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Unit- 1

Basic of Vectors Calculus
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1.1 Introduction
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1.6 Summary
1.7 Glossary
1.8  Answers to self check exercises
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1.10 Terminal Questions
1.1 Introduction

Dear student, in this unit we will study about some basic concepts related to vector
calculus, which will be helpful throughout this course. We will study about vector quantity, vector
representation Operations on vectors i.e. addition and subtraction of vector, we will also revise
the concept direction cosine. Scalar and vector product of vectors will also be studied in this
unit.

1.2 Learning Objectives

After studying this unit students will be able to

1. define vectors quantity.

2. represent graphically a vector.

3. addition and subtraction of vectors.

4. define direction cosines.

5. define and evaluate dot and cross product of vectors.

1.3 Vectors



Since a physical quantiting can be classified mainly into two classes on the basis of
direction, known as scalar and vector, which are defined as.

Scalar Quantity : A quantity which does not require any direction for its representation.
Such quantity has only magnitude and unit. The basic rule of algebra will be apply for adding
such quantity.

Mass, distance, time, temperature are examples of scalar quantity.

Vector Quantity : A physical quantity which require both magnitude as well as direction
for its representation. These quantities can be added according to the vector law of addition.

Displaerat, velocity, acceleration, force are example of sector quantity.

Representation of Vector : Let a physical quantity is represented by an allow shaped
straight line, with suitable length which represents it magnitude and the direction of arrow
recusants direction, such physical quantity is known as vector quantity.
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Magnitude of Vector : The magnitude of a vector quantity A is denoted by or mod |A |

So, a vector quantity is mathematically represented by A.
Unit vector : A unit vector of vector quantity is that vector which has Unit magnitude. It is defined

A

~ A

as A=—

Al
Cartesian Representation of Vector : The Cartesian coordinate system, the unit vector along

x1y and 3 axis are represented by f,J and k respectively. So, a vector quantity in its Cartesian
representation or in component form is written as

A

A=Al + AyJ + AZR, where i, J andk are unit vectors and Ay, Ay, and A; are
component of vector A along X, y and 3 direction respectively.

Magnitude of Vector : If A=A+l + ij + AZRthen magnitude of vector is defined as
~ 2 2 2
A= () +(A, ) +(A,)

Unit Vector : If A = A« +1 + ij + AZRthen unit vector is defined as,




A= E _ Axi +Ay]+AzR

A 2 2 2

LAY (A (A
Zero Vector : A vector which has magnitude equal to zero, is known as zero vector. Zero vector
is also know as null vector. So if Ais a zero vector then.

|Al=0
Equal Vectors : Two vectors are said to be equal vector if they have same magnitude as well
as same direction.

Negative Vectors : A vector is called negative vector with reference to another vector if both
vectors have same magnitude but have opposite direction.

Like Vectors : If two vectors have same direction but have different directors then such vectors
are known as like vectors.

Collinear Vectors : The vectors which are parallel to each others are known as collinear
vectors.

Coplaner Vectors. The vector which lies on the same plan is called coplaner vectors.
Vector Addition : The addition of two vectors are done by using following law:

Triangle Law : If two vectors represents the sides of triangle then the third side of triangle
represents the resultant of these two vectors. Graphically, we can, see this as.

-

Parallelogram Law: If Aand B represents two adjacent sides of a parallelogram then the sum
of these two vectors i.e. resultant of these two vectors is represented by the diagonal of
parallelogram. Graphically




A

Difference of Vectors: The difference of vectors A and Bis denoted by A- B, is inturnis C.
So CzA—Bz A+ (-B)

Scalar Multiplication: Multiplication of a vector A by a scalar m, gives a vector mA, which has
magnitude |m| limes the magnitude of A. The direction of mA depends upon the value of m
(positive or negatives. If m has positive then mA has same direction as of A. If m is negative
then mA has opposite direction as of A.

Laws of Vector Algebra

1. (A+B)+C:(A+é)+é Associative under addition
2. A+ O=0+A=pa Exist no of zero element

3. A +(-A) -0- (-A)+ (-A) Existeres of negative vector

Position Vector: Consider a Cartesian coordinate system, with point P(x,y,z), then this point is
represented by a vector f, this T is known as pOSitiOn vector of pOint P mathematically.

) ’E 7 {v.42)
3
/
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P=x +y]+zR where x, y, z are coordinates of point P w.r.t. origin, O. in X, y, and z
directions.

If we have two vector P(x1,y1,21) and Q(xz,y2,22) with position vectorf,andf, respectively
such that



= XliA +ylj + Z1R

fr\ _ XZI +y2j+22k
5 =

PQ=0Q -P
1 oL
\ A r ) A
’ A . -
‘ s s L&A P
1',.’_ g 5 3;-
/'F— P ——
S O g :
A
Then the vector PQ is given by
PQ=0Q-0OP
P ="-1

= position vector of Q Position vector of P

P=(xe-xa)i +(y2-Y1)j+ (z2-z1)k

Direction Cosines: The direction cosines are the angle whichA makes with three mutually
perpendicular axes.

K
=L

- v Y M

If o<, B and y are the angle whichA makes with x, y and z axis respectively, then can o,
can and cos y are known as direction cosines and are given by




A A

= |A|:\/A<2+AX/2+A22
A A

n = cosy = =

|A|_\/A<2+A\,2+AZZ

m = cosp

Where A, Ay, A; are components of A along x, y and z axis respectively.

Also >+ m?+ n?=1is an important result related to direction cosines.

Self Check Exercise - 1
Q1 If f=3i-2)+k

A~ A

?7:3' +4]+ak

>

find |3|:f1'f2+?3

A ~

Q.2 Find Unit Vector parallel to the resultant Rof vectors = f122'+4j—512and
P=i-g+3k.

%(f+2]+2f<)
Q.3  Calculate the direction cosines of a vector that makes angles « = 30°, g = 45° and
v = 60° with coordinates axis.

[ﬁﬁﬂ

2'2'2

1.4 Scalar or Dot Product of Vectors

Consider the vectors & and D Let o be the angle between &ang bthen dot or Scalar

product of two vector is denoted by ab (& dot 6) is defined as the product of magnitude of a

A

and D and the cosine of the angle @ between them. mathematically.

éB = |A|A=]]=IA<I2=1 0039 , 0 <9<7Z'
a.b =96cos?
Properties of Scalar Or Dot Product
1. Dot product is known as scalar product because the resultant is a scalar quantity.
2. ab=Db.a  dotproduct is commutative

6



10.

11.

12.

13.

14.

If é.:al% +a2\]+ a3|21 b= blf +b2J+ b3|2

Then a.b = aibi + azb, + asbs

O
1

ab=o0=a-=o orb=0 or9=%

Q»
o

a.b are orthogonal ab =g

A2

aa- &= a2
ab= (modulus of &) (projection of b on a)

-, ab
Projection of b on &= i

. . a.b
angle between two vectors @ and bis given by cox 6 = |é\||6|
é.(6+é)=é-6+é-é distributive property

A\2 A A
(é+ b) =&’ +b*+2a.b
(c&).b=oc (a.b)=a, (D)

If é-:aj"'azj‘*'aslz, E):bliA+b2]+b3|2

ab +ah, +ab,
a?+a’+a’ b’ +b2+b?
a=a,i+a,j+akand b=b,i +b,j+bk

then cosb =
J

1. Then &and Dare perpendicular when

aib; + azb, + azb; =0

=0, dand b are non zero vectors then &and Pare perpendicular vectors.



2. aand E)are parallel when %=%—%

Example 1: Given A =4i+ 2j - 3k, B =5i -] - 2k,
C=3i+j+ 7k Then.

Solution : AB=4)5B)+2)(-1)+(-3)(-2)=20-2+6=24
AC=12+2-21=-7
B.C=15-1-14=0,AA=42+22+(-3)>°=29

Thus B and C vectors are perpendicular

Example 2: Find the angle between A = 2i + 2j - k

and B=7i+24k

Solution: We have A.B = |A] |B| Cos 6

Al = (2 +(2) +(-1)" =\0=3
and |B|= \/(7)2+(0)2+(24)2 —J625=25

AB=(2)(7)+(2) (0) + (-1) (24) =-10

Therefore,

AB —10 _ _—2——0.1333

|AIB] (3)(25) 15

cos 0 =

And 6 =98° (approximately)
Example 3: Determine the value of « so that

A=2i+o«j+k and B =i+ 3j- 8k are prependicular.
Solution: Give A and B are perpendicular

So that A.B =0 Thus
AB=(2)(1)+(x)B)+(1)(-8)=2+3c-8=0

=2

oc =

w|o

Example 4: Show that the vectors A = -i + j, B = -i-j-2k, C = 2] + 2k form a right triangle.

Solution: First we show that the vectors form a triangle. From Fig. 2-3, we see that the vectors
form a triangle if :

(a) one of the vectors, say (3), is the sum of (1) and (2) or
(b) the sum of the vectors (1) + (2) + (3) is zero.

8



According as (a) two vectors have a common terminal point, or (b) two vectors have a
common terminal point, or (b) none of the vectors have a common terminal point. By trial, we
find A=B + C So the vectors do form a triangle.

Since A.B = (-1)(-1) + (1) (-1) + (0), it follows that A and B are prependicular and the
triangle is a right triangle.

n
5 >// \ TR
N \ 1)
v \| ™
> \ N\
F < \ -
T _— \ i~ /
(i ~—
(a)
-?j G R
( A 1.2 £

Example 5: Find the angles that the vector A = 4i - 8] + k makes with the co-ordinate axes.

Solution: Let «, B, y be the angles that A makes with the positive x, y, z axes, respectively.

2 2 2
A.i=|A] (1) cos o« = \/(4) +(—8)"+(1) cos o = o cos o
Ai=(4i-8+k).i=
Then cos oc = 4/9 = 0.4444 and o = 63.6° approximately.

Similarly, cos p = -, f = 152. 70 and cos y = »

y = 836°
The cosine of «, B, y are called the direction cosine of the vector A.
Example 6: Find the projection of the vector
A=1i-2j+3konthe vector B =i+ 2]+ 2k.
Solution: A unit vector in the direction of B is
| +2j+2k 1_ 2
b= /B| 1+J4+4) -3 §J+3k

The projection of A on vector B is

i 2j 2k
Ab=(i-2j+3K. | st—=+—5 |=1



Self Check Exercise 2
Question 1: Find the value of a for which vectors

Aand B are perpendicular where:

@ A =ai-2j+kand B=2ai+aj- 4k

A A

(b) A=2i+j+akand B =2j+aj+k
Question 2 : Find the projection of the vector A on the vector B where:
(@) A=2i-3j+6kand B =i+ 2j+2k
(b) A=2i+j-kand B =-6i + 2j - 3k.
Question 3 : Show that A, B, and C are mutually orthogonal unit vector where:
2-2j+k i+2]+2k 2i+ )+ 2k
(@ A= 3 B= 3 andC=—"5—
12i -4j+3k 4i+3j+12k 3i+12)+4k
= ,B= andC= —————

®) A 13 13 n 13

1.5 Vector or Cross Product of Vectors

Let aand Dbe two vectors such that Q be the angle between them. Let fibe a unit

vector which is perpendicular to é, b A form a right handed system.

-«C«V e

o
o

i

-~
."/
-

—®
Then &cross product of &and Dis defined as
axb=|a||b|SinQ n
axb=absinQ n
Properties of Vector or Cross Product of Vectors
1. dxbis a vector whose modulus is ab sin @ and its direction is prependicular to a as

wellas b .

10




10.

11.

12.

13.

14.

As axbis a vector, therefore we call this product as vector product.

dxb= - bxd ie. dxbzbxa.
dxb= 0=ad=0or b=0or a isparallel to b or & and b collinear.
ixi =0, jxj =0 kxk=0, jx]=K, jxk=f, kxi

Angle 0 between a and 6 is given by

. axb
Sin 0= lAXA
|allb]

Unit vectors perpendicular to the plane of & and b is

axb
# <
|axb|

Area of parallelogram with adjacent sides & and b is |ax b B

. . . . . A1l s
Area of triangle with adjacent sides & and b is 5 |axb].

Area of parallelogram with diagonals a and b is (5+6).

N

If oc is a Scalar, then

—

oc(é.xﬁ)z(océ)x b -
ax(bre) -
(<b) ~laF b ( 5)

If a :a1| +a2‘] +a3k and bll +b2J +b3k

jovl}

X(ocB)

CTL
+
Q)

x C

PR

A+B=[4 2 -

then 3 5 2
(3iﬂ+5jA+2I2)

11



Example 1:A = 4j + 2j - 3k B= (3|A+5jA+2IZ)

Find A X B.

A

k

i
Solution:- A+B=[4 2 -
35 2
i (i +15)— j(8+9) + k(20— 6)

A x B =197 -17] +14k
Example 2: Find the area of triangle whose vertices are P(1, 3, 2), Q(2,-1,1) R(-1,2,3)

on: =11 —4] -k
Solution: PQ = J
_) 2~ ~ ~
= —]+k-2
PR

1
area of triangle = |PQ x PR|

A

I ] Kk
T =l J4 | (-4-1)- | (-1)+K (-9
X = — —1l= -4-1)- =1)+ -
PQ* PR (-4-1)- ] (-1)+K(-9)
-2-1 1
—> —> A a n
X _=-51+]-9K
PQ” PR :

|2 x 1= (87 + (1 + (9 =25+ 1+ 81=+107

X
PQ" PR
J107

area of triangle :T

Example 3: Determine a unit vector perpendicular to the plane of A = 2 to the plane of
A=21—-6]-3kandB= 4 —-3] -k

Solution: A x B is a vector perpendicular to the plane A and B

12



] K
AxB=[2 -6 —3=15 -10]-30k
4 3 -1

AxB
| AXB|

A unit vector parallel to Ax B is

_ 15/-10j+30k
(15)° + (~10)% + (30)?

_3(\ 2'.\ 6"

==l-—]—=Kk
7 77

Question 1: Find the area of parellogram having diagonds: (a) A=3 j—2kand
B=1 3j -4k
(b)  A=274] and B=4 +4k
Question 2:  Find the area of a triangle with vertices at:
(@) (3,-2,2),(1,-1,-3)and (4, -3, 1)
(b) (2,-3,-2), (-2, 3,2) and (4, 3, -1)
1.6 Summary: Dear students, in this unit, we study that

1. A quantity which has only magnitude is a scalar.

2. A quantity having magnitude and direction is known as vector.
3. a.b is scalar product of vectors.

4. axbis vector product of vectors.

5. Two vectors are perpendicular if axb= 0

6. Two vectors are parallel if 4xb =0

1.7 Glossary

1. Scalar Product : @.b = |a]|b]| coso is a scalar quantity. It is a scalar quantity,
hence known as scalar product.

2. Cross or vector Product : axb= |a| |6 |= Sin 6N s a vector guantity, so it is
known as vector quantity.
1.8 Answers to Self Check Exercises
Self Check Exercise - 1
13



Q.1

Q.2

Q.3

Q.1

Q.2

Q.3

Q.1

Q.2

J5,  Ti+4i+12k

1/ - r

3 (|+21+2k)

V3 42 1

222

Self Check Exercise - 2
(a) a=2,-1
(b) a=>2
8

@ 8
b -1

Toshow A.B=0, BC=0, CA=0
Self Check Exercise - 3

(@ 53
(b) 12
J165
@
by 21

1.9 References/Suggested Readings

1.
2.
3.

R. Murray, S. Lipchitz, D. Spellman, Vector analysis, Schaum's outlines:
S. Narayan, and P.K. Mittal, Vector Calculus, Schand and Company Limited.
J.N. Sharma and A.R. Vasishtha, Vector Calculas, Krishna Prakashan Mandir.

1.10 Terminal Questions

Aa Ab Ac
Prove that (A.BxC) (a.bxc)=|Ba Bb B.c
Ca Cb Cc

Find a unit vector perpendicular to both vector A and B where :

(@ A=4i- j+3kand B=-2+]-2k

*kkk

14



Unit - 2

Scalar Triple Product

Structure

2.1 Introduction

2.2 Learning Objectives

2.3 Scalar Triple Product And Its Component Form
Self Check Exercise-1

2.4 Geometrical Interpretation of Scalar Triple Product
Self Check Exercise-2

25 Properties of Scalar Triple Product
Self Check Exercise-3

2.6 Volume of Tetrahedron
Self Check Exercise-4

2.7 Summary

2.8 Glossary

2.9  Answers to self check exercises

2.10 References/Suggested Readings

2.11 Terminal Questions

2.1 Introduction

Dear student, in this unit you will study about the scalar triple product. How you learn to
multiply three vectors in such a way that the resulted is a scalar. You will also learn its
geometrical interpretation as well as its properties such as to show three vectors are coplanar or
not.In this unit you will also learn to find volume of a fetrahedran by using scalar triple product.

2.2 Learning Objectives
After studying this unit, students will be able to:
(1) Define scalar triple product.
(2) Find scalar triple product of given vector.
3) Inter geometrically scalar triple product
(4) Prove the properties of scalar triple product

(5) Solve questions related to scalar triple product.

15



(6) Apply the properties of scalar triple product to show that given victors all coplar
@) Able to find the volume of tetrahedron.

2.3 Definition and Component Form of Scalar Triple Product

Let é,B,é are three vectors. If we introduce dot and cross product between é,B and €,
we have the following products:

(é.B).é, (ab)xc (axﬁ).é and (axﬁxé)

As in unit 1, we studied that if we take dot and class product are defined between of two
vectors only and dot product of two vectors is a scalar. Taking there two points in our mind; two
vectors is a scalar. Taking these two points in our mind ; two types of notation given above i.e.

(é.B).é (as a.b is a scalar and '." is applicable only on two vectors) and (&xb).c (bythe same

reason) are meaningless. In this unit we will study about one of the remaining two terms i.e.
(éxb).c i.e. cross product of two vector and its dot product with the third one.

Definition of Scalar Product:

If é,B,éare three vectors, then the scalar triple product is defined as (éxB).é and is
denoted by [éﬁé}

Thus [abe] = (axb).c

As cross product (éxf)) will give a vector quantity and dot product of result of (éxﬁ)
and € gives a scalar quantity so [éf)é] is known as scalar triple product.
Component Form of Scalar Triple Product

Let A=ai+a,]+ak, b=hi +b,j+bk and c=ci +c,] +ck

a a a
Then [ab¢] :(axﬁ).é= b b b,
GG G

Let axb = [Definition of cross product

16



e, & il al aa

b, b ‘b b o b
[(ah,—ba,) - j(ab,—ah)+k@b, -ha,)

Now (axb).¢ = /(ab, ~b,a;) - j(ab, —ady) + K(ab, ~ba,) || ai +c,] +ck |
= (b —b,a;)c - (ab, —ab)c, +(ab, -ha,).c

[by definition of dot product]

=a,b,c —ha,c —abg, +ahbc, +abc,—bag,
= abc,—abc, +abc —ahc, +ahc, —abg
= a (bc,—bc,)+a,(bc —he,)+a;(bc, —be)

A

+k

Il

a a &
=|lb b b [Determinant Form]
G & G
a a &
Hence in component form (éxf))f::[éf)é} (@b¢) = b b, by
G G G

Let us try to find scalar triple product of given then vectors by solving some examples.
Example1: If =2+ j+3k, b=—i +2]+K and ¢=3 + j+ 2K Find [é b é]
Solution : Since in component form scalar triple product is given by

R R
[abe]=]n b b
G G G

= -1
3

BN R
N W

21 |-11
1 2 |3 2

= 2(4-1)-1(-2-3)+3(-1-6)

= 2‘ -1 +3

-1 2
3 1

17



= 2(3) -1(-5) +3(-7)
=6+5-21
=11-21

[é b c] = .10

Example 2: If &=21 + j+3k, b=— +2] +k and ¢=-3 + |+ 2k Find [éﬁé]

a a q
Solution : Since [ébé] =b b b
C C G
2 1 3
=-1 2 1
-3 1 2
2 1 -1 1 -1 2
=2 - +3
1 2 -3 2 -3 1

= 2(4-1) -1(-2-3) +3(-1+6)
= 2(3) -1(1) +3(5)

=6-1 +15

[éﬁé] =21-1=20

Pal ~

Example 3: Given d=2 -3], b=i+ j—k and ¢=3 -k Find [éf) é]

Solution : Since we known that

R R
[abe]=]n b b
G G G
2 3 0
=1 1 -
3 0 -
1 - 1 - 11
=2 +3 +0
0 1% % o

18



= 2(-1) +3(-1+3) +0
= -2 +3(2)
=2 +6

[élﬁé] =4

Self Check Exercise - 1
Q.1 Find|abeé|if a=10/—-12j—4k, b=—6( +10] —6kand é=—4i +12j +10k

Q.2 Find|abeé|ifa=-3+7j+5k, b=-5+7]-3kand é=7i -5] -3k
Q.3 Find|abeé|ifa=2"—3]+4k, b={+2j—kand ¢=3"—]+2k
Q.4 Find|abeé|ifa=i+],b=i—jand ¢=5 +2]+3K

Q.5 Find|abelifa=-121+3k, b=3 —Kand é=2 + j15k

Q.4 Geometrical Interpretation of (éxﬁ).é

Scalar triple product of three vectors geometrically define the volume of the
parallelopiped farmed by the three vectors originating from a common point.

Let us prove this

Consider a parallelopiped having edges OA, OB and OC with same extent. Let OA= a,
OB=b and OC = ¢. So, here edges of parallelopiped equal to three vectors &, band €. Let
N be a unit vector perpendicular to the plane of & and Band 0 be the angle between ¢ and
A . From point ¢, draw a perpendicular CL to the plane of & and Bsuch that CL to the plane of
a

A and b such that CL = P is the height of parallelopiped. Now, [é b é} = (axh).¢

= (Area of the parallelogram OADB) h. ¢
= (Area of the parallelogram OADB) (1. €)
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= Area of the parallelogram OADB ||| ¢| Cos 6
[by definition of dot product]

= (Area of the parallelogram OADB) |¢| Cos 0

[as A is unit vector and | A | = 1]
= (Area of the parallelogram OADB). OC Cos 6

[1¢]=0C]
= (Area of the parallelogram OADB). CL

["0Cos 6 = CL]

= (Area of the base of parallelogram)x(height b )

[é b é] = Volume of parallelopiped with edges of same extent a : b and €.

Therefore, scalar triple product of three vectors &, 6and C represents the volume of the
parallelopiped having coterminous edges (edges of same extent) given by vectors &, Band ¢.
Let us try to find the volume of parallelopipe by using scalar triple product.
Example 1: Find the volume of the parallelopiped whose coterminous edges are given by
a=3+4], h=2+3]+4kand ¢="5K. Since we know that volume of a parallelopiped having

edges a, band ¢is given by

a a, 8 340
[abe]=|b b, b =2 3 4
C C G 0 0 5
3 2 4 123
= -4 +0
0 05 |00
= 3(15) -4(1) +0
= 45-40
= 5 cubic units.

Example 2: Find the volume of parallelopiped whose side are given by the vectors
a=2(-3],b=i+j—kand €=3 —K.

Solution :Since volume of parallelopiped [é b é}
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C2
-3
=11 1 -1
3 0 -1
1 - 1 - 11
=2 +3 +0
0 - 3 - 30
= 2(-1) +3(-1+3) +0
=-2+6

[é b é] = 4 cubic units = Volume of parallelopiped.
Example 3 : Find the volume of parallelopiped with coterminal edges AB, AC and AD, where A
=(3,2,1)B=(4,2,1),C=(0,1,4and D=(0,0, 7).

Solution : Since in his question the coterminal edges are not given by vector, but we are given
the coordinates of points A, B, C and D. Here we first have to find the edges AB, AC and AD

having starting point A. Let &, b ¢and d be the position vectors of A (3, 2, 1), B(4, 2, 1), C(0,
1, 4)and D(0, O, 7)

So, =3 +2j+K, b=4 +2]+Kk, 6= j+Kkand d=7K
Now AB = Position vector of B - Position vector of A

(4 +2]+K)- (3 +2]+k)

—

AB ={+0j+k

Similarly =1

AC = Position vector of € - Position vector of A
= (j+4Kk)- (37 +2]+k)

AC = 3 —j+3k

and

AD = Position vector of D - Position vector of A

= 7I2-(3iA+2jA+I2)
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AD = —3— ] +6k

Therefore, volume of parallelopiped = [ B.AC DJ

1 0 0
=|-3 -1 3
3 -2 6

3

1
:1‘ ‘—0+0

-2 6
Volume of parallelopiped = 1(-6+6) = 0 cubic units.

Example4: The volume of the parallelopiped whose edges are —12f+/1I2,
3] —k 3 + ] —15K is 546 cubic units.

Solution :Given that volume of parallelopiped is 546 cubic units.

Let 4=-12+ K. b=3]—kand ¢=2+j—15k. Since we know that, if &, b and
¢ are three edges of parallelopiped then of parallelopiped is given by [é b é] :

8 a4, g
So,[abé¢|=|b b, b =546
G G G
12 0 -1
=10 3 -1
2 1 -0
- 123 -1 00 _1+/10 = 546
- - 215 |2 -18 T2 1

— -12(-45+1) -0+ A(-6) = 546
— -12(-44) - 6 % = 546

— 528 - 6 1 = 546

— - 6 =546 - 528

=-6A=18
:>7L=@23
6
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=>A=3
Example 5: Find the height of a parallelopiped whose base is given by parallelogram & and
b _where &=1+]+k, b=21+4]-Kkand ¢=1+ ] +3k are edges of parallelopiped.
Solution : Since we known that

Volume of parallelopiped = (area of bas of parallelogram). height of paralelopiped.

Volume of parallopiped

Height of parallelopiped = ;
area of base of paralelopiped

Here &, 6and ¢ are three edges of parallelopiped. Therefore, volume of parallelopiped
=|abe

a a a
=lb b, b
QG ¢ G
11 1
[a66]=24—
11 3
4 -1 2 -1 |2 4
-1 1 +1
‘131‘ ‘1 j 11‘

=1(12+1) -1 (6+1) +1 (2-4)
=13-7-2
=13-9
Volume of parallelopiped = 4 cubic units.
Now to find the area of base

Since area of base = ‘éx b‘

] K

Soaxb==11 1 1

2 4 —

Jdroal o1 1) W11
=1 — +k

4—JJ 2 -1 24‘
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[ (1-4)- | (-1-2) +k (4-2)

= 51 +3 ] +2k

‘—5? +3}+2I2‘

= (-5 +(3F +(2f

axb =«/§ square unit
|

Volume of parallopiped
area of base

Now, Height of parallelopiped =

4
Hence, Height of parallelopiped = T unit.
38

Self Check Exercise-2
Find the volume of parallelopiped whose sides are given by.

Q.1 i+]+Kk, K | 3 —j+2k

Q.2 2/-3j+k,i—j+2k, 2/ +]-k
Q.3 71-5]-3k, i +2]-k, -3 +7]+5k
Q.4 {+2j+3Kk, 20 +3]+4k, —i +2]-3k
Q.5 2/+3j+4k,+2]-k, 3 —j+2k

Q.6 117, 2], 13k

2.5 Properties of Scalar Triple product

Dear students, in this section we will discuss some important properties of scalar triple
product which can be used as generalized results.

band ¢ are cyclically permuted, then value of scalar triple product remains
|=|pea]=]cab]

Proof : Let &, Band ¢ represents the coterminous edges of a parallelopiped such that they

form a right handed system. Then volume of parallelopipe is given by V = (éxf)).é
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Now b, ¢ & as well as ¢ &, b forms a right handed system of vectors and represents
the coterminous edges of same parallelopiped.

or=[abe¢|=[beal=[cab]
Hence the value of scalar triple product remains the same of the cyclic order of &,
b and ¢ remains unchanged.

Property 2 : In scalar triple product, the position of dot and cross can be interchanged provided
that the cyclic order of the vectors remains same.

Proof : Since from property -1, we know that
[abe|=]beal
(axb).¢ = (bx¢).a

:>(é><6).

Q>

Q>

A

= é.(ﬁxé) [as dot product is commutativeie. & b = b 4]

(@)

Hence dot and cross can interchange their position without changing the value of the
product.

Property 3 : With the changes of cyclic order of vectors in scalar triple product, sign of scalar
triple product also changes but the magnitude remains the same. Mathematically,

[36 c} =-[Béa] =—[66 a} =-[aét3]

Proof : Since we know that

[abe]  =(axb).e
= [é b é} =- (Bx A). € [cross product is not commutative i.e. a x b=—Dx aj
= {( ox4). c}
= [é b é] :[5 a é] 1) [definition of scalar triple product]
Again [aB c] = [6 é a]
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=—(exb).a - bxE=— éxb

Again [aB c] = [c a b]
_ (éxa)b
= —(&x¢).b [Exa=—axC]
= -{(ax¢).b}
:—[ééﬁ] 3)

From (1), (2) and (3), we have
(abe|=-|bae|=-|eba]=-[aeb|
Property 4 : Scalar triple product of three vectors is zero of any two of from are equal.
Proof :Let &, Band ¢ be any three vectors, then three cases arises :
Case |, when a= b

So, [éﬁ C] =(éx6).é [asBXézéXé=0]

(é.xé.).é
0.¢

[ab ¢ =0
Case Il when b=¢
[éf) C] = [6 ¢ é] [using property 2]
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1
—_
o>
X
(@)
SN—
Q»

= (ex€).a Exé =0
= axa

[ab ¢ =0

Case lll : When € - &

Then [a 5 c] = [c a 6] [using property 2)
= (éxa).b
= (éx€).b [ ¢ = a]
=0.b

=[abe| =0

Hence [é b é] = 0, if any two vectors are equal.

Property 5 : For any three vectors a, Band ¢ and for scalar A, [/1516 C}

1
>
1
Q>
o>
(@)

|

Proof : Taking L.H.S.,[Zéf) c} = (léxf)).é
:x(éxﬁ)é [onaxb =2 (axb)]
=2.{(axb).¢|
[abe]  =2[ab¢]

Proof : Taking L.H.S.,

[+ émBnC] = (Jéxrrﬁ).né
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Hence [+ émBné]z ; mn[éf) é}

Property 7 : Scalar triple product of three vectors is zero of any two of them are parallel or
collinear.

Proof : Let &, band ¢ be any three vectors, let & is parallel (or collinear) to b. Then
a=.b for some scalar A
Now [35 C} = (éxB).é
= (/l BXB)C

:K(BXB).C

=2(0). ¢ - bxb=0]
_0.¢
=0

Hence for two collinear or parallel vector, scalar triple product is zero.
Property 8 : The necessary and sufficient condition for three non zero, non-collinear vectors
a, band ¢ to be coplanaris [éf) é] =0

Or ab ¢ are coplanar iff [é b é] =0
Proof : Let &, b ¢ are three non zero, non collinear, coplanar vectors.

Since axbis perpendicular to the plane of & and b.

Also &, b, ¢ are coplanar vector. So 4% b is perpendicular to €.

=

= [36 c] =0

A

xﬁ)é =0 [if two vectors are perpendicular thend.b =0

Q>
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Soif &, 60 are coplanar then [éﬁ é] =0

Conversely : Let &, b,¢ be three non zero, non collinear vectors such that [é b CJ =0, to

A

prove &, b, ¢ are coplanar.
Given [éf) é} =0
=(axb).¢ =0

n

—axb =0 or ¢= & or axbis perpendicular to ¢

A

asd, b,¢ are non zero and non collinear vector so axb=0and ¢=0.

Therefore, axb is perpendicular to ¢

Also (éx 6) is a vector perpendicular to the plane dand b .
(éx 6) is perpendicular to ¢ = ¢ lies in the plane of dand b.

-.aband ¢ are coplanar.
Therefore, [35 é} =0=4a, b,¢ are coplanar vectors.
Hence proved.

A

Property 9 : For given &, b, ¢ three vectors,

= [ab eT

o> D
> Q>
o> »
o> O
> D
(@) (@)

(@)}
Q>
o
o>
o
(@)}

Proof: Let & = ai+a,j+ak
b= b +b,j+bk
¢ = i +c,j+ck

Now taking components of L.H.S.

a.a= a12 + 8.22+332

o>
O

= b1? + bp?+b3?
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A

€.6 = ci? + cr2+c3?

A A~

a. b — aib1+ asbo+azhs = b .a

6.6:b101+b202+b303 266
¢.4d=cia; + coaxtcsaz= a.¢
How R.H.S.
e Al
[abe b b, b
G G G
a a8 &y a4 &
=l b, bjb b b
G G GG G G

Let us try some examples based on these properties.
Example 1: Findd.(€x4)if 4= 2/ — J+k, &¢=— +3] +K.

Solution : Using the property of scalar triple product its value will be zero, as it contain same
vector twice. Let us check it by calculation.

PR
cxa=1-1 3 1
2 -1 1

-1 -1 3
' +k

I (3+1) - | (-1-2) +K (1-6)

éxa =4f +3]-5k
Now &.(éxa) = (21 —]+K). (@4l +3[-5K)
= (2x4) .1 —1x3) . ]-(1x5)k .k
=8-3-5 [12= 2= k2=1]
=8-8
=0
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~.a.(6xa) =0

Example 2:Ifa=1 +2 j+K, b= 3 +2]-7k, é=51 +6 ] -5k

A~

Show that &, b, ¢ are coplanar.

Solution : Since three vector are coplanar iff [é b é] =0

1 2 1
Therefore, [366} =3 2 -7
5 6 -5
‘2 -7 3 -7 |3 2‘
=1 - +1
6 -5 5 -5 |5 6
= 1(-10+42) -2(-15+35)+1(18-10)
= 32-40+8
= 40-40
=0

Since [é b é] =0,s0 4, b,¢ are coplanar vectors.

Example 3 :Show that following vectors are coplanar, 4= 10i -12 -4k, b= -161 +22]-
2k, é=2i 8] +16k

A

Show that &, b, ¢ are coplanar.

Solution : We just have to prove [é b é] =0

10 -12 -4
Now [aﬁé] -|l-16 22 -2
2 -8 16
2 -2 |-16 -2 |-16 22
=10 +12 -
-8 16 2 16 2 -8

= 10(352-16) +12(-256+4)-4(128-44)
= 10(336)+12(-252)-4(84)

= 3360-3024-336

= 3360-3360
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=0
Therefore &, band ¢ are coplanar as[é b é] =
Example 4 :Let a, b, c are distinct non negative numbers.

If the vector al +a ] +cK, j+k and ci +c j+bK lies in a plane then show that c? =
ab i.e. c is geometric mean of a and b.

Solution : Given al +aj+ck, j+k and cl+c j+bK these three vectors lies in a plane,
means these vector are coplanar. Therefore their scalar triple product should be equal to zero.

a a c
=1 0 1
ccb
01 11 10
=a —a +C =0
cb c b cC C

= a(-c) -a(b-c) +c(c-0) =0
—-ac-ab+ac+c*=0
=c?-ab=0

=c?2=96

= c= /9

Hence c? = 96, as a, b, ¢ are distinct non negative number, so ¢ is geometric mean of a
and b as c? = 96.

Example 5 :Show that the four points whose position vectors are 61 -7 I, 161 -19 j4|2
3]-6k,2i -5 ] +10K are coplanar.

Solution : From the given posmon vector of four pomts first of all we have to find three vectors

having same initial point. Let 61 -7 |, 161 -19 | 4K, 3] 6Kand 21 -5 ] i +10K represents four
points A, B, C & D respectively. Then

RN

AB = Position vector of B - Position vector of A
= (161 -19 ] -4K)-(61-7 )
—AB =101-12j-4K

Now, AC = Position vector of C - Position vector of A
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@3j-6K)-(61-77)

[

AC =-6i +10]-6K

and E Position vector of D - Position vector of A

@i -5} +10K)- (61 -7 ])
— AD =-4i +2 | - 10K

Now to prove AB, AC and AD are coplanar it is sufficient to prove [_B AC _DJ =

0
10 -12 -4
So [_B_C_D] --6 10 -6
4 2 10
10 -6 |-6 -6 |-6 10
=10 +12 —4
2 10 " |-4 10| |-4 2

=10 (100+12) +12(-60-24)-4(-12+40)
= 10(112) +12(-84) -4(28)
=1120-1008 - 112
=1120- 1120
[AB AC AD | =0
Example 6 :Find the value of A so that the vectors &= 21-7 ] +xl2, b=i+2 f—lzand

¢=31 -5 | +2K are coplanar

2 -7 1
[éBé]le—zo
3 -5 2
122_ 71_ ,112 0
+ + =
= 5 2|7 '3 2|77 -5

= 72(4-5) +7(2+3) +\(-5-6) =0

= 2(-2) +7(5) +M(-11) =0
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= -2+35-111=0
= 111 =33
= A=3
Example 7 : The position vectors of the points A, B, C and D all 3?-2}—12, 2f+3 j4l2

T+ ] +2 Iz and 41 +5 ]+ |2 respectively. Find the value of A if these points lies on a plane.

Solution : From the position vectors of the point A, B, C and D we have to fine the vectors AB ,
E and AD. So

AB = Position vectors of B - Position vector of A
=@ +3]-4k)-(@3-2]-k)
= AB =-i+5 I -3|2
Now,
AC = Position vectors of C - Position vector of A
= (1 +]+2k)-@1-2-k)

—  AC =-4i +3]+3K

Also
AD = Position vectors of D - Position vector of A
= @41 +5 ] +nK)= @31 -2 ]-K)
—  AD =1+7]+p+D)K
In order to prove that AB , AC and AD are coplanar [the vectors [AB , AC, AD]=0
-1 5 -3
=-4 3 3|=0
1 7 A+
3 3 -4 3 -4 3
=-1 -5 -3
7 A+ 1 A+ 7 7

— -1(3)+3-21) -5(-4A-4-3) -3(-28-3) = 0
— -1(31-18)-5(-41-7)-3(-31) = 0
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Example 9 : Show that the vectors & - ob+3¢6 -

= -3A+18 + 200 +35+93 =0
= 17A+146=0
146

=>Ah= —
17

A A

Example 8 : If four points whose position vectors are &, b, ¢,d are coplanar, show that

[ét‘)é] =[36a}+[adé}+[d66}

A A

Solution : Let 4, b, ¢,d be position vectors of A, B, C & D respectively. Then

AB = Position vectors of B - Position vector of A = 6 -a
AC = Position vectors of C - Position vector of A= -4
AB = Position vectors of D - Position vector of A=d -4

Since four given points are coplanar so, [A—B , AC ,ﬁ] =0

o>
Q>
(@)
Q>
o,
Q>
1
o

— (b-a) [(6xd)(axd)-(Exa)=0 axa =0
—Db.(éxd)-Db.(axd)-b.(éxa)- a(txd)- a(axd)+ a.(Exa) =0
=[b¢d]-[bad|-[bea]-|acd]|=0

N
Q>
+
w
o>
1
N
(@3
Q
>
o
1
— O‘ >
+
N
(@3
QD
=
D
(@}
(@]
=3
QD
>
QD
-

Solution : Let p= é-26+3é,q=-2é+ 3b-4¢and £ =-b+2¢ pafl=0so p, g

coplanar.
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[paf]=p. [ax7]
Now gxf = (-24+3D-46)x (-b+26)
=2(axD)-4(axe)-3(bxb)+6(Dx¢) +4(Exb) +8(Ex ¢)

=2(axb)-4(axe)+6(Dx¢) +4(Ex D) +8(Ex¢) [* bxb= éxé=0
=2(axb)-4(axe)+6(bxe)-4(bxe) [ (Exb)=-(bxE)]
—GxF= 2(axb)-4(axc)+2(bxé)
Now p. [GxF] = (a-2D+3€).[2(axE)-4(axE)+2(DxE)]

)-44. (axé)+2a(bx¢)-4b.(axb)+8b.(ax¢)

o>

- 24.(Ax
_4b. (DxC)+6C. (AxD)-126(axC)+6¢ (Dbx¢) [ AxA=DbxD)= txé=0]
= 2(0)- 4 (0) +2[& b ¢]-4(0) + 8[D & ¢]

- 4(0) +6[¢ & b1 - 12(0) + 6(0)

ofabéj+ebaci+e[éab]

2[a b ¢]-8[a b ¢]+6[a b €] [To maintain cyclic order]
=0
p. [axf]=[p G f] =0 are coplanar

Example 10 : Show that [é+6,5+é,é+é] =2[a b €]
Solution : Taking L.H.S.

[a+Db+Eé+a)= (a+h).[(D+6)x (C+a)]
=(a+b) . [(Dx€) +(Dxa) +(Ex¢) +(Exa)]

a+b).[(Dx¢)+(bxa)+(Exa)] ‘ ExE=0

1]
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+b.(bxa)+b. (6xa)
=é(6xé}+0+0+0+0+6.wxé)

[*.* value of scalar triple product with two equal vectors is zero]

|
Q.
—
o>
X
(@)

Y+ b.(€xa)

—[abéj+[ab ¢
=2[4 b ¢] = RH.S.

Hence [é+6 b+¢ ¢+4a]=0

Example 11 : Find a unit vector coplanar with i + ] +2K, i +2 j +K and perpendicular to
f+j+ﬁ.

Solution : Let & — I +]+2K, b = T+2]+K andlet f = xi +y j+zK be the required
vector.

A

Given f is coplanar with & and b

= f=rd+ kB [Definition of coplanar vector]
= xf+yf+z|2=(7LiA+7»j¢+2M€)+riA+2rj+rlz

=X xi +y ] +zK = 0uni + 0+2r) | +2+n K

= X=A+r D

= y=A+2r 2)

= zZ=2\+r 3

Also given the given vector is perpendicular to |+ ] k

Therefore, (xi +y j+zK). (i +]+K)=0

~

["&d.Db=0=a.lb]
=>x+y+z=0
Using (1, (2) and (3)
At+tr + A+2r+20+r=0
= 49 +4r=0
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=

4+ =0

A+r=0 4)

Using (4), in (1), (2) and (3) we get
X =0, y=(A+r) +r,z=r+(A+r)

XxX=0,y=r,z=A=-r

f=o0i+rj+k

F=rj-rk =rj-Kk)

Since r is a unit vector

F=]fl=1=?)+r* =1

>

(] - K) is the required unit vector.

Q.1
Q.2

Q.3
Q.4

Q.5
Q.6
Q.7
Q.8

Self Check Exercise - 3
Show that the vector (2, 1, 3), (0, 5, 5), (-1, 2, 1) are coplanar.

Show that the four points having position vectors 61 -7 ] > 161 -19 j4l2
21 +5 ] +10K are not coplanar.

Do the points (4, -2, 1), (5, 1, 6), (2, 2, -5) and (3, 5, 0) be in a plane.

A

Let &, b and ¢ be non zero and non coplanar vectors. Show that 24-b+3¢, 4+Db -

Q>

2¢ and a+b -3¢ are non coplanar vectors.

For what value of 2 for vectors | +2 ] +3K , A1 - ] -K and 31 -4 } +3K are coplanar.

Find 2 such that vectors 21 - j + |2 , | +2 j -3 |2 , | -4 ] +A lzare coplanar.

~

Showthat[a-b . b- ¢¢-4]=0

o>
O
(@}
(@Y
L 1

Let &=1i-] , b =]-K, ¢ =k- i, d is a unit vector such that 4.d = 0 [
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j+

X>

then show that |C] | ==

%1 —

2.6 Volume of Tetrahedron

Scalar triple product is also used to find the volume to Tetrahedron. We will now prove
as given below

D The volume of a tetrahedron whose coterminous edges ared,band € is given by
1 ...

—1abé¢

6[ ]

Proof : Let OABC be a tetrahedron whose coterminus edges OA, OB, OC represents vectors
abc respectively.

area of AOBC = %(Bxé)
Volume of tetrahedron A ABC = % (area of base) height

= }é (area of A OBC) height
= %x %(Bxé)é

- %{(Bxé).é}

- %(6‘166)

Therefore, volume of tetrahedron = % (abd)
Let us try some examples to have more understanding.

Example 1. Find the volume of tetrahedron whose coterminous edges are2f+2f+6l2,
~1i + 3] +2kand -1 +5] + 5k

A

Solution: Letd=2(+2]+6k b--1"+3]+2kand¢ -1 +5]+5kare three coterminous
edges of tetrahedron.

Then volume of tetrahedron = % Bé
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1
o=
O R S =
$F @
AN oo o

= 76
-1 5

13 2 1 2 1 3
:%2_ —2 +6 _
T 1 e S R =

= ¥ [205-10)- 2(5+2) + 6(5+3)]
= ¥ [25)-2(7)+6(8)]

= %3 [10 - 14 + 48]

= % 18- 14)

¥ 144

44

= — cubic units.
6

44
Volume of the tetrahedron = 3 cubic units.
Example 2: Find the volume of the tetrahedron formed by the point (1,1,1), (2,1,3), (3,2,2) and
(3,3,4)

Solution: Let O be the origin and A, B, C, D be votias of tetrahedron given by (1,1,1), (2,1,3),
(3,2,2) and (3,3,4) respectively.

+3]+4k

- ~
|

Then OA= f+j+l€, O—B:2f+j+3l2,®=3f+2 j+2k OD=3

N

Now AB=O0B- OA=2i+]+3Kk ~(I+ j+k)=1+2k
AC=0C-OA=3i+2]j+2k ~(I+ j+k)=2i+]+2kK
AD =OD-OA=3i+3]+4Kk ~(i+ j+k)=2i+2]+3K

Therefore volume of tetrahedron ABCD =% [ B AC E]
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- %
111 2 1 |2 1
4[5 3o 4+ 1]

= X [13-2)-0+2(4-2)]
= Yo+

= % cubic units.

N N P
N B O
W = N

Therefore volume of tetrahedron is % cubic units.

Self Check Exercise - 4
Q.1 Find the volume of tetrahedron whose vertices are the point A (2,-1,-3), B (4, 1,
3),C(3,2,-1)and D (1, 4, 2).
Q.2 Find the volume of tetrahedron whose edges are given by the vectors
i +2K, 20 +j+Kand 2 +2 ] +3K.
2.17 Summary
Dear students in this unit you learn about
(2) Scalar triple product of there vectors.
(2) Component from of scalar triple products.
3) Geometrical interpretation of scalar triple product.
(4) Scalar triple product properties.
(5) Volume of tetrahedron and volume of parallelepiped using scalar triple products.
2.8 Glossary
(1) Tetrahedron: A Solid having four plane triangular faces or triangular pyramidal.
(2) Vertices: A point where two lines meet to form an angle.
29 Answers to Self Check Exercises

Q1
Q.2

Self Check Exercise - 1
840
264
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Q.3 -7
Q.4 -6
Q.5 510
Self Check Exercise - 2
Q.1 4 Cubic units
Q.2 14 (in magnitude) cubic units
Q.3 90 Cubic units
Q.4 8 Cubic units
Q.5 37 (in magnitude) Cubic units
Q.6 286 Cubic unite

Self Check Exercise - 3

2 1
Q.1 0 5 5=0
-1 2 1
10 -12 -4
Q.2 |6 10 -6/=840=0,
-4 12 10

where AB =101 -12 -4k
AC =-61 -10 -6k

AD =-41 +12]+10k

Q3 |-2 4 -g]=0

Where AB =1 -3]-5K

Q.4 Justtoshow P(&XF)=0, by taking P=2a-b+3C g=a+b+2C
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2.10

211

Q.5

Q.6
Q.7

Q.8

Q.1

Q.2

andf=a+b+36
=%
v= 2

Same as Example 19

Take d = x(f+ j+l |2)
then we [Béé] =0gives A =

1
J6

Self Check Exercise - 4

% Cubic unite

5 . .
%B Cubic unite

References/Suggested Readings

(1)
(2)
3)

R. Murray, S. Lipschutz, D. Spellman, Vector analysis, Schaum's outlines.
S. Narayan and P.K. Mittal, Vector Calculas, Schand and Company limited.
J.N. Sharma and A.R. Vasishtha, Vector Calculas, Krishna Prakashan Mandir.

Terminal Questions

1.

Interpret geometrically [ff IE} after evaluating it.

Let & b ¢be three nor zero vectors such that €is a unit vector perpendicular to

A

both &and D. If the and to between &and Dis % show that [a b ¢12=

1 . -
S 1apibp.
Find the value of A for which i — j+K , 2/ + j—k and Ai — | + Ak are coplanar.
a a® 1+a’
If b b? 1+b%=0and the vectors A =(1, a, a?), B(L, b, b?)
c ¢ 1+¢®

and C = (1, c, ¢?) are non coplanar, prove that abc = -1
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10.

What you concludes about four non zero vector &,b,¢ and d for which ‘éxﬁ,é +

‘(Bxé).d‘ =0

Show that [é,f),é+ dA}z [é,f),é] + [é,f),(ﬂ

Prove that [(aﬁxé)} 2= a2 b? ¢2, when &,b,¢ are perpendicular to each other.
Simply { (b—&)x(¢—a&)(a—b)}

Prove that the normal }o the prove containing threeA points A, B andAC whose

position vectors are & Dand ¢ lies in the direction of Dx¢é+¢éxa+ax b.

a,b, éare three non collinear unit vector such that the angle between any two is
o. If Axb+bxé=1a+mb+né then find [, m, nin terms of oc.

*kkk
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Unit - 3

Vector Triple Product

Structure
3.1 Introduction
3.2 Learning Objectives
3.3 Vector Triple Product And Its Expansion Formulas
Self Check Exercise-1
3.4 Properties of Vector Triple Product
Self Check Exercise-2
3.5 Summary
3.6 Glossary
3.7  Answers to self check exercises
3.8 References/Suggested Readings
3.9 Terminal Questions
3.1 Introduction
Dear student, in this unit we will study about vector triple product. There is cross product
between three vector. We will learn to define vector triple product as well as expand it.
Vector triple product has some of its properties which are used in other fields of
mathematic.
3.2 Learning Objectives:
After studying this unit, students will be able to:
1. Define vector triple product
2. Calculate vector triple product of given vectors
3. Under what vector triple product shows physically.
4. Apply the properties of vector triple products.
3.3 Vector Triple Product

Let & band Care any three vectors then (é X E))Xéor éX(BXé) are known as vector

triple product of &, band¢. Since cross product of two vector is a vector, So in a vector triple
product the resultend is a vector quantity. Hence it is known as vector triple product.
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Also, éx(f)xé);&(é X B)xé, in general. The vector triple product éx(ﬁxé) is a vector which lies
in the plane of b and €¢and is perpendicular to@ Simmilarly (é X E))xéis a vector which lies in
the plane of &and band is perpendicular to A.
Expansion Formula for Vector Triple Product
(1) éx(f)xé) = (é.é)ﬁ—(éx B)xé
a=ail +a, j+a,k
Proof: Let b=b i +b, j+b Kk
é=qgi+c, j+c,k

]k
LH.S. Now, bxé=|b b, b
G ¢ oG
R
G G G G G G
=1 (b - Ca b) - J (ba Ca - 1 ba) + K (bcs - 1 b)
] | K
Now, ax(bxe)=| & 3, a,

bc,-ch  -be+cb be,—cb,
&

3, a
bc,—Ch, -he, +ch,

a, ‘:_T a a, ‘HZ
—bc,+ab; be,—cb, b,c,—cb, bc,—gb,

s a o
=1 (azbiC2 - azCib2 + bicsas - ascibs) - | (aibic2 - aicobs - asbocs + ascobs) + k (-aibics +

Il

aiC1bs - azb2Cs + cobsay)
Now taking R.H.S
a.c (éif +a2i+a3I2).((:lf +c2f+03l2)
=N a.C=ajc1 + axC, +asCs
Now, (é.é)6= (a1€1 + @2C2 + asCa) (b1f+ bo J + bs I2)
= aCibs | + ascaby § + ascabs K+ asCobs | + ancabs J + a2C2bs k
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+ a3c3b1f+ asCaby | + ascabs k .
also  (ab)=(af +a,j+ak).(bf +b,j+bK)
= ab - aibi + azbz + asbs
Now (ab)e=(ab+ab,+ab,). (& +cj+cK)
= aibiCal + aibiCs | + aibaCs K + asbaCa | + asbscs

+a,b,ck+abal +abg,] +abek

A

Now (&.¢).b- (ét b) C= aihicii + aiCiby  + arcabs K + azcoba i

o a ~ ~

+ axCobal + axcoby | + axcobs K + ascsbs |

+ ascsb: I+ asCsbs k. {a1b1C1| + aibiCa}
~ ~ N ~

+ aibics K + asboci 1 + azboco ]t ascsby k

+ asbics f + asbsC> I + asbsCs k

- |A [alblcl + axCoby + aszcsb: - aibici - azbacs - asbacl]

+ I [aicib2 + axc2b2 + ascshs - aibiCy - azbacs, - ashacs]

+k [aicibs + azcabs + ascsbs - azbics - azbacs - ashscs)

= | [@2C2by - azbaci + asbics - ashsci] + | [@aibzcy + ascsbs - aibic - asbscy]

+ kA [a101b3 + a,cobs - aibics - a.zsza] ......... (2)
From (1) and (2)

éx(Bxé) = (é_é)f)—(é. 6)6
(2 (axb)xe=(ac)b-(b.¢)a

Proof: Let  a=al +a,J+ak
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Taking L.H.S. (ax B)C

Pk
Now <3X6)= a 3 4
b b b
I
b, bf “jb b [b b
=1 (@zbs - ashy) - j (awbs - asby) + K (abz - azby)
:>(é><6) = | (azbs - asbz) - j (asby - aibs) + K (aibz - azby)
) i k
Now (&xb)¢ = fab,~ab, ab-ap, ab,-ah
G c, C,
_ o|ah—ab, aibz—azbl‘_iazbg—agbz ab, —ab
c, c, G c
_ Ll agbl—albg‘
c C,

=i [8.3C3b1 - aibscs - athoco + a.zb1C2] - I [a2b3C3 - asbecs - ajhocy + azblcl]

+ Kk [az2bsca - asbacs - asbica + aibacy]

=i [8.3C3b1 - aibscs - athoco + a.zb1C2] + I [a3b203 + aibzc; - azbscs - azblcl]

+ ﬁ [azb3C2 - asbh,cs - asbicy + albscl]
Now taking R.H.S.

(ae) = (al +a,j+ak ). (o +cj+cK)
= At =(ag +ac+as)
Now, (a¢)b = (ag +a,c,+ac,) (bl +b,j+bk )
= achi +ach,j +achk+achi +ach +achk

achi +ach,] +agchk
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= i(ach +ach +ach)+]j(ach, +ach, +ach,)
k[agh, +a,ch, +ach,]

Again (b.¢) = (laf +b,j+bK ). (cf +c,j+cK)

> be = (b +ho+be)

Now, (b.¢)a = (bg +be,+be) (af +a,j+aK)
= heal +hga,j +hcak+boal +hea,| +heak
beal +beaj +heak
= i(boa +bea +hea)+j(hoa, +hea, +hea,)
k[hca, +b,ca +bea]

Therefore, (4.€)b - (b.6)a = i[a,ch +ach -bca —bea]

j[ach, +ach —bca, —bca,]
k[ach, +a,cb,—hca, —bca,]

Hence (aXB) = (a6)b - ( )
Hence the result.

Let us trey to evaluate vector triple product using the exertion of it.

Example 1: Find éx(Bxé)wherea=2f+4J 5K, b=+2]+3k and ¢

Solution : Here a=20 +4] -5k,
b=i+2j+3k
A= j‘ IZ
Pk
Now bxé =11 2 3
11 -

49



1 3| .
JJ+k
1 _

2 3| .
1_J

=  bx¢ =-5i+4]-k
]k
Now,éx(6x6)= 2 4 -5
-5 4 -—
Ja -5 2 -8 .2 4
= — ] +k
4 — 5 — 5 4

= { (-4+20) - | (-2-25) +k (8+20)
=161 +27 | +28K
s éx(Bxé) = 161 +27 j +28K
Example 2 : Calculate (éxﬁ)xéwhereé: I —2]+3k, b=2+]-3k and ¢=-3+ | + 2K

Solution : Here a=i-2j+3k

]k
Now axb =1 -2 3
2 1 -
_;\—2 3 /_\1 3 Al —2
= -] +k
1 - 2 - 2 1

[ (6-3) - ] (-3-6) + K (1+4)

=N axb =31+9]+5k
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]k
NOW,(éxB)xC= 3 95
31 2
Jdo s .3 5 .3 9
= —J +
1 20 ‘-3 2 -3 1

(18-5)i -] (6+15) +k (3+27)

(axﬁ)xé =131 -21 ]+ 30K.

Example 3 :Verifyéx(Bxé) = (a¢)b - (é.B)éwhereé:f+2}+3l€, b=2—j+k and
¢=3+2]-5k

Solution : Here a=i+2j+3k

2~ j+k

o>
—

~

3 +2j-5k

¢

Taking LH.S., ax 6><é)

]k
Now bxé =2 -1 1
3 2 -5
-1 1) L2 1| A2 -
=1 - +k
2 -5 '3 -5 3 2

[ (5-2)-] (-10-3) +K (4+3)

= bxé =3i+13]+7Kk.
oK
Now, ax(ﬁxe) =1 2 3
3 13 7
Jd2 3 .1 3 1 2
=1 -] +k
13 7 ‘13 7 13 1
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= (14-39) - | (7-9) +K (13-6)

A~

:>é.><(b><é) =-25{+2]+7K. (1)

~

Taking right hand side, (&.¢)b - (é.f) )c

Now, (&¢) = (1i+2j+3K). (31 +2]-5 k)
= 3+4-15
= 7-15
= -8

(ac)b= -8@2i- j+k)

=(aé)b = -167+5]-8K

Now(aB)é:(f+2j+13|€).(2|’-i+ K)
=2-2+3

(éB)é =3(3i +2 |- 5K)

:(éﬁ)é = (91 +6 | - 15K)

+8 j-8K)-(91 +6 j - 15Kk)
= (-16-9)i + j (8-6) + k (-8+15)

(aé)b . (a.B)e _ 257 +2+7k (2
From (1) and (2) we have

ax(bx¢)= (a¢)b - (ab)e
Hence verified.
Example 4 : Prove that éx(6x6)+6x(éxé.) + éx(éxf)) =0
Solution : Taking L.H.S.

éx(Bx é)+bx(é>< é) + Cx(éx 6)
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Using expansion formulate of ax(B C) we get

= (a¢)b - (ab)c+ (ba)¢ - (be)a + (¢b)a- (€a)b
Using the property of dot product ab = ba, we get

= (a¢)b - (ab)e+(ab)c-(be)a+(be)a-(ac)b

=0=R.H.S.

Hence éx(6x6)+ Bx(éxé) + éx(axﬁ) =

Example 5 : Show that for any vector = a;i +a, j + as K

[ x (AxT)+]x(axj)+ IZX(éxIZ): 2a

Solution : Taking the L.H.S.

C
28
>
[(@]
D
X
ge}
<)
>
(2}
o
5
—
o
=
3
<
Q
o
=
>
X
—_—
U)
O)
~—
1
—~~
pJ>
(@)
~
o>
1
—_—
g»
o>
~—
(@)
=
()
«Q
@
~—+

=3a-{(a.1)i+(a.]) j+(4a.K)K} (1)

as a=ayi +a, ] + ask
so &.1=(arl +ar |+ ask).l = &

a.j=(aul +a2 j +ask). j=a ..(2)
a.k=(aii +a, j + ask). k= as

Using (2) in (1), we get

fx(é.xf)+jx(é.xj)+sz(éx|2):3é-{a1f+a2i+a3|2}

—_—

=34-4=_2a
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Hence [ x (axi)+jx(axj)+ kx(axk)= 2a

Example 6 : Prove that éx{éx(éxﬁ)} = (44) (Bx é).

= ax|ax(axb)} = (a8) (bxa) v (axb) =- (bx4)

Try to do these questions.

Self Check Exercise - 1

A~

Q.1 If & =2i-3]+4k, b =3{+2j-4Kk, ¢ = 4i-3 j+5k State which of the
following are meaningful and evaluate any one of these that are meaningful,
(ab)x¢, ax(bx¢)a(bxe)

Q.2 If A&=3i-j+k, b=1+3]j-k, ¢ =-1+ j+3K State which of the following are
meaningful and evaluate any one of these that are meaningful; (af))xé,

éx(BxC) (éxﬁ) c

Q.3 Verify ax(bx¢) = (a¢)b - (ab)e

A~

31j-45k, € =1-k

s
| -

3.4 Properties of Vector Triple Product
Property : The vectorf = éx(ﬁx é) is a vector which is perpendicular to a and lies

inthe plane of b andé. By using this property of vector triple product, we can prove that a given
vector is parallel to product of two vectors let us try to understand it by doing this example.
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Example 1: If § = €x& and f =axb, show that & is parallel to §xF .

Solution : Since we know that if xb = 0 then two vectors are parallel to each other. To show
a is parallel to gxf, it is sufficient to prove éx(dx f) =0

.. value of scalar triple product with two equal vectors is zero

= ax(qxf) =0

Hence & is parallel to (xf).
Example 2:If ¢ = axb, p = bx ¢, prove that is show that b is parallel to fx p.
Solution : To prove b is parallel to fx p if is sufficient to prove Bx(fx f)) =0

So taking Bx(fx p) = (6. f))f + (Bf) P (using expansion formula)

{6.(6xé)}r” 4 {6.(ax6)} p
[using f = axb, p = Bxé]
=0(f) +0(p)

[*.* Value of scalar triple product with two equal vectors is zero]
=0

>

= Bx(fx f)) =0

Hence 4 is parallel to (fx p).

Self Check Exercise - 2

Q.1 Showthat € is parallel to (fx p), where p = bx¢ and § = €xA.

Property -2 : Vector triple product of three vectors is not associative. Mathematically
55



éx(Bx é) #* (éx 6) x €, in general
Let us try to verify this property by following example
Example3: Ifd=1-2j+Kk, b=2{-j+k, 6=1+j-2k

Compute(éx 6) x € and ax (Bx é) check associatively in vector triple product.

Solution:  Given & =i -2j+K,
b =2f—i+|2,
¢ = f+f-212

To Find

Now (é.x B)XC

|l el

)
Taking axb=1[1 -2
2

1 -
% ]
2 —

=1 (2+41)- f (1-2) + K (-1 +4)

= axb :f+j+3|2
] ok
Now, (&xb)x ¢ =|-1 1 3
1 1 -2
1 3] -1 3| -1
=1 - +k
1 -2 1 -2 1

={(-2-1)-](@2-3)+ K(-1-1)
=-5{+j-2k
=  (axb)x &= -5 +j-2k

Now to evaluate &% (b>< é)
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]k
Taking bxé -2 -1 1

1 1 -2
~1 3] -1 3| -1
= -] +k
1 -2 1 -2 1

={(2-3)-](2-3)+ k(-1-1)
=-5{+j-2k
— (éxf))xé= 51+ j—2|2

Now to evaluate ax (Bx é)

]k
Taking bxc=[2 -1 1
1 1 -2
-1 1) 2 1| A2 -
=I - +k
1 -2 "1 -2 1 1

=N bxé= {+5]+3K
] kK
Now éx(ﬁxé)zl -2 1
1 5 3
-2 1 11 1 -2
=I - +k
5 3 11 1 5

= 1 (-65)- ] (3-1)+ k(5 +2)
= ax(Bxé) =112 j+7k
Since (éxB)xé:-5F+ j-2K=-117-2 j+2K = éx(Bxé)

Hence cross product is not associative.
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Example 4 :  Show that éX(BXC)i(ﬁXB)XCTOY

A

a={+2]+3k,b=2{+3]+4ak, 6=37+4]+5K

>

Solution: Given & =i+2 |+3

A

b=27+3]+4k,

>

¢ =3i+4]+5

Taking L.H.S. ax(Bxé)

I j kK

bxé -2 3 4

3 4 5
A3 4 .2 4 2 3
4 5 35 3 4

= 1 (15-16)- | (10-12) + K (8- 9)

=  bxé=-i+2]-k

] k
Now, éx(6x6)= 1 2 3
1 2 -

A2 3| 1 3| A1 2

2 - -1 - -1 2
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~ilc - A
3 4

23‘5

13
+
2 4

1 2
2 3

i (8-9)-](4-6)+ K(3-4)

=i+2]-k
i ] k
Now, (éxf))xé= -1 2 -
3 4 5
2 -4 -1 -1 -1 2
=I - +k
4 5 3 4 3 3

= 1(10+4)- j(-4+3)+ K(-4-6)

= (axﬁ)xé =147+ ]-10K
Since ax(Bxé):- 8i-2 ] +4 R¢(ax6)xe =147+ ]+10K
Hence ax(bx¢)x(axb)x¢

The vector or cross product is not associative put under some condition the associative but
under some condition the associativity hold. Let us try to understand that conditions by following
examples.

Example 5 : The associativity hold in vector product i.e. éx(6x6)= (éxf))xé, and only if

aand ¢ are collinear.
Solution : Firstly taking éx(f)xé)
Let aand ¢ are collinear

=3 ¢ =) a, where L is a scalar

Now, éx(6x6)= éx(ﬁx C)
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= ax(bx¢) = 2[(aa)b-(a.b)a]
Now, ax(bx¢)= (a.¢)b-(b.¢)a
= (a.za)B—( b.2a)a
(a.8)b- z( b.a)a
e e
= (axb)xe= z[(a.a)b—(a.ﬁ)a}

Hence éx(Bxé) = (éxﬁ)xé#éand Care collinear or parallel.

Example 6 : éx(f)xé) (axb)xc# C{ZEJ

i.e. aand ¢ are collinear.
Solution : Let us assume that éx(f)xé) = (éxf))xé
- ax(Bxe): —éx(axﬁ) " axb =- (BXa)

= (ae)b-(ab)c =-[(e.6)a-(c.a)b]

= (c.a)b—(ab)¢c = (¢.a)b-(c.b)a [ e.a=ac]
= -(apje  =-(cb)a
~_| €b b
= C=
ab
= ¢ =)ra [*. dot product of two vectors is a scalar quantity]
= ¢ is collinear to & or parallel to a.

Example 7 : Prove that (éxﬁ)xé= éx(ﬁxé)if and only if (é.é)xf) =0
Solution, Let (éxB)xC: éx(f)xé)
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Hence the result.
a(Bxe)

Vector triple product gives the vector which is coplanar to (Bx é) and perpendicular to &.

Using this concept we can find the unit vector which is coplanar to fixed and perpendicular to
a. Let us try these examples.

Example 8: Find a unit vector coplanar with i+ j+2k, (+2j+k and perpendicular to
T+ ]+k
Solution :

Since éx(Bx c":)is a vector which coplanar to (Bxé)and perpendicular to &. Hence, we

choose
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Pk
Now, bxé=1 1 2
1 2 1
A1 20 1 20 11
2 1 1 1 1 2
=7 (1-4)-j@1-2)+k(2-1)
= bxé =31+ | +K
Pk
NOW,éx<6x6)= 1 1 1
-3 11
~1 N N
=l - +k
1 -3 -3

=1 (1- 1)- ] (1+3)+k(1+3)
= QX(BXC)=—4 | +4 K

Vector

Since Unit vector = ——
Vector |

= -4 +4K

So ‘éx (Bxé)
(-4)" +(4)

J16+16
J32
a2
—4] + 4k

Required unit vector =
q 4\/5

-4 . 4 -~

= —— +_k
a2 a2



>

Required unit vector = J+

i
N

Example 9: Find a unit vector which is perpendicular to & and coplanar with vectors & =
2+ j+k, b={+2 +k.
Solution : Using the definition of vector triple product éx(éxf)) is the vector which is

perpendicular to @and coplanar to vector aandb.

F] ok
So, axb =12 1 1
1 2 -
Al 1) L2 1] ~2 1
=i - +k
2 - 1 - 1 2

=1 (1-2)-](2-1)+k(4-1)

axb =-31+3 | +3k
Pk

Now, éx(éx6)= 2 1 1
3 3 3

NETE
-3 -3
=1 (3-3)-](6+3)+K(6+3)

A A

= éx(éx6)=—9 J+9Kk

- , Vector
Since Unit vector = ———
Vector |

The required unit vector is = _91—+9lf

‘—9| +9k‘

9] +9k

- J81+81
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J
So =—=+—=1is the required unit vector.
2 2 q

Self Check Exercise - 2

Q.2 Find the un|t vector which is perpendicular to &and coplanar to band

Cgiven & = 2]-3kandb 27+ j-kKand ¢=7+3]-2k.
Q.3 Find the unit vector which is perpendicular to &and coplanar to Band ¢
for&=21-3]+4k b=3{+2j-4kand ¢ =4 -3 j+5Kk.

A A a ‘N

Q.4Find‘(éx6)xé‘,whe &_1.2]-3K,b=2i+j+Kand €=+ j+2K.

Let us try some more question related to vector product:

Example 10: Show that [Bx ¢, Ex <'31,<'31><E)}:[a.bc]2

A

Also prove that if a, b, ¢ are non coplanar, So as bx¢, ¢xa and axb

Solution: L.H.S. = [Bxé cxa éxB} is a scalar triple product of three vector. So by
definition of scalar triple product we have,

taking (Bxé)x(éx é), Let A= bxé,so
= A x (éxé)
= (A. A)é - ( .é)é [using expansion of Ax(éxé)
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—{e(Bx¢)je- fe(Bx¢)ja [ ab = bxa]
{(ab¢)e-[ebe]al
[a b c]c 0(a)
-+ Scalar triple product is zero if two vector are same.
(bx¢)x(exa)=|abele
Now taking (bx¢)x(¢x4).(axb)
—=[abeje. (axb)
=[ab¢l{e(axb)|
-|ab¢||abe]
-[abe¢]
Hence [ Bx¢ ¢xa axb|==[abe]

Again given &, E), ¢ are non coplanar. So using property of scalar triple product
[éBé}to as [35 é}t 0

So [ (Bx¢) (¢xa) (axb) |0
Therefore, (Bx é) (éx é_) and (éx 6) are non coplanar

Example 11 : If given &, 6, ¢ be three unit vectors such that éx(f)x é) = %6. Then find the
angles which & makes with Band ¢ such that Band ¢ being non-paraller.

Solution : Since given, éx(BxC) = %6
:>(é1.é)5 - (é.B) ¢ = %b [using expansion formula of éx(Bx é)]
=(a¢)b-(ab)e=Jpb=0
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=[(ae)-Y]b- (ab)je=0

Since band ¢ being are non parallel. So coefficients of b and ¢should vanish
separately.

=»ae-Y%=0 and 4.6 =0
or &.¢ % and 4.b =0
Let 6 and be the ¢ be the angle which & makes with b and ¢ respectively.

Then a.b =|a||b| Cos0=0 using a.b = |a| b]| Cos 6

=1.1 Cos6=0 [as a and b all unit vector)

=Cos06=0
= Cos 6 = Cos 90°
=0 = Cos 90°

So amakes on angle 900 with b.
Againa.¢ = %

= |all¢|Cos o= Y

= [1]]1] Cos ¢ = 1

= Cos ¢ = Cos 60°
—=¢ = 60°

So & makes an angle 60° with €.

Self Check Exercise-2
Q.1 If a, b, ¢ are there unit vectors such that Bx(éx é)z%é. Find angles which

b makes with ¢ and &, given ¢ and &are non parallel.

A

bx¢

J2

A~

Q.2 If &, b, € are non coplanar unit vectors such that éx(f)x é) = , then find the

angle between & and b, given band € are non parallel.

3.5 Summary
In this unit, we studied
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3.6

3.7

1. To define vector triple product of three vector.

2. éx(Bxé) = (36)6 - (él 6)6

3. (éxﬁ)xé=(é.é)6— (66)@1
Vector triple product gives us a vector quantity.
Vector product is not associative.

6. éx(Bx é) i.e. vector triple product is a vector which is perpendicular to & and
lies in the plane of band €.

Glossary

° Triple product : In geometry and algebra, the triple product is a product at three
dimessional vector.

Answer to Self Check Exercises
Self Check Exercise - 1

Q.1 (é . 6)><é is not meaningful as a.bis a scalar and cross product is defined only

between two vectors. While other two are meaningful.

éx(Bxé) = 1751 +26 ] - 68K, é.(Bxé) = 63
Q.2 (é . 6)><C is not meaningful.

éx(f)xé) =21 -2 + 4K and (é.x B)C =36

Q.3 Resultis verified
Q.4 Resultis verified by using the expansion

éx(f)xé) = (36)6 - (él 6)6
Self Check Exercise - 2
Q.1 Provethat éx(pxq) =0

02 = —-8j+5k _ - -8j+5k
' J90 3410
175 + 26 ] — 68k
J(A75) +(26)° +(-68)°

Q.3
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3.8

3.9

Q.4 /350 = 514

Q.5 Angle between band ¢ is 90° and angle between b and & is 60°.

3r
Q.6 7
References/Suggested Readings
1. R. Murray, S. Lipchitz, D. Spellman, Vector analysis, Schaum's outlines:
2. S. Narayan, and P.K. Mittal, Vector Calculus, Schand and Company Limited.
3. J.N. Sharma and A.R. Vasishtha, Vector Calculas, Krishna Prakashan Mandir.

Terminal Questions

Q. 1. Prove that A. (BxC) = B.(CxA) = C.(AxB).

Q.2 Show that, A.(AxC) =0

Q.3 Find the value of a, so that the vectors are coplanar, where and A=2{ — j+k,
B=i+2j—-3k and C=3+aj +5kK.

*kkk
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Unit -4

Quadruple Products

Structure

4.1 Introduction

4.2 Learning Objectives

4.3 Scalar Product of Four Vectors and Its Properties
Self Check Exercise-1

4.4 Vector Product of Four Vector and Itsproperties
Self Check Exercise-2

4.5 Summary

4.6 Glossary

4.7 Answers to self check exercises

4.8 References/Suggested Readings

4.9 Terminal Questions

4.1 Introduction

Dear student, in this unit we will study about the product of four vector. The product of
four non zero vectors is known as quadruple product of these four vector. This product is again
of two types that is scalar product of four vectors and vector product of four vector. In this unit

we will study about such products along with their properties.

4.2

4.3

Learning Objectives
After studying this unit, students will be able to

define scalar product of four vector.

define vector product of four vectors.

a > v bnh e

Scalar Product of Four Vectors

~

If &, b, ¢ and c] are four non-zero vectors then the scalar product of & x b and éxd

ie. (éx 6). (éxd)is called scalar product of four vectors.

It is called the scalar product of Four vectors because the result of (éx 6). (éx &) is a

scalar quantity.
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understand and apply properties of scalar product of four vectors.

understand and apply properties of vector product of four vectors.

evaluate scalar and vectors product of four vectors.



Properties of Scalar Product of Four Vectors

property (ax6). (exd) = % 2= (a0) (34)- (6¢)(ad)
Proof : Taking L.H.S
(axb). (¢xd) = (axb). A, Where A = ¢xd
= a(bx Al [(4xb).A = &(bx A) as dot and cross are inter
= é_{Bx(éxa)} changeable in scalar triple product.]
= a{(bd)e-(be)d|

1
—_
pJ>
(@)
~
—_—
o>
(@3
1
—_—
>
[@3Y
—_—
o>
(@)
~

Property 2 :(éx b). (éxd) = 0 when & and blie in a plane normal to plane containing €
andd .

Proof : Let & and b are vectors lie in the plane o and ¢ andd lie in plane B.

Given that o plane is normal to plane B.

Since axb is a vector which is perpendicular to plane containing & and bi.e. plane o
and ¢xd is a vector which is perpendicular to plane containing ¢ andd that is plane B.

Also plane o and B are perpendicular.

A

Therefore, (éx b) is perpendicular to (éx d)
= (éxﬁ).(éx&)zo [ab=0salb.

Hence proved
Let us try to learn more about scalar product of four vectors by these examples.
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Example 1:If & =i+2]—

(éx (ﬁ) . Also verify the result by (éxB). (éx a) =

Solution : Given

o>
I

(X
1]

]k
(éx6)=1 2 -1
2 1 3
_I/\2_ Al_l
B I R P

a=ri

~

+2] -k,

2+ ] +3k,

|
—
+
>

A

+k

1 2
21

I (6+1) - | (3+2) +K (1-4)

- (éxB)z?f-si-sk
ik

(éxd)— 1 -1 1

3 1 2

J-1 1 o1 .

=1 -] +k
1 2‘ 3 2‘

=1 (-2-) - ] (2-3) +k (1+3)
= (éxa):-3f+j+4I2

K, b= 27+ ]+3K

Now (axﬁ). (éxd) = (71 -5]-3K). (-3 +]+4K)

= 7x(-3) + (-5) x1+ (-3) x 4
=-21-5-12
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(é.x 6) . (6>< &) =-38

—_
Q>
(@)

~—

—_—
o>
(@)

Now to verify the result (éx 6) (éxd) =

Now, a¢ =( +27-K). (i -]j+k)
=1+2x(-1) + (-1)x(1)
=1-2-1

= ac =-2

ad  =(i +2]-k). @0 +j+2k)
= (DA + Q) +(-1)(2
=3+2-2

= ad =3

Now, B¢ =21 +]+3K). (I - j+K)
=@M+ (MQD)+ 32
=6+1+6

— bé = 13

ac beé ‘—2 43‘

Now, = o=

ad bd 3 1
=-26-12

Hence (éx 6) . (éxd) =

Example 2 : Find the scalar product of given four vectors 4 = { + j+k, b= 2f +3j+2k, ¢
=2{ +j+3k andd= 4 +]—K.
Solution:  Given & = {+ j+Kk

b= 27 +3]+ 2k
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¢ =21 +]+3K
d=ai+j-K
aé beé

Since (éxB)X(éxa) = 2d Bd
a. )

Now a¢=(+]+Kk).(-27+j+3k)=-2+1+3=2
bé =(2/ +3]+2k). (-2 + ] +3k)=-4+3+6=5
ad = (7 + ] +K). (4 +j-K)=4+1-1=4

bd = (2f +3j+2K). (4 +j-K)=8+3-2=0

(ax)x(exd) =
=18-20
= (éxf))X(Cxa) =-2

Example 2: Since we know that (éxf)) .(éx d)and prove that (éxf)) (éxd) +(6>< é) .(éx a)

+ (Cxé)(ﬁxa) =0

Solution : Since we know that
(axb).(exd) = (a¢) (bd) - (b¢)(ad) (1)
[Example 1]
Similarly we can prove that
(). (axd) = (5a) (ed) - (c4) (5d) @
and
(6xa).(bxd)= (¢b)(ad) - (ab)(ed) 3)

Using these expression in

(éxﬁ)(éx&) = (Bxé)(éxd) + (Cxé)(ﬁxd)
= (a¢) (bd) - (b¢)(ad)+ (ba)(ed) - (¢a) (bd)
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4.4 Vector Product of Four Vectors

If a, 5, ¢ and d be you vectors, then the product (éxﬁ)X(éxd) is called vector

product of four vectors. It is called vector product of four vectors because the result of
(éx 6) ><(de> is a vectors gquantity.

Properties of vector product of four vectors
1. The vector (éxB)X(éxd) is a vector which is perpendicular to (éxf)) and
coplanar with ¢ and d . It is also perpendicular to ¢xd and coplanar with &, b .
2. The vector(éxﬁ) X(éxd) is parallel to the line of intersection of plane parallel to

& and b with other plane parallelto ¢ and d.

To understand more about vector product of four vectors let us do some examples.
Example 1 : Prove that (éxB)X(éxd) =[ab¢lé-[abé]d

Solution : Taking L.H.S.

[@3Y

=[Ab¢]é-[ab¢]
=R.H.S.
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Example 3: If &, b, ¢ be three non-coplanar vectors then any vector can be expressed in

terms of If &, band ¢ as

Q

f=

Solution :



Hence the result.

Example 4 : If & = {+2j-Kk, b= 2/ +j+3k, ¢ =i—j+Kk andd= 3 +j+2Kk. Find
(éxB)x(éxa).
Solution : Since & = { +2] -k
b= 21 +]+3k
C=i—j+k
i= 30+ ]2k
]k
Then axb =1 2 -
2 1 3

21

2 -1 .1 -4 .
[ -] +k
1 3]‘ ‘2 31‘

-} (3+2) +K (1-4)

12‘

1
—~
(@)

+
=
~

1
-1 1 1 -1 A1 -
=1 - +k
1 2 3 2 3 1
=1 (-2-1) - | (2-3) +k (1+3)
=-3{ +]+4k
:(éxd) =30 +]+4K
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e
Q
IS
—_—
Q»
X
o>
~——
X
—_—
(@)
X
o,
~—
I
~
|
o
|

-5 =3 7 -3 -
| -] +k
‘1 43‘ -3 43‘

[ (-20+3) - | (28-9) +k (7-15)

7 -5
-3 1

[ (-17) - | (19) K (-8)

(éXB)x(éx&) =171 -19j-8K

~ A

Example 5 : If the vectors &, b, ¢ and d are coplanar then (éxﬁ)X(éxd) =0

Solution :Using the property of (éxB)X(éxd) that (éxﬁ) is a vector perpendicular to the

plane of & or b also(éxd) is a vector perpendicular to the plane of ¢ and d.

But &, b, ¢ and d are coplanar.
~.axb and éxd are both perpendicular to same plane.

Therefore, axb and €xd are both parallel vectors and vector product of parallel vector
is zero vector.

A

Hence (éxB)X(éxa) =0
Example 6 : Prove that [(éxﬁ)X(éxd)] .d=(a.d)[ab¢]
Solution : Taking L.H.S. =

[(éxﬁ)x(éxa)].d

77



= {[a b é]é—o}. d [ [é b CJ =0, as two vectors are same]

B (ad) = (ad)[aba]

Hence proved.
Example 7 : Show that

[(éxﬁ) (exd) (éxfﬂ _ [aﬁd] [c & f“abc} [é & f}
Solution : L.H.S. [éXB exd éx fAJ

= (axb)x (exd). (ex )

_ [{éxﬁ.a}é—{(éxﬁ).é}d] (ex )

[ (éxﬁ)x (de) = [éﬁd] ¢ . [QBC} d]

- {[éﬁd]é—[aﬁe]a}_ (exf)
:[éﬁd]é_ (exf) _[éﬁé}d_ (exf)

-[abd|[ce ] [abe][de f]
= R.H.S.
Hence Proved.

bxé . Ex & A axb
= _txa and 2=

[abe]’ y_[aﬁé] [abe]
vectors. Show that X, § 2 also form a non coplanar system. Find the value of
X(é+5)+9(6+é)+2:(é+é).

Example 8 : Given X = whered b _C are non coplanar

Solution : Since &, b € are non coplanar vectors So [é b C}t 0

Now to prove [X § 2] =0 [Form a non coplanar system]

So[XYy2]=R[9yxZ]
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_ Bx ¢ { ¢xa 8 é.xf)}
[abe]’ [abc] [abe]
- [a;cf [(Bxé).{(éxa)x(axﬁ)}}

Letéxa=A

I 3:(6xé).{Ax(éx6)”

abc

e o LB {(A)a-(Aa)]

abcé

L oA (e At A (s AlR
_:36({ _(be).{(Cxa.b)a (Cxa).a}b}

= (bxe){[cabla-[ca al)b|

abé| -

-1 ;| (Bx¢).{[eab]a-0f]

abc

w

[ [é a é] = as two vectors are same]

-1 3(bxc){[cab}a}}

abc

S - [abe]-{a(5xe)}

abcé

..~ .72
== _3_abc}
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Since [éﬁé}to
Hence [X § 2]#0

So X, ¥, and Zfrom a non coplanar system.

“[abe] .

%.(a+b) =1 (1)
similarly §.(b+€) =1 )

and Z.(¢+8) =1 (3)

Adding (1), (2) and (3), we get
X.(a+b)+y.(b+¢)+2.(¢+a)=3

Self Check Exercise-2
Q.1 Expressbx¢, €x&, axbintermsof & b €.
Q.2 Ifthe vectors b,€, & are not coplanar, then prove that

(éxf)) ><<é><a)+ (&x é)X<dx6)+<éxa) x (Bx é) is parallel to &

4.5 Summary

In this unit, we studied about
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4.6

4.7

4.8

4.9

Scalar product of four vectors which is a scalar quantity.
Properties of scalar product of four vectors.

Evaluate the value of scalar product of given four vectors.
Vector product of four vector which is a vectors quantity.
Properties of vector product of four vectors.

R T o

Evaluate the value of vector product of given four vectors.
Glossary

° Quadruple Product : It is a product of four vectors in three dimensional
Euclidean Space.

o Euclidean Space : A space of finite dimension in which points are represented
by co-ordinates and the distance between two point is given by distance formula.

Answers to Self Check Exercises

Self Check Exercise-1
Q.1 Same as example 3.

Self Check Exercise-2

~

Q.1 Considerbxé=i &, mb, n¢and multiplying scalarly it by bx¢&, we get

Similarly for the next two terms.

Q.2 Given [6 é &}to
Using the property (éxﬁ) X(éxd) = [Cd é} B[Cd 6} a
then adding the terms we get the result.

References/Suggested Readings

1. R. Murray, S. Lipchitz, D. Spellman, Vector analysis, Schaum's outlines:
2. S. Narayan, and P.K. Mittal, Vector Calculus, Schand and Company Limited.
3. J.N. Sharma and A.R. Vasishtha, Vector Calculas, Krishna Prakashan Mandir.

Terminal Questions

Q.1. If A, B, C are vectors such that | B| = | €| then prove that
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[(A+B)x(A+C)] x (BxC).(B+C)=0

Show that,
(6xé)><<éxd) + (Cxé)X(Bxd) + (éxB)X(éxd) = 2[a
Show that
[ax f)qu Cxf]+[axq bxF éx p] + [axf bx p éxq]=0

*kkk
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Unit-5

Reciprocal system of Vectors

Structure

5.1 Introduction

5.2 Learning Objectives

5.3 Reciprocal System of Vectors
Self Check Exercise-1

54 Properties of Reciprocal System of Vectors
Self Check Exercise-2

55 Summary

5.6 Glossary

5.7 Answers to self check exercises

5.8 References/Suggested Readings

5.9 Terminal Questions

5.1 Introduction

Dear student, in this unit we will study about the reciprocal system of vectors. Using the
definition of reciprocal system of vector we will evaluate the reciprocal vector of given and will
try to prove some result of reciprocal system.

5.2 Learning Objectives
After studying this unit, students will be able to

1. define a reciprocal system of given vectors.
2. find a reciprocal system of given vector.
3. solve the equalities based on reciprocal system of vectors.

5.3 Reciprocal System of Vectors

Let &, b, Care three non zero vectors which are non collinear and non coplanar, then
three vectors a1, b1, ¢! are known as reciprocal system of vectors of &, b, ¢ and are given

o
Q>
Q>
o>

. bx¢€ b1z

A A X
of al= =_&x ¢l=

[élﬁé] [aﬁé] [aﬁé]

To have more understanding of reciprocal system of vectors let us do some exercise.
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Examplel:  Find the reciprocal triad 4%, b1 61 fora=2f — j+3k, b=2f + ] —K,é=
Also verify that [é b C} [él b él}: 1

Solution: Given a=2f —j+3k
b=2 + |-k,
é=i+3j-k

. A bxé
Since al=——"—"_
abé
21 €Exa
abe
. axb
and ¢!=

2 -1 3
30,[366=2 1 -
1 3 -

2 1
1
=2(-1+3)+1(-2+1)+3(6-1)
=4-1+15
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~

=i(-1+3)- j(-2+1)+k(6-1)

]
Now €éx&=1_1
2

Now axb=2 -1 3

=i(1-3)- j(-2-6)+k(2+2)

—axb= -2 +8] +4k

Now Therefore &=
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& = axb
[aﬁé}
21 +8] +4k
- 18
61:%3 [-2?+8}+4R]

2 1 5
Taking [él b él}z 13 8 -5 -7
(18| 5 g 4
1 -5 -7 |8 -7 |8 -
=212 -1 +5
(18 | |8 4] -2 4 2 8
:( ;)3 {2(-20+56)—1(32-14)+5(64-10)}
1
1
= T {—12-18+ 270}

= [él bt él} _1 (324) = _18x18 1
18x18x18 18

A0 AT AL 0L A 1
Hence [a b C} [al b Cl] =18x —=1
18
Hence [é b C} [él bt CIJ =1
Example 2: Given a=2{ +3]—3k,b=i—j—2k,é=—{ +2]+2k
Does reciprocal system exists? If so find it.

Solution: Given a=2{ +3j -3k

b=i—]—2Kk,
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2 3 -
[aBe}:l—l—z
1 2 2

_2—1 —231 2 11 -

" Tl2 3] -1 2| 1 2

=2(2+4)-3(2-2)-1(2-1)
=2(2)-3(0)-1 (1)
=4-1-1

1

- éBé]::«;i

Since [é b CJ # 0, so reciprocal system exists.

bx &

[aBé]

Since, we know that a'=

]k
bxé={1 -1 -2
1 2 2
=1 =2 1 -2 A1 -
=I -] +k
2 2| -1 2| -1 2

Therefore a = 2 +k_ % (2f+ I2)

Now, b'=
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2 3

2 2| -1 2| .
- +k
o Az

=1(-2-6)-j(1-4)+k(-3-4)

-1 2‘

= Cxa=—8+3]-7kK

Hence bt = O +31=7k _ 1 (—8iA+31—7I2)
3 3
Now, &' = axb
[aﬁé]
Pk
axb=12 3 -
1 -1 -2
=f3 —11_}2 —J.‘+R2 3JJ
1 -2 ‘1 -2 1 -
=1 (-6-1)- j(-4+1)+k(-2-3)
axb =—7I+3]-5k

. 71 +3] -5k _

. %(7?+3i—512)

Self Check Exercise - 1
Q.1  Find reciprocal system of vectors for (—f+2f+2l2), (2f+31°+12) and (f— T—ZR)
Q.2  Find reciprocal system of vector for

a=(1,0,00 b=(1,1,00 ¢=(1,1,1)

5.3 Properties of Reciprocal System of Vectors

Property 1: If ab ¢ are There non coplanar vector anda,b', &' are reciprocal system of
abandé respectively then a.a=b.b'=¢.¢'= 1

Proof :Given a band ¢ are non coplanar so
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[éﬁé}to

Also we know that reciprocal system of & band ¢ is given by

4= bx &
[éﬁé]
then &.&'=a. bfc
[abé}
a.(f)xé)

[ abe]
= a.a =1
Similarly b= [:Ei]

xa)
b.b! = b.
[ d
_b.(¢xa)
[abc}

_[éf)é]

[ ane]
= 661 =1

A axb
Now ¢ = [é ; é]
¢.¢' = axb
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~

b

(@)Y
®
1

[EY

If &, b',ctare the reuprocal system of non-coplanar vectors@,

a.b'=a.¢'=b.a'=b.¢'=¢.a'=¢.b' =

Property 2:

respectively then
Solution: Since for non coplanar vectors & band é

Now

a.b* =0 [*. Scalar triple product with two equal vectors is zero]

o>

X

bel

Q>

Similarly &.¢" 4.

2

Similarly
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Property 3: [él bt (”:1] =

Proof:

then

Since &'=

61 éXé.

[a b c]
R axb
¢ =

Let Exa=A

[é.l b Cl} = exb {Ax(éxf))}

[aﬁéT'

using éx(6x6)= (éé)B (éf))é we get

(&5 ¢]= 2 ((AB)a(A.a)s)

abé}

__bxe [(exa)bla-{(exa)a}b

[abe]
bx€ [Tap <74
= [é;zf [[abc]a—o}

[ €x&. a= 0 value of scalar triple product is zero for two equal vectors
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Property 4  If ab éare non coplanar, so the reciprocal vector &,b*, &' are also non-coplanar

Proof: Since from property 3
|:él bt Cl} — 1

[élﬁé]

As &',b" and ¢ are non coplanar so [é b é}t 0

= |&p ¢xo
Hence aband Care also non-coplanar.

Property 5: The orthonormal vector triad ] j and K are non-coplanar. Then iAll jl k' be

reciprocal vector of I, I, k respectively such that

~

~1 -Xk

g
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Now Il:[ffl%]
and klzg?g

Hence it =1, flz i, k'=k , so orthonormal vector triad form self reciprocal system.

Reciprocal vector triad are both right handed or both left handed.
Proof: Since vector tried aband € is right handed if [é b C} is positive and is left handed if

Property 6:

[é b é} is negative.
Since from property 3,
1

|:él 61 él:| — -
[a b c]
S [él bt él} has the same sign as of [é b c}
So, reciprocal vector triad are both handed or both left handed
If &,6" and & respectively then 4.a+b.b+¢.6 =3

Property 7:
Proof: Using Property 1,
b.b' =

If &,b* and ¢*are reciprocal vectors of &4 band ¢

Property 8:
then ax&+ bxb'+ éx¢ =0
Proof: For given aband €the reciprocal vector are
R bx ¢
al= ——
[abe]
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abé
[ ab = ba
ac =¢ca
be = ¢a

o

[a b c}
Hence axa'+ bxb'+ éxé =0
Ifa, band ¢ are system of non-coplanar vectors and a,p' and ¢are the

Property 9:
reciprocal system of vectors then any vector f can be expressed as

Fa)a +(fot)b +(fét)e
(r&) (F¢)

s g . bx¢ . éxa  ,_ axb
Proof : For &, b, ¢ non-coplanar Vector & = —=, b'= — &= <
[ab¢] [abe] [ab¢]
Let F = Xa+ y6+ z€ (1)

Multiplying both sides of (1) by bx¢& , we get using dot product
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F (Bxe) = xa(6x6)+ y6.<6x6)+ zé.(Bxé)
= xé_(f)xé) +0+0
= x[é b é} [~ value of scalar triple product

is zero for two same vectors.]

Similarly on multiplying both side of (1) by €x4& using dot product
F(Ex8) = xa(Exa)+yb(ExA)+ 26 (ExA)

=0 +y[l36é] +0

=y [at}e}
f(exa)  =y|abe]
_ f.(éxé)
Yoo [ab¢]
y =f.p

Similarly on multiplying both side of (1) by axb we get
f.(axﬁ) = xa(ax6)+ yﬁ.(ax6)+ zé.(éxf))

=0 +0+ Z[éf)é}

f.(éxﬁ) -z [a b c]
. f.(éxf))
£ [aﬁc]
Z =r. ¢
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5.5

5.6

5.7

Q.1

On putting the value of x, y and z in (1) we get

P = (fa)a +(rB)b +(r.e)e.

Self Check Exercise - 2
Q.1 If f is any vector, show that

(fa) & +(rb)b" +(re)e

r’.‘
Q.2 Ifa, b, ¢ denote the reciprocal triad of vectors show that

() (B} (e at) = B4D2E

[ch}

Summary
In this unit we studied about

1. Reciprocal system of vector.

2. Find the reciprocal system of vector for given vector.

3. Properties of reciprocal system of vectors.

Glossary

o] Orthonormal Vectors : The vector which are orthogonal as well as normalized

i.e. vectors are prependicular to each other, each having magnitude 1.
o] Reciprocal : It is defined as inverse of a value or a number.
Answer to Self Check Exercises
Self Check Exercise-1

L -5 +5]-5k

Q.1 &= c

. 21 +10k

5

o A +5]-7K

CT T
Q.2 &=(,-10

b' = (0, 1, -1)

¢ =(0,0,1)

Self Check Exercise - 2
Interchanging & by &', bby b* and ¢ by &'in property a.
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Q.2

5.8

5.9

Find

e
1Xbl_[aﬁé]
. a
blxcl_[at?e}
a o b
chl_[aBé}

U)

Then an adding we get =

QJ)
CT)

[o5¢

References/Suggested Readings

1. R. Murray, S. Lipchitz, D. Spellman, Vector analysis, Schaum's outlines:

2. S. Narayan, and P.K. Mittal, Vector Calculus, Schand and Company Limited.
3. J.N. Sharma and A.R. Vasishtha, Vector Calculas, Krishna Prakashan Mandir.
Terminal Questions

1. Find the set of vector reciprocalto &, band & xb

2. Find the set of vector reciprocal to

1) 27 +3]-k i - -2k ,-i +2]+2K
2 {+2]-3K,5(- -k, +]-Kk

*kkk
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Unit - 6

Differentiation of Vectors

Structure

6.1 Introduction
6.2 Learning Objectives
6.3 Derivative of a Vector Function
Self Check Exercise-1
6.4 Constant Vector
Self Check Exercise-2
6.5 Velocity and Acceleration
Self Check Exercise-3
6.6 Summary
6.7 Glossary
6.8  Answers to self check exercises
6.9 References/Suggested Readings
6.10 Terminal Questions
6.1 Introduction

Dear student, in this unit we will study about differentiation of vector which is same as
differentiation of real valued function f(x) of single variable. Here we extend the definition of
derivative of real valued function of single variable to vector valued functions of single variable.
We will also study about constant vector. On the basis of vector differentiation we will discuss
the concept of velocity and acceleration as these are first and second order derivative of
displacement vector respectively.

6.2 Learning Objectives

After studying this unit students will be able to

1. define and evaluate derivative of a given vector.

2. give physical interpretation of derivative of a vector.
3. define constant vector.

4. prove same results of constant vector.

5. define unit tangent vector.
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6. define and evaluate velocity and acceleration for a given displacement vector.

6.3 Derivative of a Vector Function

Since we known that derivative of real valued function f(x) of single variable is given as

100 = dt - Lim f (x+h)-f(x)
dr

h—0

To define derivative for vector function, we unit have to extend this definition to vector
valued function of scalar variable.

So,

Vector valued function : It to each value of scalar variable t in same interval [a, b], there
corresponds, by any law, a value of a variable vector f, then we say that f is a vector function
of scalar variable 't' defined in the interval [a, b] , and then we write

f = f ) =a0 T+ | + 0k

Where f denotes the law of correspondence.

For example :

Let a particle is moving and at time t, it is at point P, whose position vector relative to
origin 0 is given by f, then f is a function of the scalar variable t. The velocity and acceleration
of moving practice are also vector function of the scalar time t.

Before defining the derivative of a vector function, let us first definite limit and continuity
of a vector function.

Limit of a Vector Function :

A vector function f (t) is said to tend to a limit ¢, when t tends to, if for any given
positive number €, however small, there exists a positive number 3, depending on €, such that

A
1

| f (©) 7] <e for0|< t- to |<s.

We write itas Lim f (1) = :
—to
Here, also, we extend the definition of limit of real valued function of single variable to
vector valued function. The results of limit of real valued function are applicable on limit of vector
values function. These results are
1. Lim[ f(t)+ g(t)]z Limf () + Limg(t)
t—>t0 L t—t0 t—>t0

2 Lim:f(t)—g(t)] = Lim f(t)—lt__i)tr(r)lg(t)

t—>t0

3. Lm[f0.00)] = [I;imf(t)].[lrimg(t)]

t—>t0
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¢ il 0x00] =[tmfe | Limac]

5. Lim[gmx )] = [Iim;ﬁ(t)}[Lim f (t)}

t—>t0

A

6. If f(t)

RO+ O]+ Ok [if Lim f©) = ]

A

'a) [
ol +sz+f3k

then *

where It_lm f.(t) =, It_ltr’g] f,(t) =1, tthrp f(t)=+,

Continuity of A Vector Function :

A vector function f (t) is said to be continuous at t = to, if for any given positive number
€, however small, there exists a positive number 3, depending upon e such that

‘f(t)— f(to)‘ <e for |t =to| <&

This definition is again an extension of continuity of real valued function of single
variable to vector valued function.

Note : 1. A vector f(t) is said to be continuous of it is continuous for every value of t for which
it is defined.

2. if f(t) = fL() + f, ()] + f3(t)I2 then f(t) is continuous of and only if f.(t),
f,(t) and f,(t) are continuous functions of t.

Derivative of a Vector Function

Let O be the origin. Let the position vector of a point P is given f = f(t). As time t

varies continuously, point P trace out a curve C. Thus a vector function f = f(t) represents a
curve in space.
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Let f = f(t) be the position vector of pint P. Let F+38f is the position vector of
neightauing point Q on the curve AB.

Then OP =f = f(t)
0Q = r+5f = f (t+8t)
G -00.0F
= F+5f -= f
=5r
PQ =5t

sf = for)- f

Now,
N ﬁ: f(t+ot)—f(t)
ot ot
Now Ig'rQ f(t+6;:_ f(t) , if it exists, is called the derivative of vector function f with respect to
t—>

A

t and is denoted by %

. dr . (F+or)—¥ — Lim f(t+ot)— f(t)
dt 5t—>0 ot 5t—0 St

Y

: or . BA
Physically, 5t is a vector parallel to the chord PQ.

as ot—, Q —»P, the chord W} become the tangent to the curve at point P.

. _of _drf . . . _f
Hence LIT§:E is a vector parallel to the tangent at point P to the curve ¢ = f(t).
St—

Unit Tangent Vector

A

: : ar .
Replacing t by s, in above result we have & is a vector along the tangent at P to the
S

curve and is in the direction of increasing S.

A

dr . . . .
Then s is known as unit tangent vector and is denoted by t.
S
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Notes: (1)

(@)
(3)

(4)

So f= ar
ds

A

If % exists, then f is said to be differentiable w.r.t. t.

A

. . ar . )
As f is a vector quantity so p is also a vector quantity.

Every differentiable vector function is continuous but converse may or may not

be free.
df d? d° . . o o
E’ F ? - are known as first, second, third derivative of vector function f

. % d (d¥%
and are givenas — = — | — | and soon.
dt dt | dt

Now, Let us prove some theorems based on vector differentiation.

Theorem 1: If f OERNCIERN0! ]+ f,(t) k are also drivable function and

: df .
Proof: Since d_ Lim

=

then

=

df _df,, df, 5

dt  dt |t dt

f(t+ot)—f(t)
t st—0 ot

f(f+ot)-f(f)_ Lim f(t+5t)-f(t)m+ Lim fz(t+5t)—f(t)i

Lim
5t—0 ot S5t—>0 ot 85t—0 ot
f,(t+ot)—f(t) ~
+ Lim 5(t+1) ()k
St—0 ot

f(t+at)-f(t)

Lim

Lim exists only and only if the three limits on R.H.S. exists.
t—

df  df, . df, ; df, .

R +_J+_

ot dt | ot o dt

Limits on R.H.S. exists.
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Derivability in Relation to Algebraic Operation

Theorem 2: If f (t) and g (t) are two derivable functions of t then

(1) ((t)+g()) —f(t>+— (®
@ n)=fo S o0+ o060
L+ (fmam)=fo g 9

d (¢ § = f X j f X §
@) S (fOxe0)= fox —g(t>+—f(t) 9

d /. dg
@ (o) forLie

Where ¢ (t) is a derivable scalar function.

[ f(t+st)+ g(t)5t] —[ f(t)+ g(t)]
st

d g, R )
(1) a[f(t)w(t)}:[;tgp

(f(t+5t)— f(t)+g(t+5t)—g(t))

= Lim
ot—0 ét
f(test)-f g(t+t)- G
~ Lim OO 80— 60
5t—0 ot 5t—0 ot
dre df  dg
— | f(t t)|= —
= dt[ 0+90)| dt ot
4 df , dg
Clf
Similarly, " [ ()+9(t)} ot
Gt o (frenen (o fmo)
@ o[ fOem]= Lim 5t

adding and subtracting the term f(t+5t)g(t) in R.H.S. of above, we get

% f (t+ot)§(t)=Lim

[ f(t+6t).6(t+8t)- f (t+5t)a(t)+ f (t+61) 60 - f (1) o) |
st
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f(t+t)(g(t+t)- g(t))+g(t)( (t+ot)- f(t))

= Lim
5t—>0 ot
. §(t+35t)-g(t f(t+ot)—f(t
= Lim f (t+6t). (g( ) g())+ Lim g§(t). ( )-1O
5t—0 ot 5t—0 ot
applying the limits we get,
g df
f(t).9(t —.
Sliosw]=f 2+ e g
Limg(t+5t)—g(t)=dg mf(t+5t)—f(t):£
5t—0 ot dt 5t—0 ot dt
d ; ~ » dg df
3 — (f = f —
(3) OIt(><g) o <O

f ot)xg st)—f(t)xg
Since di[f(t)xg(t)J 'Etil?{( (t+ot) Q(t;-t t)-f () g(t))]

Adding and subtracting the term f(t+5t) g(t)in R.H.S. of above, we get

i[f(t)xg(t)}

dt
Lim f(t+ot)xg(t+ot)—f(t+8t)xg@®)+ f (t+ot)xgt)- f ©)xa(t)
5t—0 ot
:Limf(t+5t)x[g(t+5t —6m]+| f(t+ot)-f© <00
5t—0 ot
dr- . . o §(t+ot)-g@)] . | f(t+ot)-f@)|
a[f(t)xg(t)}z Ia?tLer(t+5t)x[( &) ]ggrg[ = ]xg(t)

Applying the limits, we get,
g df
Clioxe0]= fox + pralel0
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g(t+6t) f (t+5t) dt)f (t)
ot

d . .
@ L [s0+T0]=Lim
Adding and subtracting the term ¢(t +5t) f(t) in R.H.S of above, we get

p(t+5t) f () +g(t+ot)-f ()

d ; .
— t)+ f(t)|= L
dt [¢()+ ()} A f(t+ot)- (1) p(t+5t)-g(t)
ot
- Lim g(t+a) ftrot)-f) | {0 (t+35t)-4(1)
5t0 ot ot
appying the limit, we get,

4 a7 ]= g 5v f 92
T LPOTO]= 0 L+ fO £

A

. df L dlf
Theorem 3: Provethat f. — = |f|
dt dt
Proof:- Since f ® . f(t) = ‘fz

Differentiating both side and

. d 2 A : d . . d ;
appying [ f(0.90) |= f 0. - 60+ 6. T 0.

f . —(t)+f(t)— \f(t)\d‘fm‘
- 2f@. —(t)-2‘f(t)‘d‘f(t)‘
.00 \f()\d‘m)‘
; df‘_ . d|f
or .E_ T

Derivative of Triple Products

Theorem 4: If f , § and h are three derivable functions of t then
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(1)

(2)

Proof: (1)

()

%:fgﬁ: :%x(gxﬁ) fx(?j?xhj+ fx[[gx_

S[faR] =2 (Fxah)

G (boi(ieo) § g T-0-1 e

{f (;Q+%xg}.ﬁ+(fxg).$

['.'%fx(gxf)zfx?j?+%xg:l

- fx?j?.h+d—fxg.ﬁ+(fxg)%

:Z—ixg.ﬁ+ fx 2?.F1+(fxg).%

=%[fgﬁ]={‘(’j_;gh}[f‘;?ﬁ}{fgz—;}

SFah]= fx 2 (axh)s o fx(axh)
i) xR Fuh

i aodh) s (dg_ ) df

= fx [QXE]-F f x(dt xhj + i (gxh)

after rearranging the terms on R.H.S, we get
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drs (a1 df 2 (dg ~) s (. dh
= a[fx(gxh)}_ ax (gxh)+ fX(Eth + fx (ng]
Derivative of Vector Function in Component Form

Let I be the vector function of the scalar variable t such that f = Xi + ﬁ+ K, where x, y

and z are component of ¥ in X, Y and Z directions and are scalar function of t and 1, I and k
are unit vectors in three mutually perpendicular directions.

Then % = %(xf+w°+zl€)

d .. d -~ d, 6 -«
E(XI )+a(y1)+a(2k)

dx. d dy - d dz. ok
= — —+—= J+y —+— k+z—
Xt dt - dt dt  dt dt
ar_ d dy e dz e
dt xt dt dt
Cdi d dk

. =—=—=0asi zand kareUnitVectors
dt dt dt

Let us do some examples for implementation of vector differentiation.

If F=(t+1)+(@+rt+1) ]+ (B+r+rt+ 1)K

Example 1:
o
find d,[and a2
Solution: Given F=(t+1D)i+ @+t+1) J + E+2+t+ 1)k
df d . d : d .
Then —— —(t+ )i + — (2 — (3 + 12 k
dt'dt( ) +dt(t+t+1)J+dt(t+t+t+1)
df . S -
= a=1l+(2t+1)l+(t+t+t+1)k
d’f d (df
Now —_— — | —
tz_dt(dtj

= [1.f+(2t+1) f+(3t2+2t+1)@

2|a
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%ﬂ + %(2“1) i %(3t2+2+1) K
=0+2 |+ (6t+2)K
- ‘;Tzf =2 |+ (6t+2) K
Example 2: If f=(acost)i + (asint) j+ tk then find
daf  d*f
E , Fand

d*r
dt?

Solution : Given f = (acos t){ + (asint) | +tk

df d ~ d . Py d -
—=—(acost)i+ —(asint) |+ —tk
Then dt( )i dt( ) ) o

. a - ~ d .
:'aS|nt|+aCOStJ+k ['.'ECOSIZ—SInt

d .
—sint=cos ]
dt

dr

= — = -asinti+acost |+ K
dt
d’f _ d (df
NOW. "2 ™ at | dt

d .
:a(-asmti+acost1+ k)

=-acosti-asint ] +0K

d?f

~_ =-acosti-asint]
= dt? J
2A
Now, % = \/(—acost)2+(asint)2
= Ja?codt+a2sn’t
= \/az(coszt+sin2t)
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= \,az
2
% =a o cosit+sinit=1

Example 3: If f =t ]+ @t+1)Kand g=(2t-3)i+]-K
d ; .
Find a(f .g)whent=1

Solution : Given f =2/ -t ]+ (2t+1) K

and §=(2t-3)f+ ] -tk

d »

d ; ; d
when L(f.g)=9f g+f Ly by th
en (f.o)=—f.g+f. g [by theorem]

= %[tzf—t J+ @+ K] . (2t-3)i+ | tK)

+ 20t |+ (2+1) K. %[(2t-3)f+ ] tK]

= (2t - ]+2K). ((2t-3)i+ | tK)

+ 2t ]+ 2D K. (2740 | -K)
=2t (2t-3)-1-2t+22+0- (2t+1)
=4t°-6t-1-2t+2t>-2t-1

i(f.g) = 6t2- 10t - 2

d ~
—(f.g)whent=1i
dt( g) when is

= 6(1)2 - 10(1) - 2
=6-10-2
= -6.

We can solve this question by another method i.e. first applying the dot product and then
differentiate it i.e.
d

d £ A _ Y on S A ) ~ /.\- A
a(f-g) —dt[(tl t)+ @2+ k) . ((2t-3)i+ | -tk)]
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= %[t2 (2t-3) - tx1 + (2t+1)(-1)]
-4 [263 - 3¢- t - 262 {]
dt
-4 [263 - 5- 2]
dt
i(f 9) = 6t2 - 10t -2
a9

and %(f.g)whentzlz—&

* It is much easier to apply 2nd approach.

Example 4: If f =€{-t]+@+1)Kand §=2ti+ ] tK

d A
48 s
then find dt( g)

Solution : To find %( f @) we first find the value of f g and then differentiate it.
]k
So, fxg = |t? -t 2t+1
2 1 -t

t2 —t
2t 1

Il

—t 2t+]‘ L|t? 2t+1‘ -
- +k
1 —t 2t -t

[ (2 -2t-1) - | (-8 -4 - 2t) + K (12420

= fxg

Now%(fxg) (2t-1) | - (-3t2-8t2-2t) | + (2t + 4 K

d

3dt(fxg) = (2t-2) { +(3t2- 8t-2t) ] + 6tK

. 1)
Example5: If F=t3+ (2t3¥] ] then show that
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A

df _ . 2 ) s d
then g~ U1 (Gtz—) J [ 1= -2t

S
>

Now fx(;— =t (Ztsizj 0

A A ~ 2 1
[0)- ] 0)+K {t(Gtgj—&(Ztaﬂ

= R{6t5+2—6t5+§}
5 5

U
-
X
|
I
>

Example6: If f=acosti+asint | +(a+tanx)k

_|df d®f df d*f d%
find | —x— and | —,—,—
dt dt dt® dt
Solution: If F=acosti+asint | +(a+tan x)K
f . LA n .
then d =-acostitasint |+atanxk [Here tan x is taken as constant]
d’ _d (df) df P
Now — = —| — | = —-=-acosti-asint |
dt dt \ dt dt
d* d ’r) d - 2
Now —— = — ﬂ —(-acostitasint J)
dt®* dt { dt® ) dt
3¢ 2
= — —asinti-acost ]
t
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df dzf s . o ~ e . o
Now EXF =[-acostitasint J+atanxk]x[-acosti-asint ]]

] ] K
- |-asint acost atanx
—-asint —asnt 0

— ax?=f[aztanxsint]—j[aztanxcost]+I2[azsint+azcost]
df d?f \/ 2 2o 2 o oov2
— X — —4J(a@a" tahxsnt) —j(a“tanxcost) +(a
Now, [ o ( ) =i ) +(@)
_ Ja*tan? xsin’t + a* tan® xcos t + &’
= \/a“tanzx(sinzx+coszx)+a4
= Ja*@+tanx)
= Ja*sec® x [*. 1+ tan? x = sec? X]
= a’secx
dar  d?f _ a4
—x—— = a’secx
dt  dt®
df d? o |_|df d?| d°f - .
Now | —, — ,— |= |—x—=|.—= defining of scalar triple product.
{dt o dt3} o o ae e ple product ]

= [(@sinttan x){ - (@ costtanx) | + a2K].[asint{ -acost ] ]
= a®sin? t tan x +a° cos? t tan x+ a?(0)
= a®tan x (sin’+ cos? t)
= a’tanx
df d*r d% | _
—————|=a’tanx
dt dt® dt
Example 7 : Find the unit tangent vector to any point on the curve,

fzacosti+asint ] +bt Kk
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A A

: : dr . ,
Solution : Since we know that p is the tangent vector at any point and

is the unit tangent

vector.

Given f=acosti+asint]+bt Kk

dr . .8 -
- acos ti+asint]+b K s the tangent vector at any point.

Vector
Magnitude of vector

Since we know that unit vector =

—asinti +acost] + bk
J(~asint)? + (acost)? + (b)?

So unit tangent vector t =

¢ o —asinti +acost] + bk
Ja?sn’t+a cos’t +b’

—asinti +acost] +bk
JaZ +b?

Example 8 : Find the unit tangent vector for the curve

Unit tangent vector { =

f=3costi+3sint]+4tk

Solution : Given f=3costi+3sint | +4t K

ar . df . e -
then— gives the tangent vector so E =-3costi+3sint J+4t Kk

—3sinti +3costj + 4k
J(=3sint)? + (3cost)? + (4)°

Now, unit tangent vector, = f =

_ —3sinti +3cost] + 4K
Jasin?t + acos’t +16

_ —3sinti +3cost] + 4k

- J9+16

. Iy 1 . ~ ~ ~
Unit tangent vector = t = 3 (—3S| nti +3cost] +4k)

Example 9 : Find the angle between the tangents to the curve
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F=tf+2t]-tKkatpintst=+1

Solution : Given f=t2{+ 2t | - Bk

daf . . .
thena gives us the tangent. Taking t =1 and t = -1 we get two tangents t; andt

so I =£(t2i”+2tj°-t312)
dt dt
a 2027+ 2 | - 32K
dt

. dr . s .
Now tlz(aj t=1=2(1)+2]-3(t)?K

fi=2i+2]-3K

(ij t=1=2(-1)+2 ] - 3(-1)?K
dt T

—
N
1

and

f,=-2{+2]-3K

Let © be angel between f; andf, then

>
>

Cos 6= Al'tf
t1 2
(2?+2i—3t2).(—2f+2i—312)
Cos O =
J@7 (2 +(-3%(-2)? + (27 + (-3
_ —4+4+9
1717
Cos O = 3
17

= 0= COS'l(%7)

Self Check Exercise-1

Q.1 Iff=sinti+cost | +tk then find
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o o [d] |
dt ' dt? ' |dt| | dt?
. dis .\ ,dg df .
.2 Verify the formula —( f.g) = f.—=+—.§ for
Q Ty u dt( 9) at a2

f=32f+2t]+tK and § =5t | +tK.

Q.3 If f=5¢{+t]-t*K and g =Sint{-Cost |

find %(f.g)

Q.4 Find unit tangent vector for f = 3t + (2 - 2t) J+ 8K att=1.

6.4 Constant Vector

A vector is said to be a constant vector of its magnitude and direction do not change i.e.
both magnitude and direction are fixed. Let us understand, constant vector with following

examples.

Example 1 : Check f =2t + 3t I +4 3K is constant vector or not.

Solution : Given f = 2ti+ 3t | +4 Kk then

‘f ‘ = (20 +3(t) + (4t)?

V4% + 9% +16t2
202

= 2917

Since ‘f‘ = \/ﬁ

f

So for different value of t value of mis different so f has not fixed magnitude.

Also the direction of f is fixed, as its direction is same for all value of t.

A

So f is not a constant vector, having fixed direction but verifying magnitude.

Example 2 : Check f = Costi+Sint i+ K is constant vector or not.

Solution : Given f = Costi+Sint | + K
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then ‘f‘ = Joot+sin?t+1
= 1+1
W =2

Magnitude of f is fixed. But the direction of f varies as the value of t varies, so f is
not a constant vector.

Example 2 : Check f=37+3 j+ 4k is constant vector.
Solution : Given f=3{+3 ] +4K
ten ||| = V@ + @+
= J9+9+16
- J3

Magnitude of f is fixed. Also f represents to position vector (3, 3, 4), which is a fixed

f

point in space. So direction of f is also fixed. So f is a constant vector.

Theorem 1 : Show that derivative of constant vector is zero vector.
Proof : Let r be O constant vector i.e.
f= ¢ 1)
F+3F =¢ 2
Subtracting (1) from (2)
F+8Ff—-Ff =0
= df =0
or ?—: =0
Taking 6t — 0, we get
. _of
LIme =°
dr
dt

Hence derivative of constant vector is zero.

= 0 [definition of derivative.]
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" " _df
Theorem 2 : The necessary and sufficient condition for a vector to be constant is pry =0

Proof : Condition is necessary

Let f (t) is a constant vector function.

Such that f (t+8t) = f (1)

Sf@a+st)- f@®=0

dividing both side by &t
fero-f) _,

=
ot
Taking Lim 8t — 0 both side
. f+ot)y—f@) _
= Lim——— =0
5t—0
df - - .
= o =0 [by defining of derivative of vector function]
Conversely : Let — =0, to prove f (t) is constant vector
Let f(t):f1r+]€2j+ f3|2
Now O = dh oy 5 dfy o
d dt t t
= 0= i F+% j +% k
d dt dt
Since two vector are equal is their components and direction all same
So %:0’%:0’%20
at dt at
= dfl, df;, df3 i.e. component of finx, y and z directions are independent of variable t.

So f (t) is constant vector.

Theorem 3 : The necessary and sufficient condition for a vector f(t) to have constant

magnitude is f i= 0.
dt
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Proof : Condition is necessary
Let f (t) constant magnitude, to prove
Iy
dt

Since f (t) has constant magnitude

f

—|f|= constant
A A N
Now, f.f =|f| =constant
i(fA.fA)zd— f+ .—fzi(constant)
dt dt dt dt
d, ; df ; df
v —(f.g)=— .g+ f.—
[ OIt( g) prallY Olt]
o df  , df o _
=f.—+f.— =0 [*. derivative of constant = zero
dt dt
and é.f) = b aj
:>2f.i=
dt
:f.izo
dt
Conversely : If f .— =0, then f has constant magnitude.
et £.90 -0
dt
27,9
dt
:>f.d— +f.d—=0
dt dt
:i.f +£ f=o0
dt dt
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:>(f. f) = Constant

A2
:‘f = Constant
= f = Constant

Theorem 4 : The necessary and sufficient condition for a vector f (t) to have constant direction

is fxi:o
dt

Proof : Let f ®=¢ F where F is a vector function with modulus unity for every value of t then
dof _dF | df - . . -

— = — + — F and ¢ = ¢(t) is magnitude of f

dt dt dt b= 60) g

o odf o [ dF dg o
Now fx I =9 )| g +2LF
W T )x(¢dt+dt ]

U
=4
X
+
=4
N
T
X

(1)

Condition is necessary : Let f (t) has a constant direction.

A

.. F is a constant vector

:}d_F =0
dt
. df .
So that from (1) fxa =¢Fx0=0
= fxﬂzo
dt
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Condition is sufficient : Let f X% =0

then from (1) = ¢2F XC(;_Tz 0

= =Fx—=0 )

Since F has a constant length then

= F %: =0 (3) [by theorem 3]

From equation (2) and (3)

— F is a constant.
= direction of f remain constant.

Example 4 : Show that derivative of a vector of constant magnitudes is perpendicular to the
vector itself.

Solution : Let f is a given vector.
Also given r has a constant magnitude
= |F| =r = constant
So|f|=r?
orf.f=r?
So differtiating both side

d
—(r.f)=0
dt( )
dt dt
dr
2f . —=0
R
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dr _
Cdt

Since dot product of two vector is zero, so the two vector are perpendicular to each other

=F 0

A

o dr
sofl—.
dt

Example 5: If f =t"a + t"bwhere a and bare constant vectors, then show that if f is

A

df
parallel to o then m+n=1orm=n.

A

Solution : Given f =t"a +t"b (1)
dr ~
So, —=mt™a +nt"tb (2)
dt
d*r 1A YR
also e m(m-1)t™'a + n(n-1)t"2b (3)
2
. . f . :
Given f and F are parallel, we know that if two vectors are parallel then we can write
d’f
themas f =k —-
dt

= f=k[mm-D"2a +n(n-1)r2b]
= tra+tb =Kmm-1tm2a +n(n-1)rr2b]

A

Comparing the coefficients of a and b, using the concept of equally of two vectors, we

get
t™ = k[m(m-1)tm2
= t2 = mk(m-1) = k(m? - m) = km? - km
=  t2=k(m?-m) (4)
and  t"=k(n(n-1))t"2
= t? = k(n? - n) (5)
From equal (4) and (5)
k(m? - m) = k(n? - n)
= m2-m=n?-n
= m2-n>-m+n=0
= (m?-n?)-(m-n)=0
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= (m-n)(m+n)-(m-n)=0
= (m-n)m+n-1]=0

= m-n=0m+n-1=0

= m-norm+n=1

Hence the result

Self Check Exercise - 2

Q.1 |Ifvector a4 =4i +2 ] -3K is constant
Q.2 Show that f =otl +3t ]+ 4t|2 has constant direction.

Q.3 Show that the vector f =Csostl +Sin t] + K has constant magnitude.

6.5 Velocity and Acceleration
Let r is the position vector of a proving particle at point p with respect to origen O. at

A

time t. Then F = f(t). Let in small time &t the displacement of particle is given by &f. Then

Y

or . , . . L
5t gives the average velocity of the particle during the time interval &t.

If we take v as velocity of particle at point P, then

v = L ﬁ—i
Mt ™

A

So, velocity v =ﬂ
dt

) . av d?f
and acceleration a= — = —
dt dt

So v and & are velocity and acceleration of moving particle having position vector r,
which are given by first and second order derivative of f .

Example 1: A patrticle is moving whose position vector point P w.r.t. origen O is giving by
=30 + (-2t ] +£K.

Find velocity and acceleration of moving particle at t = 1. Also find the magnitude of
velocity and accellaration.

Solution : Given f = 322l + (t2-2t) ] + £k,

In order to find velocity and acceleration, we have to find the first and second order
derivatives of r .
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_ar %[3?? +(@-2t) ] +K]

So =
dt

<

v=6ti +(2t-2) ] +3ek

Velocity att=1= \y= 6(1)1 +[2(1)- 2] ] +3(1)?K

t=1

6l +3k
: iv |V] = ——= = V36+9= 445 = 5.
Magnitude of velocity ,—(6)2 (37

2, A
Also a =d—2r =i[£j
dt dt \ dt

= %(m? +(2t-2) ] +3t2l2)

a =6l +2] +6tk

Accelerationat t=1=4 =61 +2 ] +6tk
t=1

Magnitude of acceleration = || = 36+ 4+36 = J76 = 319

Example 2 : A particle is moving along the curve x = t3+1, y = t?, z = 2t + 5, where t is time.
Find the component of velocity and acceleration at t = 1 in the direction of |+ ] +zk.

Solution : Let f be position vector of any point P(X, y, z) on the given curve then
F=xl +y] +z k
N f=(+1) +£2 ] +@2t+5)K

dr d A - A
Velocity = 0 =— = —[(t3+1)] +t2] +(2t+5)k
city v ot OIt[( ) ] +( ) K]

v =30 +2t] +2K

. d?f d i
Acceleration= 4 = — = — (drj

dt? ~ dt \ dt
=9 zel vt | +2K]
dt
a =6t +2]
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Now velocity and acceleration attime t =1 is

v =8 +2j+2k

=1

—

and § =6l +2]

t=1
Let A be to unit vector in the direction of | + | +3K

i+ ]+3k

then A= =
\/i+j+3k

So component of velocity in the direction of | + | +3Ktimet=1, is

1 » -~ n 1 1
— (I 3K)= — (3+2+6) = —— = /11
»\/ﬁ(+J+ ) »\/ﬁ(++) \/ﬁ

and component of acceleration in the direction of |+ ] +3 K at time t = 1, is
2 ~ 1 2 2 ~ 1 8

a.n=061+2]). —(I+]+3kK)=—=(6+2)= —

V11 Naki Nuki

Example 3 : A patrticle is moving and its position vector is given as f = Cos w tl + Sinwt ].
Show that the velocity vis perpendicular to f and f xV is a constant vector.

v.n =(3+2 ] +2K).

Solution: Given f =Coswtl +sinwt |
dr d P .
v= — = —[Coswtl +Sinwt ]
dt dt

=(-wSinti +wCoswt])
Since we know that two vector are perpendicular if there dot product is zero. So to prove
velocity is perpendicular to f we have to show that
ar
Cdt

A A

r.v=r
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So r.% =[Coswtl +Sinwt]].(-wSinti +wCoswt])
=-wCoswtSinwt+wSinwtCoswt
=0

A

Hence . ﬂz
dt

So velocity is perpendicular to f .

-
1

To show f xYV is constant

] i K
coswt snwt O
—-wsinwt wcoswt 0

-
X
<
1

[(0)+ j(0)+ K (wcos?wt +w sin wt)

= (w cos? wt + w sin? wt) K

~

fxy =w K= constant

Self Check Exercise - 3

Q.1 Find velocity and acceleration att =0 and t = 7/, , when
2

f=4costl +4sint] +6tk.

Also find magnitude of velocity and acceleration.

Q.2 Determine velocity and acceleration and their magnitude t = O if
f =e'l +2cos3t] +2sin3tk

Q.3 Iff =Cosw tl + sin wt I where w is constant show that velocity is
perpendicular to

A

. . dar .
f and f x E IS a constant vector.
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6.6

6.7

Summary:

Dear students, in this unit, we study that

. " . . r.
1. If £ (t) is the position vector of point P w.r.t. asigen O then Z_t is a vector parallel
to the tangent at point P and is the derivative of vector f .
df
2. at —. IS a vector quantity.
F d*f d%
3. d— —5 . 3 are first, second, third derivative of r .
dt = dt° dt
4. Unit tangent vector is given by
f= ar _ dr dt
dt  [df
dt
5. Iff =X +V]+3K then
r _ dxp, dy ]+ dzp
dt - dt dt dt
6. A constant vector has fixed magnitude and direction.
. § df
7. A vector has constant magnitude of Tt 0
o ¢ df
8. A vector has constant direction of f XE =0
0. If F ()= Xl + yj + 2k where X, y, z are function of scalar variable time t, then
df (t) d?r
p gives the velocity and e gives the acceleration of making particle.
Glossary
1. Differentiation : The process of finding derivative is called differentiation.
2. Velocity : The rate of change of distance of a body with respect to time is known

as velocity. It is a vector quantity.
Acceleration : It is change in velocity over change in time.
Constant : a Symbol or number having a fixed value.
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Answers to Self Check Exercises
Self Check Exercise - 1

df n ~ n dzf ISl ~
Q1 —-=contl -sint ]+ K, —=sintl -cont |

dt dt

dr d?f

=2,

=1

dt dt?

Q.2  Apply the formula and verify it using f.@
Q.3 (t¥sint- 3t con t)f -(tcont-3t?sint) i +(5t?sint-11cont - sint) K

T+ ]-k
f_otrl-K

Q4 f=—x

Self Check Exercise - 2
Q.1 Since [d = V16+4+9 = y2a and direction is also constant.

Q.2 f X% =0so f has constant direction.
podf : .
Q.3 ><a =0so, f has constant magnitude.
Self Check Exercise - 3
Q1 v ato v = 4] +6K

Q>
1
|
>

att="7/ v =-4]+6K
a=-4j

i = 5

[+18] 4 = 313

Q.3 Do same as example 3

Q2 v=-]+6k ,

a

References/Suggested Readings
1. R. Murray, S. Lipchitz, D. Spellman, Vector Calculus, Schaum's outlines:
2. S. Narayan, and P.K. Mittal, Vector Calculus, S Chand and Company Limited.
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3.

J.N. Sharma and A.R. Vasishtha, Vector Calculus, Krishna Prakashan Mandir.

6.10 Terminal Questions

Q.1.

Q. 2.

A 24
Prove that i Ox% = l]><d—;J
dt dt dt

If F = & sinwt+ bconwtwhere a and b and wt are constant then show that

d?r
W =-w?f and
AX% =—v”va><f)

If £ is unit vector in the direction of f then show that
df 1, df
f x X

dt r2 T dt
If £ is unit vector, then prove that
. df df
rx—»yA = |—

dt dt

Find velocity and acceleration of the moving particle for which

F =360 + (2-21) | +Katt=1in the direction of | + | - K vector.

*kkk
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Unit-7

Partial Derivatives of Vector Function

Structure
7.1 Introduction
7.2 Learning Objectives
7.3 Partial Derivatives
Self Check Exercise-1
7.4 Summary
7.5 Glossary
7.6 Answers to self check exercises
7.7 References/Suggested Readings
7.8 Terminal Questions
7.1 Introduction

Dear student, in this unit we will study about differentiation of vector function. In the last

unit we studied the differentiation of a vector function of single variable. Just like the
differentiation of function of two or more variable in calculus of real function, we extend this topic
to differentiation of vector function of two or more variable, which is represented by partial
derivatives. So, students in this unit we will study about partial derivative of a vector function,
along with its component form. We will learn to apply chain rule in vector differentiation and also
learn to evaluate higher order partial derivative.

7.2

7.3

Learning Objectives

After studying this unit, students will be able to

1. define partial derivative of a vector function.

2. devaluate partial derivative of a given vector function.

3. apply chain rule in vector function.

4, calculate the higher order partial derivatives of given vector function.

Partial Derivative of Vector :

A

Just like the function of several variable, if f = f(x, y, z) i.e. f is a function of three

independent variables x, y and z, then partial derivative of f w.r.t. x is defined as

or - Lim f(x+6x,y,2)— f(X,Y,2)

, when this Limit exists.
OX 5x—0 OX
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A

similarly 2" = Lim f(x+x3y,2) - 1(xy,2)

ay 5y—0 5y
and or _ Lim f(x+XY,02)— f(XY,2)
4 520 oz

Note :

A

In order to find the partial derivative of a vector f = f (X, y, z) w.r.t. X variable we that y
and z as constant. Similarly on differentiating partially w.r.t. y, x and z are beeted as constant
and when we differentiate w.r.t. z, X and y are taken as constant.

Partial Derivative in Component Form

If 7 = f1(X, Y, 2) +fa(X, Y, 2) ] + fa(X, Y, Z)R

then a—rzif+%j+a—f9’l2
OoX  OX ox OX
o = %f +% ] + % K
oy oy oy oy
and q=a—f1iA+%J°+%I2
0z 0z 0z 0z
0 0 O . . o .
Here the operator —, —,—is known as partial derivative operator, and is
oX oy oz

pronounced as curly operator or partial derivative  w.r.t. X, y, Z respectively.
Chain Rule

As we studied in function of real value, if f is a function of x and y and z and y are

again function of some variable t, then in order find the derivative we use chain rule. Similarly, in
vector calculus chain rule is applied.

If f =F(x,y) i.e. F is afunction of x and y.
and x = x(t), xis a function of t
y=y({) yisafunction oft

then to find the derivative of f w.r.t. ti.e.

df _of dx oF dy

dt ox dt oy dt
* Rules for partial derivative of vector are same as those of ordinary differentiation of
scalar function.
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Total Derivative

Total derivative df of r is given as

0 or

df = Lax+ Lay+ Loz,

OX oy oz

Higher Order Partial Derivative

Iiff =7 Yy,2)

then

o°f

OX?

oy®

Also

xandy.

a_r , 6_r , a_r are first order partial derivatives w.r.t. x, y and z. Then
ox oy 0z

=i(6_r”j
OX \ Ox
_ o (of

oy \ oy

= § [%) , are second order partial derivatives w.r.t. X, y and z.
z\oz

A A 2 2
9 ar = i (gj = o = o is do second order partial derivatives w.r.t.
ox \ oy oy \ ox oxoy  o0yox

A

Here we first differential ¢ partially w.r.t. x and then differentiate the resulting value

partially w.r.

t. y and vise versa, here f is a continuous function.

To have more understanding of this concept let us do following examples :

Example 1

Find

If f = (@x2y-x4) [+ (@Y -y Sinx) | +(2 Cos y) K

A A 27 27 2f 2f
ot & Tt pndveritythat S = O T
ox oy ox° oy oxXoy  oyox

Solution : Given f = (2x?y - x | + (€Y -y Sin x) ] +(x2 Cos y) k

f=7xy)

A

Then ﬂ , will be calculated by differentiating of w.r.t. x treating y as a constant.

of

_:_|+

OX

OX
Ay oMz ]+ Ay k
OX OX OX
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&~ 2 ey ie 2 eroysing 1+ 2 (e cosyk
Ox 15).4

OX EX
af _ 3 " X 2~ ~
&—(4xy—4x)|+(yey-yCosx)J+(2xCosy)k
Now ﬂ=i|ﬂ+%j+%l2
ay oy oy oy
of - - :
= Lo Ceyxis 2 (ev-ysinyg j+ 2 (@ cosy)k
oy oy oy oy
of 0 e, D
=N a—y=2x|+(xeXV—S|nx)j+(x siny)k
Now az_f_i i
"o ox | oX
= %(4xy—4x3) | + %(yexy-yCos X) j+%(2x Cosy)l2
o* f nrl 0 e .
= ~ =(4y-12x%) I+ —(y%@¥ -ysinx) ] + (2 Cos y)k
OX OX
o?f o fof
and — = — | —
oy oy \ oy
= 22+ L (xev- sinx) -2 (@siny)k
82’\ R A
W:0+x2exyj—xzcosyk
82’\ R A
=N — =(x%¥) ] -x2cosyk
8y2
0% f o [of
Now — | =
oxoy ox | oy
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-9 [2x21 + (xe¥ - Sinx) | x2sinyK]
OX

2 £ ~
f = 4x | + (xye” - Cos x) | - 2x sin y K 1)
oxoy
o*f o [éf
Again = — | —
oyox oy | ox
d . . )
:8_ [(4xy - 4x3) | + (ye¥ -y Cos X) | + (2x Cos y) K]
y
= 4x1 + (xye™ - Cos X) | - 2x (-sin y) K
azf A ~ . ~
= 4xl + (xye® - Cos X) ] - 2xsiny K (2)
0YyOoX
From (1) and (2), we have
o*f  o*f
oxoy - 0yoXx

Example 2 : If f =x2f-yf+xz|2 and § =yf+xf-xyz|2
2

Then find (fxg)

oxoy

A

Solution : Given f

2l -y j+xzK

g =yl+x]-xyzk

]k
then(fxg§) =|x¢ -y xz
y X —XyZ
— 2 e
:iA y Xlezl—j\x ):(Zyzl-'-kx y
X = y - y X
= (fxg)  =Txyz-%2)- ] (yz- xy2) +K (¢ +y?)
= (fxg) =f(xy22-x22)+i(x3yz-xyz)+|2(x3+y2)
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0% . o (0,;
N fxg)= —| —(fxg
ow 8X8y( xQq) ax(f ( Xg)j

(fx@) = %[(xyZz -xez) + (Cyz - xyz) |+ (03 +y)K]

0 A0 - 0 ~
— (xy%z - X22)I + — (X®yz + xyz) | + — (¥ +y)k
ay(y ) ay(y yz) | ay( y)

@xy2)l + (Cyz + xz) | +(2y)K

= aﬁy(fx@) = 2xyzl + (Cyz + x2) | + @)k

82 R a a A
f A = — | =—(f 0
Now axay( xg) X (ay( Xg)}
) %[(2xy2)f +03yz+ x2) |+ (2y)K]

0 ~ 0 s 0 o
= (2 I+ — (x3z + + — (2y)k
6x( yzX) x (X°z + x2) | x (2y)

2yzf+ (3x%z+2) ] + ok

2

6X6y( fxg) = 2yzl+ (3x%z +2) |

Example 3: If f =22f+yj°—x2|2 and § = x%yzl - 2xz3 j+x22I2

2

Then find aa (fxg)at(,1,1)

Xoy
Solution : Given f =2zi+yj-xk
and ¢ = x2yzf- 2x23 | + xz2K

I J k
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2

2z y
X°yz —2xz°

y =X
2x22 XxZ°

=1 (xyz2 - 2x32%) - | (2xZ® + X%yz)+ |2 (-4xz* - x?y?z)

2z —X
X°yz Xxz°

i +k

~
=1

0% . o0 ,;
N f x4 — | —(fx¢g
ow, xy( xQ) 6X[ay( XQ)J

9 [(xyz? - 2x3z3)f - (2xZ3 + X%yz) | + (-4xzZ* - x¥y?2) 12]

0 »
So, —(fxQ) =
oy
2(fA><gj) =x231 - x*z f-2x2yz|2
oy
Now -2 i(fxg) :i[xz3f—x4zf—2x2yz|2]
ox \ oy OX
=22 - 4x37 | - 4xyzK
2 . ~
=N fxg =72 - 4x3z | - 4xyz K
axay( g) ) - 4xy.
2 ~
Now fxg)latxa=1,y=1,z=1is
axay( g) atx: y
2 . R R
fxg)at(1,1,1) =1 -4]-4k.
8X6y( g)at( ) J
Self Check Exercise
Q.1 If f =xeyzl-2xz3 | + xz2k
g =2zi+yj-xk
2 A
Then find fxg)at(0,0,?2
8X8y( g) at ( )
Q.2 If f=xel+y2]+x2k

g =yzf+zxj°+xy|2
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2

Then find 0
oxoy

(AxB)

6.6 Summary:

Dear students, in this unit, we studied

1. The derivative of a vector function which is function of more than two variable.
A f of f .
2. If f = f(x,y, z) then Z—f — and Z—f represents the partial derivative of f
X z
with respect to x, y and z. These are also known as first order partial derivative.
3. If F = fi(xy, 2) +f2(x Y, 2) ] + fa(x, y, 2) K
then a—r=@|ﬁ+%j+a—f3l2
OX  0OX oX OX
o M My, Ky
oy oy oy oy
and a_r: 8_f1 |{\ +% I % <
0z o0z 0z 0z
4. Total derivative of vector function f is given by
drf = a—rdx +a—rdy+ a—rdz.
OX oy oz
7.5 Glossary
1. Function of more variable : f = f(x, y, z) is a function of three variable in x, y and
z.
2. Partial derivative : Derivative with respect to one variable where others variables

are constant.
7.6 Answers to Self Check Exercises

Self Check Exercise -1
Q1 ©O

2~

Q.2 3y2-3x]
7.7 References/Suggested Readings
1. R. Murray, S. Lipchitz, D. Spellman, Vector Calculus, Schaum's outlines:
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7.8

2. S. Narayan, and P.K. Mittal, Vector Calculus, S Chand and Company Limited.

3. J.N. Sharma and A.R. Vasishtha, Vector Calculus, Krishna Prakashan Mandir.

Terminal Questions

1 r 1 o 1 A
1. fF F==alu+vl +=@u-v) | + =uvk
Q 2( ) 2( ) | >

o o
ou’ ov' ou?

Then find {—
Q.2 Iff =x2yzf-2xz3f+x2212 and ¢ :22f+yf-x2|2

62
Then find the
oxoy

(fxg)at(1,0,-2)

*kkk
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Unit - 8

Gradient of Scalar Point Function

Structure

8.1 Introduction
8.2 Learning Objectives
8.3 Gradient of Scalar Field
Self Check Exercise-1
8.4 Directional Derivative
Self Check Exdrcise-2
8.5  Angle of Intersection Between to Surfaces
Self Check Exercise-3
8.6 Summary
8.7 Glossary
8.8  Answers to self check exercises
8.9 References/Suggested Readings
8.10 Terminal Questions
8.1 Introduction

Dear student, in this unit we will study about the partial differentiation of a scalar point
function, or scalar field, which is known as gradient of scalar field. We will also learn some of the
application of gradient like directional derivative and angle between two surfaces.

8.2 Learning Objectives:
After studying this unit, students will be able to
(2) explain the concept of scalar field.
(2) determine the gradient of scalar field.
3) determine the directional derivative of a scalar field.
(4) find the again between two surfaces for a given field.
8.3 Gradient of a Scalar Field

Since we know that many physical quantities have different values at different points in
space. Field a function which describes a physical quality at different points in space is called a
field.
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Also, we know that a physical quantity either have a nature of scalar or vector, so there
may be a scalar or vector field. Here in this unit we will study about scalar field.

Scalar Field:
A scalar field is a function that assigns a unique scalar to every point in a given region.

For example, density of air (in earth) is a scalar quantity that charges with altitude above
sea level. The temperature distribution in a headed body, gravitational potential of an object are
example of scalar field.

Since we know that every point in space can be denoted by Cartesian coordinator (X1 y1
Z). So we can write the scalar function or scalar field as f = f(X1 y1 z). This means that for every
point (X, y, z) in spaces, there exists a unique scalar field given by f(x1 y1 2).

Contour Lines or Curves:

Contour lines or contour curves are the lines which connect those points which are at the
same height above a fixed level. So contour curves are a pictorial representation of a scalar
function.

So, contour curve is curve in two dimensions on which the value of scalar field f(xi1y) is
constant.

i.e. fxay)=c

In order to define scalar field in three dimensions we need to define one more quantity
i.e.

Contour Surfaces:

Contour surface are the surfaces on which the value of a three dimensional scalar field
is constant. So, if a scalar field is defined by the function f(x1 y1 z), so contour surface would be
the collection of all those points (xi1 y1 z) for which the value of f is constant say c. So contour
surface is defined as f(x1y1 z) = c.

Gradient of A scalar Field:

Since you know that slope of a function is related to the rate of change. When a quantity
or function is dependent more than one variable then we use the concept of partial derivative for
rate of change.

Let and Q are two neighboring points in a region in which scalar field f(x; y) is defined.
The coordinate of point P are (x1 y) and that of Q are (X + Axy y+Ay) respectively. f and
f+A f represents the position vectors of the points P and Q. Then the change in f(x, y) as one
goes Q small distance from point P to Q is given by

Af=fx+ Ax,y+ Ay)- f(x1y) (1)
adding and subtracting f(x1 y + Ay)in (1) we get
Af= [f (X+Ax y+Ay)—f (xly+Ay)] + [f (x y+Ay)—f (% y)] (2

Multiplying and dividing R.H.S. by Ax and Ay respectively, we get
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[f(x+Ax,y+Ay)—f(x1y+Ay)] - [f(xly+Ay)—f(xly)]Ay“

Af=
/ AX Ay

(3)

taking limits of Ax —and Ay — 0,

[f (X+AX, y+Ay)— f (leJrAy)]

SR A
Lim&/= Lim v ‘
Ay—0 Ay—0
: f(xy+Ay)-f(xy)|Ay
cLim L )A (%)]
e y

Using the definition of partial derivative, we get

. . of (xy+Ay . of (xy+Ay
Limarss= L|m(—)dx+ le(—)dy
Ax—0 Ax—0 0 AX—0 8y
Ay—0 Ay—0 Ay—0

= AOY) g, FORY)
OoX OX
= df= of (4) dx + of (1) dy D
OX OX

Here df is known as total differential of f. So total differential of a two dimensional scalar
field f(x1y) is

_o(y) L 0w
OX OX

on generalizing the above result to three dimensional scalar field f(xiy), the total
differential is given by

df dy

of of of
ar= O o A OY) o, O O0Ye) ) 5)
OX OX OX
Rewriting equation (5) as
f o f 2 f ~ ) a ~
df = a—l+a—+ja—k (dx 1 +dy | +dx k) ...(6)
ox oy "oz

Where dx i +dy | +dx k= dr (7)

is the change in position vector.

and the vector, qiA+q+ jiﬁ =gradf =V f ..(8)
oX oy "oz
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is define as gradient of scalar field f(x, y, z).

Sodf=(VJ). dr ..(9)

Where symbol V is pronounced as 'del' and (@f) as gradient of f.

From equation (8), we can say that gradient of a scalar field is a vector.

Physical Interpretation of Gradient of Scalar Field
Since df = (@ 1). dr
Let of the angle between @f and dr is given by ©.
Then df=|Vf||dr|Cos®
df =|Vf|drCos® ...(10)

Following cases are true.

1. When 6 =90°i.e. @f is perpendicular to dr

df  =|V/|drCos 90°
=0
= df =0
= f is constant

= Value of scalar field is constant along the direction perpendicular to its gradient.

Note 1 :

= The vector @f is perpendicular (normal) to the surface f(x, y, z) = constant.

2. When © = O, let us keep dr constant and find the change df in various directions by
changing ©. Then the maximum change will occurs when © = O.
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ie.df= |V /| drcos®
Dividing both sides by dr, we get
df

— = @ cos ©
ar |V fl

(%) =|VflcosO= |V (11)

Then maximum rate of increase of the scalar field f is along the direction of the gradient
of the field V f and its magnitude is given by equation (11).
Note 2 :

The magnitude of @f gives us the maximum rate of change of the scalar field in space

3. When © = 180° : When dfr is in the direction opposite to @f then © = 180°, in that case
df n
— = |V f| cos 1800
dr
df ~
— = -|V/{] ...(12)
dr
Then this is the direction in which the rate of decrease of the field is maximum
Note 3 :

Maximum rate of decrease of scalar field f is given by equation (12)

Theorem 1 : The necessary and sufficient condition for a scalar field f to be constant is @f 0
Proof : Condition is necessary :-

Let f is a constant function,

ﬂ, ﬂ ﬂ = [by definition of constant function]
OX oy oz
Now, Vf = i|+q+1ik f
ox oy "oz
of . of .of »
= - J_k
6x 8y oz
= ©f=0
8f .A 6f Aaf A
= —I+—+]—k=0
6x 8y oz
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as two vectors are equal, is its components are equal

of of of
= &zo, Ezo, 2 =0
=f is independent of x, y and z
Hence f is a constant function.
Hence the proof.

Let us take some examples to calculate gradient of a scalar field.

Example 1: If f(X, Y, z) = X2y + y?x + z2 find @f at(1, 2, 3)
Solution : Given f(x, Y, z) = X2y + y?>x + 72

We know that V - |+ o ]+ o k

OX oy 0z

SoVy= (Z—;f+g—;+ IZ—fZIZJ Py +y?x + Z%)

~>

= q(x2y+y2x+zz)lﬁ+ ﬁ(x2y+y2x+zz) j+ ﬂ(x2y+y2x+22)
OX oy 0z

A

Vi =@xy+y)i+02+2xy) j+2z k
Now, taking x =1,y =2, z = 3 in above, we get

So (Vf )l23=(2x1x2+ 22 1 +((1)% +2x1x2) | +(2x3) K

Example 2 : If f =222 - X%, find @f and éx@fwhere a =231 - 3yz | +xz? K at 1,-1,1)

Solution : Given f = 2z? - X%
Now@fzﬂ I+ o ]+ o k
oX

oy 0z

Now, 2—; = %(222- x3y) = -3x%y
%: 83 (222 - x¥y) =-x3
y
Z_fz = % (222 - x3y) =4z
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Now 4&xVjf=|2xX -3yz xZ
3

-3’y -xX* 4z
2 xz

-3yz xZ
. -3’y 4z

- 4z

2%  -3yz

3

-3X’y =X

A

+

Il

~

— axVF (-12yz2 + x*22) | - (8x2z + 3x%yz2) | + (-2x° - Ox%y2z)+ k

Now axVf atx=1,y=-1,z=1
(8x V1) (1) = | 2(-0° (" +(@) @ | T- [8(°2+3(2] (-D(°] ]
+ | =22 -9(1° (V)| K

=(12+1)1-(8-3) j+(-2-9) k
=  (axVf)ean=131-5]-11K.
Example 3: Find Unit vector normal to the surface f (x1y12)
=x*-3xyz + z2+ 1 =0 at point (1111 1).

Solution: Since we know that Vf is a vector normal (perpendicular) to the surface f(x1y1z) =
constant So, in order to find, unit vector normal to the surface x* - 3xyz + z2 + 1 = 0, we have to
find vector Vf and its unit vector.

So, givenf=x*-3xyz+2z2+1

@f:ﬂf+ﬂi+aflz

OX oy oz

Now a = i(x4 -3xyz + 722+ 1) = -3xy
OX  OX
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—= x*-3xyz

oX

ﬂ:i (X*-3xyz+ 2?2+ 1)=-3xy + 2z
oy

ﬂzﬂ (X*-3xyz+ 2?2+ 1)=-3xy + 2z
0z 0z

=X VE = (@3- 3y2) T + (-3xy) | + (-3xy + 22) K
Now Vf atpoint(1:1i1)ie . atx=1y=1,z=1

- (@f) =(4-3)1+(-3) |+ (-3+2) k
111

So, (@f )111: 1-3]- K is the vector which normal to the surface x4-3xy3 + 32 + 1.
. . .. Vi . X
Now, Unit vector normal to given surface is = _f K=
\Y X
_ i\—BI—R _ i\—Sj\—lZ_ 1 ~ 2 ~
= — - 2_\/191_\/1_1(|—3]—k)
(I) +(-3)"+(-1) +9+

A 1 ~ a ~
Hence Unit vector normal to given surface is N :E (I -3 —k).

Example 4:  Find unit vector normal to surface x>-y*+z = 2 at point (1, -1, 2)

Solution: Given surface is f(x, Yy, z) = x?- y?+ z - 2, as equation of surface is
f(xy, 2 =0.
A ~ af 2 n
So Vf=i|+—1+ﬂk
OX oy 0z
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a_o (x%-y?+z - 2) = 2x
OX

oX
%= (%(Xz-yzﬂ -2)=-2y
g—fz = % (X2-y*+z-2)=1

A

VE=2xi-2y ]+ Kk

Now (W)at 1,-1,2ie atx=Ly=-1,z=2is

(@f )(11_112)= 211-2(1) j+ K

Now  Unit vector normal to surface x2 - y? + z = 2 at point (11-1; 2) is

20 +2] +k
(2)2 +(2)2 +1

21 +2] +k

Ja+4+1

(20 + 2] +Kk)

Bl

n==
3

Example 5 : The height of a hill is given by f = 50-x?y?. Calculate the maximum rate of change
in the height of the hill at the point (1, 2). What is its direction?

Solution: Since we know that maximum rate of change of scalar field is given by the magnitude
of Vf ie. |Vf|.

So, Here given f =50 - x?y?
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Now, @fzqf+ﬂi
X oy
of
_:_2 2
OX i
of 5
— = -2X%y
oy

Vf at point (1, 2) i.e. atx=1,y =2
A _ 2 .A_ 2~
(Vf )(112)_ 2.1.221-(2.1.2) ]

~
| -

—_—

=-8i-4

Now, maximum rate of change in f = ‘@f‘

&

maximum rate of change in f is 4\/5

Also the direction in which maximum rate of change of height is along the gradient of f at

(1, 2) and is given by (@f )(112) =-81-4]

Example 6: What is maximum rate of increase of f = x? + yz? at (1:-1; 3)?
Solution: Since f = x? + yz?

Since maximum rate of increase of f is given by Wf‘ So.

:8ff+ga+6fi2

vi= — j+ —
OX oy 0z

VE = 2x 1 + 32 i+2yz|2
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Now Vf at (1;-11 3)ie. atx=1,y--1, 2= 3 is

(@f)(1713)=2xf+9 j+6kK

Now maximum rate of increase of f at (1:-1, 3) = ‘(@f )

(1-13)

=21 +9 |-6K]|

Self Check Exercise - 1
Q.1 Find Vf where f = 3x2y - y3z2 at (11 -2; -1)
Q.2  Find normal to the surface 2xy? - 3xy - 4x = 7 at (11 -11 2)
Q.3  What is the greatest rate of increase of f = xyz? at point (1, 01 3)

8.4 Directional Derivative:

Whenever we find the rate of change of f(x, y, z) with distance S, at a given point P(x, v,
z) in the field, then this rate of change is known as directional derivative of a function with
distance S.

Let P and Q be two neighboring point on a field. Such that P = P(Xo,Yo, Zo) and Q = Q(X,
Yy, z) Let the starting point is P and in order to reach point Q the distance cover is s(>,0) along
the direction of unit vector $.

() ()’o\\dhg")

Here Sis unit vector in the direction in which the rate of change of the scalar field is to
calculated.
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So §=ai+bj+ck 1)
So the small displacement P—Q = s § is written as:

8 = (x-xa) T+ (yyo) | +)z-20) K @)
also in term of unit vector $can be written as

§ =sai +sb |+sck (3)
so from equ. (2) and (3)

sa =X - Xo, Y - Yo = sbh, Z-Zp = SC

= X=Xo+Sa, YS=Yyo+sh, z=2z,+scC (4)

Equation (4) represent that the variables x, y, and z are all now the function of single
variable s. The equations represented by equation (4) are known as parametric equation of line
PQ which passes through the point (Xo1y012o0) and (X, y, z) having parameter 8.

Since, X, ¥,Z2=X,Y, 2 (S), SO f(X,Y, z) = f(s)

o ... df . .
So directional derivative s can be calculated by using chain rule, as
S

i:i%jLaf ay 6f oz
ds oOx os oy 63 0z ds
Since, from equ. (4), X, y, z are only function of s, so
X _dx dy_dy oz de
s ds' os ds' os ds
Hence above equation can be written as

af _ of dx of dy of oz

— ~— (5)
ds ox ds 6y ds 6z 8s

Also, from equ. (4), we have

% =a, dy b % =cC (6)

ds  ds 0s
Therefore, using (6) equ (5) becomes

i = ag + bq + Cﬂ (7)
ds ox oy 0z

Since, we know that gradient of scalar field f is given by
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vi= g a
OX oy 0z

A o 2 f ~ o~ a ~
Now also Vf § = ﬂ| ﬂj-ﬁ-a—k . (al +bj+Ck)
ox oy o0z
@fé:aﬁ+bﬂ+cﬂ (8)
OX oy 0z
So from equ (7) and (8) we have
df Ao
— =Vf.$ 9
0 9)

i.e. directional derivative of a scalar field at a point in a given direction is the scalar
(dot) product of the gradient of the scalar field at that point and the unit vector along the given
direction.

Note:
If the direction is specified by any given vector $§ then directional derivative will be
df ~ S
ds S
* Directional derivative of a scalar field f is the projection of Vf on §.

Now, Let us try following examples for calculating directional derivative of a scalar field.

Example 1: Find the directional derivative of f=xy + yz + zx in the direction of vector
I +2] +2K at the point (112:0)

Solution: Given f(x, y, z) = Xy + yz + zx

of
Now, — =y+z
OX y
of
— =Xx+z
oy
aqA iy
0z y
So @f:ﬂf+@i+ﬂﬁ
OX oy 0z

o Vi=@+2)i+(x+2) J+ (0 K

150



Now, Vf atpoint (1,2, 0)ie.x=1,y=2, z=0is
(Vf )(1'2’0) = 20+ ]+3k
Now, we have to find directional derivative in the direction of vector §= 1 + 2}+2I2
_ I +2]+2k
V(2" +(2)

=  §= %(f+2f+2l2)

P

So, § =

»

Since we know that directional derivative is

i=©f.::~,
ds

= <2f+ f+3|2). % (f+2]°+2l2)

iz l(2+2+6)= 10
ds 3 3
Example 2: Find the directional derivative of f(x, y, z) = xy2 + yz2 at the point (2; -11 1) in the

direction of | + 2] +2K .

Solution: Given f(x, y, z) = xy? + yz2

of _,
OX -y
of 5
—=2xy+z
oy
of
— =3yz
0z y
Now szihiﬁﬁlz
OX oy z

_ \VAi :y2f+(2xy+z3) j+(3yz)l2

Now (ﬁf )(2 s (121 + (-3+1) |+ (-3) K

1

_i1-3j-3k
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= (v )(zrlll) = {-3j-3k

Also, given Si+2]+2k

P

§ =

»

F+2]+2kK

5

%(f+2f+2l2)

= S

directional derivative is
df

—  =vVf.$
ds
= (r-3j—3|2).1(f+zj+2|2)
3
1
=-[1-6-6
3[ ]
df -11
= — = —
ds 3

Example 3:  Find the directional derivative for f = x?y3z* at (2, 3, -1) in the direction making
equal angles with x, y, and z axis.

Solution: Given f = x?y%z*
of
— =2xy%z*
OX y
ﬂ = 3x2y? 74
oy
of
- = 4X2 3Z3
0z Y
. ~ o ~
Now Vf:i|+— j+ﬁ k
OX oy 0z

VE = (2xy3z%) 1|+ (3x¥y2Z%) | + (4x¥y32%) K
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Now, (%f) =108 1 + 108 | + (-432) K
(23-1)

N (Vf )(2'3]_1)= 1081 + 108 |- 432K

Since directional derivative is
df

— =(Vf).$§

5 - V)

But Here vector is not given, we have to find the unit vector S which is in the direction
making on equal angle (v) with x1y and z axis. Here we will use the concept of direction cosines.
So

A o ~ n
§ =cosl1 +cos | +cos k
So CO0S2 o€ + c0S2 o + cos? oc=1

= 3cos?xc=1

— 2 _1
=CoS“ o= —
3

= C0S? oc =

&l

1
J3

So the required directional derivative is

= 8§ = (iA+i+kA)

d = (vr).s
ds
(1081 +108 | - 432 k) i(h j+K)
- 1 (108+108-432)
J3
df 1
— = (-216
= & R
y

Example 4 : Find the directional derivative for f = at (0, 1) in the direction making an

X%+ y?

angle 30° with positive x - axis.
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Solution : Given f =

X +y
2 2
ﬂ _ (x +y ).0—y(2x) _ 2y
2
R N
of (C+Y’)1-yQ2y) xryi-y?  xoy?
oy (x2+y2)2 (x2+y2)2 (x2+y2)2
ﬂ = O
0z
. .~ of . X
So Vf=i|+—1+ik
OX oy 0z
2 2
Vvi= T2 XY
= 2 2\2 2 2)?
(¢ +y?) (x +y )
a —1 a 2~
Now (Vf )(011)— T J=-]
Since, we have to find the directional derivative along the direction making on angle 30°

with +ve x axis.

A

4 A
-
7 31

So using the concept of direction cosine, the direction cosine of this vector are cos 30°,
cos 60°

So § = (cos 30% i + (cos 60° |
. 3, 1. 1 A n
S = 1+—= ] ==(J3 1+
, 1t =5 (B
: TP 1< PN N
So, the required direction is S=7 I + > |

Hence directional derivative is
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ds

df
ds

Self Check Exercise - 2

Q.1 Find the directional derivative of f(X, y, z) = x?yz +4xz? at the point

(1, -2, 1) in the direction 2 I - j-2k.
Q.2 Find the directional derivative of f(x, y, z) = x> 2y? + 4z? at the
point (1, -1, 1) in the direction 21 + |- 2 K.

Q.3 Find the directional derivative of f = 2x®- 3yz at the point (2, 1, 3) in
the direction parallel to a line whose direction cosines are
proportional to 2, 1, 2.

8.5 Angle of intersection between to surfaces

-\

<2\
= AN
~ -4
e t—— ’uiq'-}al
| 1 G
9// __j/‘ /
/
SRS [N

Let f1 (X, Yy, 2) and f> (X, Y, z) be two surfaces and n; and n, are normal to surfaces f1
and f» respectively. Then the angle of intersection between two surfaces is equal to angel
between the normals to the surfaces at the point of intersection. Since we know that normal to

any surface is given by its gradient. So, @fl is the normal to the fi (x, y, z) and @fz is the
normal to surface f» (x, y, z), so angle of intersection between two surfaces is angle between
@fl and @fz at point of intersection and is given by
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Cos O = —le)-(?fz)
Vi |V,

Let us trey this concept, to find angle between two surfaces, using some examples.

Example 1 : Find angel of intersection between the surfaces x>+ y? + z2=9 and x>+ y?-z = 3
at the point (2, -1, 2).

Solution : Given surface are f1 = x>+ y? + z? =9 and
fo=x2+y?-z2=3

Now, we have to find Vf,, Vf, and | Vf,|, | Vf, |

Now Vi =Z—2 f+% j+%l€
Vi, =2xi+2y j+2zK
(%fl)z,_l,z =4i-2j+4Kk

Now,Wfll :\/]m:\/%=6

Again VA, :af—; |+ % j+ % k
VA, =2xi+2y |-k
(@fz)zﬁ12 =47-2]-k

| Vi, | = J16+4+1 = 21

If @ be angle of intersection between two surfaces then

Cos O = —Y fl'VAfZ
|VE [V,
(4|’+21"+4|2).(4F—2j—|2)
= Cos © =

6+/21

_16+4-4 16

621 621
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Cos © = —
3/21
8
= ©)] =Cos?t| ——
{Nﬂj

8
Hence angle between two given surface is COS'{ j
3J21

Example 2 : Find angel between the surfaces xy?z- 3x - z2 =0 and 3x?- y? + 2z = 1 at the point
1, -2, 1).

Solution : Given surface are f1 = xy?z- 3x - z2 = 0 and
fo=3x2-y?+2z=1
We have to find @fl,@fz and Wfll, I@le

. . Of . .
So Vi =a—f1|+—lj+%k
OX oy 0z
Vi, = (y?z -3) 1 + 2xyz | + (xy* 22) K
(Vfl)(H‘l) =1-4]+2Kk
|V, = J1+16+4 = J21
. . of, .
Again VI, Sy B gy oy
X oy z
VA, =6xi-2y j+K
(sz)(l,—zl) =61+4 |+2Kk
Now |V, | = /36+16+4 = /56

Now CosO = w
| VE IIVE, |

(f—4j+2l2).(6f+4i+2l2)

V2156
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8.6

6-16+4 _ -6

-6
24/294
6
24/49% 6

-6

146

-3
= Cos © —=
76
-3
C] =Cos?| —=
76 j
) = 005-1[_—3j [ Cos(- ©) = Cos O]
7./6 '
Self Check Exercise - 3
Q.1 Find the angle of intersection between surfaces x? + y2 + z? = 29
and X2 +y?+z2+4x-6y-8z=4at (4, -3, 2)
Summary:

Dear students, in this unit, we studied

1.
2.

Field is a function which describes a physical quantity at different points in space.

Scalar field is a function that assigns a unique scalar to every point in a given
region.

Contour surface is the collection of those point for which value of scalar field is
constant.

1% =i i J i k is known an operator known as 'del' operator.
ox oy oz
ES , , o re Qs 0 2 0 p
V f is gradient of scalar field and is given as Vf = 8_ 6_ | + p Kk
y

vf gives the normal (perpendicular) to the surface f (%, y, z) = constant.
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8.7

8.8

7. Wf‘ gives the maximum rate of increase of scalar field f .
8. The necessary and sufficient condition for a scalar filed f to be constant is
Vi=0
9. Directional derivative of a scalar field at a point in a given direction is dot product
of gradient of scalar field and the unit vector along that direction.
daf - S
—=Vf. —
ds | S|
10. Directional derivative is a scalar quantity.
11. Directional derivative of scalar field f is the projection of @f on S.
12. The angle of intersection between two surface is equal to angle of intersection
between their normals and is given by
(VE,)-(¥5, )
Cos O = "
Vi |V,
Glossary
1. Projection Vector :The projection of one vector over another vector is the length
of the shadow of the given vector over another vector.
2. Direction Cosine :These are the cosine of angle made by given vector with X, y
and z axis.
3. Intersection :The point where two vectors meets or cross each other.

Answers to Self Check Exercises

Q.1
Q.2
Q.3

Q.1

Q.2

Self Check Exercise - 1
121-9 j-16k
7i-3]+8k

9
Self Check Exercise - 2

; 1%
VA
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Q.3 11

Self Check Exercise - 2

E
Q.1 ©6=Cos1 29

8.9 References/Suggested Readings

1. R. Murray, S. Lipchitz, D. Spellman, Vector Calculus, Schaum's outlines:
2. S. Narayan, and P.K. Mittal, Vector Calculus, S Chand and Company Limited.
3. J.N. Sharma and A.R. Vasishtha, Vector Calculus, Krishna Prakashan Mandir.

8.10 Terminal Questions
Q.1. Provethat V f(r) = f() = Vr where f =xi +y| +zK
Q.2 Find V ffor f = 3x%
Q.3 Find the unit normal to the surface z = x? + y? at (-1, 2, 5)
Q.4 Find directional derivative of f = (x2+y2+zz)}/2 at the point (3, 1, 2) in the

direction of the vector yzi + zx | + xyk

*kkk
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Unit-9

Divergence of A Vector Field

Structure

9.1 Introduction

9.2 Learning Objectives

9.3 Divergence of Vector Function
Self Check Exercise

9.4 Summary

9.5 Glossary

9.6  Answers to self check exercises

9.7 References/Suggested Readings

9.8 Terminal Questions

9.1 Introduction

Dear student, in this unit we will study about one another operator application on vector
point function, just like gradient. Since gradient is operated on scalar point function of scalar
field. But when same operator del or Vis operated by means of dot product on vector point
function, we get a new term known as divergence of vector. This is one of the important
fundamental operator. Divergen generally describes the behavious of a vector field moving
toward or moving away from a point. We will study in this unit how to apply divergence operator
and its application along with its physical interpretation.

9.2 Learning Objectives:

After studying this unit, students will be able to
define vector point function and vector field.
define divergence of a vector.
give physical significance of divergence.

apply and solve divergence operator or a vector function.

a M wnh e

Check what a given field is solenoidal or not.
9.3 Divergence of A Vector Point Function

Vector Point Function : A vector point function is defined as a function which assigns a
vector to every point of a part of the region of space. If to every point (x, y, z) of a region X in

space, there is assigned a vector F=F (x, Y, z), the Fis called a vector point function and the
function is represented as :-

161



F =Fuxy, 2T +Faxy,2) ] +Fa(x y, 2)k
Divergence of a Vector Point Function :

The divergence of a vector field is a scalar field. The divergence is generally denoted by
"div". The divergence of a vector field can be calculated by taking the scalar product of the
vector operator (V), applied to the vector field. i.e. V.F (X, y)

If F (x,y, ) is the vector field in 3-dimension i.e.

|3=F1F+sz° + F3k

Then V.F = ir-l-ii-i-éﬁ (Fal +F | +FsK) [V = EHQHQR ]
ox oy oz ox oy oz
B LY LS L 1 I S L L B L Y
oX oy 0z oX oy 0z
ci (g O, oy
OX oy 0z
LTS L i=]j=kk=1
ox oy o0z
f.j=].i=.k=k.i=
j.k=k.]=0

R, R, OF

~V.F= ek}
oXx oy oz

This is the expression of divergence of F in component form.

Physical significance of Divergence

Divergence of vector quantity indicates how much the vector quality spreads out form
the certain point.

Imagine a fluid with the vector field representing the velocity of fluid at each point in
space. Divergence measure the net flow of fluid out of a given point. If fluid is intead flowing into
that point, the divergence will be negative.

A point of region with positive divergence is often referred to as a source (of fluid or
whatever the filed is describing) while a point or region with negative divergence is sink.

If div. v = 0. then the fluid entering and leaving is the same i.e. the fluid is incompressible
and vector is called Solenoidal vector.

Solenoidal Vector:
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A vector point function F is said to be solenoidal vector if its divergent is equal to zero

i.e.div. F=0atall points of the function. For such a vector, there is no loss or gain of fluid.
of  OF, OF_

VF =
oXx oy o0z

Physical Meaning of the Divergence:

The divergence measures How much a vector field "Spreads out" or diverges from a
given point. For example Fig (1) has positive divergence at P, Since the vectors of the vector
field are all spreading as they move away from P. The figure (2) in the center has zero
divergence everywhere Since the vectors are not spreading out at all This is easy to compute
also, since the vector field is constant everywhere and the derivative of constant is zero. The fig
(3) on the right has negative divergence since the vectors are coming closer together instead of
spreading out.

r ' )3 B - ~) & | AN N
% | [sg ™ &g | A% " ./'l
\ - : ) \
| ~Ne! 77, - N o~ g AT
|_* o7 otk , arAghs —— 1 diy-
= : 3 , 3 o s
| # |y 2| divegen g Yy | ey R s .'
[ ) | | I ‘ AT % ‘
lf 10N l\\;\, . | < JIVK]
/N - - S  — e —
| P "' ) r" 'al'l :'(’ ‘5:’
I+ ""j \ ' \* !

Some Related Questions:
Let us try to apply divergence operator on some vector function field.
Example 1: Find the divergence of a vector A = 2Xf+3ﬁ+5ﬂ2.
Solution: By definition
oF  OF OF
oxX oy oz

div. F= VF=

b 8 d
= &(ZX) + 8_y (3y) + 5(5)

=2+3+5
=10
div. F =10

Example 2: Show that A= (3y“z?){ + (4x°z?) ] - (3x2y?) kis solenoidal.
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Solution: Given A = (3y*z2)i + (4x322) J (3x¥y?) k

By definition for Solenoidal
div. F = V.F=0
A A= %(By“zz) + 8%(4)(322) + %(BXZyZ)
=0+0+0
=0

Here A.A=0

Thus, A is solenoidal

Example 3: Find the divergence of position vector r= X+ yf-;— 4

Solution: Given r =X+ +2
dv.=v=7 2+l gl
OX oy 0z
vi=[i e i Lkl o +yi+ )
oXx "oy o0z
X % oz
oX oy oz
=1+1+1

Divergence of position vector r=3

F ~ ~ n
Example 4: Show that div. (?} = Z ris magnitude of f = X + Y]+ ZK.
r

Solution: We have r = ‘r ‘ = JC+Yy?+Z% --|r = Xi +Y]+ZK position vector|

Therefore a_r = X =X
X ety +Z T

a_y oa_z

oy roy r
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+
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ox \ r oy \r 0z
(1 X 8rj 1 y or (1 z or
= ||t S|+t | =
r r® ox ror? oy r r? oz
_£}_1 z] .
o2 ror?r ror?'r ox’ oy’ oz

(}_ll + [1—£.Ej {.-usingthevalueof a o 6—1

{(y2+22)+(X2+22)+(X2+y2)} [0 2= %2 +y2 + 79

r
div [—J -2
]

-

Example 5: If & be unit vector, show that div (€. r) é = 1.

Solution: Let € =e1i +e, | +e3K., where el + e2 +eg2 =1

and I = {(ej+gi+gl2).(xiﬂ+yj°+zlz)} é

= (elf+ezj°+e312) (ex+ey+ez)
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=ei(ex+ey+ez)i +e(gx+ey+ez) | +es(ex+ey+ez)k
=Y a(ex+ey+ez)i
div (é.7)é

0
= Z&el(em%ww)

_ 2
=2.8
=g’+e +¢
=1
= div(é.r)é=1
Hence proved
Example 6: If A =x%z{ +yz? | - 3xyk and B = y2{ - yz | + 2xK
Find () (V.ﬂ) B (i (VE) A.
9

Solution: (i) We have V.A = i(xzz) +
OX oy

0
(yz°) + a—(-3xy)
Z
=2xz+ 28
Hence (V.TA) B=(2xz + 2%) (Y21 - yz | + 2xK)
(i)  Here (VB) = %(y?) + a% (y2) + %(zx)

=0-z+0
Hence (VB) A =-Z(xzi +yz® |- 3xyK)
Example 7: Show that the vector F = 3y*z{ + 4x3z2 ] - 3x%y2k is solenoidal.
Solution: Given that F = 3y*z{ + 4x%z2 J - 3x2y2k

Therefore div F = V.E
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0 0 0
_34 + 432+__322
aX(yZ) _ay(xz) az( X7y*)

=0
This, shows that F is solenoldal.

Example 8: Find the value of constant a so that the vector F = (X + 3y)i + (y - 22) j+ (x + az) k
is solenoidal.

Solution: Given F = (x + 3y){ + (y - 22) | + (x + az) K
div. is a solenoidal field.
By definition of solenoldal vector we have div F =0
So,div F = V.F
a o~ a 2 a ~ ~ N A
=| —l+—]+—k|. | (x+3y)i +(y—-22z) j+(x+az)k
260 10 k) [ (y-2) T (e

0 0 0
= —(XxX+3y)+ —(y-22) + —(x +
ST o y-22)+ —(x+az)

VF =1+1+a=2+a

Since V.F =0
= 2+a=0
= a=-2

Example 9: If & is a constant vector, then find div (f xa).

A

Solution: Given & is a constant vector, also we know that f = xi + y |+ zk is known as
position vector.

Let & = aii + az | + ask where ai, a, as are components of & in x, y and z direction
respectively and are constant.

-

o < -,

k
Now, fxa =|x z
CY &
=1 (asy - @22) - I (asx - a1z) +k (82X - awy).
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Now div (fxd)=V.(fx4&)

6 ~ 8 2 8 ~ ~ ~ A
1+ +—kj. [(agy—azz)l —(ax—2a,2) | +(a2x—a1y)k}

- % (ay-a2)- 2 (ax-az) + L (ax-
= o (BY-22)- o (ax-az) + - (ax-ay)
=0-0+0

div (rxa)=0

Self Check Exercise

Q1 If F X, y, z) = éi+ yzj— yz2k then find the divergence of

F at (0, 2, -1).
Q.2 Showthat V. (&xf) =0
F(r)-
Q.3 Show that V. { (r)r} = riz(;j—r(r2 f) where f(r) is arbitrary
r

differentiable function

Q4 If A=xi+yz J xzk and f = 3x2 yz. Show that
W  A(VH=(A.V)f

Q.5 Find V.V fat(1, 1, 1) where f = 2x3y?z*

9.4

Summary:

Dear students, in this unit, we studied that

1.
2.

Divergence operates on a vector field but results in a scalar field.

Divergence of a vector field can be found by taking the scalar product of the
vector operator % applied to the vector field F . Thatis, V. F X, Y, 2).

Divergence shows how the field behaves towards or away from a point.

Divergence of a vector field is the extend to which the vector field flux behaves
like a source at a given point.

A vector field with zero divergence everywhere called solenhoidal. In this case any
closed surface has no net flux across it.
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9.5

9.6

9.7

The divergence of a vector field is often illustrated using the simple example of the
velocity field of a fluid, a Liquid or gas.

Glossary

1. Scalar Quantity :A scalar quantity is described as a quantity that has only

magnitude but no particular direction. For example volume, energy, speed, mass
density and time.

2. Vector Quantity :Vector quantity is described as the quantity that has both
magnitude and direction. For example-force, velocity.

3. Vector Function :A vector function is that which assigns a group of real
variables to the vector. It is represented in general form as

V = Vi(P1,P2,Ps,......... Po) | +Va(Py, P2, Payennn., Pn)
+V3(P1, P2, Payerenen.. Pn)k
Where Py, Py,....... P, can be considered real numbers

4, Vector Field : A vector field is a vector point function defined over some region.
A vector field that is not dependent on time is called a steady state vector field or
stationary.

A vector field varying with time is represented as :

V=Vi(p,a,nt)+Vap, a1 t) ] +Va(p, g, 1, K
Examples: (i) Magnetic Field
(i) Gravitational Field.
Answers to Self Check Exercises

Self Check Exercise - 1

Q1 4

Q.2 Verified
Q.3 Verified
Q.4  Verified
Q.5 40

References/Suggested Readings

1. Vector Analysis by J.G. Chakraverty and P.R. Ghosh.
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2. Analytical Geometry of two and Three Dimensions & Vector Analysis by R.M.
Khan

Terminal Questions
Q.1. Finddiv Ffor F (x, Y, 2) = (xy, 5-22 X2 +y?)
Q.2 Showthat V. {F(r)f} = 3F(r) + r F(r)

vi

_2F
r 3

r

Q.3 Showthat V

Q.4 Show that the vector F = (x + 3y)f+(y +az) | +(x + az) IZis a solenoidal if a = -2.

Q.5 Compute the divergence of the vector field

F (X, Y, z)=x2f+ sz-ylz

*kkk
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Unit - 10
Curl of a vector Field

Structure
10.1  Introduction
1.2 Learning Objectives
10.3  Curl of a Vector Field
Self Check Exercise
10.4 Summary
10.5 Glossary
10.6 Answers to self check exercises
10.7 References/Suggested Readings
10.8 Terminal Questions
10.1 Introduction

Dear student, in last unit we studied about the divergence of a vector field in which we
operate the del operator on a vector field using scalar product or dot product. In this unit we will
study about how did operator is applied on a vector field using vector product or cross product.
When del operator is used to vector product of a vector field then it is known as curl of a vector
field. It this unit we will study about curl, its physical meaning and application.

10.2 Learning Objectives: After studying this unit, students will be able to

1. define curl of a vector field or function.

2. give physical meaning of curl of a vector.
3. evaluate the value of curl of a vector.

4, prove that a given field is irrotational field.

10.3 Curl of a Vector Point Function

Vector : Vector is a physical quantity that has magnitude and direction
Vector Point Function :

A vector point function is a function that assigns a vector to each point of some region of
space. If to each point (x, y, z) of a region R in space there is assigned a vector F=F x, ¥, 2)
then F is called a vector point function. Such a function would have a representation

F =106y, 2T+ f20, ¥, 2) [+ falx, y, D)K.

A

Where f1, f», f3 are components of F along x, y, z direction respectively.
Curl of a Vector Point Function :

Curl of a vector field is a measure of its rotation at a particular position. Curl of vector
shows how much the vector field rotates or circulates around that location. The curl is a vector
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qguantity itself and is defined as the cross product of the del operator and the vector field. It is
represented as,

VxF , Where F represents the vector field
it F =Fix, Y, 2)1 + f20%, Y, 2) | + fa(x, y, 2) K.
k

| J
then VxF = i ﬁ 2
oX oy o0z
FE F F

oF, _oF, ), [iﬁjj oF, oR),
8y o0z oxX 0z ox oy

Properties of the Curl:
Curl of a vector field is another vector field.

The curl of a scalar field V, V x V makes no sense as its is not defined.
A vector field E is conservative if curl F = 0

or if curl F = 0 then vector field is said to be irrotational.

Physical Interpretation of the Curl :

The curl of a vector field measures the tendency for the vector field to swirl around.
Imagine that the vector field represents the velocity vectors of water in a lake. If the vector field
swirl water, it will tend to spin. The amount of spin will depend on how we orient the paddle.
Thus, we should expect the curl to be vector valued.

The swirling tendency can be shown as in the figures given below.

//1&"‘_\\,\' \\ | \\\’ L\\‘///
Y i
T W A M e
i = = P ] =oq
Whaial g SU PP
T | RS N AL
B
Swirhey dendore, No SU\liohJ lChdlnLy No Slﬂl'ﬂ"g
VP 10 VB0 VX
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Some Related Questions :

Let us try following examples to have more understanding of curl of a vector field.
Example 1: Find the curl of a vector field G (XY, 2) = (X2, yz, Xyz).
Solution: Given G (X, Y, 2) = (X3, yz, Xyz)

= G1=x% G2 =yz, Gz = Xxyz

[
VXG:E
OX

G, 5
_(96: 06, (26 06, (96, 3G ),
oy oz ox 0z : ox oy

[0 O & (0 n Oy [0y |
-(ay(xyz> aZ(yz))u (ax(xya az(x)j [axwz) ay(x)]k

Qo =

j

2 .'ﬁ=f£+i£+l2i
oy OX oy 0z
G,

®

= (xz-y)i -(y2) | +0K
= curl G =(xz-y)i -(y2) ]

Example 2: Determine curl of the vector field:

1 . . . .
T = r—zcos 0ar+rsin0cosdad+cosb.a¢

Solution: If A=Arar+A0a0+Ad.4ad
a rédd rsinfag

o 9 d 1
or

the Vx A = — — X —5—
060 o¢ resne
Ar rAg rsindA¢
1 oAY 1( 1 oAr 0

= Snf)—-——- |ar+=| ——-——(r A

rSné ((M ) a¢j r [sin@ ol ar(M)jw

1
+ —

0 OAr \ .
HLm)- 2 )

: =_ 1 . : A A
Given T= —cosfar+rsin®cos$ao +cos6. ad
r
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1
rsing

Then VxZ\ =

0 . 0 A
{E(T¢sm9) —%(TH)} ar+

1 1 0 0 . 1| 0 0 R
- {w%ﬂ —a(rT¢)} a 0+? {g(rTH)—g(Tr)} ag

= 1 i(cosé?sine)—i(rsinecosqﬁ) ar+

rsné | oo op

1| 1 o0 (cos@) 0O 110 ,,. 0 (cosf )| .
- — ——(rcos@) | af+=| —(r°sinfcosg)——
r{sin@«%( r j ar( )} r{ar( 2 89( re ﬂa(ﬁ
= —— [cos20+rsindsing] ar +£[—cos¢9] a0

rsind r

siné
r.2

+ %{erinecos¢+sin¢ }éqﬁ

cosd

C052'9+sin¢} ar - — ao + {ZCOS(ﬁ%} sing &g
r

rsnd

VX_A’:[

Example 3 : For a vector field A, show explicitly that V.VxA =0 that is the divergence of the
curl of any vector field is zero.

Solution : Let A =Axi +Ay| +Azk

]k
VX_A.:E i ﬁ
oX oy oz
Ax Ay Az
oy 0z oX 0z oxX oy
V.VXK: f£+ji+l22 . 8Az_8Ay f—(aAZ_aAij+ @_aﬂ |2
ox "oy oz oy o0z oX 0z ox oy
_ 0 [orz_ony _3(@_@}3 oAy _ oA
ox\\oy 0z ) oy\ox o0z ) oz\ ox oy
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_ A PN Az A OAY OAX
OXoy OXoz OXoy oyoz OzOX 0z0y
=0

=  V.VxA=0
Divergence of the curl of any vector field is zero.

Example 4 : Given F = (xy - xz)f +3x ] + yzl2. Find curl F at origin (0, 0, 0) and at the point
P=(1,2,3).

] ik
Solution : Curl F = VxF = Q i ﬁ
OX oy oz
Xy—xz 3X yz
_8 a 2 S a a a
=|— ——(3BX) |1 + | —=(xy—x2)——
)2 )} [az(xy ) ax(yz)}l

9
| OX

(3x2)—%(xy—xz)} K.
=zi +xf + 5xk

At the point (0, 0, 0) Curl F- 0

At the point (1, 2, 3) Curl F-3-]+5k

Example 5 : Show that 0 = x2i +y2] is irriotational.

Solution : Given 0 = x2i +y?]

]
S Curll =VxU = ﬁ
OX

y
6 0, .0 To., 0.7,
{5(0)5@ )} : {E(x —&(0)} ]
o L 0. .
+{&(y)_6_y(x)}k'
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=0i +0] +0Kk
=0
= Curll =0

U is irrotational.

I:’

m

Example 6 : Show that Curl ( ) = O where r =|T |

-~

. _ r X a 2 Z ~
Solution : We have W (r—mj = Vx[r—m| +rlm | +r_mkj

Pk
1o o o
“lox oy oz
X y z
oo

Example 7 : If &be a unit vector, show that curl {(éx7) xé}= O

Solution : |éxT

.€) é.é=|é)P=1
Therefore, curl {(éx7) x€}= curl {(F.€)é-T1}
=curl (.é)é-curl T
=curl r
=0
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curl {(éxr) xé} =0
Example 8 : Find curl of F =ixcosz+ fzylogx+ k 22,

Solution: Given F =i xcosz+ jzylogx+ kz2

) | K

socul F=vxF=| 2 9 90
OX oy 0z

xcosz ylogx Z7°

-5

o, 0 } G{a , 0 }
—2z"——ylogx| - || —2Z ——Xxcosz
OX

o a oz
+I2_2ylogx—£xcosz
| OX oy '
= [0-0]-] [0+xsinz]+ k(ij
X
cul F =-xsinz j+ % K

Example 9: If F = (x+y+1) i + |+ (-x-y)K. Then prove that F.curl F=0

Solution : Given F = (x+y+1) i + |+ (-x-y)K

K
— — 0
then curl F=VxF = i
0z

%’|Q) —

]

0
ox
X+y+1l 1 —-X-y

oo, o [, 0

=1 E (=x-y) az(1)} J{—ax( X—Y) az(><+y+1)}
[ o 0

+ k _&(1)—a—y(x+ y+1)j|

P[-1]-7 [-1]+ k(-2)]

=-i+]-k
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cul F =-i+] -k

Now, F.curl F=[(x+y+1) i + |+ (x-y)K]. (-1 +] - k)
= - (xty+l) + 1.1+ (-x-y)
=-Xy-1+1+x-y
=0

= F.cul F=0
Example 10 : If F=z1i+x f+yl2 prove that curl curl F=0

Solution: Given F =z 1 +x]+yKk

A
curl F = 9 9 9
oX oy oz
z Xy
|y _ax] ;[@_@}
|0y 0z oX o0z
LR x_oz
| OX 0Oy |
=T@-7 (-D+ k@O
cul F =1+] +Kk
]k
Now, curl curl F = Vx(VxF )= 9 0 9
oX oy oz
1 1 1
=0

[.. 1is constant and its derivation w.r.t. X, y, z is zero]

Example 11 : Find the constant a, b, ¢ so that the vector F = (X +xy + az)f + (bx - 3y - 3) |+
(4x +cy + 22)I2 is irratational.

Solution :- Since F = (x+2y +az)l +(bx-3y-3)]+@x+cy+ 22)I2
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Since, we know that a vector F is irratational if

curl F=VxF=0

a
|

» X

9 9
OX 0z
X+2y+az bx—-3y-z 4x+cy+27

curl F=

\%)|Q) —

0 0 1 .o 0
=i | —(4x+cy+22)——(bx—-3y—-2) | - —(4x—cy+272)——(X+2y+az
S xroyr29- L (ox-3y-) J[ﬁx( ov+22)- L (xe2y )}

0 0
+ k &(bx—sy—z)—a—y(x+ 2y+az)]

[ [c+1] -] [4-a] + K[b-2]
So, curl F= 0, For irrotational fields.

=  =(c+l)i-(4-a)j +(b-2k =0i+0] +0k

A A

Using the concept of equality of two vectors, equating coefficients of = I, | and K.
c+1 =20 =c=-1
-4-a)=0 —a=-1
b-2=0 =>b=-2
So,a=4,b=2,c=-1
Self Check Exercise
1. Find the curl of a vector field F(x, y, z) = (2xy, -yz?, Xz)
2. Determine curl of the vector field
Q= pSinpap+p’z 4¢ +zCos ¢paz

3. Determine if the vector field F = yzzf +(xz2 +2) | + (2xyz - l)IZ is irrotational.

4. Verify div (curl F) =0 For the vector F = yz2i +xy |+ yzK

5. Show that () =

(i)  V.(axF)=0
(i)  Vx (dxF)=2



6. Find A, = and v so that the vector

F =(@x+3y+12z)i +(nx+2y+3z) ]+ (2x+vy+32)k is irrotational.

7. Showthat E = 2 +%

> 5 IS irrotational.
X +y

10.4 Summary :

Dear students, in this unit we studied that

1.

The curl of a vector field is a mathematical operation that measures the tendency
of the field to rotate around a point. It gives the vector quantity representing the
rotation of the field.

Mathematically, the curl of vector field F in three dimensional Cartesian

coordinates is denoted byVXE. It can be calculated using a determinant
involving partial derivatives of the component of the vector field.

Physically, the curl represents the tendency of a vector field to circulate or form
vortices around a point.

The curl operation is linear meaning that it satisfies the properties of linearity,
scaling and addition. It also obeys the product rule and satisfies certain identities,
such as the vector identity involving the cross product of gradients.

The curl of a vector field is zero if and only if the vector field is "irrotational"
meaning that it does not exhibit any rotational motion. This typically occurs in
regions where the vector field has no tendency to swirl or rotate.

10.5 Glossary

Scalar Field: A scalar point function defined over some region is called a scalar
field. A scalar field which is independent of time is called a stationary or steady
state scalar field. A scalar field which varies with time would have the
representation.

u= ¢ (XY, zt).

Vector Field: A vector point function defined over some region is called a vector
field. A vector field which is independent of time is called a stationary or steady
state vector field. A vector field that varies with time would have the
representation.

F=f%Y, 2,01 +faxy,2,0 ]+ fax, y, 2, OK

Examples: Gravitational field of Earth, Magnetic field generated by magnet

Del, V = g ji+ k2
OX oy 0z

10.6 Answer to Self Check Exercise
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1. B-x)0 +(z-2y)k

-1
2. F(zsin¢+p3) 4p + (3pz-cos $p)éz

Irrotational i.e. curl G = 0.
Verified it using the concept of curl and divergence

3
4
5. Verified this using the concept of curl
6 A=2,r=3,v=3

7

VxF =0 So irrotation.
10.7 References/Suggested Readings
1. Vector Analysis by J.G. Chakravorty and P.R. Ghosh

2. Analytic Geometry of Two and Three Dimension & Vector Analysis by R.M.
Khan.

10.8 Terminal Questions

Consider the vector field H (x, ¥, 2) =(z, x, y). Find the curl of given vector field.
Find the curl of vector field F(x, y, z) = (e* Cosy, €’ sin z, e c0s X).
3. Determine curl of the vector field
P=x2yz ax+xz az
4. Determine if F = X2y 1 +Xyz | - x2y? Kis an irrotational vector field
5. Determine if the vector field is conservative where
F =6xi + (2y-y?) | + (62 - )k

*kkkk
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Unit - 11

The Laplacian Operator

Structure

11.1 Introduction
11.2 Learning Objectives
11.3 The Laplacian Operator
Self Check Exercise
11.4 Summary
11.5 Glossary
11.6  Answers to self check exercises
11.7 References/Suggested Readings
11.8 Terminal Questions
11.1 Introduction

Dear student, in this unit we will study one more operator of vector calculus, which is
known as Laplacian operator. This operator is named after Pieue Simosn de Laplace. When we
combine divergence after with gradient, we get Laplace operator. So, this is nothing but
divergence of gradient of scalar function. In this unit we will study about this operator and how to
apply Laplace operator on a function. On the basis of Laplace operator we will dyino a Harmonic
function and Laplace equation.

11.2 Learning Objectives:

After studying this unit, students will be able to

1. define Laplace operator
2. define harmonic function
3. solve questions related to Laplace operator.

11.3 The Laplacian Operator (Vz)

The Laplace operator or Laplacian is the divergence of the gradient of a function
i.e. V.Vor V?, where V is the nabla or det operator, which is a vector operator, where as V?is
a scalar operator.

(1) In two dimensional : (a) in Cartesian Coordinates': Let f be a scalar point
function.
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then, Vf= ﬂ ﬂ i
ox oy
2 2
= V.(Vf):VZf:8];+%
OX oy
(b) In polar coordinates:

Vif==

1of o*f 1 6°*f
rox ox: r?o06°

where r represents the distance and 0 is the angle.

(i) In three dimensional:
@) In Cartesian coordinates:
2 2 2
oX oy 0z
(b) In cylindrical coordinates:
2 2
vf= 10 i 12 o°f N ﬂ
P oP oP P? 0¢° fordd
Where P represents the radial distance, ¢ the azimuthal angle and z the height.
(© In spherical coordinates:
2 2 of 1 0 1 2
V2f=af 22w [aned +ﬁa—fz
o> r or r’sing 00 00 resin“6 og¢

where ¢ represents azimuthal angle and 6 is zenith angle.
Harmonic Function

A function u(x, y) is known as harmonic function when it is twice continuously
differentiable and also satisfies the below partial differential equation i.e. the Laplace equation.

VZu=uxx+uyy=0
or

o’u  d%u
VZU = - + -~ =0
oX oy
That means a function is called a harmonic function if it satisfies Laplace equation.
Some Related Questions:

To have more understanding of caplace operator us after following examples:
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Example 1: Showthat V.V f =40 at (1, 1, 1), where f = 2x%?z*.

A o° o° &
Sqution:WehaveV.Vf:( + +—|f

ooyt oz
2 2 2

= 12xy?z* + 4x3z* + 24x3y?z?
= V2f=|ain= 12(1) + 4(1) + 24(0)
Therefore V.V f |11 = 40

Example 2: Find the value of % (éj
r
2 2 2
Solution: We have VZ(éJ = 8_2+6_2+8_2 (éj
r ox- oy~ oz r
2 2 2
SO (X)L (X)X "
ox*\r*) oy*\r*) o2 \r®
Now i X —i%ﬂ
Coox\r? r*ort ox
13 x
ot
1 3¢
- 3" 5

0% (x 0 (1 3%
ox- \r oxX \r r

-1or 6x 15x° ar

r* ox r° ré  ox

-X 6X X3
=% "5 "=

r r

-7x  15%°

re r’
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5 7

o (xj _ =3 15%°
r r

= +
3 5 7

0° (xj _ =3x  15x7°
r r r

Therefore, equation (1) becomes
X -7x 15%° —3x  15xy? —3x 15x7°
VZ(FJ :( 5 j+(r5+ R R TR

_—13x 15x(x2 +y+ 22)

rs ¥ r’
_13x  15x
= r_5 + r_5
2X

Example 3: Find the Laplacian of the function V = x? + y2 + z2,
Solution: Given V = x2 + y2 + 72,

_ az\/+az\/ o _ 0

0 0
Py 6y2+822 _y(x2+y2+zz)+a—y2(x2+y2+zz)+E(x2+y2+22)

V2V

_ 0 9 g
= @0 @ @)

=2+2+2

=6

.. Laplacian of given function = 6
Example 4: If ¢ = 2x3y2z* find V.V ¢ or V?¢.
Solution: Given ¢ = 2x3y?z*

a A a a a ~ a ~ a S 8 ~
Now, V.Vé=—i+— |+ —Kk.|—di+—d|+—d¢k
¢ oX oy : 0z [ax¢ az¢J az¢ J
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2 2 2
_0¢ 04 ¢
ox* oy o7

Ve

0 0 0
= Vi = — (2x%%2%) + — (2x%?z%) + — (2x%y?z*
0= -7 @y7) 8y2( )+ —z (XYZ)

= %(6x2y224) + %(4x3yz4) + %(8x3y223)
= V20 = 12xy?z* + 4x2z* + 24x%y%72.
Example: Show that VZu = 0 for u = x2-y?+4z
Solution: Given u = x?-y?+4z
Now V2 = o°u .\ o%u .\ o%u
X2 oy* o7

2 2 2

= 7 e+ 0oy + L 0eyean

= -2 g
=X @@ @)

=2-2+40
= Viu=0

Self Check Exercise

—X
1. Prove that VZ( Xj =

r_2 T r4
2. If u=x2-y? + 4z, show that u is an harmonic function i.e. VZu =0
3. If u is a scalar function of r and u’, u" denotes its 1%t and 2™ derivatives w.r.t. 'r'
then. Viu=u"+ —
r
4. Find Laplacian of function

T(r, 6, §) =r (cosb + sinb cosd)
11.4 Summary: Dear students, in this unit we studied that

1. Laplace operator is the divergence of the gradient of a function

2. V? is a scalar operator whereas V is a vector operator.
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3.
4.

The equation V?u = 0 is known as Laplace equation, when u is a scalar function.

The function which satisfies the Laplace equation is known as harmonic function.

11.5 Glossary

Operator : In mathematics, any symbol that indicates an operation to be
performed. Examples are \/; (which indicates the square root is to be taken)

d
and d_ (which indicates differentiation with respect to x is to be performed).
X
Laplace Equation: An equation having the second order partial derivatives of
the form
o°u o
RPN
oX oy

Viu

where V? is Laplacian operator.

Divergence: Divergence is a vector operator that operates on a vector field. The
latter can be though as representing field represents a flow of a liquid or gas,
where each vector in the vector field represents a velocity vector of the moving
fluid.

o 0 0
V.F=|—,—,—,|.If,g,h
{8xazaz}[g]

o og oh

=— 4+ =+ —

oXx oy oz

11.6 Answers to Self Check Exercise

1.
2.

3.
4.

Prove using the concept of V2
Verified using the concept of V2.

Verified using the concept of V2.

Hint : Use Laplace operator for spherical coordinates.

11.7 References/Suggested Readings

1.
2.
3.

Vector Analysis by J.G. Chakravorty and P.R. Ghosh.
Analytic Geometry of two and three Dimension & Vector Analysis by R.M. Khan.

Vector Calculus by J.N. Sharma & A.R. Vaishtha.
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11.8 Terminal Questions

1.

Show that V* (éj =0
r

Find the Laplacian of f where f = x? + y3 + xy?z.

Verify that functions are harmonic.

-1

() fx,y,2) = (X2+y2+22)7

(i)  f(Xy,2)=Xx2+Xxy+2y?-32° + xyz

*kkkkkk
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Unit - 12

Important Vector Identities

Structure

12.1 Introduction

12.2 Learning Objectives

12.3 Sum And Product of Vector Under Grad, Div And Curl
Self Check Exercise

12.4  Second Order Differential Operators
Self Check Exercise

12.5 Summary

12.6 Glossary

12.7 Answers to self check exercises

12.8 References/Suggested Readings

12.9 Terminal Questions

12.1 Introduction

Dear student, in previous units we studied about different vector operators like gradient
divergence and curl, which are associated with multiplication of scalar function, and dot and
cross product of vector functions, respectively. Here in this unit we will study about the vector
identities we are obtained from sum and product of vector, for gradient, divergence and curl.
These vector identities are helpful further in this course. In this unit we will also study the vector
identities which are the outcomes of product of different operations.

12.2 Learning Objectives: After studying this unit students will be able to

1. define and apply gradient of sum and product of two vector

2. define and apply divergence of sum and product of two vector

3. define and apply curl of sum and product of two vector

4, define and apply the product of two operators an vector and scalar.

12.3 Sum And Product of Vector Under Operator Gradient Divergences And Curl of
Sums

Identity: Grad (¢ + ¢) = Grad ¢ + Grad ¢, where ¢ and if are sealdr functions.
o o ok
+_

v (¢+¢)=(—+—

o oy aZJ(<|>+<|>)
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a(¢+¢)+l—(¢+¢)+k—(¢+¢)

(239

Ox OX oy oy 0z 0z

(5 (5) % (2o (3 () - +(3)
0z OoX oy 0z

f+—+ ] —+k—

0 0 0 -0 0
b+ |1 +—+]—+Kk— o
ox oy j ( ox oy azj

Grad (¢ + ¢) =grad ¢ + grad ¢
Vig+e)=Vo+ Vo

Identity 2: Div ((+V) = Div 0 + Div V where U and V are vectors.

. 0 0 .
Since div (0+V) = (|+—X+15+k62j (G+9)
A0 0 ;n s .
i —X.(u+v)+ Ja—y(u+v)+k—z(u+v
(60 8\7j
+_
0z o0z

Identity 3 Curl (G+V)= Curl U + Curl V

Curl (G+V) = Vx (0+V)

A

~0 0
_ . k_ A A
(I 8x+J ~ j (G+9)
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|
>
77\ ()}
RN
+
S
N——
>
7/ X\
=
+
22 >
N——
+
>
VR
R
R
N—

vand VxU + VxV
Curl (l]+\7) =Curl G+ Curl V

Gradient, Divergence and Curl of Product

Now, we will represent gradient, divergence and curl of products of point functions Since
we know that gradient is defined on scalar point functions and divergence and curl are defined
on vector point function, we can state some of the identities as

Identity 4: Grad (¢¢) = V (¢)

:\a 4\6 "a
(I&+18_y+k§] (¢9)

~ 0 ;0 ~ 0 _
| x&(¢¢) + ] a_y(¢¢) +k 5(¢¢) [using product rule]

_of 00 08 N, (400,00 ,), (.00 08
_'( o ox j+][¢8y+8y¢j+k( oz oz j

us.

(fﬂ 1620 1k ¢j ( ¢¢5+J 940k ¢¢j

ox oy oy

8¢ s Aa¢
¢(I OX j { J 82}

8¢ i Aa¢
¢[ ax j ( azj

dVo+oVe
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Hence. grad (¢¢) = ¢ grad ¢ + ¢ grad ¢.
Identity 5: Grad (G+V) = Uxcurl V + Vxcurl 0 + 0. VV+ V.V 0.

Since U and Vvector and product of two vectors is a scalar so U.V can be operated on
gradient.

A0 s o n
= &(u.v)+ ] oy (uv)+k—z(uv)
= f[o.a—\7+a—a \7)+](0.@+a—u.\7j+ R[g ¥, M Aj
0z 0z y oy 0z o0z

80 Py 80 a 80 ~ 50 o 0 o 60 ~
00)= | =V +—=Xf + —VK [+ | — Vi +— ] + — K 1
grad( ) [ . j 3 V] 5 j (1)

Taking U x [0@) = [O@j - (G .f)@
X X X
0

0_8_\7 I+ 0.@ j+(0_@j|2=0x fx@+ix@+ﬁx@
oX y 0z OX oy 0z
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or

A ~ 8 a a ~ 8 ~
Curl V.=|1—+]—+k—|xV
ox "oy oz
I 8\7 2 8\7 ~ 8\7
= IX—+ | x—+kx—
OX oy 0z
0Q+f+0.@1+0.ﬂﬁ =0 xcurdV + 4.V V (2)
OX oy 0z
Interchanging of U of V in 2
0.7 0. M5 o NP 2 g« curdd + 9.V 3)
oX oy 0z

using (2) and (3), (1) becomes.

grad (0V)=Uxcurl ¥+ (.VV+V xcurl U+ V.V d

grad (G.) = Uxcurl V+ U.grad V+ V x curl G+ V.grad U.

Identity 6: div (pU)=¢ div U + (. grad ¢

where ¢ is scalar function and U is a vector function.

div($0G)= V. (¢0)

A0 o a0, A0 .
=i —¢u — U+ k—¢U.
Uiz etk
~(,00 0¢.\ - 00 0O ( od 8¢Aj
= —0 |+ —+—U |+ Kk —
(¢ax+8x j J[¢8y oy ¢6z+azu
= ¢ f@+i@+|€8—u + f%+i%+l2% j
X "oy oz X y 0z
.A8 Aﬁ "a A z\a '.\a "8 A
=¢| 1l —+ ] —+Kk— .G+ |1 —+ ] —+Kk—|0d
ox "oy oz ox "oy oz

=¢ divl +grad ¢. U
div (¢G)=¢divd + U.grad ¢ [-ab=D.4]



Identity 7: div (4 xV) =V cur

div (G xV) = v.(0 x

\
z\a '.\a "a
=|l—+]—+k=].
ox "oy oz

~(00 . .Y (. 00 00 ) .(od . OV _
=1 xV4+0— |+ ] | UX—+—XxV [+ kK| —xV+U— [using product rule]
OX OX oy oy

[using the property of scalar treble product]

Q»
o>
Il
o>
H)
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Identity 8:  curl (pU)=gradp x U + ¢ curl U
curl (pU) = Vx ($U)

A0 0 O
I ><&(<I>U)+ Jx5(¢u)+ ka(ﬁbu)

OX OX oy 0z o0z
= fxa—u+ixa—u+ﬁx@ + f%+j%+l2% x U
OX oy 0z oXx "oy oz

curl (pU)=¢d curl U +grad ¢ x U

Identity 9 curl (UxV)=(V.V)U-(0.V)V + U divV -V div V

= fxi(ﬂ xV) + J'Axg(lj xV) + szi(lj xV)
OX oy 0z

-5

~ (0a Aj « (o0 ) ~ (00 Aj
= x| —XV [+ x| —xV [+ kx| —xV |} +
OX oy 0z
~ OV ov

using Axbx¢ = (4.¢)b - (4.b)¢
curl (GxV) = (f.\?) o - [f@j v+ (IV) - ] o vV + (IQ\A/) o (12
OX X oy 0 0z
+ (f av)l]-(f 0)@ + JA@ ”-(I\?)@+ j.av G -(
OX 0X y oy oy

Haa j ( avﬂ . Kao ] ( avﬂ . Haa
X XV |+ UX— [|+] % —XV |+| UX— +k x X
OX OX oy oy 0z

A

Vv

92

o
> N—
L)

<

i

A

Ux —

2

0z



=Vdivi-(V.V)Ul +0divV -(0.V)V

curl (UxV) =10 divV - V div U-(V.V)U -(0.V)v

Now Let us try some examples based on these identities.
Example 1: If ¢ =x2+y2+z2and U=xi +y| +zk

then show that div (¢u) =5u
Solution: Given ¢ = x? + y2 + zand

u=xi +yj +zk
Since div (pU) =grad ¢ . U + ¢ div U (1)
Now, grad ¢ = V

= f£+13+|2ﬁ (X2 +y?+ 79
ox "oy oz

divi= v 0
= [fi+ji+lzgj (xi +y]j +zKk)
ox "oy oz
=1+1+1
divd =
from, (1)

div (@U)=@xi +2y] +2zK).(xi +y] +zK)+(x@+y2+7?) x3
= 2X2 + 2y? + 272+ 3x? + 3y? + 37°
=5(x*+y?+77)
div (¢U)=5¢ [ox?+y? + 7%= ¢]
Example 2: Prove that
div (dxU)= &.curl U where & is a constant vector.
Solution: div(axU) =0 curl & - &, curl U [using identity div (U x V)]
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Since a is a constant vector, so
curl @ =0
div(axu)=-acurl 4.
Example: Show that curl (dx0) = adiv U-(4.V)U
where & is a constant vector.
Solution: Since curl (dxU0)=(U.V)a -(4.v)0 + & divl - U div &
Since & is a constant vector
Sodivd =0also ((.V)a =0
Socurl (AxU)= 4 divi-(4a.v)U
Example 3: V x (éx f) where & is constant vector
d=a(i +]j+Kk)

~
|

+y] +zk

-,

=X

Q>

then

< B -
N P x>

.
xf =|1
X

=Ta@z-y)- ja@z-x + kay-x)

axf -4 [f(z—y)— ja(z—x)+ Aa(y—x)]

) j k

@ L2 2
a(z-y) -a(z-x) a(y-x)

=i 2y 220 |- S50 L) o e )|

=a[i(1+1)- j(-1-1)+k(1+1)]
=a(2i +2] +2k)

Vx (axf)=2a(i + | + k)
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A

So, V x (éx f): 2 where @ is constant vector

Example 4: Show that curl

Since

So Vr3=-3r32rt

axrf ) _
r3

and Vx (4xf)=24a (example 3)

So

axfr
curl 3
r

-3

r

w

r r

axfr 3 .
Hence curl ( jz = (r.

= _—f’ [P?a-(r.a)f |+ =

= A

= — {I’x(éxf)+2—?}

r

N 1 .
=-3r® fx (&xf)+ r—sx 24

[using &x(bx¢&) = (a¢é)b- (ab)¢]

P18

Q»

=,

Self Check Exercise

Q.1 |Ifé& and b are constant vector then show that div {(

Q.2 If 4 and b are constant vector then curl {(fxé)x

-

é)xf)} =-2b.a

198




12.4 Second Order Differential Operators

Since we know that gradient of a scalar function is a vector quantity. On taking
divergence and curl of a grad operator, we get other operators of higher order. Similar concepts
can be extend to divergence and curl operator. In this section we will learn such identities.

Identity 1: div (grad ¢) = V.V ¢ = V?¢
Since div (grad ) = V..V ¢

[f£+ jg+k£j (f%+ J%-FK%J
z ox "oy oz

2 2 2
a_+ 8_4. a_: VZ
ox>  oy* o7

I
<
=g

Identity 2: Curl (grad ¢) = 0

Curl (grad ¢) = VX (V)
= |£+i£+l€— x f%+1%+I2%
ox "oy z OX 0z
=rx 2 f%+i%+l2% +jxg f%+i%+k%
OX X oy 0z oy ox oy 0z
+I2xi(f% j%w%j
0z X oy z
2 2 2 2 2 2
(curligrad ¢) = i x faf+fa¢+ka¢ + ] x fa¢+fa¢25+ka¢
o oxoy  oxez ooy oy oyoz
2 2 2
+ K x fa¢+fa¢+ka?
00X oy 0z
Since i xi =0, jxj=0, kx k=0
ix j=k,ixk=-], jxi=-k jxk=( kxi=],kx J=- g

IR s I IR e
oxdy | oxoz | oway | oyez | ezox | oz

curl (grad ¢) = k

= curl (grad ¢) = 0
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Identity 3: div (curl U) =
div (curl G) = v .(Vx0)

z\a '.\a "a 8.A 2 8 ~ A
=|l—+]—+k— || =1+—]+—Kk|xU
ox "oy 0z)\ox oy o0z
z\a '.\a "a ~ 80 2 80 ~ 60
= 1l—+]—+K—|. | I x—+ | x—+Kkx—
ox "oy oz oX oy 0z
A 6 Il 80 2 au ~ 60 2 a ~ alj ~ 60 ~ 8[]
[ — | IXx—+ | x—+Kx— |+ ] — | Ix—+ [ x—+Kx—
0X OX oy oz oy OX oy oz
+IE_i fx@+fxa—u+l2xa—u
0z OX oy 0z
~ (0% . 0 ) . (. 00 . &0 , &40
S| I X—+]X + + ). Ix >+ ] X— +KX
OX oxoy 0z OYOX oy 0yoz
[~ 00 . o0 , o4
+k|1x +Jx +Kx—
0 ozoy oz
20 R 2~ R 2~ 820 820
=i0x—+1.]x + 1. kx + )% +i.0=
X oxoy 0Z0X O0yox y
2.4 2.4 2.4 2.4
+].kx + K. x +K.|x 00 x4
dyoz 0zOX 0z0y Foria

a

f.fx y =0
2.~

j AX%:O
y
2~

A A u

kkx% =0
y

We left with

2.

oxoy

A

div (curl G) = K x

_J)(

*.+ scalar triple product of two equal vector is zero.

o0 .9 . o4 :

X

(bx@é) = (aB).é interchanging the scalar triple product in the terms

0%

+- kx + | x
0ZOX O0yOoX 0ZOX
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=0
div (curl ) =0
Identity 4: grad (div V) = curl curl V + V?V
or curl curl U =grad (div G) - V20

Solution: curl curl

I
7\
-
|
+
—

0z X oy 0z
~ ~ 00 . oA , d4 . ~ 00 . 04 o040
=ix | Ix—+]x +kx + % |Ix + ] 5 +Kx
OX oxoy oXoz oxoy oy ozoy
~ [~ 220 . d4 040
+k x +kx 5
0ZOX ozoy 0z
~ 00 . ., 0 . . 040 . . o7 . . 04
:|X|x—2+|><]>< +1 xkx + ] X1 % +J,J><—2
X oxoy 0X0z oxoy oy
2. 2.4 2.4 2.A
+jx|2xau+lzxfxau+|2xjxau+lzx|2x@
zoy 0ZOX 0z0y 0z

+ .
oxoy oxoz

00 . . A0 (A0 ). . .. 0% ~ 00 ) .o 0%
= I.—zjl-(l.l —2+£|. j-@0.]) I k-(1.k)

L 00 ). .. 0% (.0M)., . .0 ([-00). . . 04

+1 ] t-(J.1) =z |1 ) k-(].k)
oxoy oxoy oy y o0zoy 0zoy
2A 2 2 2A 2n 2
+kl8u IA_(RIA)aquklau j-AA)au+k.al2] R-(RR)aZ
0Z0OX 0ZOX ozoy 0zZpy 0z 0z




Since i.i = |.]j= k.k=0, and any other combination is zero i.e. i .j=1.k= .
j.k=k.i=k.j=0

So we left with

- ~ azlj ~ —820 Il 820 2
curlcurl u = l— |- >+ |1
X OX oxoy

. . . (00 070 o4
=V v.U- Sttt
ox~ oy° oz

curlcurl U = v v.0- V2U
Let us try following example.

Example 1: If U = x?yi +xz | +xyzK

then curl U=

R
8 o —
éoo %|Q) >

curl U= [f(XZ—X)— j(xz- X)R(xz—xz)}

Now div curl U= (f%+ I%HZ%J [f(xz—x)—yzlz+(z_x2)l2]
=(z-1)-z+1
diveurl U =g
Example 2: If ¢ = x?y + 2xyz + z? show that curl grad ¢ =0
Solution: Given ¢ = x?y + 2xyz + z2

rad ¢ = IﬁiJrigHz2 ( X%y + 2xyz + z2)
Jae= ooy e )Y Y
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grad ¢ (2xy + 2yz) i + (X2 + 2x2) | + (2xy + 2Z)k

curl grad ¢ =

) ] k

0 0 0

ox oy oz
2XY+2yz X +2x2 2xy+ 2y

=i [2x-2x]-] [2y - 2y] + k [2x - 2Z - (2x - 22)

=0-0+ I2(2x-22-2x+22)

=0-0+ Kk (2x- 2z - 2x + 22)

=0

= curlgrad¢ =0

Self Check Exercise 2

Q1 If

A=x +y?| + 22Kk

B =zi +2zx] +xyk

then show that grad div (Ax I_5>)= 0

Q.2 VZrm=m@m + 1)r2

2
Q3 V*jn= ?f'(r) +1(r)

12.5 Summary: Dear students in this unit, we studied that

1.

© © N o g bk~ w N

Gradient, divergence and curl, all the three differential operators are distributive
with respect to sum of vectors.

div grad (¢¢) = ¢ grad ¢ + p grad ¢.

grad (U.V)=Uxcurl V+ V xcurl U + 0. VV +V +V. VU
div (pU)=¢ div U+U0 + U.grad ¢

div (U4xV)=V.curl G- 0 curl V

curl (p G)=grad ¢ x U + ¢ curl U

curl =(V.V) U -(4.V)V + (UdivV) - (Vdiv ()
div (grad ¢) = VZ¢

curl (grad ¢) =0
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10. div(curl 4)=0
11.  grad (div V) =curl curl V +V?V
12.6 Glossary:

Scalar & Vectors: Scalars are the quantities which have only magnitude where vectors
are the quantities which has magnitude as well as direction.

Del (V) = V f§+i§y+ﬁg. Mathematical operation which has no geometrical
X

0z
meaning.

12.7 Answers to Self Check Exercise
Self Check Exercise

~

Q.1 Use ax (Bxé = (é.B)é - (a¢)b
Q.2 V(B.f)ztiv.fzﬁ
\Y% (B.é) =0,curl f =0 [use these concepts.]

Self Check Exercise-2

Q.1 Find Ax B, then apply vV (Ax L5>) which is equal to O.
Q.2  Use the concept V"V . (VM)
Q.3 Since f = f(r) so ﬂz 7' ﬂWe this concept
OX oX
12.8 References/Suggested Readings.
1. Vector Calculus by I.N. Sharma & A.R. Vasishtha
2. A Textbook of Vector Calculas by Shanti Narayan & P.K. Mittal.
3. Vector Calculus by P.C. Mathews.

12.9 Terminal Questions

2
1. Show thatdiv f = —
;
2. div(f)=(n+3)r".

*kkkk
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Unit - 13

Curvilinear Coordinates

Structure
13.1 Introduction
13.2 Learning Objectives
13.3  Curvilinear Coordinaties
Self Check Exercise
13.4 Summary
13.5 Glossary
13.6 Answers to Self Check Exercises
13.7 References/Suggested Readings
13.8 Terminal Questions
13.1 Introduction

The curvilinear co-ordinates are the common name of different sets of coordinates other

than Cartesian coordinates. In many problems of physics and applied mathematics it is usually
necessary to write vector (quantities) equations in terms of suitable coordinates instead of
Cartesian coordinates. First we develop the instead analysis in rectangular Cartesian
coordinates to see the fundamental role played by the vector valued differential operator, V .

All objects of interests are constructed with the V operator the gradient of the scalar

field, the divergence of a vector field and curl of a vector field. Later we generalse the results to
the more general settings, orthogonal curvilinear coordinate system and it will be matter of
taking into account the scale factors hi, h2 and hs. Curvilinear coordinate system are general
ways of locating points in Euclidean space using coordinate functions that are invertible
functions of usual xi Cartesian coordinates their utility arises in problems with obvious geometric
symmetric such as cylindrical or spherical symmetry.

13.2

Learning Objectives: After studying this unit students will be able to:
Define curvilinear coordinates.

Transform orthogonal curvilinear coordinates

Define condition for orthogonality

Express unit vectors in curvilinear coordinates

Define grad, div and curl far curvilinear coordinate

o g bk~ w Dk

Solve the questions related to curvilinear coordinates
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13.3 Curvilinear Coordinates

Let us consider a three dimensional space, defined by three single valued functions say
ui1, U2 and us along the three directions respectively.

A Point: Let P be a point in this space. This point can be represented mathematically by
the function P=P(u1, Uz, Us).

Coordinate Surface: A coordinate surface is two dimensional place along which any
two functions defining the position may change, while the third remains a constant. Thus u; = ca,
U> = Cc; and uz = c3 define coordinates surfaces along the three directions. For the surface u; =
c1, the function u; is a constant, while the function u; and us may vary. Similarly for the surface
U2 = Cp, the function u; is a constant equal to ¢, while the functions u; and us may vary, while for
the surfaces us = c3 the function us is a constant equal to cs, while the functions u; may vary.

Coordinate Lines: When two coordinate surfaces intersect each other, they form a line
pointing along the third direction. This Line of intersection is called as the coordinate line. For a
three dimensional space. We have three coordinate Lines, namely ui, u; and uz formed by the
intersections of the surfaces. (U2 & us), (U1 & us) and (u1 & uy) respectively.

Coordinates axes: Tangent drawn to the coordinate lines at the coordinate point P are
called as coordinate axes. Thus for the point P we have ai, a; and as as coordinate axes. which
are tangents to the coordinate lines us, u, and us respectively as shown.

General Curvilinear Coordinates: If the relative orientation of the coordinate surfaces
changes from point to point, then the coordinates u; u; and us are called as general curvilinear
coordinates.

Orthogonal Curvilinear Coordinates: If the three dimensional surfaces are mutually
perpendicular at all points then the coordinates u; u; and us are called as orthogonal curvilinear
coordinates.

Transformation of co-ordinates: Let the rectangular Cartesian coordinates (X, y, z) of
any point P in space be express in terms of three independent, single valued and continuously
differentiable scalar point functions ui, uz, us as follows:

X = Wi(us, Uz, U3), Y = Wa(us, Uz, Us), Z = Wa(U1, Uz, U3) 1)
Suppose that the Jacobian of X, y, z w.r.t. ui, Uz, us does not vanish.

(% Y,2)
(U, Uy, Uy)
then ua, Uz, us can be expressed in terms of x, y, z giving

ul=¢1(x,y,2), U2=9¢2 (X, y, 2), Us = §s (X, Y, 2) (2

Due to the condition imposed on these functions, with each point P(x, y, z) in space, 3
unique triad of numbers us, Uz, uz and to each such triad there is definite point in space.

i.e.

The set (ui, uz, us) are called the curvilinear coordinate of P. The set of equations (1)
and (2) defines a 'transformation of co-ordinates'.

For Example: Circular cylindrical coordinates (X1, X2, X3) =T, q, 2)
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X=rcosQ

y=rsinQ
z=12
i.e. at any point P, xi1 curve is a straight line, x> curve is a circle and xs curve is a straight
line.
ie.
r=xX*+y?
Q=tan+ ¥
X
z=12
1%
- i
—— )
X ' ' J ";
S —— = s
| Vg . !
X3, S
' - Plots o[, @ncm] Y- Cinves
Plols of Li- cuve fmrm foeming & arthogenal gaid
an enal caxles
%vid
—

Transformation of Orthogonal Curvilinear Coordinates:

The surfaces u; = ¢y, U2 = Cp, Uz = c3 where c1, Cp, C3 are constant are called co-ordinate
surfaces and each pair of these surfaces intersect in curves called co-ordinate curves or lines.
Thus,

(1) Ui curve is given by u; = c2, us = C3
(i) U, curve is given by uz = cs, Uy = C1
(iii) Us curve is given by us = ci, u2 = ¢

The coordinate axes are determined by tangents PQ:, PQ2 and PQs to the coordinate
curve at the point P. If at every point P(x, y, z) the coordinate axes are initially perpendicular,
then ui, Uz Uz are called orthogonal curvilinear coordinal of P.
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- { /". TR
| e > f.‘.,
{101 n)‘/\w'k-\
{_%:_)'—‘ I“"‘:Lv \:!J-f:]r?':

Condition for Orthogonality: In curvilinear coordinate system u: = ¢1(X, y, 2), U2 = ¢2 (X, y, 2),
us = ¢s3 (X, Y, z) Solving these for x, y, z in terms of ui, Uz, us. we have

X=Wi(X,y,2),y=w2(xY,2),Z2=Ws (X, Y, 2)

r=xi +yj +zk

Wi (X, Y, 2), T+ W2 (X,Y,2), J+ws(x Y, 2)k

? (Ul, u2, U3)

Co-ordinate curve through uz = ¢; and us = cs (i.e. ul curve) is

F = f(Ul, Co, C3)

Tangent to this coordinate curve is parallel to the vector 8_
ul

- aor
Similarly, tangent to other two curves are parallel to the vectors 6_8_
u2 u3

For orthogonal curvilinear co-ordinate system, these taken two at a time are
perpendicular.
roor rooor r
o o g or o, o o g

ou o, o, Ay o du
Unit Vectors in Curvilinear Coordinates:

Let the Cartesian coordinates of a point P be (x, y, z). Then the position vector of the
point is

r=xi +yj +zk

=X (U1, Uz, Us)i +Y(U1, Uz, Us) | + Z(Us, Ua, Us)K
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= I (U1, Uz, U3)

At every point P we have a system of (ui, Uz, Us) curves is the tangent vector to the u;
curve along which the coordinate (uz, us) are constant. The vector
orf
er
ou,

is therefore a unit vector along the tangent to the u;, curve. We can write this equation
also as

Similarly, if & and &, are unit vectors to the (uz, us) curves respectively, then

or _ & o= ar
- — 12 y M2 = |17/
ou, ou,
r . or
ﬂ = hs &, hs = |—
OU, ou,

The guantities h; are called scale factors

Since, V u:is normal to the ul = constant surface at P.

u, . .
——L is a unit vector normal to the surface.

i
- . Vu, = _ Vu,
Similarly, E, = ‘Vuf‘ E, ‘VU{‘

Thus, at each point of a Curvilinear coordinates there exist two sets of unit vectors,
which are in general distinct from each other

The two sets are identical, if and only if, the curvilinear system is orthogonal.

Relation between & =h; V uiand é= & x & (V uxxVus)
é2 =h, V uz and é2 =hz hy (V uz XV uy)

% =h3Vu3and %: h1h2 (V U1><VU2)
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Arc Length For Curvilinear Coordinates:
The Arc Length ds is the length of the infinitesimal vector dr
(ds)? = dr.dr.
In Cartesian coordinates
(ds)? = (dx)* + (dy)? + (dz)?

In Curvilinear coordinates, if we change all three coordinates ui by infinitesimal amounts
dui, then we have

ar= " du+ O du+ O qus

OU, ou, ou,
=hydul & +hzduz & +hsdus &

For the case of orthogonal curvilinear, because the basis vectors are orthonormal we

have
(ds)? = hy?2 dus? + h2? + hg? du?s
For spherical polar, We showed that
h=1,h6=randh¢=rsin6
Therefore

(ds)? = (dr)? + r? (d0)? + r? sin?0 (d¢)?
Element of Area and Volume For curvilinear coordinates:

Vector Area: If uy = ui + duy then r = r + dr where dr; = hie; du; and if u, - u; + du,
thenr — r + dr, where drz = hz e2 du,.

On the surface of constant u; the vector area bounded by dr, and drs is given by:

dsy = (drz x dr3) = (hz du: é‘Q) x (hsz dus %) = h, hs duz dus él
Since, €,x &, = & for orthogonal system.

Thus, ds; is a vector pointing in the direction of normal to the surfaces u; = constant its
magnitude being the area of the small parallelogram with edges dr, and drs. Similarly, one can
define ds; and dss.

For the case of spherical polars, if we vary Q and ¢. Keeping r fixed then
dSr = (hQdQ€Q) x (hQdQ € Q) = hQhQdQd¢ér
=1 Sin Q dQdér
Similarly, for dSQ and dS¢
Volume : The volume contained in the parallelopiped with edges dr1, dr, and drs is
dv =dry, drz2 x dr3
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= (h1 du; e1) . (h2 duz e2) x (hs dus e3)

= h1 hz hz du: duz dus
because ei;.ex; x ez =1
For spherical polars we have

dV = hr hQ h¢ dr dQ d¢

=r2sin Q dr dQ d¢

Gradient, Divergence and Curl for curvilinear coordinates:
Gradient: Let uy — uz1 + dug, U2 = Uz + duz, Us — Uz + dus

By Taylor's theorem, we have

of = ﬂ dus + ﬂdUz"‘ i dus
Ou,

ul u2
As, dr = h:du; él + hz duz éz + hs dus Q
Using orthogonality of basis vectors & .€, = &, we can write

o = (jf—ulm%w%@]. (6 du: +€, dus + &,duy)

1o , 1o , 1of R A A
= (——eﬁ——eﬁ aT%j' (h1€ dus + h2&, duz + hs & dus)
3

how ™ hadu = h
(1%@%@@@_ dr
how = hou = haoy
Compairing this result with equation
S8f = Vf(r).dr
We have
groldtg 1, 1A,
h ou h, ou, h, ou,
&1,
"

For spherical polars, we obtain:

oL of 1o 1 o
R T Y

211



For cylindrical polars, we obtain

of 1 0of , of
Vipdz)=6 — +e - " +a
f(p. ¢, 2) ep6p+e¢p8¢+ Sl

Divergence (div f = V. f)in terms of orthogonal curvilinear coordinates:

If T =718+/2& + f38,is a vector function in orthogonal curvilinear coordinates.

VT =V.(18) + V.(f28) + V.(f28,) A)
We know,
L
vu - —=,V ==, Vu,=—
h' TR T
Now VUZXVU?,:gxgz &
h, h  hh

S &=hh (VuxVh)
Similarly: €, = h h, (VuixVus)
&, = h h,(Vuixvu)
V. (f18) = V. [frh2 hs (Vuz x Vug)] (1)
V. (f2&,) = V. [f2hi hs (Vu1 x Vus)] (2)
V. (fs8&) =V.[fshihz2 (Vur x Vuz)] (3)
Also V.@w)=Vd. v +oV.
—  V.[f1h2 hs (VU2 X VU3)] = V (f1hzha). (VU2 X Vug)

f1 hz h3 V. (VUz X VU3)
=V (f1ihzh3). (Vuz x Vus)

= 1h2h3. é‘L j
w1

A

&
h,h,

:E,VUS:%
h, h,

. V(f1 h2 h3)

vu,
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&x& _ &
hh, hhy

VU,x VU, =

V. (Vuz x Vug) = V.( &

_ [iiﬁif&i)
h oy h,ou, h;ou,

{rin) -0

& |_[ &
v.| thh -S| = S| V(i ho hy)
N { nh her [hsz o
= V.[f1&]= hzéll‘% . V(f1 hz hg) (4)
Smme:VUQQ]zF%i.VUthQ (5)
V. [fs&]= hleilz . V(f3 h1 hy) (6)

Now (4) = f16 = —i FLQ+311+%£JUmﬂm

hh \h oy hou, hou,
&8 &8 0
= —— ——— —(fih2hy)
hhh hhhoou
s 1 0
V. f1&= hhoh, o (f1 hz h) (7)
Similarly, V. f2&, = ii(f hs hs) (8)
PR Ry e,
R 1 0
V. fs€= ————(fshihy) 9
“~ hhh, oy,
Putting (7), (8), (9) in (A) we get
vE= 1 i(flh;zhs)+ii(fzhshlﬂii(ﬁhlhﬂ

" hhh, du hhh, ou, hhh, o,
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- 1
V.F= .hoh, sh;h,
= hhh, | 2 { (fihshg) + (f )}

Which is the required result

Curl F =VxF in orthogonal curvilinear coordinates.
Let F = F (uq, U2, U3)

= F =f18+ /28, + fs& 1)

Now, Curl F =VxF
= Vx[f16+ f2& + f36&]

=  Curl F =Vx f18+ Vxf,8, + Vxf36 (A)
Now Vx f18=Vx (fihiVu) Vu _%

We know Vx (¢ A) = ¢ (Vx A) + Vox A
5o VX f18=Vx (f1h1Vuy)
= Vx flélz f1h1 (VXVU]_) +V (flhl)xVU1

VxVu, =Curl gradu, =0

Vx f1€ = V(f1h1)xV
- f16= Vifh)vu = fh(VxV1)=0
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“”3V*E=£1[52“m9 (f“ﬂ mn{ (ﬂlﬂ

__1 |9 9o @&
hhh, |ou, ou, ou,
i fh,  fh,

Laplacian Operator (V2¢) in orthogonal curvilinear coordinates

We know V y = (gi+§£+§£J
hou hou hou

§oy &oy &oy
vy= —-—+-5—+>— (2)
hoou h ou, hou
Let VLp=I_f
Vy = fig +f26,+ 38 (2
Comparing (1) and (2)
_ 1o 109 _ 109
h h, ou, gk 26u2’f3 h, ou,

Now V2¢=V.V¢=V.F
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= V. F=—— { (f1hohy) + (fzh ha) (fsh hz)}

hhh, | 0
el 2l
hhh, | ou \ h ou h, ou ou, \ h, ou,

- el
hlhzhs ou\ h ou ) ou,\ h ou,) ou h oy,

- el R4
hivhy | ou{ h jou, au,( h, Jou, au{ h

Some Related Questions
Example (1) ifu=2x+3,v=y -4, w =2z + 2. Show that u, v, w are orthogonal?
Solution: Hereu=2x+3,v=y-u,w=2z+2
= 2X=u-3, y=Vv+u, Z=W-2
4-3

= sz, y=V+u, Z=w-2 D

If r denotes the position vector of (x, y, z) then

r=xi +yj +zk

= Fz(%SJF+(v+u)j+(w-z)|2

o 1o oai
u 2 v 1 aw
or or 1. .

Now, —.— ==1.]=0
ou ov 2
ﬂﬂ:j.ﬁzo
oV ' OW
ao_pliog
oW ou 2

or or _or or _or
ou'ov oview  ow du



u, v and w are orthogonal

Example (2) Ifu=3x+2,v=y+ 3, w=2z-2, Show that u, v, w are orthogonal and find (ds)>.
Also find h1, hz, h3.

Solution: Hereu=3x+2, v=y+3,w=2z-2
_u-2

X T,y=v-3,z=w+2 (2)

If r denotes the position vector of (X, y, z) then

r=xi +yj +zk

=1

:(“;;jr +v-3)] +(W+2)K

or

or _l.oor .oor o
= w3l w
a_Fa_F 1{ A—o
Now, ouv-3"!
a—rﬂ:j\ A:O
oV oW
a—r.ﬂzlﬁ.fzo
ow ou 3
L d o of _of aF
ou v v ow  ow du
u, v and w are orthogonal
- or or or
Now, dr = — du+ — — dw.
au ov M ow

dr =%fdu+ jdv+ Kdw
Also, (ds)?=dr.dr

- (%h idv+l2dwj.(%fdu+ fdv+l2dw]
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= é (du)? + (dv)? + (dw)?
= ha? (du)? + ha? (dv)? + hs?(dw)?
Where h1= %, h2: 1, h3: 1

X°+y°
, Uz = z. Show that us, uz, uz are not orthogonal.

Example (3) Let uy = xy, uz =

2 2
Solution: Here ui = Xy 1), ux= X ;y (2), u=z (3
Differentiating (1) and (2) partially w.r.t. u, we get
1=x Yy y X 4)
ou, oy,
0= 1 2Xﬂ+yﬂ 30:)(% +yﬂ(5)
2 oy oy ou, ou,
Multiplying (4) by y and (5) by x, we gel
oy OX
=Xy — +ty=— 6
y =Xy ou, y ou, (6)
and 0=x? %+ Xy Y (7)
oy, ou,
Subtracting (7) from (6), we gel
OX
= (V2 - x2) —
y=(y"-x9 ou,
OX y
- = 8
ou Yy -x (©)

OX
Similarly, Putting values of u in (5), we gel
ul
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Yy o
y =X ou,

Vo W LY X ©)

ou YA-x2 T ou, yR-x2

Again, differentiating (1) and (2) partially w.r.t. uz, we gel.

0= xﬂ+ yﬁ (20)
ou, ~ ou,
ou, ou,

Solving (10) and (11), we have

x X

ou, y? =X 12)
2
and a%y - y2yx2 (13)
AR

Let I be the position vector of point (x, y, z) in space then r=xi + yj] + zk

or 6xf+6y¢ 0z

- == A T

ou, oy ou, ou,
and 8r:8xf+6yj+8zl2

ou, Ou, ou, ou,

or ar ox ox oy oy oz oz
Now, — —=— —+— —+ — . —
ou ou, 0u, ou, odu du, ou, Ou,

(4] ) () o

- —-Xy i Xy
(yz_xz) (yz_xz)z
—2xy —2xy
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2y
4’ —4u?  2(u?-u?)

or or

a—ljl.a—uz;t 0

System of Coordinates ui, Uz, Uz are not orthogonal.
Example (4)ifx=rcos6,y=rsin6,z=z
Solution : Herex=rcos 06,y=rsin0,z=2

Squaring and adding first two equations, we get

X¥Hy?=r2 = 1= X+ Y (1)

Also tan 0 = Y = 0 =tan Y (2)
X X
Now, V?= fﬁﬂAEHQE r (3)
oXx oy oz
From (1) ﬂz X = cos 0, ﬂ = X, a_r =0
ou r oy r oz

Putting these in (3), we get V. =cos 01 +sin9 |

V9=r%+i%+|2% (4)
ox "oy oz
00 sing@ % cosd 00

From (2) X y oy T ,E:o
Substituting these in (4), we have

1 s . A
VGF(COSOJ-SIHOI)

Self Check Exercise

Q.1 Express V¢, V.A, Vx A V2¢ in cylindrical coordinates using curvilinear
coordinate system.

Q.2  Write Laplace equation in parabolic cylindrical coordinate.

13.4 Summary: Dear students, in this unit, we studied
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The general curvilinear coordinate are represented by ui, Uz, Us.
2. Condition for orthogonality for us = ¢1 (X, ¥, 2), U2 = ¢2 (X, Y, Z) Us = d3 (X, Y, 2) is
given by
or or _or ar _or or _
ou, du, ou, du, du, Au,

3. Gradient, divergence and curl in curvilinear coordinate is given by
VF=— Lo — @
hi au
_ 1 [
V.F = m I ( 1@'%) ( zr%hl) ( 3hlhz)
h& he he
— 1 0 0 0
VxF = —— |— — —
hhh jou — du,  du
fihh  f,h  fh
4. Laplacian in curvilinear coordinates

oo 1 { (hzhs] (%Ji+i(ﬂ]i}
hhh {ou\ h Jou odu,{ h, Jou, ou,{ h, )ou,

13.5 Glossary

1. Del operator (V): V = | §+ J £+kg
X

oy oz

It is a Mathematical operator which has no geometrical meaning, we can operate
it on scalar or vector field.

2. Scale Factor: Scale factor is ratio between the corresponding sides of similar
figures.

3. Coordinates: A pair of numbers which are used to determine the position of a
point.

13.6 Answers to Self Check Exercise
1. Verified using curvilinear coordinate system
2. Verified using curvilinear coordinate system.
13.7 References/Suggested Reading

1. Vector calculus by P.C. Mathews.
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2. A Textbook of vector calculus by Shanti Narayan and P.K. Mittal
3. A Textbook of vector calculus by Anil Kumar Sharma.
13.8 Terminal Questions

1. Show that in any orthogonal curvilinear system
() diveurl A=0
(i) curlgrad¢=0
. 1 .
2. Let X = Uz U2 COS Uz, Y = Uy Up SiN Us, Z = > (U2 - uz?). Obtain hy, hy, hs and the

unit vector €1, é,, é;. Determine grad ¢, div F,curl F and V2¢ for the above
system of coordinates.

*kkkk
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Unit - 14

Integration of Vector Function

Structure

14.1 Introduction

14.2 Learning Objectives

14.3 Integration of Vector Function
Self Check Exercise

14.4  Summary

145 Glossary

14.6  Answers to self check exercises

14.7 References/Suggested Readings

14.8 Terminal Questions

14.1 Introduction

Dear student, in this unit you will learn to evaluate the integral of a vector functions and
vector field. Since the integration is same as in ordinary calculus studied in previous classes but
the integral of a vector function and field are different in the way in which the integrand is
handed as well as in the physical meanings of the quantities obtained. So, in this unit you will
learn how to integral vector functions of scalar variables in the form of indefinite and definite
integral.

14.2 Learning Objectives: After studying this unit, students will be able to

1. determine the integral of a vector function with respect to a scalar.

2. determine definite integral.

3. determine indefinite integral.

4, apply the concept of vector integral in real life situations like finding position

vector and velocity.
14.3 Integration of a Vector Function

Since we know that integration is the reverse process of differentiation. We also use this
concept in integration of vector functions relative to a scalar.

Consider vector F which is a function of a scalar ti.e. F = F (t) such that

d

pm FM=f@® (1)
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then integral of f (t) with respect to 't' is F (t) + €, where € is constant of integration.
Mathematically

jﬂoz F () +c.

Properties of Vector Integrals : Some properties related vector integrals are:

df = —dg ~
1 —g+f=|dt= f.g +¢c
dt g dt] J
df — dg - =
2 —xg+fx—| dt= fxg +c
dt g d] g
3 2igijdt=F2+c
dt
dr’ dr dr
4 > | d ar c
dt dt d
- -
5 r><d—2r dt:rxd—+c
dt dt
6 5><% sdt= ax F + C where a is constant vector
7. crdt=cradt

Indefinite Integral

- = d = - =
Let f (t) and F (t) be two vector functions such that pm {F(t)}: f (t). Then F (1) is called the
indefinite integral of f (t) w.r.t. 't and we write it as
f®at=F @+¢

Theorem: If vector function F is indefinite integral of f w.rt 't, then prove that F + C is also

indefinite integral of f , where E is a constant vector.

Proof: Here I fdt=F
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= o =f (By definition) (1)
d — -, dF dc
Now, — (F =— + =
ow, o (F+¢) a | dt
_ dF Ldc_ 0,cisconstant
dt dt

% (ﬁ + 6) = f (from (1))

= [fdt=F+c

Note: 1. The constant of integration 'c' is scalar if integrand is scalar and vector if
integrand is vector

2. If f = fal + fa] + f3|2, where f1, f2, f3 are scalar functions of some variable 't'
(say), then

[Fdt=1]fdt+ J]f,at + K[ ft

Let us do some examples to have better understanding of vector integration.

o

— A
Example 1: Evaluate | Ax dt
P j dt?
Solution: Now, A5, 9A] 2 Ax d(dAa} dA dA
dt dt dt | dt dt dt
—~ d*’A dA dA
= AX — + —x —
dt>  dt  dt
2—’ —_— —
= Ax d f‘+o .‘_d_AXd_A:O
dt dt dt

— Py
:> g de_p\ = )_A\)X d ;A
dt dt dt

By using definition of indefinite integral, we have
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2~

Example 2: If T ()=(t-?)7 + 28] - 3K, find j?(t)dt
Solution: J-?(t)dtz I[(t—tz)f+2t3j°—3lq dt

J-(t—tz)iAdt+J.2t3faI—_[3I2dt

- :Jtdt—jtzdt]f +2] Itgdt—?)k Idt

2 3 4 -
S L ] L TP
2 3 4

t2 t3 4

= ———jf L j-3tk+ C
2

2 3

Example 3: Evaluate I[tf+(t2—2t) jA+(3t2+3t3)I2] dt
Solution: J.[tf+(t2—2t)f+(3tz+3t3)@dt

= J.tfdt+.[(t2—2t)fdt+.f(3tz+3t3)lz dt

:%hjtzidt- [2tjde+ [3kdt+ [kt

2 3 4
s At

2
SN j-2— i+al kesl i
2 3 3

2

2

—
~—+
w5

~
|

~

P2 ] 4K+ K
4

2 3
P Ep j+(t3+§t4jl2
3 4

d?r -
Example 4 Solve 7 = k2T

+

I
N |
w| %

—

N |

d’r -
Solution: Given equation is _dtg =K
d?r -
— =-2k?r
= 2 dt2
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o|2 dr - dr

— — =2k

= 242 gt ot

Integrating both sides
— J.Zﬂﬂdt— J.ZKZF.%-H_: (1)
d(dr) d[drdr] dr dr dF dr

NOW ‘Gt | 'dt | = dt| dt ot |~ dt dt> " ot " ot

dr d°r dr dr d’r dr d°r dr
S odtodt? dt dt? T dt? dt T dt? ot

d sz o dr
at =262 ot

DT -\ 2
rdr
d = [ﬁJ (By definition of Indefinite integral)

-2

and similarly sz.% dt=r

—~\2

dr -2 -
@1 — | —_k2r +c¢
():(dtj_ k2

Example 5:  The velocity of particle at time 't' is given by V() =sint i - coxt | + k. Find
the position vector of particle r (t). Giventhat r (t=0)=1 + | + K.
Solution: Using the definition of velocity, we know that

~(t)
V (t) = Velocity = %

=  r@®= jv(t)dt 1)

Given V(t) =sint i -coxt] + 82Kk
Therefore T (t) = I(sintf—coxt f+t2I2)dt

= fjsjntdt—jjcomduﬁjﬁdt
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3
r (t) = - coxti -sint | +%I2+ c (2

In order to find the value of ¢, we will use the given initial condition i.e. F(t =0)=1 + | + K.
So, att=0,

+ ] +Kk=-cox0i -sin0j +0k+¢

-5

ik ®3)

Putting the value of € in (2) we get

—~
w

~

r()=-coxti -sintj +— k+2i + ] +K

w

- ~ 3 A
r ()= (2-coxt) i +(1L-sint) ]+ (1+%] K

Example 6: The acceleration of a particle at any time 't' is given as e'l + e2‘j+I2. Find v

(velocity) given that V=i + jwhent=0

—

dV ~ ~ ~
Solution: We know Acceleration = o el +e?|+k
av =e'f +e?+k
dt
Integrating both sides
= V= J(etf+e2‘f+I2)dt
= jetdt+ije2tdt+|2jdt
V=ie+|er+Kt+cC 1)

Givenwhent=0, V=1 + |

~ I -
1 + =+ C
D = I 5
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- ~ 1 2~ ~
v=e'i + 5(92t+1)J +tk

. . . . . - \) ~
Example 7: The acceleration of a particle at any time t > 0 is given by a= E = (12 cos 2t)1 -

(8'sin2t) j + (16t)l2. If the velocity v and displacement I are zero at t = 0, find v and r at
any time t.

—

dv sl . 2 ~
Solution: Here e = (12 cos 2t)i -(8sin2t) | +(161t)k

Integrating w.r.t. t, we get

V= fj12cos,2tdt—jj8gn2tdt+|2j16tdt

- _ R 2 ~
- 1| 12302 —] Mj+k 165 |4 ¢
2 2 2

V =(6sin2t) i +4 (cos 2t) | +@B)k+Cc (1)

Where C is constant of integration.

Given, Att =0, v=0

From (1) 0=0+4j+0+C
= cC=-4]
(D)= V=(6sin2t) i +(4cos2t)| +BB)k-4]

—

= %z(BsinZt) | +(4cos2t)j -4] +82k

Again integrating w.r.t. t, we get

r = i[6sin2tdt+j[4cos2tdt+k8[t* dt—4j[dt
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. ; )
g T R L L RV P
2 2 3

3
=(-3cos2t)i +(2sin2t)] + % k-4t j+d

=1

Where d is constant of integration

Att=0, r = 0(Given)

ral

0=-3+0+0+0+d

ol

= stf
- . . 8 .
from (2) r=-3 cos 2ti +2sin2t] -4t j+?k+3t

3
r =(3-3cos2t)i +(2sin2t-4t)] +8t?|2

Definite Integral

—

dF -
If Ez f for all values of 't' in the interval [a, b] then the definite integral between a

b_) b_’ b . .
and b is denoted as If dt and is defined as jf dt = [F] =f (b)-f (a)
—_— 3—»
Example 8: If I = (t=1){ +2*] - 3K, find [rdt
2

Solution:

N —y
_1l

3
23] - 3K
l[t ) + 2] }
3 3 3 3
- jtfdt—jtzfdt+j2t3idt—j312dt
2 2 2 2

2 3 3 3 4 3
%} {tS |+2{tz} T—S[t]zk

2 2

- 3_)_(_f {E_Z_S}jLz{g_z_?j—B[B—Z]R
2 2 3 3 4 4
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3
3434w
2 2 3/, 4 4],

_ ﬂ{ﬁ}m[ﬁéji_sﬁ
2 3 4

3
_ [15—38j §1—3k
6 2
= __23 Ej—?}k
6
:_2_3f §]—3k
6
2 - - . — A
Example 9: Evaluate J'a(bxc) at, where a =ti -3 ] +2tk
1
+2Kk,c=37+t] +K
t -3 2
Solution: a (BxE) = [éT)E}: 1 -2 2
3t 1

=t(-2-2)+3(1L-6)+2t(t+6)
=-2t-2t2- 15+ 2t + 12t
=-2t-2t2- 15+ 2t2 + 12t
=10t- 15

= é(BXE) =10t- 15

= Tai(lcsxé)dt (10t-15)" j10tdt j15dt
1

P — N

M4272 2
=10/ -15 [t] =10 2 15
2] 2 2
=10[2-1) 15=10|3| -15=15-15=0
12 2 2
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4
Example 10: Evaluate JF% dtwhere r (3)=31 +2 | + kand
3

Solution: We know, (r r)= F ﬂ + ﬂ.?
d dt dt
dt dt
- dr
=2r.—
dt

| [-36t2 + 18t7] - | [-12t - 0] + K[12 - O]
18821 + 12t | +12K
dr d?r
_X_
dt  dt?

J dt = i(—18t2F+12t J°+12I2)dt
1

P C— N

RSP U &
=|-18—1+12— j+12tk
L 3 2 1
~ ~ ~72
= —6t3|+6t21+12tk]1
= [ -6(2)*1 +6(2) ] +12(2) 12]

- [ -6(1°T +6(1)° | +12(1) k}

= (487 +24] +24K) - (61 +6] +12K)

=-427 +18 | +12K
2 - dZF - ~ 2 ~
Example 11: Evaluate _[ rx? dtwhere r =31 + 3t | -2tk
0
Solution: Here r =31 + 3t | - 2tk
dr

- = =3t{+6t] -2k
dt
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[ [- 62+ 12t7] - ] [-2° + 6t + K [6t* - 9t’]

—

Fxﬂ =6t2iA-4'[3JG‘3t4l2 (@)
dt
3. d?y h
Now, I rx——s =,[ 6“ 4] - 3t4k)
dt?
0 0

(o5 ]

=Z[F@)r(@)-r@E.r@ |+c

27 5] +K).(21 5] +K) (37 + 2] +K).(3 + 2] +K)

I\JIH N | NI'—‘

[ S p—
/—\

(4-25+1)—(9+4+1)]
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1
= —[30-14]=
2[ ]

e
Example 12: If r =2t + 3t | - £k, then calculate j[—{sz]dt
Solution: Here r =2ti +3t2 | - K
dr dt .
—=2— 3—t2 ——t3k
o e ®) ] (t%)
d: —27 4320 | - @)K
., 21 +6t] -3tk
dt
d(dr) d _+ d i d :
__:_2| —6tJ——3t2k
- dt(dtJ at @ G g 00
d’r . e
= — =0+6] -6tk
t
- 0]k
dr  d°r
Now —x — =2 6t -3t
dt  dt?
0O 6 -6t

A . 3 .
=2(3)°1 -(3)" | -5(3)5 k

=54{-81]-— k
5

Example 13: Evaluate j¢dr for ¢ = x3y + 2y from (1, 1, 0) to (2, 4, 0) along the parabola
y=x%2=0
Solution: Letx =t, so thaty = t?
Parametric equations of the parabola are
x=t,y=t4z=0 1)
= dx=dt,dy=2tdt,dz=0 (2)
yj+zk

."

F=x
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dr =dxi +dy j+dzk
=  dr =dti+2tdtj+0Kk (from 2)

— dr =dti +2tdt]
when x=1,t=1, when y=1,t=1
XxX=2,t=2 y=4,t=2

Value of a 't' along the parabola from (1, 1, 0) to (2, 4, 0) varies from 1 to 2
Now, J.qﬁdF = I(x3y+ 2y)(dtf+2tdt j)

c

I(t5+2t2)(dtf+2tdt i)

2 2

jt +2t2 dt + _[ +4t
1

1

6 3|, 74|
22 2 1 2 2(2)"

= |2 +202P-2+2 |+ +(2*-S-1
s 3<)63}1{7 +(2) }
91 . 359 .

=— 1 +— |
6 7

Self Check Exercise - 1

Q.1

Q.2

0.3

. S _dr - - _
Find the value of r satisfying the equation F = a, where a is constant vector. Also it

dr -
is given that when t = 0, r =0 and o =u
or L B ~ B -
Solve F = at+ b where aand b are constant vectors, given that whent =0, r =
— dr -
0Oand — =u
at

frxdr = 6, show that I = constant
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Q.4  The acceleration aofa particle at any time t > 0 is given by a=ef- 6(t+1) j
+3(sin t) k
If the velocity v and displacement I are zeroatt = 0, find Vandr at any time.
Q5 Ifl (=5l +t] -2k, prove that
2 27
r A
j rxd— dt=-147+75] -15k
1 dt?
2 g dZF - ~ 2 ~
Q.6  Evaluate I er dtwhere r =221 +t | - 3t3k
0
Q.7  The acceleration a of a particle at any time t > 0 is given by a=e*{ - 6(t+1) |
+3(sint) K.
If the veIocityT/ and displacement Xare zero at t = 0, find vand r at any time.
Q.8 Evaluate I(xdy— yd x) around the circle x? +y? =1
Q.9 Evaluatej[yzdx+(zx+1)dy+ xydz] , Where c is a straight line joining the points
(1,0,0)to (2,1, 4)
14.4 Summary: In this unit we studied that
1. For a vector function F ®) = f1 [+ /> f+ fglz where f1, f2, fs are scalar function
of some variable 't' then.
j f(t)dt=i I f(t)dt = fj f.dt + IJ f,dt + IEJ- f,dt. is indefinite integral.
2. If the variable t is deflned on mterval [a, b] then the definite integral of vector
function is defined as J.f(t)dt—J.fdt+j J.f dt +k I fdt
3. Vector integration is helpful in real life situations in order to find displacement and
velocity from given velocity and acceleration respectively.
145 Glossary
1. Integrand: The integrand is a mathematical expression that represents the
function being integrated
2. Parametric Equations: Parametric equation is an equation where variable

(usually x and y) are expressed in terms of third parameter usually expressed as
t.
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14.6

14.7

3. Parabola: It is a curve formed by the intersection of a cone with a plane parallel
to straight line in its surface.

Answers to Self Check Exercise -1

Q1 r= % at+tu
- a b -
Q.2 r:Et3+§tz+tu
Q3 v=-e'f-(32+6t)]-3(cost)k+ i +3K
ro(t+et1) |- (+3t) | + (3t-3sint) K
Q.4  Use the concept of vector integration for its proving
Q5 -427+90]-6K
Q6 v=-eti-(3t2+6t)] -3(cost)k+ i +3k

r(t+etl) - (@E©+31) ] +(3t-3sint) Kk

Q7 2rx

Q8 9

References/Suggested Readings

1. R. Murray, S. Lipschutz, D. Spellman, Vector Analysis, Schaunts Outline.

2. S. Narayan and P.K. Mittal, Vector Calculas, Schand and Company Limited.
3. I.N. Sharma and A.R. Vasistha, Vector Calcula, Krishna Parkashan Mandir.

14.8 Terminal Question

. - 20— j+2k,whent =2
Q.1 Giventhatr(t)=< . ~ .
4 -2]+3k,whent=3

3~ dr
ShowthatJ- r.— | dt=10
> dt

- —

d’r - - - dr
Q.2 Solve F = at+ b, given that both r and E vanish whent=0

Q.3 If F. dF: 0, show that r = constant

*kkkk
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Unit - 15

Line Integral

Structure

15.1 Introduction

15.2 Learning Objectives

15.3 Line Integral
Self Check Exercise - 1

15.4 Work Done - Application of line eintegral
Self Check Exercise - 2

15.5 Circulation - Application of Line Integral
Self Check Exercise - 3

15.6 Summary

15.7 Glossary

15.8 Answers to self check exercises

15.9 References/Suggested Readings

15.10 Terminal Questions

15.1 Introduction

Dear student, in this unit you will learn about line integral. In previous unit we learn the

vector integration with definite and indefinite integral. In the integral the path of integration is not
a straight line but an arbitrary curve in space. For example of we want to find the workdone by a
force in moving a particle along a curve from point A to point B.

15.2

Learning Objectives

After studying this unit, students will be able to
define line integral over a curve c

define line integral over a parametric curve c
evaluate line integral.

define and evaluate workdone by a force field.

o M w D PE

define and evaluate circulation of a vector field.

Simple vector integration will not help. To solve such problem we need the line integral

or curve integrals. In this unit we will learn about some basics used in line integral and learn
how to evaluate the line integral.
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15.3 Line Integral

Line integral is a generalization of the concept of definite integral. In definite integral

Ifdt1 we integrate the function f(t) w.r.t. time t between the time intervalt =a and t = b.

QD C— T

In line integral, we integrate the given function or field along a curve C, here the
integrand will be a function defined at every point of given curve. Here the path of integration
may be a straight line or curve in space or in a plane.

If F=Fi +F, ] + F, K be the F in its component form and
r=xi +yj+zk
then dr =dxi +dy | +dzk

then J.lf.dF = I(Fxf+ ij+Fle).(d)dA+dyi+le€)
= J.(dex+ Fdy+ dez)

A

Note: If should be noted that F4, Fy, F, the components of F in x, y and z direction are
functions of x, y and z, but the integral will be either over x or y or z. So, you must have to

express each integral in terms of a single variable. If means, to evaluate,_[Fx(x, Y, Z) dx we
[

have to express y and z in terms of x so that Fy is a function of x only.

Note:- Line integral is an integration over one variable before moving further let us define some
terms as:

Curve Closed: Let C be any curve in space with A as initial point and B as terminal point, and
the curve is moving from A to B, if the initial and terminal point coincide, then the curve is known
as closed curve.

Smooth Curve: A curve ¢ is said to be smooth curve if the curve T curve if the curve F(t) is

. . oodr) .
continuously differentiable i.e. # exists and is not equal to zero anywhere on ¢, and the

direction of this derivative i.e. F(t) is along the tangent to the curve at every point.

In other word, a curve is said to be smoth curve if it possesses a unique tangent at each
of its points.

Piecewise Smoth Curve: A curve is said to be piece wise smoth if it is composed of a finite
number of smoth curves.
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Line Integral Using Parametric Representation

The parametric representation of the path of integration to define line integral of a vector
function along the path is define as.

jﬁ.dF:tf ﬁ(F(t))—d[;:t)] i

7]
where F (F(t)) is a vector function,

F(t) =X T+ y(t) | + z(t) K is the position vector function and t; and t» are the
end points of the path.

So, that %: % X T +y@) | + 2z K]

=%,ﬂ+ﬂj+ﬁg
dt dt dt

If F X, V,2) = Fx (X, y, 2) T+ Fyx, Y, 2) j + F(X, Y, z)IZ is the vector function in

Cartesian coordinates then replacing x = x(t), y = y(t), z = (t), we can write the vector function as
a function of the parameter t.

So,  F(r®) =R +FRO ] +FMk
. o~ B .dr
F.dr=[|F.=

So, j dr J'{F dt}dt

t
= Ilf.dF = I F %H: Q+F % dt, is the line integral of vector field F (t)
’ “dt Y dt ot

5]
on a curve ¢ which has a parametric represent action r (t)

The term Fx(t) dxd_Et) + Fy(t) % + F4(1) ?is a scalar function of a single variable t.

Properties of Line Integral

The line integral of a vector fields F and G alonge a curve C has the following
properties.

1. For a constant a,

jaﬁ.df:ajﬁ.dr
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where the curve c is made up of two curves ci1 and c; Now, let us try to understand line
integral by using following examples:

Example 1: Evaluate | F.df , where F=2xy i -y2 | + and c is the curve in the xy plane given
p

by y = x2 from (0, 0) to (2, 4).

A

Solution: Here given F = 2xy i - y? j , is in two dimensions and we, know that

A Fal

f =x ]
SO df =dxi +dy ] .
jlf dr = j 2xy dx— y*dy) (1)

Since the equation of given curve is y = x2 from (0, 0) to (2, 4), so putting y - x?, dy =
2xdx in (1), Since by this substitution integrand will now be the function of x only so laking the
limit of x from O to 2, we have

j Fdr = J%[Zx(x)zdx—(xz)ZZde]

o

[2x3dx— 2x5dx]

O =y N

2 2
= j 2x3dx— I 2x°dx
0 0

{ X }U |: X }U
4 6
1

-1 6.0v-1 6a-
= (16-0)- = (64-0)
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Example 2: Evaluate Ilf.dF where
C

el

F=xyi+yz] +zxk andcisthe curve r =ti +t2 | +t3k from (0, 0, 0) to (2, 4, 8).

2

Solution: Given F =xyl +yz | +zx K D

A

=t +2] +K (2)

=1

and
Since we known that, in general
r=xi +yj +zk (3)
Comparing (2) and (3)
x=ty=tz=t,
Putting the values of x, y and z in (1), we get
F =t +t] +t*K (4)

dF o A ~
Also, — =1 +2t] +3t?k (5)
dt
Since now the given integrant is converted into a single parameter 't' so the limit of integration
must be dependent on t. We can find these values of t; and t; as.
Since x=t; = t1=0

y=t12:> t12:0:> =0

z=t® = t$®°=0= =0 {+ initialy ((x,y,2) = (0,0,0)Given}
Again, x=t = th=2
y=t = t?P=4 = =2

N

z=t% = t2=8 = to =

{+ (xy2)at finial stageis(2,4,8)}
So the limit of t varies from t1 = 0 to t2 = 2 using line integral for parametric form we have

[Ed = j[F ﬂdt
c ' ) a

21

[(t"’f +1°] +t4I2).(f +2 ]+ 3tZI2)J

O =y N

[t3f+2tef+3te]dt

O =y N
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Example 3  Evaluate Ilf.dF where
C

—

F = c[(—Sasinz0cos€)f+a(23in6?—35in3¢9) f+b(sin26’)l2]

and the curve c is given by r =acos0i +asino J

Solution: Here F = c[(—Basinz49cos¢9)f+a(25in6’—3sin3¢9)f+(bsin26’)l2] and I = a cos
0f +asind | +bok,

r R . .
=a(-sin0)1 +acosO ] +bk

N ar
d
% =-a(-sin0)i +acos® | +bk
% -
jﬁ.dr =j F 9" 4o
C T d
2

c[(—Sasi n*@cosd)i +a(2sinf—3sin30) f+(bsin2¢9)@

1
BN —N N
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: [—asi néi +acosd| + bR] do

Iy

c

J;\kl'—.l\)

]

(@)
—_ N

INGRE

1
BN N

3
=c(a2+b§cjén20d9

4

NN

cos26 J

=c (a?+ b? {— 5

i
4

—c(a2+b2)

(-1-0)

c
2( )

[3azsin300059+ a(23in9—33in3«9)acosé?+bzsin26?] do
[Bazsin3Hcose+2azsinecose—3azsin3000549+bzsin2¢9] do

(a®sin26+b?sin20) do {++ 2sinfcosd =sin29}

Example 4  Evaluate Ilf.dF where F = zi + x| +yk and c is the are of the curve r
C

(cost) i +(sint) | +tk fromt=0tot=2=

Solution: Here F =zi +x | +yk

r =(cost) I +(sint) | +tk (1)
= d—:=(-sint)f+costj°+lz
Also szf+yi+zI2 (2)

From (1) and (2)
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X=cost,y=sint,z=t

—

F =t

I +cost] +sintk (3)

[E.dF = Tﬁ%?dt
c 0

4 A . P
= J;(tl + cost] +smtk).(—smt| +cost | +k)dt

= T[—tsint+coszt+sint]dt

0
= T(—tsint)dt+ Tcosztdt+ 2Ji[sintdt
0 0

0

27 2z 2z
t[sintdt— | {Efsintdt}dt ¥ det—(cost)z”
° o Ldt 5 2 0

2z

—[—tcost—(—sint) 1 [HstZt} - [cos 2n - cos 0]

2
0 2 0

snédr

= [-27 cos 2x + sin 2] + [0 + sin O] + % {27r+ —0+sin0}—[00527z—coso]

=@2rn-0)+0+n+0-1+1
=3n
Example 5 Evaluate jlf.dF where c is the curve in the xy plane, y = 2x2 from (0, 0) to (1. 2),
c
F =3xyi-y2]
Solution: Here F =3xyl +y2 | , r =xi+y |

dr =dxi +dy |

The equation of curve is y = 2x?

Ilf.dF = I(Sxyf— yzf).(dxf+dy j)

C
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Example 6 A vector field is given by f =sinyi +x (1+cosy) j.

Evaluate the line integral m?.df along the curve given by xo +y>=az,z=0
[

Solution: Here f =sinyi +x (1+cosy) |
The given curve is x> +y?2=a2,z=0
The parametric equations of the curve are x =acosty=asint,z=0

The Position vector of any point on the curve is

I'al

r=xi +y

—

— A

dr =dri +dy

—_—

~

Now, m?dF = m[sm yiA+X(1+cO5y) '][dxiA+dyj]
= J'sin ydx +x(L+cosy)dy
= [sinydx+xdy+xcosydy

= _[sin ydx+ xcosydy+ xdy
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= Id(xsin y)+jxdy

c

27
= Id{acostsin(asint)+ I acostacostdt} {-'t'varies fromOto2z onthedirde}
0

27
= [acostsin(asint)]z” + azfmsztdt
0

Il
|2
7\
N
0.
-
NN
]
|
?
o
N—

a
?(Zﬁ)
=1 a2
Example 7  Evaluate fdr from (0, 0, 0) to (3, 9, 0) along the curve y = x?, z = 0, for f=
321+ (2% - 2)?2 k
Solution: Let x = t Do that y = t2 { y= xz(given)}
along the parabola y = x2, z = 0, we have
Xx=ty=t3z=0

Also r =xi +y] +zk

r=ti +22]+0
o r=ti+]

dar .

— =1 +2t]

dt

Now f =3x2i +(x+2)? |+ (2x-2?K

=32 +2 j+(2t-0)k
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when x=0 = t=0
X=3 = t=3
when y=0 = t?=0 = t=0

y=9 = t?=9 = t=3
Value of t along the curve from (0, 0, 0) to (3, 9, 0)
Varies from 0to3

[T = 7.8 dr o= f(act 425, + 27t

0

3

_([3t (D)+t*.(2t) ]c

3 3
jsﬁmjzﬁdt
0 0

3 3

27 2t
—_ + R
3o 4

(27+8—1j 0
2

135
2

Self Check Exercise -1

Q.1 Evaluate IE.dF where F = yzi +zx j + Xy k and c is the portion of curve

=(acost) | +{bsint) | +(ct) k from

'[=0'[0'[=z
2

Q.2  Evaluate IE.dF where F =xyi +yz | +zxK andcurvecis I =ti +t |

c

+82K s, tvaries from-1to 1
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Q.3 Evaluate J.?.dF where f=xyi +2yz | -9zk andcurvecis r =ti +t ]
Cc

+83K , varies from 1 to 2.

Q.4 Evaluate ﬁ.d? where f=yi +(x+2)?2] +(x-2)?2k from (0, 0, 0)

to (2, 4, 0) along
0) the parabolay =x?,z=0
(i) the straight line y = 2x in xy plane

Q5 If F = (2x2 +y2)i + (3y - 4x) j evaluate IE.dF around the triangle

ABC whose vertices are A (0, 0), B (2, 0) and ¢ (2, 1)

15.4 Workdone
Work done by a force:Let F=Fi+F J + Fs k be a force acting at P with position vector x I

+y ] +zKk

Then the work done by the force F in displacing a unit particle from A to B is defined as
line integral from Ato B

B B B
Work done = J.E.f ds= IE.dF = I(Fldx+ F,dy + Fsdz)
A A A

Conservative Field :

A force F is said to be conservative if the work done by it in moving its point of
application from a point A to B depends only on the points A and B and not upon the path
joining A and B.

Q.1  Find the work done when a force F = (x2-y2+Xx)1 - (2xy +Y) j moves a particle in xy
plane from (0, 0) to (1, 1) along the parabola y? = x

Solution: Let C denote the are of the parabola y? = x from the point (0, 0) to the point (1, 1).
The parametric equations of the parabola y? = x can be taken as x = t?, y = t. At the point (0, 0), t
=0 and at the point (1, 1), t=1

Now F =(2-y2+x)i-(@2xy+y)]

dr =dxi +dy | {-.-F:xf+yj°}

Work done = IE.dF
Cc
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Ot P

(xz—y2+x)i —(2xy+y) j].[dxhdﬁ]

_(xz -y +x)%—(2xy+ y)g}dt

dt

(Xt =t +7) (2) (2 +t) (@) |t

I
O =y

= Jl'(2t5—2tS—t)dt

Q.2 Find the work done in moving a particle in a force field f = 3x2i + (2xz -y) | + zK
along the line joining the points (0, 0O, 0) to (2, 1, 3).
Solution: Here f =3x21 + (2xz - y) j +zk
The equation of line joining (0, 0, 0) to (2, 1, 3) is
Xx-0_y-0_2z-0
2-0 1-0 3-0
L o x_y_z
2 1 3

= X = 2t,y =t, z = 3t are parametric equations of line .. t varies from 0 to 1 along
the curve from (0, 0, 0) to (2, 1, 3)

f=3(2t) 1 +[2(2t)(3t)-t] ]+ 3k

=t (say)

f =121 +(122-1) | +3tK

Also r =xi +y] +zk
r=2ti +t] +3tk
dF s ~ ~

= — =21 + ] +3Kk
dt
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Work done in moving particle in force field from (0, 0, 0) to (2, 1, 3) = J'?.df

—_
—
[@F
=1

~—
o
(=3

Q.3 Find the total work done in moving a patrticle in a force field given by F= 3xyl - 5z j +
10x k alongthecurve x=t2+1,y=2t>, z=t*fromt=1to t = 2.
Solution: The equations of curve c are
X=t2+1,y=2t2,z=13
Now, E=3xyf-52f+10xI2

=xi+y] +zk

=

=  dr =dxi+dy] +dzk
Work done = J'E.dF
= I[Sxyf—Szi+10xl€].[dxf+dyj°+dzl2}

c

= j3xydx—52dy+10xdz
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| 3(t?+1)(2t%) (2t o) - 5t>4tclt +10(t* +1) 3t |

P — N RN

[12t3(t2 +1)dt - 20t clt + 3062 (t* +1) dt]

= 12f(t5 +t3)dt - ZOJ%t“dt +30J%(t4 +t2)dt
1 1 1

6 +4)\2 52 5 .3)2
=12 t—+t— - 20 v + 30 t—+t—
6 41 51 5 3l

=171- 124 + 256

=303
Q.4  Find the work done in moving a particle once around a circle c¢ in the xy plane, if the
circle has centre at the Qrign and radius 2 and if the force field is given by F = (2x -y +22)i +
(x+y-2)] +(3x-2y-52)K

Solution: The equation of circle with centre (0, 0) and radius = 2 is x? + y? = 4

Its parametric equations are x =2 cost,y =2 sint, z = 0 t varies from 0 to 2x
Now, E=(2x-y+22)f+(x+y-z) ] +(3x-2y-52)l2

jE.dF

-J[(Zx— y+22)i +(X+y-2) | +(3x—2y—52) @.[dxhdy jA+dzI2}

= .|.(2x— y+2z)dx+(x+y—2z)dy+(3x—2y—52)dz

2 27
= J'[2(2003t)—25int]+(—25int)dt+I[Zcost+25int](2005t)dt
0 0

+ T[S(Zcost) —2(2sint)-5(0) |0

= T(4cost —2sint)(-2sint)dt +T(4coszt+4si ntcost)dt
0

0
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27 2 2r 27
= j8costsintdt+ j4sin2tdt+ j4cosztdt+ 4_[5intcostdt
0 0 0 0

2
= J' | -8costsint+4(sin’t+cos’t) + 4sint cost [dt

0

27
= .[ [-4sint cost + 4]dt
0

2z
= I [4—2(2sint cost)dt {sn2A=2sn AcosA}

0

2r
= [(4-2sin2t)dt
0

cos2t )2”

=(4t+2
0

= (8n + cos 4n) - (0 + cos 0)

=8r+1-1

=8n

Q.5 Find the work done in moving a particle once around a circle 'c' in xy plane, if the circle
has centre at the origin and radius 3 and the force field is given by

f =(@2x-y+2) i +(x+y-2?9) | +(3x-2y+4z)l2

Solution: Here f =(2x-y+2)i +(x+y-2?) | +(3x—2y+4z)l2
The equation of the circle in xy plane is x2 +y?>=9,z=0
The parametric equations of the circle are
x=3cost,y=3sint,z=0

r=xi+y]+zk

r =3costi +3sint | {-z=0}

dr

dt
Work done = J'?.dF = I(T.d?)dt

c

=-2sinti +3cost |
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J[ 2x—y+2)i x+y y4 )J+(3x—2y+4z)l2}.[—3sintf+3cost j]dt

[(Zx y+2z)(-3sint)+(x+y- 22)(3003t)]dt

O )

= T[Z(+3cost)(—35int)—(35i nt)(-3sint)+0+(3cost)(3cost)+(3sint)(3cost) +0 ] dit

2r
= _[[—18005tsint+9sin2t+90052t+98intcost]dt

0

= 2J?[—Qsintcost+9(sin2t+coszt)}dt
0

2r

= _[ [-9sintcost +9]dt
0
2r

= J'_?g(Zsintcost)dHTth
0

0

_ —927[ . 2r
= ?_([SantdtJr—(t)O

2z
= _9[_“’53] +9(27-0)
0

= [COS47Z' — COSO] +187

Self Check Exercise - 2

Q.1  Find the work done in moving a particle in a field of force given by f =3xi
+(2xz-vy) ] +3 k along the line joining the points (0, 0, 0) and (3, 1, 4)
Q.2  Find the total work done in moving a particle in a force field given by f =

3xy i -5z |+ 10x Kk alongthe curve x =2+ 1,y =22, z=t fromt=1to t = 2.
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Q.3 Find the work done by f =3x21 +(2xz-y) | +zK overthe r () =ti + |
+83k ,0<t<1from (0,0, 0)to (1,1, 1)
Q.4  Find the total work done by the force represented by f =3xy i -y |+ 2zx K

in moving a particle round the circle x? + y? = 4

15.5 Circulation:

Circulation - If ¢ is a closed curve, then the line integral of F along c is called the circle
lation of F along c

Circulation of F along c = J.E.dF
[

= [ﬁ( Fdx+ F,dy + F,dz)

Where F=Fii +F, | +FsKk, r=xi+y] +zk,

Q.6  Find the circulation of F round the curve ¢ where F = yil+z j +x k and c is the circle
xX2+y?=1,z=0

Solution: The equation of C in xy plane is x? + y2 = 1 Its parametric equations are x = cos 0, y =
sin 0, 0 varies from 0 to 2 A

A

r=xi+yj] =  dr =dxi+dy]
—  dr =(-sin0de)i +(cos0do) |
jE.dF=j(yf+zi+x|2).(—sjn9d9f+cosed9i)

2A
= I—ysin9d0+zcosed9
0
2A
= jsin@sin@d@ {y=sné}

0
2A

= jsin%'d@
0

2A
_ J- 1-cos26 do
5 2
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Q.7  Find the circulation of f round the curve ¢, where f = {esin y + fex cosyandcisa
rectangle whose vertices are (0, 0), (1, 0), (1, %j
Solution: Here f = { e*sin y+ je<cosy
r=xi+y]j
dr =xxi + Xy j
Now, circulation of f round ¢ = [ﬁ?.d?
c

= Uj(fex sny+ je* cosy).(dxf +dy J)

C

[Jj(exsin y dx+€” cosdy)

C

j e‘sin ydx+e* cosdy
OA

= _[ €“sinydx+e* cosdy
AB

= J'exsin ydx+excosdy+J'eXsin ydx+ e* cosdy (1)
AB

co

Along 0A,y=0,y=0, = dy=0and x variesfrom 0 to 1

N | >

Along AB, x =1 = dx =0 and y varies from 0 to
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Along BC,y = — = dy = 0 and x varies from 1 to 0

N | >

Along co, x =0 = dx = 0 and y varies from % to 0

1
(1) = circulation of f round ¢ = _[(de+ 0)+
0

O L N | >

0 — 0
ecosydy+jexsin%dx+jcosydy
1 A

N

= O+[esiny]0§ + [eX]f + [sny]x
2

=0+ e[sin%—sinO}+ (e%-et) + (SiﬂO—Sin%)

=0+e+(1-e)+(0-1)
=e+l-e-1
=0

Self Check Exercise - 3

Q.1 Calculate circulation of a vector field

F =xi+(3x2+y) | around a circle x? + y2 = 4

15.6 Summary:
Dear students in this unit, we studies

1. Line integral is a generalization of definite integral where path of integration is
along a curve.

2. Mathematically line integral is given by

[F.df = [(Fdx+Fdy+F,dz)

A

using F =Fi +F, ] +F. K
df = dei +dy | +d. K

3. Line integral using parametric representation is given by

jﬁ dr = ][F ﬁ}dt
[F. [P |
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4. The workdone by a force field F in moving in object along a path c between the
points P and Q is given by W = '[If.df .
[

5. When the integration is done over a closed curve then [l]lf.df is known as
Cc

circulation of the vector field F around the closed curve c.
15.7 Glossary
Displacement - net change in location of a moving body

Differentiation - Instanteous rate of change of a function with respect to one of its
variable.

Integration - The process of finding a function from its derivative.
Line integral - Integration along a line or curve
15.8 Answer to Self Check Exercises
Self Check Exercise - 1
Ans. 1:0

Ans. 2: E
7

Ans. 3:- @

28
. 32
Ans. 4: (1) —
(i) 3
.. 28
i —
(i) 3
Ans. 5: _—14
3
Self Check Exercise - 2
Ans. 1: %
2
Ans. 2:303

Ans. 3: E
3

Ans. 4:0
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Self Check Exercise - 3

15.9

15.10

Q.1

0

Suggested Readings

1.
2.
3.

R. Murray, S. Lipschulz, D. Spellman, Vector Analysis, Schaunils Outline.
S. Narayan and P.K. Mittal, Vector Calculas, Schand and Company Limited.

J.N. Sharma and A.R. Vasistha, Vector Calcula, Krishna Prakashan Mandir.

Terminal Questions

Q.1
Q.2

Q.3

Q.4

Q.5

Q.6

Q.7

Evaluate Uj?xd? along the circle C represented by x>+ y>=a? z=0

If F =2yi +j] +xk, evaluate J.E.dF = along the curve x = cos t, y = sin t,
C

z=2costfromt=0tot=

N | >

If F = (3x2+6y)i - (14yz) |+ (20xz?) k , evaluate IE.dF where c is the straight

line joining (O, 0, 0) to (1, 1, 1)

~

Calculate J'[(x2 + yz)i"+(x2 —~ y2) j] .dr where c is the curve

() y2 = X, joining (0, 0) to (1, 1)

(i) consisting of two lines joining (0, 0) to (1, 0) and (1, 0) to (1, 1).
Find the work done in moving a particle in the field F = (3x - 4y + 22) ]
+ (4x + 2y - 322) | + (2xz-4y?+z) K

2 2

along one round the ellipse X + DA 1,z=0
16 9

If F =x21 +xy | . Evaluate J.E.dF from (0, 0) to (1, 0) along the parabola

y=/x

Calculate the circulation of the vector field F = y? I+ Xy ] around the closed path
along the parabola y = 2x? from (0, 0) to (1, 2) and basic from (1, 2) to (0, 0)
along the straight line y = 2x.

K*kkkk
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Unit - 16

Surface Integral

Structure
16.1 Introduction
16.2 Learning Objectives
16.3 Double Integral
16.4 Surface Integral
Self Check Exercise
16.5 Summary
16.6 Glossary
16.7 Answers to self check exercises
16.8 References/Suggested Readings
16.9 Terminal Questions
16.1 Introduction

Dear student, in this unit we will extend the idea of line integral i.e. single variable

integral to double integral i.e. integral to be calculated for two variables. Double integral are
integration of function of two variables and the region of integration are on the coordinate
planes. Also in this unit we will study about surface integral of a vector field, where the
integration is over a two dimensional surface in space. Again surface integral are generalization
of double integral.

16.2 Learning Objectives: After studying this unit students will be able to

1. To find the parametric representation of a cylinder, a cone and a sphere.

2. To describe the surface integral of a scalar-valued function over a parametric
surface.

3. To use surface integral to calculate the area of given surface.

4. To describe the surface integral of vector field.

5. To solve the questions related to surface integral.
16.3 Surface Integral: Any integral which is to be evaluated over a surface is known as

surface integral. Before studying much about surface integral we will discuss the double
integral, as surface integral is a generalization of double integral. Double integral can be used to
find the area of a region and volume of a solid.
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Double Integral:
Let us try following examples to have an idea of double integral.

Example 1: Determine the area of the region R on xy plane bounded by the curves y = x + 2
and y = x2 by evaluating double integral.

Solution: Since the area of region R can be evaluated by, area = ” dxdy
R

Here R is the region bounded by the curvesy =x + 2 and y = x2,

To evaluate double integral, we have to find the limits of integration for the variables x
and y in the region R. For this we have to solve given system of equations.

y=x?andy=x+2

These equations gives us
xX2=x+2
x2-x-2=0
X2-2x+x-2=0
X(x-2)+1(x-2)=0
x-2)x+1)=0

XxX=2,x=-1

b4 4l

Therefore, x varies from -1 to 2 and y varies from x? to x + 2 because for x — (-1 to 2) x?
<X+2
So X2<y<x+2

2 x+2

Therefore Area = j I (dy)dx
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20 7 271 9
-+ — = — = —

6 6 6 2
Example 2: Fine the volume of the solid below the surface f(x, y) = 4 + cox x + cox y, above the

region R on the xy plane bounded by the curve x = 0, x = w, y = 0 and y = & using double
integral.

= Area =

Solution: Since volume of the solid is given by

Volume =V = ” f (X, y)dydx

Xy

Since Here f(x, y) =4 + cox X + cox y and region is bounded by 0 < x < & s0,
v=|
0

Integrating over y, we get

(4+coxx+coxy)dydx

O =y

Y% =I(4y+ ycoxx+siny) dx
0
V= j[4y+;rcoxx+sin7z—0(0)]dx
0
= I47Z'+7TCOXXdX
0

Now, integrating over x; we get
V= [4zx+zsinx]]
= A’ +rSinx

= V = 4r?

16.4 Surface Integral:

The integral evaluated over a surface is known as surface integral. Consider a surface S
having definite area. Let f(xiyi1z) be a single valued function defined on the surface S. Om

subdividing the area S into n parts As;, ASp ..ccccueeeneee. A's,. Let Pe(xctyk'zi) be an arbitrary point

n

on each Asi. Then the sum Y f(p,)Js,, on which, on taking limit as k- such that 8sx — 0.
k=1

If this limit exist, is called the surface integral of f(xiy:z) over s and is denoted by

” f (xY12) ds=.|. fds.
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Surface Integral in Term of Flux Across the Surface
In order to find the surface integral, we use the concept of flux across the surface.

The word flux has meaning flow. This term is easier to understand in the field of fluid
flow.

Flux:-
The amount of fluid that fluid that flows through any area in unit time is known as flux.
How, we will learn that how the flux of any vector field can be written as a surface
integral.
Let I_f(xlylz) be a vector function of position which is defined and continuous over

smoth surface S. Let P be any point on that surface and A be the unit vector at point P in the
direction of outward drawn normal to surface s.

A
A »
f/}/'
R T
// / >\\\
&[ﬁ 5 -) ga,\hc}_c Q
\\ __sgn L “~J

Then the normal component of vector function is given by F.A. and the integral of
normal component of vector function over the surface is known as flux.

soflux = [ [F.n.ds (1)
If dS be a area vector which has magnitude ds and is in the direction of fi. Then
po A
ds - ‘ﬁ
= ds = Ads (2)

So flux can be written as
”ﬁﬁds:j F.ds ©)

Let A makes an angle« B,y with x, y and z axis respectively. If I, m, n are direction-
cosine of i then | = cox o, m = cox B and n = cox y.
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Then A =cox & | +cox B | + cox y K

If F(XY,2) =Fai +F2 |+ FsK

Then F.A = (Fii +F2 |+ FsK). (cox a | +cox B | + cox y k)
= F1COX o | + FocoX B |+ coxy K

So ”If.ﬁds= H(FlcOSOHF2 cos 3 + F3cosy) ds.

Let the surface s is such that line perpendicular to the x, y plane meets the surface s in
not more than one point. If y is the angle which i makes with z axis at point P surface S. If ds is
the small element of area s at point P.

Cox yds =dxdy

ds = dxdy
COXy
cl‘— ——
= dx_cly where K is the vector along z-axis
Ak

AL ~ , dxd
“F.ndsz IiF.n r‘T.IQy

Where R be the orthogonal projection of s on the xy plane

Evaluation of A surface Integral

Step 1: If F=F (%, ¥, z) be the given vector field and s is the surface then find normal
to the given surface which is given by A = VS = grad $

. VS
Step 2: Find normal to the surface which is given by n = w
Step 3: Find the value of F.n
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Step 4: Evaluate the integral ” F.Ads= ” F.A dedy
S R

Let us do some example to have batter understanding of surface integral.

R 3 . :
Example 1: Evaluate ”qﬁndswhere ¢ = gxyz and s is the surface of cylinder x> + y2 = 16
S
included in first octant between z =0 and 3 = 5.
Solution: Since the given surface is x> +y?-16=0=S
So normal to the surface is given by gradient of S.

Sof=Vs-= a—|+ﬂ+a—k (X% +y? - 16)
oX oy oz

Vs = 2x1i + 2y I
So, unit normal to the surface is

L 2xI +2y] 22X +2y] _ 2xi +2y]
1 Jageay afery 20
22X 42y X +y)
2x4 4

L1 . .
n=-—xI+
4( yl)

As the surface S is perpendicular to xy plane, so the projection is on xz plane, we have

265



If R is the region of projection of surface S on xy plane, then region R is bonded by x = 0
andx=4andz=0andz=5

Now, [ [pnds= [[2 YLty )02

il

SR

Since x2+y2=16 = y2=16-x2 = y2\16— X

54
= gﬂ(xzzf+xz\/16—x2 i)dxdz o x2=16-y2
00

Since V16— X xdx = J.(16 X ) xdx
= _Elj.(16—x2); (—2x)dx j\/az—xzdx

I\/16 X xdx—%( °- 2)
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_8 [251 +25 ]
5 |
”¢ﬁds = 1001 +100 |
S
Example 2: Consider the hemisphere x> + y> + (z - 2)> =9, 2 < z < 5 and the vector field

F=xi+ y j +(z-2) K. Find the value of ||E.ﬁ ds over the hemisphere with i denoting the
unit outword normal vector.

Solution: The unit vector normal to the surface will be given by
h= Vo
V4l
d=x+y*+(z-2)°=9
Vo=2xi+2y | +2(z-2)k -,-ﬁ:£f+£j+g|2
ox oy o0z

2<xf+yi+(z—2)l2)
J(2x) +(2y) +2(z-2)°
. (xf+y1°+(z—2)|2)
A =

x\/x2 +y*+(z- 2)2

- A= Xi +Vj+(z-2)k
\/x2+y2+(z—2)2

X + Y] +(z-2)k
\/x2+ y2+(z—2)2

F.A= [xf+ yi+(z—2)|2].

X°+y*+(z-2)°
\/xz +y? +(z—2)2
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Thus. ”(E.ﬁ)dxdy = ”3dxdy
- of foxoy
= 3 (Area of Hemisphere) | Qurfaceareofhemisphere = 271 r :q
=3 x 21 (3)?
=3x2nx9
=547
[[F.n ds = 54n
Example 3: Find the area of the triangle bounded by y =0, x =y and y = 15 - 2x.
Solution: We know Area of triangle A = .”. dxdy

Now, plating the graph for the given data

R
l > <8
[ Iﬁ L)
"j‘ r : v ]
"{‘- 0 - ’)L" —T:—__._.*_ ))

X v, o

Y 2 A

Coordinate of point P .-.

Asx=yandy =15 - 2x
Substituting x =y in y = 15 - 2x we have

y=15-2y
3y=15
15
= = —
i
15
= X = —
3
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15 15
Pl ==
55)
Now, A= ”dxdy
15 15y
3 2
= j dxdy
y=0 x=y
15
3 15y
= | I,7 dy
y=0
_15
3[15—
YIS
y=0
15
_{15—y_y_2_y_2}3
2 4 2|
_
4

. I
Area of triangle n unit square

Example 4: Calculate the surface integral of the scalar field f(x, y, z) = x? + y? over the surface
of the cylinder x> + y?=1for0<z < 3.

Solution: Given f(x, y, z) = x? + y?
and surface x? + y2= 1 i.e. surface of cylinder on Barameterize the given surface we get
X=cos0,y=sin6,z=1
Thus, surface element ds = dz do

and f(x, Yy, z) = x2 +y>=c0s%0 + sin?0 = 1

Therefore J;I f(x,y,2)ds = Tildzdﬁ z;g:jﬂ
27 3
= Izjd&
0 0
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27
= j 3d@
0

=3[0];

= 3(2n)

=6mn

ﬂ f(x,y,2)ds=6x

S

Example 5: Evaluate HT.ﬁ ds, f =z{+x |+ 3y2zKkand S is the surface of the cylinder x2 +
S

y2 = 16 included in the 1st octant between z =0 and z = 5.
Solution: The equation of surface Sis x? +y?-16=0

VS=V(X2+y2-16)=2xi +2y |

. . . Vs
N = unit vector normal to surface S at any point (x, y, z) = ﬂ
2xi +2y]
JAX2 +4y?
2Xi +2y]
2% +y?
2Xi +2y] .
= —— cIXT+y =16
216 Y

I+ 3y
4 4
Also, F =27 +x+2y?=k
— . N (Lo~ 1 s
A_ I 0 2 - -
F.n—(2|+xj+3yzk).(4X|+4wj

_xZ X

4 4

As surface S is perpendicular to xy plane, therefore we do not take any projection on xy
plane. Taking projection on xz plane, we have.
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ds = dxcjy
N.|

If R is the region of projection of surface S on xz plane then region R is bounded by x =
Otox=4andz=0toz=5

Now, ”F nds—”F ndxdy

. |nj|—3y‘
fnir

_ z=5x=4 XZ d d
) Lﬂdlﬁ—xz +Xj ™

= j'(4z+8)dz

4 5
= —Z+82
[ F

= [222 +8z]Z
= (50 + 40) - 0
=90
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Example 6: Let S be the portion of the plane z = 2x + 2y - 100 which lies inside the cylinder x. +
y2 = 1. If the surface area of S is ar, then the value of a is equal to....... .

Solution: S is the portion of the plane z = 2x + 2y - 100 which lies inside the cylinder x2 +y> =1
Zx=2,zy=2

Then surface area of S = J‘J‘mdxdy
= H 1+(2) +(2)* dxdy

= ”3dxdy

Now, the cylinder is x2 +y? = 1
Letx=cos 6,y=sin6

27 1

Then, surface area of S = j I3r drdé
00

27 .2

=3£%r})d9

32
— | de@
2]

Hence [a=3] =3x
Some Other

Methods to evaluate surface integral:- Surface integral mainly depend upon how the surface
is given to us. There are essentially two separate method to evaluate surface integral:-

D When surface S is given by z = z(x, y). In this case

(8—9J2+ a9 2+1dA
oX oy '

(2) When surface S is given by parameterization i.e.

F(u,v)=x(u,v)=x(u,v)f+y(u,v) f+z(u,v)l2
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In these cases surface integral is

”F xyzds _U ( uv)”ru+rdeA

Example 7: Evaluate the surface integral ” x°ds, where S is the unit sphere x2 + y2 + z2 = 1.

Solution: Given S is unit sphere ; x> +y?+z2=1
Parametric representation is given as
r@6)=sinpcosOi +sinpsinod f+cos¢|2
Where x = sin ¢ cos 6

y=sin¢$sino

z=cos ¢
and0<¢<n,0<6<2rn

“réxr6|=sin¢

= J'szdsz H(sin¢cos€)2|r¢+ ro|dA

2r

= _”sin3¢cosz 0dgdo

j(sn¢ singcos’ ¢)dg

1
2[0+ sm29} {cos¢+§cosg¢}

0

4z
3

ﬂ x°ds = —
S
Example 8: _nyzds, in surface S which is part of the plane where z = 1 + 2x + 3y, which lies

S
above the rectangle [0,3 ; 0,3].
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Solution: Given H xyzds, z = 1 + 2x + 3y, Rectangle [0,3 ; 0,2]
S

= J'J' Xyzds =

O ey

J:.[ (1+2x+3y )( )2 (3)2+(1)2}dydx

1
ey W

|_\

N

2 2.2 372
xy+2xy+3xy dx
2 2 3 o

ll o

3
j 2x+4x +8x
0

{ZXZ 45 8x? T
+—F
2 3 2|
= 14 (9 + 36 + 36)
14 x 81

=92 14

.. Surface integral for given function is 92 \/E

-

Example 9: Evaluate H 6xy dswhere S is the portion of the plane x + y + z = 1 that lies in the 1%

octant and is in front of yz plane.
Solution: Givenx+y+z=1
Since, we are looking for the portion of the plane that lies in yz plane. thus, x = g (y, z)
ie. x=1-y-z=g(y,2)
Here ranges of y and z are
0<y=<10<z<l-y

Now, J;J.F(x, y,2)ds = J;J'f(g(y,z),y,z))1+(%gjz+(%jz_dA
> [[exyds = [[6(1-y-2)y J1+ (-2 +(-1)°cA

N jsj6xyd8=\/§ ij6(y—y2—zy)dA
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Il
S 5
O ey O'—.I—‘
1 o'—.l
N ~<
< <,
|
| o
<, B
e <

I
(o))
@
O ey
I\Jll—\I
b
<
+
<
L 1
g

Il
(o))
I~

O ey

I 1

| =
<
N

(IR
<
w

|_\
<
™

|

A

=&

= '[jGXde = ?

Example 10: Evaluate ” ydswhere S is the portion of the cylinder x? + y? = 3 that lies between

z=0andz=6.
Solution: Given x? + y? = 3 equation of cylinder.

After parametrization above eq" become
I (z,0)= 3 cosOi+3sing|+zKk
s.t. 0<z <G,0<06<2n
Now, rz (z,0) = K
10(z,0)=- 3 sin0i++3cosh ]
[ j k
(rxro)=| o 0o 1
—J§sin0 \/§cos«9 0
— V3 cosoi++/3sino |
(FxFe) =3
Therefore = ”yds= ”\/ésiné?(\/é)dA
s D
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2
= 3j snédzde
0

Y4
=3j6sjned9
0

O t——y &

=-18 cos 0"

=0
= ” yds=0
Example 11: Find ” 40y dswhere S is the portion of y = 3x? + 3z2 that lies behind y = 6.

Solution: Given 3x2 + 3z%2 + y lies behind y = 6
To find D put y = 6 in above equation
= 3x2+322=6
x2+3z22=2
Thus, D is a disk x? + 3z < 2
and y=g(x,z)=3x2+3z2

Therefore, we have

[rousaes s 2] (] o

S

J[40yds= [[40(3x +32°))(Bx)" +1+(62) A

S

= ijlzo(x2 + 22)>36(x2 +22)+1dA

Putx=rcos0,y=rsin0, x2+ z2=r?

HereDisadiski.e.x2+2252Thus,05652n,05r5\/E

27r\/§
= [[40yds= [] 120r2/36r% +1(r) dr d@
S 00
1
Putu=36r+1,du=72rdr= i du=rdr
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1
andr2= — (u-1
36( )

= [[40yds= TTlZO(%j(g—t)(u—l)u;dude

s 0

108
2z
2 5 2 3
v 108[\ 5 3 N
57 | 2 2 3
= 22| 2(73)2 - £(73)2+ - | =5176.8958
54 |5 3
16.5 Summary
. A surface integral is like a line integral in one higher dimension.
° The domain of the integration of a surface integral is a surface in a plane or
space, rather than a alive in a plane or space.
° The integrand of a surface integral can be scalar function or a vector field.
. If S is a surface then area of S is given by _U ds.
S
. Surfaces are parameterized just as curve can be parameterized in general,

surface must be parameterized with two parameters.
° The parametric domain of parameterization is the set of points in the uv plane
that can be substituted into r . Where parameterization of surface is
(U v) = (X(UVv), Y(Uu,v), Z(u,v))
16.6 Glossary

° Scalar Field: A scalar field associates a scalar value to every point in a space
possibly physical space. The scalar may either be a mathematical number or
physical quantity.

. Scalar Function: Scalar functions are functions that yields scalar quantities
when they map points and numbers in catteries space e.g. (f(x) = 2%, f(X, ¥) = 5x
+2y-1

. Vector Field: A vector field is a set of vectors assighed to each point in a space

region. Vector fields are frequently used to describe the speed and direction of
moving fluid in a space.
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Vector Function: A vector function is a function where doman is subset of the
real numbers and range is a vector e.g. r(t) = (t, - 2 + 5) =ti + (-t2+5) |

Parameterization: To parametrize means to express in terms of parameters.
Parameterization is a mathematical process consisting of expressing the state of
a system, a process or model as a function of some independent quantities
called parameters e.g. y = x? sin (x) ; X € [-1, 2]

x=t
Let S(t) = _
<y=tzsn(t);te[—12]>

Parameter domain: The parameter domain of the parameterization is the set of

points in the uv plane that can be substituted into r. Where parameterization of
surface is

ruv) = (X(u,v), y(u,v), z(u,v))

Projection: Projection is a linear transformation from vector space to itself.

Octant: It is one of the eight divisions of a Euclidean three dimensional
coordinate system.

Self Check Exercise

1.

Evaluate H zds where S is the upper half of the sphere of radius 2.

Evaluate H(y+ Z) ds where S is the surface whose side is the cylinder x? + y? =

3, whose bottom is the disk x> + y? < 3 in the xy - plane and whose top is the
plane z=4-y.

Find ”2de where S is the portion of y? + z2 = 4 between x =0 and x = 3 - z.
S

Find the integral J.J' xzds where S is the portion of the sphere of radius 3 with x <
S

O,y>0andz>.
Evaluate ” Fds where F = 4x1 - 2y2 | +z2kand S is the surface bounded by
S

the region x> +y?>=4,z=0and z = 3.

Calculate the surface integral of F = (yz1 x z x y) over the surface of plane x +y
+ z = 1 in first octant.

Calculate the surface integral of f(x,y,z) = x+y+z over the planr z = 1 in the
region bounded by x=,y=0and x +y = 1.

278




16.7 Answers to Self Check Exercise
1. 8n

2 %(29\/§+ 24J§)

0
-27
84n
6 V3
6
3
7. —
4

16.8 References/Suggested Readings

1. Vector Calculus by P.C. Mathews.
2. Differential and Integral Calculus by N. Piskunov.
3. Calculus of Several Variables by Springer.

16.9 Terminal Questions

1. Evaluate H(Z+3y— Xz)ds where S is the portion of Z = 2 - 3y + x2 that lies over
S

the triangle in the xy plane with vertices (0, 0), (2, 0) and (2, -4)

2. Find the value of surface integral for F = 2y where S is the portion of y2 + z? = 4
between x=0and x =3 - z.

3. Evaluate .U(X_ Z) ds where S is the surface of the solid bounded by x2 + y? = 4,

Zz =x-3 and z = x + 2. Note that all three surfaces of solid are included in S.

*kkkk
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Unit - 17

Volume Integral

Structure

17.1  Introduction

17.2 Learning Objectives

17.3 Volume Integral

17.4 Summary

17.5 Glossary

17.6  Answers to self check exercises
17.7 References/Suggested Readings
17.8 Terminal Questions

17.1 Introduction

Dear student, in the unit, we will study about the volume integral. It is just like the surface

integral which is integral in two dimensions, here we will extend that idea to three dimensions. It
is a special case of multiple integral. Volume integral plays an important role in various fields of
sciences. In this unit we will study about volume integral and some of its applications.

17.2

17.3

Learning Objectives

After studying this unit students will be able to

1. define volume integral.

2. apply the technique to evaluate volume integral of given problem.
Volume Integral

Volume Integral of a Scalar Function

Let f(x, y, z) be a single-valued function defined and continuous over a there

dimensional region V enclosed by a surface S. We divide V into n parts (we assume them as
cubes) with arbitrary small volume AVi (k =1, 2,......... n). Let Pk (x«, Y« z«) be an arbitrary in

volume V. Then the volume integral of f overs volume V is denoted by ﬂj f dv and is given
v

as

IH f(xy2)dv = LimZn‘,f(xk,yk,zk)Avk as N,

I —0 k=1
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Volume integral ﬂj f dvcan be written as J fdv.

Volume Integral of A vector Function

Let F XY, 2)=F (XY, 2)i +F (XY, 2) ] +F (XY, 2) k be a single valued vector
field, defined and continuous on a region V enclosed by a surface S in a rectangular carlegian
three dimensional space. Then the volume integral of F over volume V is defined as m fdv=

Fj f (XY, 2)dv + jj f,(xy,2)dv + kj f,(xy,Z)dv.

Steps to Evaluate the Volume Integral

1. The volume integral I fdv = J'H f dv, where dv is the elementary volume can

be expressed as dx dy dz.

so [fdv=[[[fav=([[fddgd,

2. Now, to find the limiting values of the variables x, y, and z. Let us understand it
by an example.

If V is the volume bounded by the co-ordinate plane (0, 0, 0) and the plane
2X + 2y + z = 4 then to find volume integral.

e For finding the limiting or maximum and minimum value of x, we put y and z = 0 in the
given plane, sothat we get2x=4 = X=2

So O0<x<?2
e To find the limiting value of y, we put z = 0, and express y as a function of x i.e. y = y(x).
So we get 2x+2y =4

2y =4 -2x
= y=2-Xx
So O<y<2-Xx

e To find the limiting values of z, we express z as a function of x and y i.e. z = z (X, y), SO
here we getz =4 - 2x - 2y.

ﬂ fov=[[[fdxdydz

Xy z
2 [ y=x=2( z=4-2x-2y

e §['T{7F oo

\ x=0 y=0 z=0
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z=4-2x-2y

3. White solving J f dz, we fueat both x and y as constant.
z=0
y=x-2
4, White solving J f dy, x is taken as constant.
y=0

To have more understanding of volume integral Let us try following examples.

Example 1: Evaluate J. f dv where f = 15 xy and V is the unit cube given by

0<1,0<y<1,0<z<1.
Solution: ffdv = I15xydv

= ”lexydxdydz.

_[(I(_[xydz] dyJ o

j 15xydv = 15

1 1

= 1SI I [xyz]zdydx

X=0 y=0

1

= 15XJ1‘O I 0xydy]dx

y=

1. 2R
=15 J. EEEC_ dx
2
x=0 0

= 15j02 dx

2| 2,
15
15xydv = —
o=

Example 2: Evaluate IJ-J.(2X+ y)dv, where V is the closed region bounded by the cylinder
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z=4-x%*andthe planesx=0,y=0,x=2,y=2and z = 0.
Solution: J”(Zx+ y)dv = m(2x+ y)dxdy dz

- { i ﬁxz(% y)dz]dy]dx

x=0\ y=0 z=0

= J% ( ,2[ [(2X+ y) Z]:XZ dyJ dx [integrating for z]

x=0\ y=0

= Jz‘ J%(2x+ y)(4—x2)dy dx

x=0\_y=0

= '[ i8x+4y—2x3—yx2 dy dx

x=0\ y=0
2 2,272

= '[ 8xy+2y2—2x3y—& dx
x=0L 2 0

= | |16x+8—4x—2x* |dx
Il ]

x=0
16x° axt 22T
= +8X—————
2 4 3|
16
=32+16-16- —
3
16
=32-—
3

J.JV.J.(2x+ y)dv= 8—:

Example 3: Evaluate the following integral ”ISxyzdv;
B

2<x<3 1<y<2,0<z<1

Solution: Given F = 8 xyz
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Therefore .”.J. 8xyzdv =
B

P — N

ﬁSxyzdzdxdy
20

5 _
J;4xy22 [ dxdy -.-J‘zdz:Z—ZZ}

P — N

23 B X2
= _[!4xydxdy -.'J‘xdxs:E}
= TZXZ_\/B dy

1

2
= IlOydy

1

=5y7= [ 5(2)° -5()" |
=15
= J._[ I 8xyzdv =15

Example 4: ”.I 2xdv evaluate integral where E is the region under the plane 2x + 3y + z = 6
E

that lies in the 1% octant.

Solution: Given E is the region under the plane 2x + 3y + z = 6 that lies in the 1% octant
= We are above the planez =0
Thus 0<z<6-2x-3y

So, the region D is the xy plane is the triangle with verities at (0, 0), (3, 0), and (0, 2)
shown above

284



Thus, we have

3
0<x<3 or 05x5—5y+3

-2
05y5?x+2 O<y=<2

Therefore Hj 2xav = _[ I l:G_TSy 2X dz} dA
E D

0

6-2x-3y

= [ { | 2xdz} dxdy rzfgdeZ[z]sz“y =6-2x-3y
D

0

-2
3 ?x+2

=_[ I 2X(6—2x—3y)dy dx

0 0

_—2x+2

= J§12xu—4x2y—3xy2 SJ. dx
0 0

HE!
j(g X —8x? +12dex

0

ENL N X
3 3

}gZde =9

Example 5: Evaluate 'm(B—4x)dehere E is the region below z = 4 - xy and above the region
E

in the xy plane defined by 0 <x<2, 0<y<1.
Solution : Given limits for x and y
O0<x<2 0<y<l1
Here E is the region below z = 4 - xy
0<z<4-xy.

A-xy

Therefore ”J.(B—4X)dv = T j (3—4x)dzdydx

O ey
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(3—4x)(4—xy)dydx

O N O =y N
Ot O

(4x*y —3xy—16x+12) dydx

1

(2 ——xy 16xy+12yj dx

0

Ot N O=———N

12——x+ 2X j

2
=12x = §x2+ =x3;
4 3

=17
3

flf(3- e = =

Example 6: Evaluate m(12y—8x)dv where E is the region behind y = 10 - 2z and in front of
E

the region in the xz - plane bounded by z =2x,z- 5and x = 0.
Solution: Given Limits foryis0<y <10 - 2z
Limits for x and z are

5
OSXSE or 0<z<5b
1
2x<z<5 OSXSEZ
%Zlo—zz

5
- J J' 6(10—22)2—8x(10—22)dxdz
0o0
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1
[6(10— 22)" x—4x* (10— 22)} 12°dz

O =y

(L42’-13z24-300z)dz

I}
O =y 1

= L 105 1502 ¥
2 3
3125
6

Example 7: Evaluate Hj yzdv Where E is the region bounded by x = 2y? + 2z2- 5 and
E

the plane x = 1.
Solution: Given Limits for x; 2y2 + 2z2 -5<x<1

eretore ][ yzc = H{ I yzdx}dA

D | 2y?+27°-5
:J.J. Y I:;y2+222—5dA
D

= JJ[l—(ZyZ +27° —5)} yzdA

= g[G—Z(y2+zz)]ysz

Since, 2y? + 2z2-5=x
Forx=1
= 2y?+272-5=1
= y?+272?2=3
Thus Dis adisky?+2z2< 3
s+y=rsin06,z=rcos0,y’+z%>=r?
Here Limitson 6 and r ¢ are

0<0<2r0<r<+3
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Therefore, m‘yzdv = I [6—2(y2 + 22)]ysz

E D
2z

"]

[6 2r ] (rsing)(rcosd)rdr df

[Gr 2r5]sinecosedr do

1]

§r“—}r }sn@cos@lf do
2 3

sin@cosfdé

1
N ©

sne20deo

1
N (o]

2r

°°|©

|

}gyzdv =0

17.4 Summary
Students in this unit we studied

00529}

0

1. Volume integral is a special care of multiple integral in three dimensions.
2. Volume integral of scalar function is given by _m fdv.
3. Volume integral of vector function is given by

[Fav=i[Fdv+ j[Fdv+K[Fav.

Self Check Exercise

1. Evaluate

N —y
Le—n

0
_[ 4x*y—Z°dzdydx .
1

2. Use a triple integral to determine the volume of the region that is below
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z=8-x2-y2 above z = \[4x* +4y® and inside x2 +y2 = 4
Evaluate J‘J.J.Gzzdv where E is the region below 4x +y + 2z = 10m the 1%
E

octant.

Find the volume of the solid of revolution generated when the finite region
R that lies betweeny = 4 - x> and y = x + 2 is revolved about x axis.

17.5 Glossary

Multiple integration: Volume integrals frequently involves integrating a function
over two or three dimensions, requiring an understanding of double and triple
integrals.

Divergence Theorem: This theorem connects the flow (or divergence) of a
vector field across a surface to the behaviour of the vector field inside the volume
bounded by the surface. It is pivotal in simplifying complex 3D volume integrals.

Coordinate Systems: Different coordinate systems (such as Cartesian,
cylindrical and spherical) are used depends on the symmetry of the problem,
impacting how the volume integral is set up and solved.

(@ Cartesian coordinates (X, y, z)
(i) Cylindrical coordinates (r, 0, z)

(iii) Spherical coordinate (r, 6, ¢)

Integral for integral.

0] Definite: An integral that gives fixed value for a
curve within the two given limits.

(i)  Indefinite: An integral not having upper and lower
limit i.e. no fixed value

17.8 Terminal Questions:

1.

Determine the volume of the region that lies behind the plane x + y + z =8 and in

3 3
front of the region in the yz plane that is bounded by z = E ﬁ and z = Z y.

Z2

Evaluate “J%ycos(zf’)dxdydz
000

Use a triple integral to determine the volume of the region below z = 4 - xy and
above the region in the xy - plane defined by 0 <x<2, <y<1.

289



4. Find the volume of the solid of revolution generated when the finite region R that
lies betweeny = \& and y = x* is revolved about the y axis.

17.6 Answers to Self Check Exercise

-755
1. —_—
5 104
3
625
3. —
2
108z
4, e
5

17.7 References/Suggested Readings
1. Calculus of several Variable by Springer
2. A Textbook of Vector Calcula, by Shanti Narayan
3. Mathematical Analys by Apostol.
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Unit - 18

Gauss Divergence Theorem

Structure

18.1 Introduction

18.2 Learning Objectives

18.3 Gauss Divergence Theorem
Self Check Exercise

18.4 Summary

18.5 Glossary

18.6  Answers to self check exercises

18.7 References/Suggested Readings

18.8 Terminal Questions

18.1 Introduction

Dear student, in this unit we will study about the important theorem of vector calques. In

previous units we studied about surface and volume integrals. In this unit we will study about the
relationship between surface and volume integral which is given in term of a theorem known as
Gauss Divergence Theorem. Gauss divergence theorem used to solve difficult surface integral
by transforming it into an easier triple integral and vice versa.

18.2

18.3

Learning Objectives

After studying this unit students will be able to:

1. State Gauss divergence Theorem.

2. Apply Gauss divergence Theorem to find the surface integral inform of volume
integral.

3. Establish relations between surface and volume integral.

Divergence Theorem
Statement: The Gauss Divergence theorem states that the vector's outward flux through

a closed surface is equal to the volume integral of the divergence over the area within the
surface.

OR

The Divergence theorem states that the surface integral of the normal component of a

vector point function "F" over a closed surface "S" is equal to the volume integral of the
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divergence of F taken over the volume "V" enclosed by the surface S. Thus, the divergence
theorem is symbolically denoted as :

J.\.vadv= ijﬁ.ﬁds

Proof: Consider a surface S that surrounds a volume V. Let Vector A represents the vector field
in the specified region. Let this volume be compressed of many elementary volumes in the form
of parallelepiped.

V'_’-—A ~1

L

I I

j—1 7 |

Consider the dth parallelepiped, which has a volume AVj and is bounded by a surface
Sj with an area vector Sj. The surface integral of vector A over surface Sj is denoted by

$pAds,
Here ¢gAds = Z¢31¢Ad57 1)
Multiply and divide R.H.S. F (1) by A Vi, we obtain
. 1 S
=Y — (¢, 0Ads| AVi
ppAdS = Y- (4ipAds) avi

Now, suppose the volume of surface S is divided into infinite elementary volumes such
that AVi— 0

o 1 ey
00 A . d5 = Lim zm(¢g¢Ads)AV| @)

Now,

avi-»0 \ AVi

Therefore equ” (2) becomes
ppAds = Y (V.A) avi 3)
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We know that AVi —0. Thus ZA\A will become the integral over volume V.

Hence proved

Notes- s(1)  Since IAdS = ﬂ Ands
S S

So, above theorem can be written as
[[ Ads = [[ Ands= [[[(¥.A)av
S S \%

@ If A=Al +Aj+AK

then V.A = Ai aAZ A3
OX oy 0z

Let o, B, v be the angle which outward drawn unit normal A makes with positive
directions of axes and if cos o, cosp, and cos y are direction cosines of . then

A =(cos «)i +(cosp) ] + (cosy)k
A. A= (ALF+AZJ°+A3IQ). (cosoci +cosp | +cos | y)

A . A= AiCOS oc + A,COSP + AsCOS ¥

Then by divergence theorem

[[9Aav= [] Ads= [] Adds
J.,U [aAL + 2 AS) dxdydz = H ( A1COS o« + ACOSP + AsCos y)ds

J..U [aAL 8A2 As'j dxdydz = '[ A.dydz + Axdzdx + Asdxdy

Let us by following questions to have better understanding of the concept.
Example 1: If A = Vvand V2vs = -4zP show that
[A.fds= -an|[Padv

Solution : Since we know that Gauss's theorem gives
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[A.n dszf(ﬁ.*)dv
Given A =VV, so
[vv. A ds] V .(vV) dv
[ A.Ads=]va
=[-4nP dv
=-4n[Pdv

= [ A.A ds=-4n]Pdv

1. . 1
Example 2: Prove that Ir—z r.nds= I—Z dv

1 . .
Solution : L.H.S. = Ir—z I.nds

Using Gauss' s Theorem I A.f ds= I V. Adv

and V.f =3
So jir ﬁds=j orrf+ 3] av
r’ 0 r?
= j[_—2r2+%.3} dv
r r
-2 3
= J.[r_z—i—r_zjdv
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= jrizf.ﬁdszjr%dsz.H.s.

Example 3 : If S is any closed surface enclosing a volume V and A=xi + 2y | +7z K then
show that ﬂ Ands = 10V.
S

Solution : Given A =xi +2y | +7zk

Also we know that H Afds = J‘”‘(?A) dv
S \

= ﬂAﬁds = Iﬂ(%f+§yj+%ﬁj.(xf +2y | +7zK)dv
S \%

= jy[1+2+7]dv
= m = 10dv
= ﬂAﬁds =10v

Example 4 : Evaluate ” Ands when A = axyi +yz | -xz k and S is the surface on the cube
S
bounded by the planesx=0,x=2,y=0,y=2,z=1,z=2

Solution : Given A = axyi +yz | - xz k

Also we know that H Ands = J‘H(@A) dv
So gAﬁds :-U,.IK%“% J'A+%I2].(4xyf+ yzi—lez)}dv
o4 6
m‘{ X (8:2)} y

:J‘H [4y + z - X] dv
\%

:Jz" f jé (4y + z - x) dz dy dx

x=0 y=0 z=0
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I
—_—N
—n

1
N
N
+
| N
|
N
|
N
o
<
o
X

1
—_—

j [8y + 2 - 2x] dy dx
x=0 y=0

2 2 2
= J' {8%+2y—2xy} dx

x=0 0

2
J' (16 + 4 - 4x) dx

x=0

j (20 - 4x) dx

x=0

20x—4i
2 0

= (40 - 8)
=32

Hence ” Ands = 32
S

Example 5 : Evaluate I F.ds where F = 4x i -2y? | + 22 k and S is the surface bounding the
S

regionx?+y?>=4,z=0and z = 3.
Solution : By divegence theorem

j F.ds = H div. F dv
S Vv

o4 , o= 2y) L 9Z)
- | 0220220

= [[] @-ay+22) dxdy dz
\%

2 4-x?

:I I i ”_[ (4 - 4y +27) dz dy dx
2 i v
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o ,,’_ 1 "":,' ;,‘12"-_-_”_2‘9—-7 v
l =0
2 ax
) '[ J [42_4YZ+ Zz]Zdy dx

2 i

2 4—x?

- .[ _[ (12 - 12y + 9) dy dx
2 e

2
= _[2 [21y—6y2]% dx

2
=42 j J4—> dx
)

2 2 2

2
xv4-—x* 4sin?tx
=84 { +— }
0
= 84r

Example 6 : Find ” F.Nds
S

where F(x, y, z) = y2i + €1 - cos(x® + z2)) ] + (x + z) k and S is the unit sphere
centered at the point (1, 4, 6) with outwardly pointing normal vector?

Solution : We have

divF.=0+0+1=1 < lasdvF= 91, 0%  OF

oxX oy

Now, triple integral of the function 1 is the volume 0O | solid i.e. J..”‘ 1.dv volume of solid
\%

Since, the solid is a sphere of radius 1
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Thus we get l.dv= f n(l) = ﬂ T
v 3 3

By, Gauss's Divergence Theorem

[ Fones= ] v F o

Lj F.Nds=%n

Which is the required solution

Example 7 : Verify divergence theorem for F = (x2 - yz) i + (y2- zx) ] + (22 - xy) k taken over
the rectangular parallelopiped 0 <x<a,0<y<b,0<z<c.

. . = 0 0 0
Solution : Div. F = —(x*—vy2) +—(Yy* - 2X) + — (Z° —
8x( y2) ay(y ) az( Xy)
=2(x+y+2)

idiv.dezzj: _[; .[: (x+y+2z)dxdydz

=2J.0c dzJj dy(%2+ya+zaJ

_ . [a’hc ab’c abc?
=2 + +
2 2 2

=abc(a+b+c) (1)

Also,j F.Nds:j F.Nds+j FNds+ ... +j F.Nds
S S S
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Where S; is the face OAC'B, S, the face CB' P', S, the face OBA'C, S, the face AC'PB',
Ss the face OCB'A and Se the face BAP'C

a’b?

Now , £ F.Ndsz_s[ F.(-K)dszj: [ ©-xy)dxay=

212

[ FNds=[ F(Kds :j;’ [ (©2-xy) ey = abe? a’b
5, s

2.2
Similarly, I F.Nds = b’c
3 4
2.2
_[ F.N ds = a?bc - b’
S
2,2
_[ F.Nds = ca and
S
2,:2
_f F.N ds = ab’c - ca
S
Thus, | F.Nds=abc(a+b+c) )
S

From (1) and (2) Gauss Divergence Theorem's verified.

Example 8 : Verify Divergence theorem for F =3zxi - 2y? | +vyz k over the unit cube [0, 1;
0,1,0,1]?

Solution : The cube is shown in the figure given below

B'—1—1°
| j 7) )
e | A ¢

e

Since, the cube has six faces, we have

.[ If.ﬁdszj lf.ﬁds+j lf.ﬁds+j If.ﬁds+j F.Ads+
s S 5 5 5

N —
T
5>
o
7]
+

N —
T
=
o
[
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Where the surface S, is the face AC'OB' of the given cube
S, OBA'C, S; BA'O'C', S4 OCB'A', Ss O'A'CB', S¢ OAC'B

Here the each of surfaces S; & S; is parallel to yz plane. To each of these surfaces, the
unit normal acts along the direction of x axis in positive direction for S; and in negative direction
for S2. Now, if we project S; on yz plane, the projection will be the surface S,. Needless to say,
the projection of S; on yz plane is S; itself.

Likewise, if we project Sz or S4 on zx plae, we have the projection Sa.. Also, the projection
of either of Ss & Se on xy plane is Se.

So, in every occasion, when we project either of the faces of the given cube on the
coordinate plane parallel to it, we will obtain a square of side unity.

~

On the surfaces Sy, i.e. on the face ACOB': x=1& A= |

Therefore, ” F .Ads = ” (3zxi -2y2 | +yzKk).ids
S,

” 3z ds

S

1

3zdydz

1
—

V=0 Z=0

3
2

s

Onthe surface S, : x=0, A= -|

Therefore, ” F.Ads =- ” (222 ] +yzk).ids=0
S S

Onthe surface S;:y =1, A= j

Therefore,” If.ﬁds=+” (3xzf—2f+zl2). idsz—J‘ Jl. dxdz =2
S S x=0 Z=0

-

On the surface S4:y =0, fi

Therefore, ” F.Ads = ” (3xzi). jds=0
S, S,

Onthe surfaces Ss: z=1& A= k

Therefore, ” F.Ads = ” (3zxi -2y2 | +yzKk). kds
S S
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J. y ds
S

1 1

I y dx dy
0

x=0 y=

1

2

On the surfaces Sg: z=0& fA=-k

Therefore, ” F .Ads = ” (-2y2}). kds=0
S S
Hence (1) gives H If.ﬁds=§+0+(—2)+0+1+0=0
] 2 2

. = 0 0 0
Again, div F = — (3xz2) + —(-2y?)+ —(yz)=3z-3
g ax( ) ay( y?) aZ(y) y

Let V be the volume enclosed by the surface S.

Then, j div F dVv = Xf yf_l T 3(x-y) dx dy dz
x=0 Z=0

y=0

w1 y= z-1
:3.|'1 yj.l {Z—z—yz} dy dz

x=0 y=0 2 Z=0
x=1 y=1
1
=3J. _[ (E—yjdydx
x=0 y=0

X= =1
= 3 .[1 |:X — y_2:|y dX
x=0 2 2 y=0

-0
Thus, we have.[ If.ﬁdszj div F dv
S

Hence, Gauss theorem is verified
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Example 9 : Use Divergence Theorem to show that .[ vxb dv = J Axb ds
\ S

Solution : Let C be any arbitrary constant vector
Apply divergence theorem on (5 xC) to have

[ (bxt).Ads=[ v(bxc)av (1)

\

Now, [ (bxC). ids=[ € .(Axb)ds=cC.[ fixb ds (2)

S S S

as C is constant vector, it comes out from integration sign

Also,j v.(Bxc)dv:j (C . {V.xD}- D{vxE}) dVv

Y

\Y
= I (C. {V.XB} av |as C is constant vector thus VxC =0
\Y

=C. j vxb dv ...(3) |C is constant vector
\Y

By (2) & (3), (1) imply, cj Vdev=é.j Axb ds
\%

S

Since, above holds for constant vector €, we must have
.f VXBdV:I Axb ds
\ S
Example 10 : Use Gauss theorem to evaluate j xi +y | +zk .1 ds.
S

Where S the closed surface consisting of the cylinder
x? +y? =1, bounded by the planez=0&z=1

Solution: Let F = xi +y| +zk
Then, Vlf=%+@+g=3
oX oy 0z

Let V be the closed region bounded by the given surface S. Then by Gauss Theorem,
we have,

[ Foads=[ (v.F)dv=| sdv (1)
S

\Y \Y

Let us switch to cylinderical polar coordinate system by applying the transformation.
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X=rCosQ,y=rSinQ,Z=z
(X, Y,2)
or,Q,2)

Let in (r, Q, z) space, V' is the region into which V is mapped by the above
transformation. Then (r, Q, z) space, V' is the rectangle [0, 1; 0, 2x; 0, 1]

The Jacobian of the transformation is J =

Hence (1) gives

r=1 2z z=1

| lf.ﬁds:\.[ 3dV:3\.[ |J|dV'=3[j | IrdrdezJ

S r=0 Q=0 Z=0

=3xn

1
Example 11 : Given a function ¢ = > (x> + y2 + z%) in three dimension cartesian space. Find

value of surface integral

m[ n.Veo ds

S

Where S is the surface of a sphere of a unit radius and A is the outward unit normal
vector on S.

1
Solution : Given ¢ = > (X2 +y2+ 27?9

4
S = Surface of sphere, V = Volume of sphere =§ n 3, r = Radius of sphere = 1

_00 ., 0 - 0F

A

OX oy 0z

vo- L
2

Vo

@2xi +2y | +2zk)

Vo= xi +y | +zk

Using Gauss Theorem

fl nveds= [[] v.veav
=”I V.(xi +y ] +zK)dv
:H @+1+1)dv
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=3 ][] v

= BX%n rs sor=1
=4n (1)®
=4n
Ml fve ds=4n
Self Check Exercise
1. Use Divergence Theorem to evaluate ” (xy2zi +22 | -x2y k) d$ over the
sphere x? + y2 + z2 = 1 lying in the 1st octant and bounded by coordinate
plane.
2. If vf= F and V2f = 0, show that I F2dv= I fF .A ds, where S is closed
\Y S

surface enclosing the region V.

3. Use Gauss Theorem to evaluate J (xi +y] +z I2) . A ds, where S the
S
closed surface consisting of the cones x? + y? = Z2, bounded by the planes Z =
1

4. Compute J.J. F .dS where F =(x2 + 4y, 4y - tan z, z + y) and 0<x<1, O<y<1
S

and 0<z<1.

5. Evaluate ” F .fids with the help of Gauss Theorem for
S

F =6zi +(2x+Y) | - xk taken over the region S bounded by the surface
of cylinder x? + z2 = 9 included between x=0,y=0,z=0and y = 8.

18.4 Summary
Dear students, this unit we studied that -

1. The divergence theorem relates a surface integral across closed surface S to a
triple integral over the solid enclosed by S.

2. The divergence theorem can be used to transform difficult flux integral into an
easier triple integral and vice versa.

3. The divergence theorem is a higher dimensional version of the flux form of
Green's theorem.
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The divergence theorem can be used derive Gauss Law, a fundamental law in
electrostatics.

Gauss Divergence theorem deals with 3-D solid bounded by closed curve.
Mathematicaly, divergence theorem is denoted by

j_v[j V.E olv:J'S F .ds

18.5 Glossary

Divergence : Divergence of a vector field Fis denoted by div. F or
V. F defined as the vector operation which results in the scalar field calculating
the rate of change of flux.
If F=Fii +F2] +F3 k

oF aF N ok,
6x 8y 0z
Surface integral : Surface integral is the generalization of double integral. In

surface integral we integrate a surface in 2D or 3D to calculate the area
approximation of all points present on the surface.

then VF =

Volume integral : Volume integral refer to the integral that extends through a 3-
dimensional space, giving the total value of the function throughout the given
region. Thus, it simply means to calculate the volume of three dimensional
object.

Cartesian Equivalent of Divergence Theorem :
Let IE=F1f +F2i +Fs k

ok, 8F N ok,

8x ay 0z

~div F =
Divergence Theorem can be written as

IH(aF s aaFdedydz-j (F1 dy dz + F» dz dx + F5 dx dy)

18.6 Answers to Self Check Exercise

=

o~ wDN

1
18

18%
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18.7 References/Suggested Readings

1.
2.

3.

Vector Analysis by J.G. Chakravorty & J.G. Ghosh.

Analytic Geometry of Two and Three Dimensions & Vector Analysis by R.M.
Khan.

A Textbook of Vector Calculus by Shanti Narayan, P.K. Mittal.

18.3 Terminal Questions

1.

Verify Divergence Theorem for F =31 +x% | - xyz k . Over the cube
[_1’ 1’ _111; _11 1]

Use Divergence Theorem of evaluate ” 02T -y? ) -z IQ). A ds, where S is
S

the upper half of the sphere x? + y? + z2 = a? bounded by the plane z = 0.
Use Gauss Theorem to evaluate I (i +y2 ] -zK). A ds, where S the closed
S
surface consisting of the cylinder x? + y? = a2 bounded by the plans z = b and
z=c(b<c)
Use Gauss Divergence Theorem to evaluate I 02T +2zx | -zy IZ). A ds, where
S
S the closed surface consisting of four planes
x=0,y=0,z=0&x+y+z=1
Compute ” F .dS where F=(x+y+z y2 x3+ 2% and
S

0<x<1,0<y<20<z<2

kkkkk
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Unit - 19

Green Theorem

Structure
19.1 Introduction
19.2 Learning Objectives
19.3 Green Theorem
Self Check Exercise
19.4 Summary
19.5 Glossary
19.6 Answers to self check exercises
19.7 References/Suggested Readings
19.8 Terminal Questions
18.1 Introduction

Dear student, in this unit we will study about one another theorem of vector calculus

known as Green Theorem. Just like Gauss Theorem Green Theorem also represents the
relation between two types of integral. The relation between like integral and surface integral is
given by Green's theorem. If we are given with a line integral, we can convert it into surface
integral and vice versa. In this unit we will learn how to use Green theorem in such situations.

19.2

19.3

Learning Objectives

After studying this unit, students will be able to:

1. State Green Theorem.
2. define relationship between line and surface integral.
3. Apply Green Theorem in numerical problems.

Green's Theorem In Plane
Statement: Let C be the positively oriented, smooth and simple. Closed curve in a plane

and D be the region bounded by the C. If L and M are the functions of (X, y) defined on the open
region, containing D and have continuous partial derivatives then the Green theorem is stated

as

ch(de+ Mdy) = m[ [%—%j dx dy

D

Where the path integral is transversed counterclockwise along with C.
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Proof : The given diagram has D region

D={(xy)a<x<b gix) <y <g2(x)}
Here, g1 and g. are continuous function on [a, b]

b g(x)

oL oL
N < 4a= < x y)dyd
OWL'. oy 'I glj(‘x) oy (x, y) dy dx
b
= | {L(x 62 (09) - (x, 93 (%)} lx (1)

Now, calculate the line integral [ﬁ Ldx. From the diagra C is written as Ci1, Cz, Cs, Ca.

C

b
With Cy j L (x,y) dx = j L(x, gi(x)) dx
G a
b

With Co - [ L(x,y)dx=- [ L(xy)dx=- [ Lo g200) ax
G -G a
Therefore, Cs goes in the negative direction from b to a.
Now, C; and C4
[ Lexyax=[ Lxydx=0

Therefore, we have
m dezj L (x,y)dx+ J- L (x,y) dx+ J. L (x,y)dx+ J- L (x, y) dx
c G c G Cs

b

b
BN [jj Ldx = j L(x, g1(x)) dx - j L(x, g2(x)) dx (2)

a

From (1) and 2), we get
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oL
[!:] dezj;;[ 8_y dx dy

. 3 oM
Similarly, we have Uj M dy = J;)J' E dx dy

Ultimately, we get

J1(Ldx+Mdy) = ﬂ(%—%} dx dy

Hence proved

Let F =Li +M ]

and I =x1 +vy |

thendf =dxi +dy |

F.df =(LT +Mj).@dxi +dy]j)

= Ldx + Mdy
]k
Also Curl If=§x|f:£ g 9
oX oy o0z
L M O

ﬁ(—an .A(aLj ~(OM oL
| — |- )| — |+ K| ———
0z 0z ox oy

Since we are deleting with two dimensions

M oL _
0z 0z
So, Curl |3=§XIE=[8M—@jR
oX oy
Curl ﬁ.ﬁzaﬂ—%
oX oy

So, Green Theorem is given by
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fiLox+ May = (ff (%—%jdxdy
I

= ”curl F.K dxdy
I

dR = dxdy and K is unit vector perpendicular to xy plane.

T

.d

=

T

df = [[curl FKdR
I

How to Apply Green Theorem

1. From the given problem, write the value of L and M.
2. Find o and @

oy oX
3 Find @a—l'

oX oy
3. Apply it into green's theorem i.e.

oM oL
Ldx+ Mdy) = ——— |dx
it [ﬂ[ ox ayj i

e There are two types of questions (i) To verify green's theorem (2) To evaluate the given
integral using Green Theorem.

Let us try to do some example to verify Green's Theorem.
Example 1: Verify Green theorem in plane for
m[(xy+ yz)dx+ x2dy} Where c is the closed curve of region bounded by
Cc
y=xandy=x?
Solution: Since we know that Green theorem gives
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qj(de+ Mdy) = ﬂ(%_%)d xdly

R oy
We have to verify this Firstly to evaluate the line integral along curve C.
L.H.S.
Udex+ Mdy
c

The curve y = x and y = x?, interest at origin (0, 0) and the point A (1, 1).
(1) Along the curve y = x?, dy = 2xdx

Udex+ Mdy = m[(xy+ y?)dx+ xzdy]
< G

['ﬁ[xx2 +(x2)2}dx+ x22xdx]

G

= [ﬂ[xB +x*+ 2x3]dx

= [ﬁ[xs’ + x“x3]dx

G

X X[
= _
|: 4 5 :|0

31 19
=|—-+=-0|=—
4 5 20

Now, along the curve y = x. dy = dx

Udex+ Mdy = Uj(xy+ yz)dx+ x°dy
)

dx + x2dx
| (x(x ]

3x%dx

-
@X—FXX
[
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=[0-1]
=-1

So dex+ Mdy = dex+ Mdy + []]de+ Mdy
G G

_ 19
= -1
20

dex+ Mdy = Lo\us
, 20

Now R.H.S. g’j(@—%jd xdy
=l ox oy
Here L = xy + y? M = x2
6_L =X+ 2y @ = 2X
oy OX

M(aﬂ_a—Ljd xdy _” (2% x+ 2y) dxcly

R

” 2x X— 2y dxdy
R

.U(x—Zy)dxdy

py)

—_
—_~
X
|
N

<
~—
2
(@8
X

f

<
[N}

[
3
<
L
o x
(o}
X

X

3

1
—_
x

[N}
|
x
[N}
~—
|
—_
x
|
x
»
S~
| I—

1
X
i
|
><w
| —
Q.
X
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1.1
5 4
_ 1
20
= ML rhs
lox oy 20

Since L.H.S. = R.H.S, so Green Theorem is Verified.
Example 2: Verify Green's Theorem in the plane for

m[(sz —8y2)dx+(4y—6xy) dy] Where c is the boundary of the region defined

c

byx=0,y=0,x+y=1

Solution: Since by Green's Theorem, we have

dex+ Mdy = [ﬂ‘ {aﬂ—a—l‘)dxdy
c R

ox oy
Here L =3x%-8y> M=4y-6xy
oM
a -16y — =-6y
oy OX
Here the curve c is the boundary of the region defined by x=0,y=0,x+y=1
Xx+y=1
y=1-x
X 1 0
y 0 1
(W
yay=l
) - <, - 1Y
@\7’) (WO
N



The curve c is the triangle from OA, AB and BO. having vertices (0, 0), (1, 0) and (O, 1).
So

Curve C=0A + AB + BO
= C=C1+C+C3
alongC,i.e.OA,y=0=dy=0,x=0to 1
Along Cyi.e. AB,x+y=1
= Xx=1-y

dx = -dy and y varies from O to 1

Along Czi.e. BO, yvariesfroml1lto0Oand x=0=dx=0

dex+ Mdy = Ddex+ Mdy = []dex+ Mdy = []dex+ Mdy
c o c c

R
Now dex+ Mdy = J'(3x2—8y2)dx+(4y—6xy)dy
G G
As y=0&x=0tox=1

1
= j 3x%dx
0

5]
3 0
dex+ Mdy =1
C

Now Ide+ Mdy = I(3x2—8y2)dx+(4y—6xy)dy
G, )
inC, y=0toy=l1landx=0,x=1-y,dx=-dy

1

= [[(30-y)" +8y*)(~)+ (4y-6(1-y) y) o |

0

[—3—3y2 +8y° +4y—6y+6Yy° + 6y] dy

O ey

(11y* +4y-3)dy

O ey
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2 1
= E+4l_3y
3 2 )

11 4
= — + — -3
3 2

_11+12-18
6

_34-18 _16 _8
3

6 6
Again _[de+ Mdy = I(3x2—8y2)dx+(4y—6xy)dy
G %

Along Cz y variesfrom1toOand x=0,dx =0
0

I(—8y2)0+ 4ydy

1

0
[4ydy
01
2 01
=(0-2)=-2
8
U‘deX+Mdy =1+ 3 -2

3+8-6 _11-6_5
3 3 3

oM oL
Now taking (———jdxdy
E ox oy

1 1-x

j J' (-6y+16y)dxdy

X=0 y=0
1 2 1-x

= J.{y—} dx
0 2 0
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Hence Green's Theorem is verified
Some Related Questions

Let us try following examples to have the understanding of Green's theorem to evaluate
the value.

Example 3: Calculate the Line integral mxzdeJr(y—S)dywhere "C" is a rectangle and its
Cc
vertices are (1, 1), (4, 1), (4, 5), (1, 5)?

Solution: Let F (x, y) = [L(x, y)M (X, y)] . Where L and M are the two functions.
Here F (x, y) = [xzy,(y—S)]
Then @ =0
OX

a
oy

Such that @—% = -x?

OX

X2
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(1) - (-“}

~ e '." &

i

Let "D" is the rectangular region enclosed by the curve "C" By Green's Theorem
oM oL
mxzydx+(y—3)dy = H(———jdA
Cc D

oxX oy
= ” x*dA
D

[As the value of x varies from 1 to 4
and value of y varies from 1 to 5]

The Line integral of given function is - 84
Example 2: Let S be the triangle with vertices (0, 0), (1, 0) and (0, 3) oriented clockwise.
Calculate the flux of F (x,y) = (P(x,y),Q(x,Y)) = <X2+ey,x+ y> across S.

Solution: Let D be the region enclosed by S
Given F (x, ¥) = (P(x, ¥),Q(x ¥))
= <x2 +€’, X+ y>

Vertices = (0, 0), (1, 0) and (0O, 3) of triangle.

Green's Theorem applies only to simple closed curves oriented counterclockwise but we
still apply the theorem because

mf.ﬂds =- mf.ﬂds and -S is oriented counterclockwise.
C -S
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4 \\~
/ \\
o (1,0) k
e }——+ o Sa—g
05 o5 5 |15 X
By Green's theorem, the flux is
[FNds = [f|F.Nds
C -S
= [[(Px+Qy)dA
D

Here Px =2x,Qy=1,Px+Qy=2x+1

and top edge of the triangle is the line y = -3x + 3. Therefore y values run fromy =0toy
=-3x + 3. Thus, we have.

fJF.Nds =- [[ 2x+1)dA

C D

1 -3x+3

—I I (2x+1)dydx

—Jl' (2x+D(—3x+3) dx

—'1f(—6x2 +3x+ 3) dx
0

3% "
{—2x3 ot 3x}

0

=
2
JFNds = 2>
A 2

Example 5: Water flows from a spring located at the origin the velocity of the water is modeled
by vector field V(x, y) = (5x +y, X + 3y) m/sec. Find the amount of water per seconds that flows
across the rectangle with vertices (-1, -2), (1, -2), (1, 3) and (-1, 3) oriented counterclockwise.
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Solution: Let C represents the given rectangle and let D be the rectangular region enclosed by
C.

~yY

) — (1,-3)
(" g ] -

— (1,-2)

>3

To find the amount of water flowing across C, we calculate Flux I\7.dF
C

LetP(x,y)=5x+yand Q (x,y) =x + 3y
Sothat V = (P, Q)

Then, Px=5and Qy = 3.

By Green's Theorem

[V.dr = [[(Px+Qy)dA

:.|.8dA

D
= 8[[ dA
D
= 8 (area of D i.e. area of rectangle)

Length = 5,Width = 2

—8x10
) Area = L xb=5x 2 = 10unit

Therefore, the water flux is 80 m?/sec.

y’ y’

Example 6: Calculate the integral m[sinx—EJdXJr(?Jrsin y)dyWhere D is the annulus
b
given by the polar inequalities 1 <r<2,0<6 < 2x.
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Solution : Although D is not simply connected, we can use the extended form of Green's

theorem to calculate the integral. Since, the integration occurs over an annulus, we convert to
polar coordination.

[]j[sinx—%jdx+(§+sin yjdy = [[(Qx—Py)dA

oD D

- [ )

w)

»
N

2
= jrsdrde
01
2r
o 4
_15r
2
: y? Y. 157
snx—=2 |[dx+| =+9n = —
6D( 3 3 y dy 2

Example 7: Consider a fluid flow represented by the vector field F = (y?, x?). We want to find the

circulation of the fluid around a rectangular path defined by the coordinates (0, 0), (3, 0), (3, 2)
and (0, 2)

Solution: Using Green's Theorem, we identity
P - y2’ Q - X2
The formula implies

JI(Pdx+Qdy) = Lj[i—f—%jom

C

320



= ﬁ(Zx—Zy) dydx
- J[29-y T
= Jj(4x—4)dx

(3)2 - 4(3)

Example 8: Evaluate the integral m(yzdx+ dey)where C is the boundary of the upper half of
C

the unit disk, transverse counter clock.

Solution: According to Green's Theorem
m(yzdx+ X“dy) = ”(Zx— 2y) dxdy
C D

Where D is the upper half of the unit disk

1>1*7X2 1 )1—X2
Thus, j .[ (2i —2y)dydx = I(ny—yz)‘ dx

1

- I(Zxﬂ—(l— xz))dx

-1

I
1
VR
x
|
w|X,
N

I
1

N
+
I
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[(j;](yzdxjt xzdy) = —

Example 9: Use Green's Theorem to evaluate mxydx+ x°y* dy where is the triangle with
Cc

vertices (0, 0), (1, 0), (1, 2) with positive orientation.
Solution: GivenP=xy, Q=x2y3and 0<x<1,0<y<2x

So, using Green's Theorem

ijydx+ X°y* dy = H(fo —x)dA

c

2

- [[(2n-0n
00

ftron

><

2x

dx

Self Check Exercise

Q.1  Calculate the work done on a particle by a force field F (x, y) = (y + sin x, eY -
X). The particle transverse the circle x? + y? = 4 in an anticlockwise direction
the start and end point are (2, 0)
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Q.2

Q.3.

Q.4

Q.5

Q.6

Calculate the integral [ﬁsin(xz)dx+(3x—y)dywhere C is a right triangle
C

with vertices (-1, 2), (4, 2) and (4, 5) oriented counterclockwise

Calculate the flux of E(x,y)=<x3,y3>across a unit circle oriented
counterclockwise.

Calculate integral mf.dF, where D is the annulus given by the polar
ob
inequalities 2 < r < 5, 0 < 0 < 2r and F(X, y) = <x3,5x+eysin y> .

Evaluate my3dx—xsdy where C are the two circles of radius 2 and radius
C
centered at the origin with positive orientation.

Verify Green Theorem in plane for

m(3x2—8y2)dx + (4x - 6xy) dx where C is the boundary of the region

C

bounded by y = /X andy = x2.

19.4 Summary:

Dear students, in this unit we studied that Green's Theorem converts a line integral to a
double integral over microscopic circulation in a region.

1.
2.
3.

It is applicable only over closed paths.
It is used to calculate the vector fields in a two dimensional space

It is also used to calculate the area and tangent vector of a boundary oriented in
an anticlockwise direction.

Green's Theorem relates the integral over a connected region to an integral over
the boundary of the region. Thus, it is a version of the Fundamental Theorem of
Calculus in one higher dimension.

Green's Theorem comes in two forms : a circulation form and flux form. In the
circulation form the integrand is F.T. in the flux form, the integrand is F.N.
Green's Theorem can be used to transform a difficult line integral into an easier

double integral or to transform a difficult double integral into an easier line
integral.

A vector field is source free if it has a stream function. The flux of a source free
vector field across a closed curve is zero, just as the circulation of a conservative
vector field across a closed curve is zero.
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19.5

19.6

19.7

Glossary

Line integral: A line integral is integral in which the function to be integrated is
determined along a curve in the coordinate system. The function which is to be
integrated may be either a scalar field or vector field.

Surface Integral: Surface integral is the generalization of double integral. In
surface integral we integrate a surface in 2D or 3D to calculate the are a
approximation of all points present on the surface.

Closed Paths: In a graph, a path is defined as being closed if it starts and ends
in the same vertex. e.g.

Vector Field: A function of a space whose value at each point is a vector
quantity.

Flux: Flux is a vector quantity, describing the magnitude and direction of the flow
of a substance or property.

Answers to Self Check Exercise

1.

2.

5.

6.

-8n
45
2
3_72'
2
105~

-457
2

Do fame as in example.

References/Suggested Readings

1.
2.
3.

Mathematical Analysis by Apostol

A Textbook of Vector Calculas by Shanti Narayan

Vector Calculas by Steven G. Krantz and Hardd Parks.
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19.8 Terminal Questions

1.

X2

2
Calculate the area enclosed by ellipse — +§ =1
a

2.5 1
10,b)
|\
¥ 5
L {0,-b)

Find the area of the region enclosed by the curve with parameterization r (t) =
(sintcost,sint), 0<t<m.

Solve IySdX— x*dy where C is the circle of radius 2 centered at origin.
C

Using Green's Theorem evaluate I(Xzde+ dey) where C is the boundary
C

described counter clockwise of the triangle with vertices (0, 0), (1, 0), (1, 1).

Use Green's Theorem to evaluate the line integral I y®dz+33xy’dy where C is
C

the path from (0, 0) to (1, 1) along the graph of y = x® and from (1, 1) to (0, 0)

along the graph y = x.

kkkkk
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Unit - 20

Stoke's Theorem

Structure
20.1 Introduction
20.2 Learning Objectives
20.3 Stoke's Theorem
Self Check Exercise
20.4  Summary
20.5 Glossary
20.6  Answers to self check exercises
20.7 References/Suggested Readings
20.8 Terminal Questions
20.1 Introduction

Dear student, in this unit we will study about one another important theorem of vector

calculus known as Stoke's Theorem. This theorem also relate the line integral and surface
integral. In this theorem the integral of curl of the vector field over some surface is related to the
line integral of the vector field around the boundary of the surface. In this we will try to learn this
theorem, how to verify Stock's Theorem for a given vector field as well as try to evaluate the
integral using Stoke's Theorem.

20.2

20.3

Learning Objectives

After studying this unit, students will be able to

1. define Stoke's Theorem.

2. relate line and surface integral

3. verify Stoke's Theorem for a given vector field.
4, evaluate the integral using Stoke's Theorem.

Stoke's Theorem

Statement: Let S be an oriented smooth surface that is bounded by a simple, closed,

smooth boundary curve C with positive orientation. Also, let IE.dF = ” curl F.ds
C S

Proof: Let us assume that S has a smooth parametrization r o= (s, t), such that A

corresponds to region R and B corresponds to boundary C of R. We Stoke's Theorem for the
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surface S and continuously differentiable vector field Eby expressing the integrals on both
sides of the theorem in terms of s and t and using Green's Theorem.

Now, [Fr = [F.% ds+F Lot
5 = 0S ot

Let G = (G1, G2) on st plane then

Gy = E_Q,GZ: dg
oS ot
[Far = jé.dé (1)
B C

Where S is the position vector of a point.

Now, ICurI F.dA = ICurI ﬁ.ﬂds dt
A R at

Hence ICurIE.(j_A = I(%—%)dsdt ..(2)

Using Green's theorem on (1) and (2) we get that R.H.S. of (1) and (2) is equal, thus we
have.

ICurI FdA= JEE

A B

Hence proved

Let us try some questions related to Stoke's Theorem.
Example 1: Verify Stoke's Theorem for the function F= ZiA+XjA+ yI2 where curve is the unit
circle in the xy plane bounding the semi-sphere z = \/1—- x* — y*

Solution: Here the curve C is of the surface S which is a unit circle i.e. circle having radius 1 in
Xy plane. Since we are talking about xy plane so z = 0 and equ. of unit circle is x? + y? = 1.

-
o e |
[ & Y

The parametric equation of circle are x = cox t, y = sin t, z = 0 and t varies from 0 to 2.
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Since stoke's theorem is given as
JIF.df = [[curlF.ds = [[curlF.Ads
S S
Here F =7 + X + YKk and f =X + Y] + ZK so df = dxi +dy] + dzk
L.H.S. [ﬁlf.df = Dj(zf+>q¢+ylz).(dxf+dﬁ+dz|2)
C C

[ﬁ ~df = [ﬂzdx+ xdy + ydz
C

C

Sincez=0sodz=0

mlf.df = mxdy,asx=coxt,y=sint:>dy=coxtdt
C C

2r
= J- coxtcoxt dt
(0]

1]
N
—

2ﬂ+sn47r+(0+sm0j
2 2

NI, NP

[2r+0] ==

T

df =x

-

Now R.H.S. [[curlF.Ads
]
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|
Curl F = 90

_ oy _ox _j(ﬂ_%)”g ox_oz
oy oz oX 0z oX oy

Cul F =1+ | +k

Since here the surface is the plane region bounded by a circle

So ”curllf.ﬁds = ”curllf.lzds
S S
= ([(+]+k).kd
L'.(I+j+) S

= I ds = area of unit circle
S

=nr?=n(l)’=n
Since L.H.S. =R.H.S

So Stoke's Theorem is Verified.

Example 2: Verify Stoke's Theorem for F = (x2 + y?)i - 2xy | taken round the rectangles
bounded by x=+a,y=0,y=6.
Solution : Since stoke theorem is given by

Ilf.dr” = ” curl F.A ds= ” curl F.kds
S S

Here F = (+y2) 1 -2xy |

] ik
curl F = 9 K
OX oy o0z

X*+y* -2xy O

A . ~[O(=2xy) (X +Y?)
|(0—O)—J(0—O)+k[ > o j

K (-2y - 2y) = -4yk
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Curl F =-4yk
Here the region is

7

x varies from (-9, 9)
y varies from (0, 6)

1l Il
O t—— T O =y T

—

: n
2 IN
<

o =~
>< N
3 =~
o

»

1
O T
|
i
X,

o
Q.
<

b
-4 ya-y(-a)dy
0

—4? 2ya dy
0

—SaT y dy
0

2 b
o[t
2 0
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=X ” curl F.fA ds = -4ab? (1)

S

NOW[E 'f-df=[j] [((2+y?) T -2xy ]].(dxi +dy | +dzK)

[(x* + y?) dx - 2xy dy]

°ot—h

[(x* + y?) dx - 2xy dy]

I
o t—h

=[] [0 +y?) dx-2xy dy] +[]] [0 +y?) dx - 2xy dy] + [[] [ +y?) dx - 2xy dly]
G C C3

+[[] 162+ y?) dx - 2xy dy]

C4
Along C; y=a,x—>-atoa

Along C» x=a,y—atob

dx=0

Along Cs y=hb,x=ato-a
dy=0

Along C4 Xx=a,y=btoa
dx=0

ot—h
T
o
™

a b -a
= j x2dx + j a’dx— 2aydy + j (X% +b?)dx — 2xbdy
—_a 0 a
0
+ [(-a%)+ y?)dx—2(-a) ydy
b
a b -a 0
= [ Xdx+ [(2ay)dy + [ (5 +b*)x+ [ 2aydy
-a 0 a b
372 2P 2 -a 270
I O - 0 B X ibx| o+ 2ay”
3 -a 2 0 2 a 2 b
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a.3

3 3 3
=2 42 )+ & la- & pra+(an)
3 3 3 3

=-ab?-ab?- b%a - ab?

AP =-4ab? (2)

ot—h
T

From (1) and (2)
.df = H curl F.f ds

S

T

J

Hence Stokes theorem is verified

Example 3 : Evaluate m (x+2y) dx + (x+3y) dy using stoke's theorem where C is the unit
Cc

circle.
Solution : Here F = (x+2y) T + (x+3y) |
df  =dxi+dy]

Suchthat [f] F.df =[] (x+2y)dx+ (x+3y)dy

C

Since Stokes' theorem gives us

m If.dfzﬂ curl F.A ds

S

) | k
So, Curl F = 2 i 2
OX oy oz
X+2y x+3y O
= 1 (0-0) - | (0-0) + K (1-2)
=-k
H Curl F.A ds = H Curl F. Kk ds
S S
= .U -k . k ds
S
:j ds
S
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Here S is the surface of unit circle

=[-S]
[ﬁ F.df =-(nr?) and of circle = nr?
=-n as x% + y? = r2 for unit circle r=1

Example 3: Use Stoke's Theorem to evaluate ijurIE.Eswhere F =221 -3xy | + x®%* Kk and
S

Sis the part of z = 5 - x2 - y? above the plane z = 1. Assume that S is oriental upwards.

Solution: In this case the boundary curve C will be where the surface interests the plane z = 1.
Assume that S is oriental upwards.

1=5-x?-y?
= X2+y?’=4atz=1

So, the boundary curve will be the circle of radius 2 that is in the plane z = 1. The
parameterization of this curve is

r(t)=2costi +2sintj+k,0<t<2rn

The first two components gives the circle and the third component make sure that it is in
the plane z = 1.

Using Stoke's Theorem we can write the surface integral as the following line integral.

[JowlFd = [ = | E(f0)f0

S C

Here E(F(t)) = (1)21 - 3 (2 cost) (2 sint) | + (2 cost)® (2 sin t) K
= {-12costsint | + 64 cos®tsin®tk

and r(t)=-2sinti +2cost |

= E(F(t)). r'(t) =-2sint- 24 sint cos?t

333



Therefore, we have

IfCurI—.d—s = 2f(—zsjnt—24sintcos,2t)dt
0

S
= [2003t+800$3t]§”
=0
Example 4. Using Stoke's Theorem evaluate ”Curlf.d? where F= xzi + yz i+xy|23uch
s

that S is the part of the sphere x? + y2 + z2 = 4 that lies inside the cylinder x? + y?> = 1 and above
the xy plane.

Solution: Given, Equation of Sphere : x> + y? + z2 =4 ..(2)
Equation of Cylinder : x> +y?2=1 ..(2)
A‘F z
2
S = =t
S 3

Subtracting (2) from (1) we get

Z2=3

Z= \/5 (Since Z is positive)
Now, the circle Cwillbe : x2+y?=1,z= \/§
The vector form of C is given by

r@)=costi +sintj++3K:0<t<2n
Thus, r'(t) =-sinti +cost |

Let us write F(r(t)) as

F(r(t)) =3cost{ + /3sint | + costsint K
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HCurI F.ds = J‘EE
S C

2z

= j F(r(t))r @)t

0

2z

= _[(—ﬁcostsinHJésintcost)dt

o

=0

Example 5: Let us consider a vector field F given by F = yi-x i+ yx3 k and let S be the
portion of the sphere of radius 4 with z > 0 and the upward orientation. Use Stoke's Theorem to
evaluate D]F.ds

C

Solution: Given F =y i -x | +yx®K

Here C is the circle of radus 4 at (z = 0)

ik
Now, curl. F=V xF = % %
N
_ [%(yxg)—%(—x)jr:[%(yﬁ)—%(y)j i J{%(—x)—%(y)jﬁ

=x3{-3yx? -2k

Since S is the upper hemisphere ds will be k . ds where ds is the area element of the
hemisphere.

= ”(x3i —3yx*j — 2I2).I€.ds= —” 2k k ds
S S

= _ZL;[ ds

Thus, we have according to Stoke's Theorem
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= —2[[ ds -|areaothemisphere= 272

“lr=4

1

1
N
—

N

a

=
N

~(2x27(4Y")
-64n

fIF.dr =-64n
C

Example 6: Verify that Stoke's Theorem is true for vector field F (x, y) = (—2z,%,0) and surface

S, where S is the hemisphere, oriented outward with parameterization F(e, ¢) =
(sngcos,singsing,cosg), 0 <6 <x, 0 < ¢ < as shown.

X

Solution: Let C be the boundary of S. Note that C is a circle of radius 1, centered at the origin,
sitting in plane y = 0. This circle has parameterization (cost,0,sint>), 0 <t < 2z, the equation

for scalar surface integrals.

2r
J‘EE = j<—sint,cost,O).(—sint,O,cost)dt
[ 0

2r
= J'sinztdt
0

=n

By the equation for vector line integrals,
IfCurI—.d—s = chrlIf(f(¢,9)).(t¢xf9)dA
S D
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= [](0,-11). (cospsin? g,sinGsin? g, singcosg) dA

D

1
O ey N

]r‘(sin¢cos¢—sinesin2¢)

:-glgnede

=T
Therefore, we have verified Stoke's Theorem for this example.

Example 7: Calculate surface integral IfCurIE.d—S, where S is the surface, oriented outward
S

and F = (z, 2xy, X +y).

Solution: According to stokes theorem
[[curlFds = [Far
S C

Here boundary c of the surface is merely a single circle with radius. Where C has
parameterization (cost, sint, 1), 0 <t<2rn

- HQM?&:]?E
S C

2z
= _[ (1,2sint cost, cost +sint).(—sint, cost,0)dt

0

= T(—sint+25int+coszt)dt

0

{ 2cos’t Tr
= | cost —
3

0

3

- cos (21) - 2c0s’(27) [cos(o)— Zcoss(O)J
3 3

-0

HCurIE.dE =0

S
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Example 8: Calculate the integral JE.& where F = (xy, x? + y? + 2, yz) and C is the boundary
C

of the parallelogram with vertices (0, 0, 1), (0, 1, 0), (2, 0, -1) and (2, 1, -2)?
Solution: As we know

jfﬁ = ”Curlf.d?
C S

Let S denote the surface of parallelogram. Note that S is the portion of the graphof Z=1
- x -y for (X, y) varying over the rectangular region with vertices (0, 0), (0, 1), (2, 0) and (2, 1) in
the xy plane. Therefore a parameterization of Sis (x,y,1-X,1-x-y),0<x<2,0<y<1. The

curl of F is (-z,0,x)

IEE = ”Curlf.d?
c s

1
O ey N

Jl'curl F(X, y).(fx><fy) dydx

1
O =y N
O =y

(—(1-x-y),0,x).((1,0,-1)x(0,1,~1))dydx

(x+y-10,x).(1,2,) dydx

1
O =y N
O =y

(2x+y—-1)dydx

I}
O ey
O ey

=3

Example 9: Prove that U.]F.T =
C
Solution: By Stoke's Theorem
j F.dr = jﬁ.curlfds

Put F=r
I rdr = I ncurlr ds

= Iﬁf)ds ‘curl n= 0‘
=0
rdr =0
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Hence proved

Self Check Exercise

Q.1

Q.2

Q.3

Q.4

Q.5

Use Stoke's Theorem to evaluate .[EE where F =221 -y? | + xK and C is the
C

triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) with counter clockwise rotation.

Verify that Stoke's Theorem is true for vector field F x,y, 2) = <y, x,—z> and

surface S, where S is the upwardly oriented portion of the graph of f(x,y) = x%y
over a triangle in the xy plane with vertices (0, 0), (2, 0) and (0, 2).

Use Stoke's Theorem to calculate surface integral ﬂ Curl F.ds where F %, v, 2)
S

and S is the surface as shown in figure
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Use Stoke's Theorem to calculate line integral If.ﬁ where F (x,y,2z)and Cis
C

the boundary of a triangle with vertices (0, 0, 1) (3, 0, -2) and (0, 1, 2).

Calculate the curl of electric field F if the corresponding magnetic field is E(t) =
(tx, ty, -2tz), 0 <t < 0.

20.4 Summary:

In this unit we studied that

1.

Stoke's Theorem is a powerful tool for converting complex surface integral to
more manageable line integral in multivariable calculas.

The Stoke's Theorem is applied to study rotation and curl in fluid flow. If can be
used to analyze circulation and vorticity in fluids which are very useful in
aerodynamics and weather systems.

This theorem is higher dimensional analog to Fundamental Theorem of calculas
relating derivatives to integral

It can be applied to any surface that is smooth and has a well defined boundary.
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20.5

20.6

Stoke's Theorem can be interpreted as a way to relate the rotation of a fluid
within a surface to the flow along the boundary of the surface.

6. Thus, this theorem relates a flux integral over a surface to a line integral around
the boundary of the surface. It transform a difficult surface integral into an easier
line integral on a difficult line integral into an easier surface integral.

Glossary

Curl: Curl of a vector field is obtained by taking the vector product of the vector
operator applied to the vector field F(x, y, z)

Curl F (X, y,2) =V x F x,y,2)
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Line integral: A line integral is integral in which the function to be integrated is
determined along a curve in the coordinate system. The function which is to be
integrated may be either a scalar field or vector field.

Surface integral: Surface integral is the generalization of the double integral. In
surface integral we integrate a surface in 2D or 3D to calculate the area
approximation of all points present on the surface.

Flux: The rate of flow of fluids, particles or energy across a given surface or
area.

Boundary: The line which marks the limit of an area

Dimension: A measurable extent of a particular kind such as length, depth or
height.

Answers to Self Check Exercise
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curl E = (x,y, -22)
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20.8 Terminal Questions

1. Use Stoke's Theorem to evaluate ”(Curlf).ﬁds when F=z2{ +y2 | + xy k
S

and C is the triangle defined by (1, 0, 0), (0;1, 0) and (0, 0, 2).

2. Verify the Stoke's Theorem for the vector field F= yi+2z]+x2 k and surface
S, where S is the parabola Z = 4-x? - y2,

3. Computemxzzdx-ir 2xdy — y*dz, where C is the unit circle x2 + y? = 1 oriented
C

counterclockwise.

4, Consider the vector field F = (z sin (x), yz, x> + y?) and let S be the upper
hemisphere of the sphere x? + y? + z2 = a2 with radius a and centered at the
origin. Then verify stoke theorem.

5. Paroboloid surface let's take a vector field F = (xy, €, zcos(y)) and consider S to

be the surface of the paraboloid z = 1 - x? - y? capped by the plane z = 0. Then
evaluate mF.dr.
C
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