%ymi&vi +p Zn]b.vi
i=1 i=1
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=
[By def. of T]

=

= i(aa + )V

Tax+PBy)=(aa;+PBby,aa+pby,

I |
SC)
—~

Qv QD
o o
D QR
- QD
H N
@
>

~
t o
=
- +
[ —~~
-CTm
N (ep
- o
g
< .

aTX)+BT(y)
TisalL.T.

(iii) T is one-one. Let x, y € V such that

TX)=TI(y)
i-1 i=1

= (a]_, ao, ..... , an) = (bl, bz, ..... , bn)
= dp, = bl, do b2 yennns , dp = bn
= av =) by

i-1 i-1
= X=y
= T is one-one.

(iv)  Tisonto. Let (oy, 0y, ....., o) € F"

= o, O, ..... ,on€ F
= vaogvitopveto..... +a,vp eV
= T(v) = (0, d, ..... , Op)

for (o, 0y, ....., an) € F" there exists v e

such that T (v) = (o, o, ....., )

=

T is onto
Vz=F"

Hence the result.

[by def. of T]

Theorem : State and prove first ismorphism theorem of linear transformation.

OR

257



Let V and W we vector spaces over the same field F and T : V — W be a onto linear

. . \%
transformation with Kernel T = K, then E =W
Proof : Let us define a mapping
\%
v P —Wbyy (K+x)=T(x)forall K+ x € VIK

AsK+xeVIKsothatxeV=T((X) e W
= y (K+Xx)eW
(i) To show v is well defined
Take K + x, K+y e V/K such that
K+x=K+y
x-yekK
TXx-y)=0 ("~ K=Kernel T)
TX)-T(y)=0
TX)=T(y)
v (K+x) =y (K+y)
v is well defined.

b4 4l

(ii) To show y is homomorphism
Take K+ x, K+y e V/IKsothatx,y € V
Now v (K +x) + (K +y)) =y (K + (x +y))
=T(x+y)
=TX)+T(y) (- TisL.T.)
=y (K+x)+y (K+y)
And y (A (K+ X)) =y (K+2AX) forh e Fand K+ x € VIK
=T(AX)
=LA T(X) (v TisL.T.)
=Ay (K+Xx)
vy is homomorphism.
(iii) Toshowyis1l-1:LetK+x, K+ye VIK
suchthaty (K+x) =y (K+Yy)
=  TK=T(y)
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= TX=T(y)=0
= TXx-y)=0 (v TisL.T.)
= Xx-ye K=Kernel T
= K+x=K+y
yis1l-1.
(iv) To show vy is onto

Lety € W be any element

AsT:V - Wisonto

sodxeVsty=T(x).
XxeV=K+xeV/Kand
v (K+x) =T (X =y,

soforally e W, 3K+ x e VIK
sty(K+x)=y

= v is onto

Thus y : VIK — W is homomorphism, 1 - 1 and onto

= VIK =W

Hence proved.

19.7 Self Check Exercise - 2

Q.1 Letv be avector space of all polynomials in x over F. Show that the map
T:V — V defined by
T X)=-f(XV f(X) € Vis anisomorphism of V onto V.

a o0
Q.2 Prove that the subset of matrices [0 0} in M, (F) V a vy F (field) is a vector

subspace over F, which is isomorphic to the field F.
19.8 Summary
We have learnt the following concepts in this unit :
(1) one-one or injective transformation
(i) onto or surjective transformation
(iii) one-one, onto or bijective transformation

(iv) singular and non-singular transformation
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19.9

19.10

19.11

19.12

()] Isomorphic vector space etc.

Glossary

1. Isomorphism : A bijective transformation is called as isomorphism.

2. Every n-dimensional vector space over F is isomorphic to space F". (F being
field).

Answers to Self Check Exercises

Self Check Exercise - 1

Ans.1 First show T is one-one and then show T is onto
Ans. 2. Show it.

Self Check Exercise - 2

Ans.1 Show that T is linear, T is one-one, T is onto.

b 0 c O a 0|
Ans. 2. Take A = 0 0 ,B= andV = 0 0 , find o A + B B, Then proceed.

Reference/Suggested Reading

1. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

2. David C. Lay, Linear Algebra and its Applications, 3rd Edition, Pearson
Education. Asia, Indian Reprint, 2007.

3. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007

Terminal Questions

1. Show that L.T., T : R> - R defined by T (y, x) = x is onto but not one-one.

2. Show that T : R®* — R® defined by

T(XY,2z)=(xcos0O-ysin6, xsin 6 +ycos 0)
is non-singular, 0 is any angle.
3. Show that L.T.
T : R? - R? defined by
T(xy)=(X-y, x+Yy)V (X, y) € R?is bijective

4. Prove that subjset of R® consisting of triplets (a, b, ¢) with ¢ = 0 is a subspace of
R?® which is isomorphic to R?.

K*kkkk
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Unit - 20

Isomorphism And Invertibility

(Continued)

Structure

20.1 Introduction

20.2 Learning Objectives

20.3 Invertibility

20.4  Self Check Exercise

20.5 Summary

20.6 Glossary

20.7 Answers to self check exercises
20.8 References/Suggested Readings
20.9 Terminal Questions

20.1 Introduction

Dear students, we shall continue our discussion on isomorphism and invertibility in this

unit too. The main emphasis in this unit will be to study the concept of invertibility. To
understand the concept of invertibility, we shall discuss the concept of invertible operator.

20.2

20.3

Learning Objectives

The main learning objectives in this unit are

0] to study the concept of invertible operator

(ii) to study uniqueness of inverse

(iii) to find conditions for invertibility of an operator

(iv) various theorems are proved to find the conditions of invertibility of an operator.
Invertibility

Definition (Invertible Operator)

A linear operator T : V (F) — V (F) is said to be invertible operator iff there exists an

operator S: V (F) — V (F) such that TS = | = ST, where | is an identity operator. Here S is called
: the inverse of T and is denoted by T™.

Theorem 1 : (Uniqueness of Inverse)

Prove that inverse of an invertible operator is unique.

Proof : Let T : V — V be an invertible operator
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If possible, let S; and S, be two inverse of T

Therefore, by def. S;T=1=TS; (1)
S, T=1=TS, (2
where | is identity operator on V.
Now S, =I1.S; (" I'is identity operator)
=51 TMS; (Using (1))
=S; (TSy) (By Associative Property)
=S;.T (Using (2))
=S,

the inverse of an invertible operator must be unique.

Theorem 2 : Let V be a vector space over Fand T : V — V be a linear operator. Prove that T is
invertible if an only if T is one-one and onto.

Proof: Suppose T : V — V is one-one and onto
To Prove T is invertible.
We define S : V — V as follows
S(y)=xiff T(x) =y
To show S is well-defined.
Since T:V — Vis one-one and onto, so there exists a unique x € V such thaty =T (x)
so that there exists a unique x € V such that
S(y)=x [by def. of S]
S is well-defined
To show S is a Linear operator.
Let Vi,Y2 € V
And S (y1) =Xx;sothaty; =T (Xy)
S (Y2) =X, so that y, = T (X,)

Let o peF = aXs+tB X eV

Then T (ax; + BX2) =a T (X1) + BT (X2) [+ TisL.O/]
=ay:+By;

= S(ayr+By2) =axi+Bx [by def. of S]

=aS(y1) B S(y)
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Hence S(ayi +PBYy2)=aS(y) +BS(y.)forally,y.eVanda,p € F
= S is a Linear operator on V.

Toshow ST=1=TS.

Letx e V,Lety =T (X). Thenx =S (y)

Now (ST)(x)=S(T(X)=S(y)=x=1(x)

ST=1

and (TS W=TESY)=TK®=y=1()
TS =1

Hence ST=1 =TS

= Tis invertible and S = T*.

Conversely: Let T : V — V be an invertible linear operator so there exists a linear operator S : V
— Vsuchthat TS =1= ST.

To show T is one-one. Let X3, X, € V such that
T(x) =T (x2)

= S(T (X)) =S (T (x2)) [+ Sis a mapping]
= (ST) (X2) = (ST) (x2)

= F(x) =1 (x2) [+ ST=1]

= X1 = Xo

T:V — Visone-one
To show T is onto. Lety € V
= S (y) is a unique element of V [+ S:V — Visamapping]
LetS(y)=x,sothatx e V
TEWM=TKX
> (T W=TK
= [ (y)=T(x) [ TS=1]
=  ¥y=TKX
Hence for giveny € V, there exists x € V such thaty =T (x)
T is onto
Hence T :V — V is one-one and onto

Theorem 3: Let T : V (F) — V (F) be invertible linear operator. Then show that the inverse
mapping T defined as y = T (x) iff x = T'* (y) is a linear transformation.
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Proof: Given T : V — Vis an invertible linear operator

Define I :V—>Vbe T (y)=xiffy=T(X) VyeV

T'is well defined. Lety e V

= there exists a unique x € V such thaty =T (X)
= there exists a unique x € V such that T™* (y) = x
[by def. of T

= T is will defined.

T is linear transformation.

Letyy, y» € V, then 3 unique X3, X, € V such that
TX)=y:rand T (X2) = ¥

= x; =T (y) and x, = T (v2)

Leta,B, eV, X1 X2 e V = X +tPxeV

T((XX1+BX2):(XT(X1)+BT(X2)
=ayitfy:

= Fl((Xy1+By2) :(XX1+BX2

T is a linear transformation on V.
Theorem 4: If T, S, U are linear operators on V such that
TS=UT =1
Prove T is invertible and T* =S = U.
Proof: Given T, S, U are linear operators on V such that
TS=UT =1
To show T is one-one. Let X, y € V such that
TX)=T(y)

= UT)=U(T(y)
= (UT)x)=UT)(y)
= 10 =1(y)

= X=Yy

T is one-one
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To show T is onto. Since S : V — V is a mapping so for each y € V, there exists x € V
such that x = S (y)

= TX=T(S(y)

=  TK=(TS)(y)
= TX) =1(y) [ TS=1]
=  TK=1y
=  TX=y
foreach,y e V,3x e VsuchthatT (X) =y
= T is onto.

Therefore T is one-one and onto
= T is invertible.

Now we show that T* =S = U
Given TS =1

= THTS)=T"1

= (T'T(ES)=T"

= IS=T"
= sS=T11
Also given UT = |

= unTt=1T1"
= uaTth=T1"
= Ul=T"

= u=T?

Hence T'=S=U
Hence the result

Theorem 5: Let V (F) be a vector space and T, S be linear transformations on V. Then show
that

() If T and S are invertible, then TS is also invertible
and (TS)*'=s*'T.

(i) If T is invertible and 0 # . € F, Then o T is invertible
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and (aT)'= 1 T
a

(i) If Tisinvertible, then Tis also invertible and (T")* =T.
Proof: (i) Since T and S are invertible operators (Given)

T and S*? exist such that

TT ' =1=T'T
and SS*'=1=S's .. (1)
To show TS : V — V is one-one ..(2)

Consider (TS) (x) =(TS) (y) forx,y € V
=  TEK)=T(EY)
= S(X)=S(y) [~ T is one-one as T is invertible]
= X=y [- Sis one-one as S is invertible]
TS is one-one
To show TS : V — Vis onto
Since T is onto VyeV,ixeVsuchthaty =T (X)
Also S is onto VxeV,3zeVsuchthatx =S (2)
forally € V, 3z € V such that
y=TX)=T(S(2)=(TS) (2)
TS is onto
Thus TS : V — V is one-one and onto
= TS is invertible operator on V.
Now, we shall show that (TS)*=S* T*
Here (TS) (S*TYH =T (SSH T*

=TT =TT =1
Also (S*ThH(Ts) =s’(T'T)S
=st()s=s's=1
(TS)(S*TYH =(S*TH (TS) =1
= (TS)* =stT1t [+ TSis invertible]

(i) To show a T — V is one-one, a is non-zero scalar.
= a. TX)=a.T(y) [by def. of Scalar Multiplication]
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= TX=T(y) [ a=0]
= X=y
o T is one-one
Toshowa T:V — Vis onto
Lety € V be arbitrary element
Sincea € Fand a =0
ée F= é yeV [ Vis a vector space over F]

Since T is onto

forier,EXEVSUChthatT(X)Zi y
@ a

Now (o T) (X) =a, T (X) = a. (isz (a.ij y=1y=y
a a

so that fory € V, 3 x € V such that
y=(aT) X
o T is onto.

Thus o T : V — V is one-one and onto

= a T is an invertible operator on V.

1
Now, we shall show that (o T)* = = T*
a

Here (o T) (1T_1j= (a.lj (1T
(04 (04

=1.TT =1 [oy (1)]

Also Eile (aT)= (laj (TT)
(04 (04

=1.(T'T)=T'"T=1[by (2)]

(aaT) (ET_lJ = (ET"lj (aT)=1
a a

= (aT)-1= 1 T! [ a Tis invertible]
a
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(i)  To show that T™ is one-one.

Let y1 =T (X1) forx,, y; e V

= X =T (y1) [+ Tisinvertible] .... (3)
and Yy, =T (xp) for x,, y» € V

= Xo = T (y2) [+ Tis invertible] ..... (4)
For all y;, y» € V s.t.

THYD) =T (y2)
= X1 = X,

= T (X)) =T (x2)

[because of (3) and (4)]
[ T is a mapping]

= Yi=VY2 [because of (3) and (4)]
To show T is onto.

Since T:V — Vis amapping,

soforx e V,3y e Vsuchthaty =T (x)

= forall x € V, there existsy € V

such that x =T (y) [~ Tisinvertiblesoy =T (x) = x=T" (y)]
Thus T* is onto

Thus T*V — V is one-one and onto

= T is invertible operator on V.

Also, we have TT =1=T*T

Hence (TH?*=T [by (1)]

Theorem 6: Let T : V — W be a Linear Transformation where dim V = dim W. Prove that the
following statements are equivalent:-

0] T is invertible

(i) T is non-singular
(ii)
(iv)

Proof: We shall prove

Tisontoi.e., Range of TisW
If {vi, v2, ...., vo} be a basis of V, Then {T (v1) T (v2), ...., T (vn)} is basis of W.

() = (ii) = (iii) = (iv) = ()
(o) Toprove (i) = (i)

Given T is invertible
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= T is one-one
Let veVsuchthatT (v)=0
= T(V)=T(0) [*- T(0)=0]
= v=0 [- Tisl.1]
T(v)=0 = v=0
= T is non-singular
(b) To prove (i) = (iii)
Given T is non-singular.
Toprove T:V — W is onto
Let {v1, v2, ...., v} be a basis of V
= {v1, v2, ...., vi}is L.I. set
= {T (v1), T(v2), ...., T(vn)} is L.I. subset of W.
[-.- images of elements of L.I. set under nonsingular L.T. are L.1.]
ButdimW =dimV =n
Thus {T (v1), T(v2), ...., T(vn)} is a basis set of W
Lety e W
= y is a linear combination of T (vy), T(v2), ...., T(vy)
y=oy T (vy) + o T(vo) + ...+ a, T(vy) for a;'s scalar
=T (ogvy + 0pva + ... + 0pVn) [+- TisalL.T]
=T (X) where X = ayvy + ..... + vy € V
fory e W, thereisx e V
suchthaty =T (X)
Tisontoi.e.,, Range of T=W
(© To prove (i) = (iv)
Given Tisonto i.e., Range of T =W
Let {vy, vy, ...., vo} be a basis for V
= {T (v1), T(v2), ...., T(vn)} spans Range of T = W.
Also dimW =dimV =n

any subset of n elements of W, which generates W, is also a basis of W.
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thus  {T (v1), T(v2), ...., T(vn)} is a basis of W.

(d) To prove (iv) = 0]

Given, if By = {vy, v, ...., vn} is a basis of V.

Then B, ={T (v1), T(v2), ...., T(vn)} is a basis of W
To show T is one-one

Letx,y e VsuchthatT (x) =T (y)

X, yeV = X, y are linear combinations of the elements of B;.

Let x= Y.V andy= Y BV fora's e Fandps c F
i=1 i=1
TX)=T()

= YaT(v)= Y AT(Y)

= 2(%—@)T(\4)=o

= oi-Bi=0 [T (v), T(v2), ..., T(vp)}is L1}
= o = B foralll<i<n

Zn:ai\/i = Zn:ﬁM
= X=y

Thus T is one-one
To show T is onto

Lety € W be arbitrary element

= y is linear combination of the elements of B,

= y-oqT (vi) +ap T(vo) + ...+ o, T(vy) for aj's scalar

= y =T (oavs + vy + ... + OlnVn) [~ TisalL.T.]
= y=T (X) where X = oyvy + .... + vy € V

fory € W, there is x € W such that
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y=T(X
Thus T is onto
Hence T is one-one and onto
= T is invertible.
Some lllustrative Examples
Example 1: Let T : V3 (R) — V3 (R) be defined as
TXY 2)=(03X,X-y,2Xx+Yy +2)
Prove T is invertible and find T™.
Solution: We know that T is invertible iff T is one-one and onto
0] To Prove T is one-one
Let vi = (X1, Y1, Z1) and v, = (X2, Y2, Z2) € V3 (R)
such that T(v1) =T (v,)
= T (X1, Y1, Z21) = T (X2, Y2, Z2)

= (BX1, X1 = Y1, 2X1 + Y1+ Z1) = (3Xz, Xz - Y2, 2%z + Y2 + 22)
= 3%, = 3%, = X1 = Xo

X1-Y1=X2-Y2= Yi=Y> [ X1=X]
and 2X3+y1+21=2%+Y,+t2, = Z1=125

[ X1 =x2and y; = y,]
(X1, Y1, 21) = (X2, Y2, Z2)
= V1=V
TV)=T(v2) = Vi=Vp
T is one-one.

(i) To Prove T is onto. Let (a, b, ¢) € V3 (R) and we shall show that there exists a
vector (X, Y, z) € V3 (R) such that

T(XY,2z)=(a, b,c)
= (B, x-y,2x+y+2z)-(a, b,c)

= X=o,X-y=b,2x+y+z=c

= ng,yzg-b,zzc-a+b
3 3

Sincea,b,ceR = X, ¥,ZeR
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xYy,2)= (%,%—b,c—a+bj e V3 (R)

Thus T is onto
Hence T is one-one and onto
= T is invertible

T Y,2)=(a, b,c)
= T-1(a,b,c)=(x,Y, 2)

= (E,E—b,c—a+bj
33

= T!'(a b, c)= (%,g—b,—a+ b+ C) is the required inverse of T.
Example 2: Let T be a linear operator on R® defined by
TXY,2)=(2%X,4x-y,2x+ 3y - 2)
Show that T is invertible and find T™.
Solution: We know that T is invertible iff 3 a linear operator S on R® such that ST=TS = I.
LetT (x,y,2)=(a, b, c)
= (2x,4x-y,2x+3y-2z)=(a, b, c)
2x=a,4x-y=b,2x+3y-z=c

a
=2 |- |+3(2a-b)-c
3]+sca-n
=7a-3b-c
a
= x=§,y=2a-b,z=7a-3b-c

Define: S: R®* — R®as
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S(a,b,c)= (Z,Za—b, 7a—3b—c]

0] Check S is linear operator [Try yourself]

(i) SNy 2)=S(T (XY, 2)
=S (2x,4X -y, 2Xx+ 3y - 2)

= [2—2)( ,2(2X) — (4x—Y), 7(2x) — 3(4x—y)— (2x+ 3y — z)j

=Y. 2)=1(xY,2)
And (TS) (a, b, ¢c)=T (S (a, b, ¢))

= T(%,Za—b,?a—Sb—c]

- [2(%),4(%)-(2a-b),2@)+3(2a-b)—(7a—3b—c)j

=(a,b,c)=1(a, b, c)
ST=TS=1I

= Tisinvertibleand T'=S
. 1 a
ie., T (ab,c)= E,Za—b,?a—Sb—c

Example 3: Let T be a linear operator on R® defined by
TXY,2)=(X-2y-2,¥-2,X)
Show that T is invertible and find T™
Solution: We know that T is invertible iff T is non singular
To show T is non-singular
Let T(xYy,2)=(0,0,0) for(x,y,z) € R®
(x-2y-2z,y-2,x)=(0,0,0)
X-2y-z=0,y-z=0andx=0
-2y-z=0,y-2=0
x=0,y=0,z=0
(x,y,2)=(0,0,0)

Uy U Ul
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[(x,y,2)-(0,0,0) = (x,v, 2) (0,0, 0)

= T is non-singular
= T is invertible operator on R®
To find T*

LetT (x,y,2)=(a, b, c)
= x,2y-2,y-2,X)(a, b, c)
= X-2y-z=a,y-z=b,x=c

. -a+b+c -a-2b+c
Solvingx=c¢,y= 3 ,Z= 3

Thus T is given by
T (a b, c)=(xY, 2)

—a+b+c —a-2b+ cj
3 3

= T!'(a b, c)= (C, :

Note. For finding inverse of linear operator, three methods have been given in above solved
examples.

20.4

20.5

20.6

20.7

Self Check Exercise
Q.1 IfTisalLinear operatoron v s.t. T>- T + | = 0. Prove that T is invertible.

Q.2 If T, S be Linear operators on vector space V(F), show that T and S are invertible
iff TS and ST are invertible.

Summary

We have learnt the following concepts in this unit :

0] what is invertibility and what we call as invertible operators

(ii) various theorems are proved to find the condition of invertibility of an operator
etc.

Glossary

T-1- IfT:V(F)—V(F)and
S:V(F)—V(F)s.t.
TS =1= ST, | is an identity operator, then S is called inverse of T, denoted by T™.
Answers to Self Check Exercises
Ans.1 T?=T-1, proveif T (x) = T(y) thenx = y.
Ans. 2. Consider (TS) (x) = (TS) y, xy € V show x =y, they T is onto then result follows.
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20.9 Terminal Questions

1.

Show that each of the following are invertible operators. Find T-1.

() T Y, 2)=(-3y-22y-4z X)

(i) TXVY,2)=(X+2z,X-2,¥)

Show that T : R? - R? defined by T (X, y) = (ax, by), a = 0, b = 0 reals is invertible

and Tt (x,y) = (g%}

If T, S are linear operators on V (F) show that T and S are invertible iff TS and ST
are invertible.

*kkkk
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