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Unit-1
Integration By Partial Fractions

Structure

1.1 Introduction

1.2 Learning Objectives

1.3 Kinds of Functions Whose Integrals Be Evaluated By The Method of Partial Fractions
Self-Check Exercise-1

1.4 Method To Evaluate J.Z; dx, where4 ac-b*>0,a=0
ax“ +bx+c

Self-Check Exercise-2

de

2

15 Method To Evaluate Integrals Of The Type I b
ax® +bx+c

where o< z0and 4 ac-b?>0
Self-Check Exercise-3
1.6 Summary
1.7 Glossary
1.8 Answers to self check exercises
1.9 References/Suggested Readings
1.10 Terminal Questions
1.1 Introduction

If the integrand (the expression after the integral sign) is in the form of an algebraic
fraction and the integral cannot be evaluated by simple methods, the fraction needs to be
expressed in partial fractions before integration takes place. The steps needed to decompose
an algebraic fraction into its partial fractions results from a consideration of the reverse process-
addition (or subtraction) consider the following addition of algebraic fractions:

1 .5 :(x+3)+5(x+2)
X+2 X+3 (X+2)(x+3)
_  6x+13

X* +5X+6

Here we want to go the other way around. That is, if we were to start with the
expression.



6x+13
X° +5x+6

and try to find the fractions whose sum gives this result, then the two fractions obtained,

i.e. i and i we called the partial fractions of 26)(;13

X+2 X+3 X" +5Xx+6
partial fractions like this because it makes certain integrals much easier to do.

. We decompose fractions into

Integration by partial fractions involves breaking down a complex fraction into simpler
fractions, allowing us to integrate each component individually. This method is particularly useful
when dealing with functions that cannot be easily integrated using other methods.

Partial fractions are especially valuable when dealing with improper rational functions,
where the degree of the numerator is greater than or equal to the degree of the denominator. By
decomposing the improper fraction into partial fractions, we can often transform the integral into
a sum of integrals that can be evaluated using elementary techniques.

1.2 Learning Objectives

After studying this unit, you should be able to:-

° Define the type of functions whose integrals be evaluated by the method of
partial fractions and able to solve different integrals by partial fractions.
o Discuss the method to evaluate J‘Z; dx, where 4ac - b2 > 0, a= 0 and
ax® +bx+c

find the solution of this type of integral.

OZC)(—+'de, where e< z0and4ac-b?>0
ax”- +bx+c

and solve the questions of this type of integrals.

. Discuss the method to evaluate f

1.3 Kinds of Functions Whose Integrals Be Evaluated By the Method Of Partial
Fractions

The functions of the type f(X) , Where ¢(x) and y(x) are polynomials.
X

_ )
w(

If degree of y(x) is 0 i.e. y(x) is a constant, then f(x) is a polynomial in x and we have
already done methods to evaluate such an integral.

But if degree of y(x) # 0

Also we assume here that ¢(x) is not divisible by y(x)

If the degree of ¢(x) is not less than that of y(x), we apply long division and obtain.

d(x) = gq(x) w(x) + r(x), where g(x) and r(x) are polynomials, the degree of r(x) is less than
that Thus,
P9 - g9+ 1

0= ()



r(x)

In orders to integrate f(x) it suffices to integrate T Since we know how to integrate
(X
a(x).

Let us consider the following examples to clear the idea:-
Example 1: Evaluate the following integral:

I dx '|x|>a
x2—a? "’

: 1 . , .
Sol: Let us split > into partial fractions.

X2 —

21 > = 1 = A + B (@D

X“—a (x-a)(x+a) x-a x+a
Or 1=A(xX+a)+B(x-a) [Taking L.C.M.]
Puu x=a,l1=A(ata)+B(a-a)

= 2aA
Or =i

2a

Put x=-a,1=A(-at+a)+B(-a-a)
Or 1=0-2aB

Or B=-i
2a
Putting the values of A and B in (1), we get
1 11 1 1
x*—-a?> 2a x—a 2a x+a
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i [log |x - a] - log |x + &]]
2a

1 X—a
= —|log|——
Za[ x+a}
1 | X—a
2a X+a

Example 2: Evaluate the following integral
x-1
J oo™
Sol: We factor the denominator x3 - x? - 2x
Now x3-Xx2-2Xx=X(X2-X-2)=X[x?-2X+X-2]
X[X(x-2)+1(x-2)]
=X(x-2)(x+1)
x—1 _ x-1
X=x*=2x  X(x=2)(x+1)

Splitting the R.H.S. into partial fractions, we get

x-1 _ x-1 _A N
X—x*=2x  X(X—-2)(x+1) X

B C
+

X—2 X+1

Or X-1=AXx-2)(x+1)+B;0(0+1)+c.0.(0-2)
Or -1=-2A

Or A=

N

Put x=2;2-1=A)2-2)(2+1)+B2(2+1)+c.2(2-2)
Or 1-0+6B+0

Or B = 1
6
Put x=-1;-1-1=A(-1-2) (-1 +1) + B (-1) (-1 +1) + c (-1) (-1 -2)
Or -2=3cC
Or = E
3



Putting these values of A, B, C in (1), we get

xl%%/

X3 — X% —2x X+1

[ %dx+j Y .| 2,

X3 —x?—2x X—2 X+1
= EJ. idx_lj. de_g.’. idx
2 X 6 X—2 3 X+1

1 1 2
—log x|+ = log|x-2|-= log|x+ 1
> g [x]| 5 gl I3 gl I

X"+ X+2
Example 3: Evaluate J’L dx
x> -1
2
Sol: Let 1 = [ X2 X*2 g
x -1

Here power in the numerator is equal to the power of denominator.
Let us divide the numerator by denominator and then form partial fractions

Factors of x2- 1 are (x - 1) (x + 1)

1
Now x2—1>x2+x+2
_x? +—1
X+3
X+x+2 X +X+2 _,. A, B )
x> -1 (X+1)(x+1) x-1 x+1 77

Multiplying both sides of (1), by the L.C.M. = (x - 1) (x + 1), we have
X+Xx+2=(X-1)(x+1)+AKX+1)+B(x-2)
Puttingx=1; 1+1+2=A(1+1)

Or 2A=4

A=2
Puttingx=-1;1-1+2=B(-1-1)
Or -2B=2



B=-1

Putting the values of A and B in (1), we have

X2+ X+2 2 1
- =14+ — - _—_
x? -1 x-1 x+1
2
Ixt—dezj 1dx+2j idx—'[ 1 oax
X -1 X-1 X+1

=x+2log|x-1)-log |x+ 1|

Example 4: Evaluate the following integral

I 41 1dx,x>1
X —
1

dx
xt—1

Sol: Let I = j

Put x?=t

Differentiating w.r.t. x
2x = a or 2x dx = dt
dx

xdle dt
2

X2 +3x—7

Example 5: Evaluate'[ m X
X+ 3)(X+



X2 +3x—7

Sol: Letf(X): I m X

X437 : .
Let us split ———————— into partial fractions
(2x+3)(x+1)
X*+3x—7 A B C
> = + + s e D
(2x+3)(x+1) 2x+3  x+1 (x+))
Or X2-3x-7=A(X+1?+B(x+1)(2x+3)+C(2x+3) ... (2)
9 9 3 Y 3
Put x="34;>+2-7=A|-S41| +B|-2+1|(3+3)+C(-3+3
%t [Zj(zj()()
or 9+18—28=A1
4 4
Or —le1
4 4
Or A=-1

Putt x=-1;1+3-7=A(-1+12?+B(-1+1)(-2+3)+C(-2+3)
Or -3=C

Comparing coefficients of x2 on both sides of (2), we get

1=A+2B

=-1+2B
Or 2B=2
Or B=1

Putting the values of A, B, C in (1), we get

X*-3x-7 -1 , 1 . -3
(2x+3)(x+1)*>  (2x+3) x+1 (x+1)?

J- X* —3x—7 dy = J- 1

————dx=- dx+J‘ idx-SJ‘ (x + 1)2dx
(2x+3)(x+1) 2X+3 x+1
—2+1
__log|2x+3| +log [x+ 1] - 3 (x+1)
2 -2+1

=-% log |2x + 3| +log |x + 1| + 3 (x + 1)

7



Self-Check Exercise-1

Q.1  Evaluate the following integral
dx
| e

x-1

Q.2 Evaluatej. mdx

14

Put

Set

Method To Evaluatej.% dx, wheredac-b%?>0,a=0
ax“ +bx+c

b ¢ . -
ax?’+bx+c=a (xz +— x+—j [Making the coefficient of x? as 1]
a a

2 2
(Addi ng and Subtracti ng%j ie. (% Coeff of x)
a

b)Y ¢ b .

=a x+£ +5_E [Completing the square]
b ) lac-b?

=a X+£ +? ...... (l)

,4ac —b?
o =q [\/4ac—b2isreal becaJse(4ac—b2)ispositiveJ
a

b 2
ax’+bx+c=a Kx+—} +q2]
2a

1
[t =l 1
ax”+bx+c a ( bj )
X+—1 +q
2a
. 1
Let us reduce this integral toJ. >— dx
X“+1
b
X+ —=qt
2a a
dx =qdt




ax® +bx+c a’ qt’+q
1
= in' = dt
aq t°+1
-1 tan™ t
aq
2 X+ b
4ac-b 24
where q = ) andt= __2a
4a q

Let us consider the following example to clear the idea:

Example 6: Evaluate the following integral

J‘ dx
4%* +6Xx+9

Sol: 4x2+6x+9=4 {X2+§X+g}
2 4

Al )

3
Set X+ — =qt
) q

dx =qdt
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Self-Check Exercise-2
Q.1  Evaluate the following integral

dx
J.xz —2X+5

de, where o< # 0 and 4ac -

15 Method To Evaluate Integrals of The Type j 5
ax“ +bx+c

b?2>0

oc b
J. Xt e 261(2ax+b)+[,8—2ajdX

ax® +bx+c ax® +bx+c
[Making the numerator i.e. linear factor as a differential of the denominator i.e. quadratic]

* (2ax+D) p-R=
= —2a2 dx + J—z 23
ax“ +bx+c ax“ +bx+c
oc 2ax+Db boc 1
= [ 22 x4+ [ f— | ———dx
2a-[ax2+bx+c (ﬁ ZaJI ax’ +bx+c

10



2ax+b

The first integral i.e.J' T g
ax“ +bx+c

dx is of the type

f'(x) _ 2 ARG
j 00 dx and = log |ax? + bx + c| { | 0 dx—log|f(x)|}

The second integral i.e. I dx can be evaluated by the method given in 1.3

ax’ +bx+c

Let us consider the following examples to clear the idea:

Example 7: Evaluate the following integral j ?X
2X°+ X
Sol: Let us factors 2x3 + x
23+ x=x(2x* + 1)
1 1 A  Bx+c
2 +x X(2x% +1) X T @)
Or 1=A@2x*+1)+Bx+c)xx L. (2)
[Taking L.C.M.]
Puttingx=0;1=A(0+1)+(B.0+C)0
Or 1=A
Comparing coefficient of x? on both sides of (2), we get
1=2A+B
Or 1=2+B
i.e. B=-1
Comparing coefficient of x on both sides of (2), we get
O0=c
Putting these values of A, B, C in (1) we get
1 _1,-x+0
2 +x X 2X°+1
1. x
X 2x°+1
or I 2x31+xdx--[ %dX-J‘ 2x;(+1dx
1 4x
:Ioglxl'Zj 2x% +1

11



=log |X| - %Iog [2x% + 1|

=log || - %Iog (2x2 + 1) [ (2x2 + 1) > O for all real X]

Example 8: Evaluate the following integral

2
X+ X
I — 5 dx
X —=X"+x-1
X2 + X
Sol: LetI:I #dx
X=X +Xx-1

Now x3-x2+x-1=x3x-1)+1(x-1)
= (x- 1) (& +1)
X2+ X _ A, Bx+C
(x-D(x*+1) x-1 x*+1
Multiplying by L.C.M. (x - 1) (x? + 1) we have
x2+x=A(X?>+1)+ (Bx+C) (x-1)
Put x=1; 1+1=A(1+1)

Or 2A =2

Or A=1

comparing coefficients of x?,
1=A+B

Or 1=1+B
B=0

comparing constant,
0=A-C

Or 0=1-C
c=1

Putting these values of A, B, C in (1), we get

X¥+x 1 L1
(x-D(x*+1) x-1 x*+1

X% + X _ 1 1
j mdx-] X—dx+.[ dx




=log |x - 1] + tanx

Example 9: Evaluate the following integral

,[ X —x*—3x+5
(X% +1)(x-1)?

X —x*-3x+5

(¢ +1)(x—1)° is a fraction but not a proper fraction
X"+ X —

Sol: The integrand

Denominator = (x2 + 1) (x - 1)?
=(x2+1) (x2+1-2x)
=X+ X2 -2+ X2+ 1-2x
=x4 -2x3+2x%-2x+ 1

Now we apply long division

x“—2x3+2x2—2x+1>x5—x4 -3x + 5 7x+1
X —2X* + 23 —2X% + X
X' —2x% 4+ 2x* —4x+5

X =233 +2x% —2x+1

—-2X+4
X° —x*-3x+5 Cyr14 T2x+4
(X +1)(x-1)* (X +D(x-1)°
5 4 _
IX 5 X 3X+25dx=j xdx+j 1dx+j — 2x+4 > dx
(x*+D(x-1 (x*+1)(x-1)
2 J—
=X xr [ 2 (1)
2 (x*+D(x-1)
Let us split # into partial fractions.
(x=D°(x"+1)
-2x+4 _ A B Cx+D
27,2 - + 2 v +(2)
x-D)°(x*+1) x-1 (x-1 X“+1
Or 2X+4=AKX-1)(x*+1)+B(Xx*+1)+x+D)(x-1)*> ... 3)

Put x=1,-2+4=A(1-1)(1+1)+B(1+1)+(C+D)(L-1)>

13



Or 2=B.2

Or B=1
Comparing coefficients of x3 in both sides of (3), we get
o=A+C . 4)
Comparing coefficients of x? in both sides of (3), we get
0=-A+B+D-2¢c .. (5)
Comparing coefficients of x in both sides of (3), we get
-2=A+C-2D L. (6)
Putting the value of (A + C) from (4) in (6), we get
-2=-2D
Or D=1

Putting D=1 and B = 1 in (5), we have
0=-A+1+1-2C

Or A+2C=2

By(4) A+C=0

Subtracting these two, we get C = 2

PuttingC=2in(4), weget0=A+2

Or A=-2
Putting these values of A, B, C, D in (2), we get
2xX+4 _ -2 1 N 2x+1
(x+D2(x*+1) x-1(x-1)* x*+1
| #dxzj ‘_de+j . —— 2xt1 g,
(X+D°(x“+1) x-1 (x=1) X +1
1 2X
=-2| ——dx+| (x-1)2dx+ dx + dx
-[ x—1 -[ (x-1) -[ x*+1 -f x*+1

(x-1*
1

=-2log |x- 1| + +log [x? + 1] + tanx

—2X+4

—— dxin (1), we have
(X+1D?(Xx* +1) S

Putting this value of j

5 4 2
X —X"—3X+5

I 5 2+ x=X—+x-2|og|x-l|-ilog|x2+l|+tan'1x
(x+D)°(x“+2) 2 x-1

14



Example 10: Evaluate the following

[
X(x" +1)

Sol: Rule to integrate ——
X(X" +K)

Put x" = t and then resolve into partial fractions and integrate

Now let Izj ﬁdx
X(X" +

Set  x"=tsothat nx"!dx =dt

Or dx = 1 dt

n Xn—l

J‘ 1 1
X(X"+1) nx"*

EJ' ;dt
n' x"(x"+1)

1 1
- j D a (1)

Let us now resolve into partial fractions

1
t(t+2)
Or 1=A(t+1) +Bt
Put t=0,1=A((0+1)+B.0
Put t=0,1=A(0+1)+B.0

:/%J,i ..... )

t+1

Or A=1

Put  t=-1,1=A(-1+1)+B(-1)
Or 1=-

Or =-1

Putting these values of A and B in (2), we get

15



Putting this value of j

Example 11: If F'(x) = 1
X

1 1 1

tt+1) t t+l

| ! de= | ldt—J. B
t(t+1) t t+1
=log |t| - log |t + 1]

it
(t+2

=log

dtin (1), we get

1
+1)

|t]
(t+2)

|:1
n

log

t

==log |—
d t+1

n

x # 0 then find F(x)

Xll !
. 1
Sol: Now F'(X) = ——;, x#0
X+ X
_ 1
F) = | g X
1
=| ————dx (1
-[ X (X°+1) @)
Put x¥=t
Diff. w.r.t. X,
10 x° = a
dx
Or dx = dtg
10x
(1) becomes
1 dt

R = -[ x (x°+1) 10x°

16



1.6

1

—[log |t| - log |t + 1
10[gll glt+1]]
10 gt+1

1 x2©

~ log ———
10 g x°+1

[Resolving into partial fractions]

Self-Check Exercise-3

Q.1 Given that
di 1

dy y+y*
Q.2 Findl

(y>0),

Find a primitive of

x?+1

(X* +2)(2x* +1)

Q.3 Evaluate

j 5; dx
X(xX* +1)

Summary:

We conclude this UNIT by Summarizing what we have covered in it.
1.

Discussed the kinds of functions whose integrals be evaluated by the method of

partial fractions. Examples given in Support of this.

Discussed in detail the method to evaluate integral of the type '[

17

ax’ +bx+c
where 4ac - b2 > 0, a # 0. Solved some examples to clarify this method



3. Discussed in detail the method to evaluate integrals of the type
j o X+ f3

ax®+bx+c

given to clarify this method.

dx, where o< # 0 and 4ac - b? > 0. Some solved examples are

1.7 Glossary:

1. Integration by partial fractions involves breaking down a complex fraction into
simpler fractions, allowing us to integrate each component individually.

2. Partial fractions are especially valuable when dealing with improper rational
functions, where the degree of the numerator is greator than or equal to the
degree of the denominator

1.8 Answer to Self-Check Exercise
Self-Check Exercise-1

1 a+Xx
Ans. 1 —log [——
2a a-x
X—2
Ans. 2 4 log |— - l(x-Z)'l
25 Xx+3| 5

Self-Check Exercise-2

Ans. 1 logy - %Iog (1+vy?

Ans. 2 li aretaxi+1 iaretan \/Ex
32 2 32
1 x>

Ans. 3 =log |——
5 J X° +1

1.9 References/Suggested Readings

1. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.
2. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.

20.11 Terminal Questions

1. Evaluate the following integral

j ;dx, x>1
(x=1(2x-1)

18



Evaluate the following integral

I X4dx,x¢il
—X

Evaluate '[ ﬁ x>0
Evaluate '[ ﬁ
Evaluate '[ ﬁ
Evaluate '[ m dx

19



Unit - 2
Integration of Rational Functions

Structure

2.1 Introduction

2.2 Learning Objectives

2.3 Rational Function

2.4 Two Standard Results
Self-Check Exercise

2.5 Summary

2.6 Glossary

2.7 Answers to self check exercises

2.8 References/Suggested Readings

2.9 Terminal Questions

2.1 Introduction

Integration of rational functions is a fundamental concept in calculus that involves finding
the antiderivative of a rational function. A rational function is the ratio of two polynomials, where
both the numerator and the denominator are polynomial functions. The process of integrating
rational functions is essential in various area of mathematics, science and engineering.
Integration of rational functions involves decomposing a rational function into partial fractions.
This process is helpful in simplifying complex rational functions, making them easier to
integrate.

2.2 Learning Objectives
After studying this unit, you should be able to:-

) Define rational function.
. Find the standard result
dx 1 X—a
j —— ., (X*>a’)= —log |——| +¢
X‘—a 2a X+a
. Find the standard result
dx 1 X+a
j ., (xX*<a’)=—log |l——| +c¢
X‘—a 2a X—a

20



2.3 Rational Function

f(X)

A function is said to be rational function if it is of the form T , Where f(x) is non-zero.
g(x

For rational functions. A rational function is free from logarithmic terms, trigonometric
and inverse trigonometric functions and the logarithmic functions.

The antiderivative of a rational function may or may not be a rational function.
1

Let f(x) = —, (x=0)
X

f(x) is a rational function of x.

1
But antiderivative of f(x) = J. —dx = log |x|; which is a logarithmic function and
X

therefore is not a rational function.

F(¥)

If the integrand is a rational function of the form T and the degree of the numerator
g(x
is equal or greater than that of the denominator, then before integration we divide the numerator
by the denominator until the degree of the remainder is less than that of the denominator. A
rational function, in which degree of numerator is less than that of denominator, is called a
proper rational function.

2.4 Two Standard Results

Result 1:
dx 1 -
,(x*>a*)=—Io +C
J x* —a? ( ) 2a g X+a
Result 2;
dx 1 X+a
j —— ., (x*<a’) = —log +C
X —a 2a X—a
Proof:
Result 1;
dx
Let | = dx
J. X —a?

[JfFE—
| (x—a)(x+a)

1
—

1 1 }
+ dx
| (x-a)(a+a) (-a-a)(x+a)
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1 1
= j + dx
2a(x—a) (-2a)(x+a)
2a X—a X+a
= L [log|x—a|-log|x+al] +c
2a
1 —
= —1Ilo +cC
2a X+a
Result 2:
1
Letl= J. 2 dx

Sy —
(a—x)(a+x)

= j L + L }dx
(a-Xx)(a+a) (a+a)(a+x)

! + ! dx
j | 2a(a—-Xx) 2a(a+x)

1 [ 1 1 }
= —— +——|dx
a—X a+X

1 Iog|a—x|+log|a+x| ‘e
2a -1 1

1
—J[-logla-x|+logla+X|]]+cC
2a

1 X+a
= —I +C
2a X—a
Let us consider the following examples to clear the idea:-
2x+1
Example 1: Find J. ——dX
18-4x—-X
2x+1
Sol.:Letl= [ —= "= dx
18-4x—-X
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| ~(-4-29-3

18— 4x—x*
:_J. LZXde_sj- ;de
18- 4x—-X 18- 4x—-X
1
=-log 18—-4x—x*|-3 | —————d
og [18-4x-x-3 | 18— (C+4%)
=-log ‘18—4x—x2‘ -3 I 1 dx
22— (X +4x+4)
= - log ‘18—4x—x2‘ -3 J (J_)z 1 dx
22) —(x+2)?
1 @+x+2|
— 2
=-log ‘18—4x—x ‘ -3 Z@IOQ «/Z—X—Z‘ +cC
= - log ‘18—4x—x2‘— 3 lo @+X+Z| +C
2@ \/Z—X—Z‘
Example 2: Evaluate I 2)(;3 dx
X°—2X-5
Sol: Let | = J 2)(;3 dx
X°—2x-5
Liox-2+4
= 2 5 dx
X-—2Xx-5
1 2X—2 1
=—| ————dx+4| ———d
2] st ™
I = 1| +41
- 2 1 2
2x—-2
where |1—J- mdx

= log ‘XZ—ZX—S{ +Cy
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1
X2 —2x-5
=I 2 L ~ dx
(x*—2x+1D) -6
1

= d
I oo™

o =D Vel | .
(x— 1)+«/_\

1 X—-1- J_|
l, = |O
2«/6 X— 1+\/_‘

from (1), we get

dx

and I = I

1

" 206"

le_

| = % log ‘XZ—ZX—S{ + % log

_oxdx
(X+D)(x+2)

Example 3: Find '[

Sol: Let | = '[ [;} dx
(X+D(x+2)

i -1 -2 }
= j + dx
 (X+D(-1+2) (-2+D(x+2)

-1 2 }
=] et |
| X+1 x+2

=-log|x+1]+2log|x+2|+cC

3x-1
Example 4: Evaluatef (x-D(x-2)(x-3) dx

Sol: Let| = J' 3x-1 dx
(x=D)(x-2)(x-3)

9-1

- 3-1 . 6—1 .
L (x-DA-2)(-3)  2-D(x-2)(2-3)  (3-1)(3-2)(x-3)
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1 5 4
= j - + dx
{x—l X—2 x—S}

:j 1 s idx+4j BEN
x-1 X—2 X—3

=log|x-1]-5log|x-2|+4|x-3|+cC
2X

Example 5: Evaluatej ﬁdx
X +3X+

Sol: Letl='|. %dx
+3X+
i -2 —4
= j + dx
 (X+D(-1+2) (-2+D(x+ 2)}

[ -2 4] }
S =
| X+1 x+2

1 1
=—2J. ——dx+4| ——dx
X+1 X+2

=-2log[x+1|+4log|x+2||c

dx

Example 6: Find j 3

X—X

Sol: Let | = '[

= J. 1 5> dx
X(1-x°)

I [
| X(1-Xx)(1+x)

[ 1 1 1 }
- j + + dx
| X(1-0)1+0) @O)@A-¥A+]) (-DA+11+x)

11 1
:j —+ - dx
X 2(1-x) 2(1+Xx)
=log |x| + 1&11_)(' % log|l+x|+c
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1 1
=log |X| > log |1—x|—§ log|1+Xx|+c

X+ X+1
Example 7: Find ———dx
P j X2 -1
X+ x+1
Sol: Letl= | ——dx L. 1
| v (1)

Here degree of numerator is greater than the degree of denominator.

X

1ix3+x+1
X2 — X
-+

2x+1

(1) becomes after division as
2x+1
I -I {x+ Xz_de

X+L dx
‘I T (x=D(x+1)

g ‘X+ 2x+41 241 |
(X=D(x+1) (-1-1)(x+1)

= _x+ 3 _,_1 }dx
L 2(x=1)  2(x+1)

2
X 1
—+glog |x—1|+§log [x+ 1] +c

2
2x°+3
Example 8: Evaluate I — 4 dx
X —X-2
2 +3
Sol: Let| = I - QFcd
X —X-2

Here degree of numerator is greater than the degree of denominator
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2X+2
x2—x—2>2x3+3

2X° —2x% — 4x

-+ o+

2x° —2x—4

- + 4+

 ex+7

(1) becomes after division as

|=I {2x+2+z6x—+7}dx
X —X-2

:I _2x+ 2+ ﬂ} dx
i (X+D(x-2)

:I _2x+2+ —6+7 + 12+7 dx
i xX+D(-1-2) (2+DH(x-2)

:I _2x+2— ! + 19 }dx
3(x+1) 3(x-2)

=x2+2x-%Iog|x+1|+%log|x-2|+c

Example 9: Evaluate

X
I 1_X4dx
Sol: Let | = dx
I 1-x*
Put x%=vy
2xdx = dy
_1 dy
27 1-y?
—l.llog Y +C
2 2 1-vy
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1+ X2

2+C

=—lo
4 9

1-X

. dx
Example 10: Find I 2

X(x* +1)
dx

X(x* +1)

SoI:LetI=I

X3
=I #dx
X' (X" +1)
Put xs=y
4x3dx = dy

1
= x3dx = —dy

1 1
I=— dy
4 I y(y+1)

1

1

S

1 1
————1d
B y+1} d

N N

y
y+1

+C

o
Q

1 log X’
4 X' +1

+C

X3

Example 11: Find I

X3

Sol: Let| = ——dx
I X +3x2+2

[log ly|-log |y + 1]] + ¢

x*+3x°+2

Y0+ (“I)(y+1)

dx

Iy
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J- X2 X dx
x*+3x° +2
Put x°=t, .. 2x dx = dt

= xdledt
2

I_EI t ot

2J t°+436+2

__J‘ tdt
(t+1)(t+2)

R -2 }
== j + dt
2 | (t+D(t+2) (-2+D(t+2)

=lj —_1+L}dt
2 t+1 t+2

:%j [-log |t + 1] + 2 log |t + 2] + ¢

I\Jll—‘

log|t+1+logjt+2|+c

1
=—§ log (x> + 1) +log (x*+2)+c

1
=—§Iog(x2+1)+log(x2+2)+c

sinx

Example 12: Evaluate I a
cos

sinx
Sol: Let | = J' dx
(1—cosx)(2—cosx)
Put -cosx=y
sin x dx = dy

_ 1
=] Tyey®

X
X)(2—cosX)
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S 1 }
= j + dy
| A+y)(2-D) (1-2)(2+y)

1 1
:j - dy
L 1+y 2+y
=log|1+y|-log|2+y|+c

1+y
2+y

= log +C

1-cosx
+
2—C0SX

=log

sin2x y
nx)(2+snx)

Example 13: Evaluate I i+s
+

sin2x

Sol: Let | = J - - dx
(A+sinx)(2+snx)

B I 2SN XCOSX y
(I1+sinx)(2+sinx)

SiN XCoS X
= ZI - - dx
(@+snx)(2+snx)

Put sinx =y,

Cos X dx = dy
=2 Y
1+ y)(2+Y)

e y
=2 _(y+2)(y+2)}dy

= ZI -1 + 2 }dy
L (y+D(-1+2) (-2+D(y+2)

Z2] __L+L}dy

=2[-logly+1[+2logly+2[+cC

=2[-log|sinx+ 1] +2log [sinx + 2|] +C
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1

Example 14: Evaluatej X312 ) X
sin x(3+ 2cosx

1
Sin X(3+ 2cosXx)

Sol: Letl = J

J- sinx X
sin® X(3+ 200sX)
:J- sin xdx
(1-00s” X)(3+ 2cos X)

_ sSin xdx

_I (1—cosx)(1+ cosx)(3+ 2cosx)
Put cosx =t

-sin x dx = dt
= sin x dx = - dt

| = - j dt
1-t)(1+1)(3+2t)

dt

1 1 1
I 1+D(1+2)(3+2) ’ 1+D@A+1)(3E-2) " (1+ 3)(1—3j(3+ 2t)
2

- 1 L1 A
|10(1-1) 2(1+t) 5(3+2t)

:_i idt-lj- idt+ﬂj.
10 1-t 2 1-t 5

! dt
3+ 2t

:_ilog|1—t|_llogJ |1+t|+f |09|3+2t|+c
10 -1 2 5 2

= iIo |1 -t 1Io |l+t|+glo [3+2t] +cC
10 9 29 5 9

1 1 2
= —log|l-cosx|-—log|l+cosx|l+—log|3+2cosx|/x+c
10 gl I > gl I c gl |

X"+ X

2
+
Example 15: Evaluate J- g dx
X —_
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=+
X2
where 1 = dx
' I x* -9
1 4x°
= — dx
4-|. x*-9
1
=Zlog|x4—9|+c1 .....
X
and I,= dx
’ I x* -9
Put x?=y
2x dx = dy

From (1), (2), (3), we get

x? -3

2 +cC
X +3

1 1
= =log|[x*-9]+— lo
2 gl I 12 g

where ¢ =c; + ¢ is constant.

(C+D(X*+2)
(x> +3)(X* +4)

Example 16: Find j
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(X +D(x*+2)
(X* +3)(X* +4)

Sol: Let!= |
[Note:- If numerator and denominator both contain only even powers of x, then we put x? =y to
receive integrand into partial fractions and then put y = x? and integrate]

(X +D(X*+2)
(X +3)(X* +4)

Now integrand =

_(C+D(*+2)
T OC+3)(X+4)
N (-3+D(-3+2) N (-4+D(—4+2)
(y+3)(-3+4) (-4+3)(y+4)

- where y = x?

2 6
=1+ -
y+3 y+4
- 2 6

X’+3 X +4
2 6
| = 1+ - dx
I{ X*+3 x2+4}

= [ 1dx+2]

——dx - GI wdx

o
=X+ 2. %tanl{TJ Etan (;j+c
=x+ \/z_tanl(Tj 3 tan’ (Xj+c
dx

r1
X2 +x3

Example 17: Find I

Sol: [Note:- If fractional powers of only one linear occur in the integrand, then we put linear = I3,
where s is the L.C.M. of the denominator of the fractional indices of the linear]

dx
Let | = j‘ 1
X2 + X3

Here fractional powers of only one linear x occur in integrand.
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The fractional indices of x are % 1
L.C.M. of the denominators 2 and 3 is 6.
we put x = t°
dx = 6t° dt
_ 6 dt
t°+t?

t5
“6] e

_ t°
_GI t+1 a

Here degree of numerator is more than degree of denominator.
t?—t+1
t+1t°

t3+1°

’ 1
1=6 t dt=6 | {tz—ul——}dt
t+1 t+1
'ts t2
=6 ———+t—log|t+1||dt+cC
3 2

1 1
=6/ ———+x8-log|té+1||+c
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1 1 1 1
=2Xx2-3x3 +6Xx°% -61log|Xx8 +1|+cC

2
Example 18: Evaluate I %dx
— +

2
Sol: Let1 = | X+l
(x—=1?*(x+3)

x*+1 A , B, C
(x-)*(x+3) x+3  x-1 (x-1?

Put

X2+1=AKX-1)2+B(Xx-1)(x+3)+c(x+3)
Put x+3=0 or x =-3in (1), we have
9+1=A(-3-1)2+0+0
= 10 = 10A

= A=§
8
Put x-1=0 or x=1in (1), we have
1+1=0+0+c(c1+3)
= 2=4C
1
= C=-—
2

(1) can be written as
X2+1=AX?-2x+1)+B(x?+2x-3)+C (x+3)

Equating coefficients of x? in (2), we get

1=A+B
= 1=-+B
8
3
= B=-—
8
x2+1 5 3 1

(x=D?*(x+3) = 8(x+3) * 8(x—1) * 2(x—1)?
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|=§j— —j —dx J.(x 1)2 dx

8
_9 3 1 (x- 1)‘l
—log |x+ 3|+ —log |x - 1| + ~
= glogx+ 31+ Zlog x - 1] + 2 25—
I=§Iog|x+3|+§log|x-1|- 1
8 8 2(x-1)
1
Example 19: Evaluate j N dx
Sol: Let!= | - dx
1-x

1
= I 5o dx
(I—) @+ x+x9)

1 A Bx+C
Put = +

1-X)A+x+x3) 1-x  L1+x+x°

Multiplying both sides by (1 - x) (1 + x + x?), we get
1=A0+x+x)+(Bx+C)(1-x)
1=AX+x+1)+Bx(1-x)+C(1-X)

Put 1-x=0 or x=1in (1), we get
1=A(1+1+1)+0+0
1
= A=—
3

(2) can be written as
1=AX+x+1)+B(-x*+x)+C(-x+1)

Equating coefficient of x? in (2), we have

0=A-B
1

= 0=--B
3
1
= B=—
3

Equating coefficient of constant term in (2), we have
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-Lic
3
= C=g
3
1 x, 2
1 -3, .33
1-X)A+x+x>) 1-x  1+x+x%
1 _ 1 1( X+ 2 j
Or 3 = + — >
1-x° 31-x) 3\ \1+x+X
|:1 idxq.lj. X+22dX
3 1-Xx 3 1+ X+ X
1 1 E(2x+1)+§
=—J- —dx + = 2 22dx
3 1-x 3 1+ X+ X
=1.|. —dx + — —2X+12dx+1J. ! 5 dx
3 1-x 1+ X+ X 2 1+ X+ X
1
:1"- idx.p_ 2X—+12dx+1J- dx
3 1-x 1+ X+ X 2 (2 j
X+ X+= [+—
4
:1". idx.p_ 2X—+12dX+1J. 1 de
3 1-x 1+X+X 2 1) \/§
X+=| +| —
SORE
ey
:EM.FElog|1+x+x2|+l.itan-l 2 +C
3 -1 6 2 3 3
2 2
1 2x+1|
[=—— Iog|1-x|+—Iog|1+x+x2|+—tan{ +C
NE] V3
3_
Example 20: Findj X3 1dx
X+ X
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x2-1
X3+ X

Sol: Letlz_[ dx

Here degree of humerator is equal to degree of denominator

1
x3+ljx3—1
3

X+1
| = 1-— |dx
I { x3+x}

= J. 1dx—J. X())((Z—Jfl)dx

x+1 _ A  Bx+C
Put @ @———— = — + —;
X(x*+1) X x+1

Xx+1=A(X+1)+Bx?+Cx

Put x=0in(2), we have
0+1=A0O+1)+0+0

= A=1

Equating coefficient of x? in (2), we get
0=A+B=1+B

= B=-1
Equating coefficient of x in (2), we get
1=C
X+1 _ 1 N -X+1
x(2+1) x  xX*+1

from (1), we have

I=I ldx-I {;];nt;z(:ﬂdx

1 1 2
:j 1dx-j ;dX+EI Xzildx-j

1
X2 +1

dx
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I =x-log [x]| + %Iog(x2+1)-tan'1x+c

2
Example 21: Evaluate I %—dx
X" —3X" +

_ x*+1

=j (1+x2) N

2
X =3+~
X2

[1+12jdx
=J' X
x2+i2—3

X

1
Put x- i=y, (1+—2jdx=dy
X X

i:y2+2

1
Also X+ —-2=y*= X"+ —
X X

I
I
o
Q

I
I
o
Q

1 X* —x-1
= —|og [ —

2 9 e
X+ Xx-1

Example 22: Evaluate j Jtanx dx
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Sol. : Letl = .[ Jtan x dx

Put

where

Put

Also

Jtanx =y

tan x = y?

sec?x dx = 2ydy

(1 + tan®x)dx = 2ydy
(1 + y*dx = 2ydy

dx = 2y
1+y*

2y
| = . d
I y1+y4 y

dy

2
y*+1
+D)+(y -1
(y )4 (y )Oly
y'+1

y+1 y> -1
= dy + d
I y*+1 Y J. y'+1 Y

dy

1
—

=1+
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2 N2
1
y’ - Ty
I, = y4+1 :j. 2+idy
y2
Put y+ i:z, (1—%jdy=dz
y y

Also y2+i2 +2=22:>y2+i2 =z2-2

e
* 2

y+io\2
R — |Og —y + C2

N NN
y

+ Co

oo Liog Y25l
, =
22 0|y ey
From (1), (2), (3), we get
| = itan'l {yz—l} 1 log i y\/§+1|
2 W2 | 22 2y eyl
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Example 23: Evaluate j

Sol: Let1 =] dx

1
_ I cos*x
4
sin® x
1+—
cos*x

sect x
:J‘ —4d
1+tan™ x

1+tan* x

1+tan®x

cos’ x+sin*

dx

cos® x+sin* x

dx
X

sec? X.sec? X
[ S

= I ———— secdx

1+tan* x

Put tanx=y, .. sec’x dx =dy

1+ y?
|=j y4
1+y

iz-l-l

R

Put y-—=t
y
1
(1+—2de=dt
y
1
I = dt
I t?+2

dx
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1 ) tan® x—1
I—ﬁtan —\/Etanx +cC

Self-Check Exercise

Q.1

Q.2

Q.3

Q.4

Q.5

Q.6

Q.7

Q.8

dx
3x? +13x-10

2X—-3

Evaluate I

Evaluate I

1-x°
X(1-2x)

2

dx

Find I

dx

Evaluatej x4
e i

1

dx
x(x* =1)

Find j

COSX

(xX* =1)(2x+3)

Evaluate I

1
Evaluate I

XZ

xt+1

Evaluate I dx

(X* +2)(X* + 4)

A—snx2—snx)

dx
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2.5

2.6

2.7

Summary:

We conclude this UNIT by Summarizing what we have covered in it:-

1. Defined rational function
2. Find the two standard integral results i.e.
dx 1 X—
,(X*>ad)=—lo +c
I x* —a’ ( ) 2a Y |x+a
dx 1 a+x
and ,(X¥*<a?)=—lo +cC
I a’-x* ( ) 2a 9 |as
3. Attempted some examples related to these two standard results.
Glossary:
. . : T f(X)
1. A function is said to be rational function if it is of the form T where f(x) and
a(x

g(x) are two polynomials in x and g(x) is non-zero.

+C

dx 1 X
2. J(X2>ad)= — lo
I x? —a’ x ) 2a g X+a

dx 1
3. ,(¥<a’d)=—lo
J. a?—x? ( ) 2a g

+C
a—Xx

Answer to Self-Check Exercise
Self-Check Exercise
3X-2
3x+15

1
Ans. 1 —log
17

+C

Ans. 2 iIo [x 1|+§Io [x + 1] EIo [2x + 3| + ¢
“71009 29 5 0

X 3
Ans. 3 §+Iog|x|-z log |1-2x] +cC

1 -
Ans. 4 —log €-2 c

4 e+2

1 |x*-1
Ans.5 —lo +cC

49 x*
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2.8

29

2—-snXx
+

Ans. 6 log :
1-snx

1 1 X
Ans.7 — tanx- = tan?!| = | +¢c
3 6 2

X% — X 2+1|

X +x\/_+1‘

8 L s (1] o L
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3. Shanti Narayan and P.K. Mittal, Integral Calculus, S. Chand Publishing, New
Delhi, 2005.
Terminal Questions
1. Evaluate '[ log (1 - x?) dx
2
2. Find | X dx
IX=D(X—2)(x—3)
2
3. Find [ 2 ox
X°—5x+6
4, Evaluatej %
X(X*+8)
5. Find | &
@+€e)(2+¢€)
6. Evaluate I §|nx dx
sin3x
2x° +1
7. Evaluate '[ > 7 X
X“ (X +4)
2 J—
8. Evaluatej %dx
X+ X +1
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Unit - 3
Integration Of Irrational Functions

Structure

3.1 Introduction

3.2 Learning Objectives

1
3.3 Method To Inegrate ——dX
I Jax® +bx+c
Self-Check Exercise-1
Ax+B

— dx
Jax® +bx+c

34 Method To Evaluate I

Self-Check Exercise

r
3.5 Rule To Evaluate J xM(a + Bx")P dx, where p is a fraction = S (say), r and s being

integers and s positive
Self-Check Exercise-3
3.6 Rules For Some Other Important Types
3.7 Summary
3.8 Glossary
3.9  Answers to self check exercises
3.10 References/Suggested Readings
3.11 Terminal Questions
3.1 Introduction

Irrational functions are mathematical functions that involve irrational expressions, such
as square roots or fractional exponents. These functions can be challenging to work with due to
the presence of irrational numbers, which cannot be expressed as exact ratios of integers. An

irrational function typically takes the form of f(x) = M

, Where g(x) and h(x) are polynomials,
and at least one of them contains an irrational expression. Common examples of irrational
functions include functions containing square roots, cube roots, or higher-order roots. When it
comes to integrating irrational functions, the process can be more involved compared to
integrating rational functions. There is no general formula or algorithm to integrate all irrational
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functions, as it depends on the specific form of the function. The integration of irrational
functions requires a combination of algebraic manipulation, trigonometric or hyperbolic
substitutions, and specialized techniques for handling square roots, higher-order roots, and
fractional exponents. The choice of method depends on the specific form of the function being
integrated.

3.2 Learning Objectives

After studying this unit, you should be able to:-

° Define irrational functions
. Discuss method to find the integrate
Ax+B
[ 22
Jax® +bx+c
. Discuss rule to evaluate I xXM(a + bx")P
. Solve examples related to these methods.

3.3 Method To Integrate .[

1
——dXx
Jax? +bx+c

1
Let | = I ——dX

Jax? +bx+c
Two cases arise
Case |. a is positive
1

1
I=—J- dx
Ja 22y
a a
1 1
= — dx
JEI , b p? c b
X+ =X+ |+ ————
a 4a a 4a
1 1
- dx
\/5'[ ( bjz dac—b?
X+t~ | +— 5 —
2a 4a

Two sub-case arise;
Sub-Case (i) b?- 4ac >0
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dx

2a’

2 , 2
ik)g lx+£+\/(x+£) _ﬂ} +C

ey

a 2a 2a 4a°

1 b , b ¢
= —log | X+ —+,[X"+—=X+— |+ C
Ja 2a " "a  a

Sub-case (i) b? - 4ac < 0

1 b , b ¢
=—log | X+ —+,[X"+—=X+—| +C
Ja | 2a \/ a a

Case Il a is negative
Let a=- A, where A is positive

| = I ! dx
J=AX +bx+c

1

1
- =]

L
A A
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= dx
\/KI \/c ( , b
i VY
A A
1 1
= dx
\/KI ® c)(, b b
e B DGR Tt
da- A A 4A
1 1
= dx
7! b2+4Ac_( _bjz
4A? 2A
1 J‘ 1
= dx
VAT b vanc (bj
2A 2A
w_ D
:isin1 2A +C
A b?+4Ac
2A

-1 gim (—_Zax_b J +C

Jb*+4Ac

1
Note 1. Rule to Integrate J. ————=0X
JJquadratic

0] Take the numerical value of coefficient of x? outside the quadratic (to make
coefficient of x2 numerically = 1).

(i) Complete the square in terms containing Xx.

(iii) Use the proper standard form from the following results:

(1) j ﬁdx = log ‘x+x/x2 +a’

. X
=sinh! — +¢
a

+ ¢ where a is positive.
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+ c where a is positive.

dx = log ‘x+\/x2+a2

1
o I =

X
=cosh® — +c
a
1 X
et X : "
3) I —az—xz dx = sin 2 where a is positive

1
Note 2. Rule to Integrate I —=————=0dX
«/quadratlc

(1) Take the numerical value of coefficient of x? outside the quadratic (to make
coefficient of x2 numerically = 1).

(i) Complete the square in terms containing X.
(iii) Use the proper standard form from the following results:
2 2 2
xVX2 +a
1) X* +a’ dx:T+ %Iog ‘x+\/x2+a2

xWxt+a: a?

_ X
=———+ —sinh! —+c¢
2 a

+ ¢, where a is positive.

2
2 2 2
xWx-a’ a : .
2) I VX —a®dx = - ?Iog ‘x+\/ x* —a’|+ c, where a is positive.
xWx-a? L X
= ———— - —cosh*—+c
2 2 a
2 2 2
xva® — X .. X . .
(3) I - dx= N2 X L & snili ¢ whereais positive.
2 2 a
Let us improve our understanding of these results by looking at some following examples:
dx
Example 1: Evaluate I ——
X* +12x+11

dx
Sol; Let| = ——————dX
J. X +12x+11
1

) I JO¢ +12x+36) - 25 dx
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X

1
= d
/ J(x+6)? - (5

= log ‘(x+6)+«/(x+6)2—(5)2 re
= log ‘x+6+ X2 +12x+11] +c
Example 2: Integrate j L
' V2% +3x+4
dx
Sol: Letl—'[ mdx
= ij‘ 1 dx
2 X2+ = X+2
= ij. 1 dX
2 ( > 3 9] 9
X+ —X+—|——+
2 16) 16
:ij‘ 1 - dx
2 ( 3) 23
X+—=| +—
4 16
:ij. 1 dx

+C

1 3 > 3
=—log [X+—+,[X"+=X+2
J2 4 2

Example 3: IntegrateJ. 2x% —x—1dx

Sol: Let | = J- 2X% — x—1dx
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=2 | xi [X_ET_@T_QCOW T4l

1 x 1 9 4x-1
=V2 [ X+ -2 —cosh™
V2 N T2 2 3 ( 3 }C

Example 4: Integrate J. L
' V3+8x-3x

Sol: Let| = J

dx
\J3+8x—3x?

52



Example 5: Integrate

I X% —4x+ 2 dx

Sol: Letlz'[ X2 — 4x+ 2 dx

=I \/(x2—4x+4)—2dx

=[ Jx-2?-(2) dx

) _2)2({2 2 NA 2
_ (x-2) (X2 ) ( ) i ( 2) log ‘(X—2)+\/(X—2)2—(\/§)2
= %(x- 2) X —4x+4 - log ‘(x—2)+«/(x2—4x+2 +C

+C

Self-Check Exercise-1

dx
Q.1 Integratej —_——
V3= X+ X
;dx
\J2x— X2

dx
Q.3 Integrate —_—
J. V4+3x—2%
Q.4 Evaluatej JO +6x—4 dx

Q.2 Evaluate I

34 Method To Evaluate
I Ax+ B

——dx
Jax? +bx+c
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Let |=j ~x+B

———dXx
Jax® +bx+c

Let linear = I(diff. Coeff. of quadratic) + m, i.e.
Let Ax+B=I(2a+b)+m
Equating coeffs of x on both sides, we have

A = 2al
= A
2a’
Equating constant terms on both sides, we have
B=Ib+m
B= Ab+m, .m=B= A—b
2a 2a
= A hog. A
2a’ 2a
From (2) and (1),
I=I I(2ax+b)+mdx
Jax’ +bx+c
2ax+b 1
= 00X+ m| ———=dx
I Vax® +bx+c I vax® +bx+c
=U: + ml
2ax+b 1
Where |; = ——dX, 2 = ——dX
I Jax® +bx+c I Jax® +bx+c
2ax+b
Now |1 = I —+dx
Vax? +bx+c

1
= J' (ax® +bx-+c) 2 (2ax + b) dx
1
_ (& +bx+c)?
= T

2

= 2Jaxd +bx+c
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From (5), I, = dx, which can be integrated.

1
vax® +bx+c
from (4), substituting the values of |1, I, found above and then substituting the
values of | and m from (3), we get I.
Note. Important J. (Ax + B)yax? +bx+c dx can also be integrated in the same manner by
using "l ,m" method.
Let us consider the following examples to clear the idea:
_XH2

I +2x-1

x> +2

Sol: Let | = ———==dXx

X% +2x-1
;(2x+ 2)+1

= 2— 4
I X2 +2x-1 §

:1 J‘ 2X+2 dX+J. 1 dx
2 X2 +2x—1 X2 +2x—1

Example 6: Integrate J'

dx

I (x2 +2x—1)_; (2x + 2) dx +

N |-

J- 1
Jx+1% - (42)?

(X+1) +4/(x+1)° - (v2)?
2

(x+1) +x* +2x-1
J2

1
1 (X*+2x-1)2 .

2 1

2

= JX*+2x-1 + log

log +C

-

X2 +2Xx+3
—dX
X+ x+1

+X+1)+(X+2)

Example 7: Integrate I

dx

2

X

SoI:LetI=I ( =
X°+X+1

2 1 X+2
:J. &dx +J‘ —dX
X2+ X+1 X2+ x+1
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1(2x+1)+§

=[ X +x+Ldx+] 2 2y

VX +x+1
2x+1 1
:I \/(x2+x+lj+§dx+lj- de+§j ———=0dx
4) 4 2 X+x+1 2 X +x+1

:I \/(XJF%j +(§J dx +%I (x2+x+1)2dx+gf ! = dx

o iees) () (2] o

2 2 J3
2
3 X+ 1
5 =
+1 O x+D)? + §sinh'1 2 l4c
2 1 2 J3
2 2
=1(2x +1)(X° +x+1) + 3 ginht| 241
4 8 V3
* (X2+X+1)+ gsinh'1 (2X+1j +c
2 V3
(2x+5)Vx*+x+1 15 2x+1
= + — sinh*? +C
4 3

Example 8: Evaluate I (x - 5) 3 +X dx

Sol: Letlzj (x - 5) VX2 +X dx

:I (x2 + x); {% (2x+1)—1—21}dx

1

J (o) 2@es a2 (xex) 20

N
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+C

_3
= %(x%x) 2-%(2x+ 1) 0+ X+ %Iog ‘(2x+1)+2\/x2+x

+C

Self-Check Exercise-2

xdx
Q.1 Evaluate.[ —_—_

V2X% —6X+4

Q.2 Integratej X1+ X— X2 dx

. . r .
3.5 Rule To Evaluate I x"(a + b x")Pdx, where p is a fraction = g(say), r and s being

integers and s positive

r
Compare the given integral with J. xM(a + bx"P, and find the values of m, n, p(z —J
S

m+1. e
Case I: If is a positive integer or 0, put a + bx" = z°
m+1. L . m+1
Case llI: If is neither a positive integer nor o, then find +p
n
m+1 . o . . , .
If + p is a negative integer or o, take x" outside the binomial a + bx" thus getting a

+ bx" = x" (ax" + b), and put the new binomial ax™ + b = zs.

Let us consider the following example to clear the idea:-
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5

dx

Example 9: Evaluate I
X2 +1

X5

Sol: Let | =I
X +1

= I x5 (1+ xz)_; ax

dx

1
Comparing I X5 (1+ xz) 2 dx withj X™ (a + bx")P dx, we get

-1 r
5,n-2,p=?,afraction=g,.'.s=2 ..... (2)

(i)

m+1 1
T 5; = § = 3, which is a +ve integer.

n 2 2
(i) Putl+x?=z=22 . (3)
2xdx =2z dz or dxzzdz
X
from (1)
1,
I=| xs(Z°) 2 —dz
[ rs(z)?
=J. x*z1ldz
=.|. x4dz='|. (z?-1)%dz [From (3), x2 = z2 - 1]
z .z
=J. (z*-2z2+1)dz= — -2— +z+cC [ x*=(z%2-1)7
5 3
_ 1 1 2% 2 1 Zg 1 2% .. _ l 2%
= SR - 2 (1) ¢ (1) v 2=(14%)
VX +1
Example 10: EvaluateJ- 4+ dx.
X
x*+1
Sol:LetIzJ' X4+ dx

= j x*(1+ Xz);dx (1)
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. r
, afraction=—, .s=2

1
0] Comparing I x4 (1+ X2)2 dx with I XM (a + bx")P dx, we get,
1
2 S

m=-4,n=2,p=

m+1 -4+1 -3

(i) S = —, which is neither a +ve integer nor 0.
n 2 2
(iii) Now m+1 +p= _—3 + 1 = _—2 = -1, which is a -ve integer.
n 2 2 2

Take x2 outside the binomial 1 + x2, thus getting

1+x%=x3x?+1)

From (1), | = j x-4.x(x? +1); dx

1
= j A1)z dx A3)
Put x?2+1=z5=22
-2x3dx = 2z dzor x%dx=-zdz. .. (4)
from (3),

1= [ z(-2)dz=-] zzdz=—§+c=—§(x2+1)3 +c

3
=-1[%+1}2+c
3| x

Self-Check Exercise-3

1

Q.1  Evaluate J x5(1+ x3)E dx

3.6 Rules For Some Other Important Types
l. Rule to integrate if v/a>—x* occurs in the integrand
Putx=asin6
1. Rule to integrate if ya®— x> occurs in the integrand

Putx=atan 0
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1. Rule to integrate if y/a?—x* occurs in the integrand

Putx =asec 6

1
V. Rule to evaluatej — _dx
linear~/Linear

Put VLinear =y

Let us consider the following examples to clear the idea:-

X
Example 9: Integrate '[ d—§
(a® + x?)2
X
Sol: Letl = j d—3
(a%+x?)2

Put X=atano,
dx =asec?60do

e
= asec’ 6do
- 3
(& +a’tan® 6)2

1 1
=— ——do

a secd
= ?J cos 0 do
= ? sin®+c
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X

a* e +a?

X
Example 10: Evaluate J' d 3
(a*-x*)?
X
Sol: Let| = I d 3
(a®—x*)?
Put Xx=asino
dx =acos 0do
acosfdo

3

1= |
(a>—x?sin? )2

J- acosfdo
a’cos® o

1 1
= — de
a’ J. cos* 6

1
=—2J. sec” 0 do

a
1

= —tan0+c
a
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1 X
2
a a.2_)(2

Example 11: Integrate

dx
(X* -Dx-1

1 -
Sol: [Note: In order to integrate I dx, put vlinear =y]

quadraticy/linear

Let

I:J' dx

(% -Dx-1
Put \/ﬁ =y

Or X-1=y?

Or Xx=y?+1

dx =2y dy

= | 2ydy
[(y2+1) —1}y

=2] s

= 2-[ ;
y2(y* +2)dy

Now 5 21 = , Where t = y?
y (y' +2)dy t(t+2)
_ 1 N 1
t(0+2) (-2)(t+2)
1 1
2t 2t+2)
_l_}_i}
2|t t+2
—l_i— ast=y?
2| y* y+2) y
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2
v +(V2)
_yr o1y
== - —tant == +¢c
-1 2 J2
1 1 y
=— = —=tan'—= +c
y V2 2

Self-Check Exercise-4

Q.1 Evaluate ox 3
(x* -1)2

Q.2 IntegrateJ. ()(JrZ()j—Xx\/TS

3.7 Summary
We conclude this unit by summarizing what we have covered in it:-

1. Defined irrational functions
2. Discussed the method to find the integral

1
[ —"
Jax® +bx+c
3. Discussed the method to find the integral
J~ Ax+B

———dXx
Jax® +bx+c
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3.8

3.9

. , _ r
4. Discussed the rule to evaluate j xM(a + bx"P dx, where p is a fraction = —
S

(say), r and s being integers and s positive.

5. Solved some questions related to these methods.
Glossary
1. Irrational functions are mathematical functions that involve irrational expressions,

such as square roots or fractional exponents.
2. An irrational function typically takes the form of f(x) = % where g(x) and h(x)
X

are polynomials, and at least one of these contains an irrational expression.
Answers To Self-Check Exercises
Self-Check Exercise-1

x—%+x/x2—x+3
Ans. 2 Sint(x-1)+c

Ans. 3 i sint 4x-3

\/E 41

1 1
Ans. 4 E(X+ 3) VX2 +6x—4 - ?3 log ‘x+3+«/x2+6x—4‘
Self-Check Exercise-2

Ans. 1 1 X +6x—4 + °
2 22
3

Ans. 2 - %(1+x—x2)2 + % (2x - )V1-x—-X* + % sin‘l(zx_lj +c

Ans. 1 log +cC

+C

+C

log

x—:—23+\/x2—3x+2

N3

Self-Check Exercise-3

Ans.1 — (1+x )2 - —(1+x )2 +cC
15 9
Self-Check Exercise-4

X
VX2 -1

Ans. 1
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«/x+3—1+
4x+3+1

3.10 References/Suggested Readings

Ans. 2 log

1. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.
2. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.
3.11 Terminal Questions
1 Integrate .[ L
' V2—4x+ X
1

2. Evaluate I

\&\/5 x
3. Evaluate j

\/2x —-2X+3

2X+1
4. Integrate .[ ————=0X
NG +4x+3

5. Evaluate '[ (2x - 5) A/ X* —4x+3dx
6. Integrate j

(2ax+ x )2

X
7. Integratej ()(3(;—)(\/?_
8.  Integrat X+2 d
e | a1
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Unit - 4
Definite Integrals-I

Structure

4.1 Introduction

4.2 Learning Objectives

4.3 Definite Integral

4.4 Definite Integral As A Limit Of Sum

4.5 Properties Of Definite Integrals
Self-Check Exercise

4.6 Summary

4.7 Glossary

4.8 Answers to self check exercises

4.9 References/Suggested Readings

4,10 Terminal Questions

4.1 Introduction

Definite integrals are an essential concept in calculus that allow us to determine the
exact accumulation of quantities over a given interval. They are closely related to ant derivatives
and provide a powerful tool for calculating areas, calculating total change, and solving a wide
range of mathematical problems.

The definite integral of a function f(x) over the interval [a, b] is denoted as Igf(x),

where the symbol (f) represents the process of integration, while the dx at the end indicates

that we are integrating with respect to the variable x. The limits of integration, a and b,
determine the interval over which the integration is performed.

Geometrically, the definite integral represents the signed area between the graph of the
function f(x) and the x-axis over the interval [a, b]. The term "signed" indicates that the area can
be positive or negative depending on whether the function lies above or below the x-axis.

The process of finding the definite integral involves dividing the interval [a, b] into small
subintervals and approximating the area under the curve using rectangles or other geometric
shapes. As the number of subintervals increases, the approximation becomes more accurate,
and in the limit, we obtain the exact value of the definite integral.

4.2 Learning Objectives
After studying this unit, you should be able to:-
. Define definite integral
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Show definite integral as a limit of sum.

. Discuss some properties of definite integral i.e. integration is independent of the
change of variable; if the limits of definite integral are interchanged, then its value
changes by minus sign only.

. Find the integrals using properties of definite integral.
4.3 Definite Integral

Def: Let f be a function of x defined in the closed interval [a, b] and ¢ be another function,
such that ¢'(x) = f(x) for all x in the domain of f, then

[ £ 09 = [0
=¢ (b) - ¢(a)

is called the definite integral of the function f(x) over the interval [a, b] a and b are called
the limits of integration, a being the lower limit and b be the upper limit.

Geometrical Interpretation of Definite Integral

b
If f(x) >0 for all x € [a, b], then I f(x)dx is numerically equal to the area bounded by
the curve y = f(x), the x-axis and the straight linesx =aandx=b
4.4 Definite Integral As A Limit Of Sum

Let f be a real valued non-negative continuous function defined on [a, b]. Then

b ) b-a
I f(X)dx= L imbhlf@ + f(a+h) +....... + f(a+ (n - 1))h], where h = —
a h—0
b-a
Proof: Let [a, b] be divided into x equal parts so that length of each subinterval is h = ——
YA
S f
l‘;‘"' \\"'y i 1 :'
| = -y '
| ' Yo 4
| | !/
g ey !
& ot 5

Let S, denotes the sum of areas of n rectangles as shown in the figure each having width h and
height f(a), f(a + h),......, f(a + (n - 1) h).
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Then Sn=h f(a) + hf(a+h) +.....+ hf(a + (n-1)h)
=h[f(a+ f(a+h)+... + f(a+ (n-1)h)].

Now, if n increases, then number of rectangles increases, width of each rectangle
decreases so that S, gives a closer approximation to the area bounded by curve y = f(x),
ordinates x = a, x = b and the x - axis.

Nn—oo nN—o

= le hif(a) + f(a+ h) +.....+ f(a + (n-1)h)] [h:b;naaoasn _)oo}

h—0

Remark: Sometimes it is convenient to divide [a, b] into subintervals [a, ar], [ar, ar?], [ar?,

b
ar?,......, [ar™i, ar"] where "= —.
a

Then I: f()dx = Liml(ar-a) f(@) + (ar?- ar) f (ar) +....... + (ar" - ar?) f(ar™t)]

n—ow

= Lim@-D [af(a) + ar f(@r) +.......+ ar"* far)]

n—w

1

= Ll m(r'l) [af(a) +ar f(ar) +....... + ar™! f(ar“'l)] Sncer = (gjn s 1asn — o

4.5 Properties Of Definite Integrals
b b

Property I: j f (x)dx= j f(2)dz

i.e. The integration is independent of the change of variable.
Proof: Let J. fxX)dx=06x) L. D

b b
Now LH.S. = [ f()dx = [#(x)]. =6 (b) - ¢ (@)
R.H.S. = [¢(Z)]Z [+ from (1), putting x = z, dx = dz,I f(2)dx = d(2)]

=¢(b)-¢ (@)
LH.S.=RH.S.

Hence the result

Property II: I: f(x)dx = j f (x)dx
b
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ie. if the limits of definite integral are interchanged, then its value changes by minus sign
only

Proof: Let j F(X) dx = ¢(X)

Then L.H.S. = j f()dx =[] = 0(0) - $(a)

RH.S. = j f()dx =-[¢(X], =-[6(a) - d(b)] = $(b) - d(a)
b

L.H.S.=R.H.S.
Hence the result

b [ b
Property IIl: jf(x)dx = jf(x)dx + jf(x)dx
a b c
Proof: Let j £(x) dx = ¢(x)

LHS. = [ f(x)dx = [4(X)]] = o(b) - 6(a)

RH.S. = [ f(dx + [ (k=[] + [#(9],

= [¢(c) - $(a)] + [9(D) - ¢(c)] = ¢(b) - (a)
L.H.S.=R.H.S.
Hence the result
Note Geometrical lllustration
Let AB be the curve y = f(x) and CA, DB the ordinates x = a, x = b.

Y

! :
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Let FE be the ordinate x =c¢
Then the theorem

IJqf(x)dx = jf(x)dx + jlf(x)dx

expresses that area ACDB = area ACFE + area EFDB, which is obvious.
Note. Generalization of theorem Il

Let j £(X) dx = o(X)
Then L.H.S. of (1) = [#(X)]. = () - $(a)

RH.S. of (1) = [¢(X)]. + [¢(X)]: + [ oot [¢(x)]E

= 6(c) - ¢(a) + ¢(d) - ¢(c) + o(e) - ¢(d) +........+ ¢(b) - ¢(k)
= ¢(b) - ¢(2)
L.H.S. =R.H.S.

Property IV: j f(x)dx = j f (a—x)dx
0 0

Proof: Putx = a - z,

When x=0,z=a; Whenx=a,z=0

jlf(x)dx = —_Tf(a—z)dz = Tf(a—z)dz [ of Theorem II]
= ja. f (a—x)dx [ of Theorem I]

jf(x)dx = J'f(a—x)dx
0 0
Note. Geometrical lllustration
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Let AB be the curvey=fx .. (1)

and OA, O'B the ordinates x =0, x = a

Let P(x, y) be any pt. on the curve and MP its ordinate.

Take O'O and O'B as the new axes and let (x',y") be the co-ordinates of P referred to them.

Thenx=0M=00'-MQO'=a - X,

y=MP =y
from (1), the equation of the curve AB becomes y' = f(a - X') or, dropping deshes,
y=fa-x (2

and the equations of the ordinates O'B, OAarex=0,x=a
Y '
Y

4 a

X ® = e)
from (1) and (2), the theorem
Tf(x)dx = ja. f (a—x)dx
0 0

expresses that area AOO'B = area BAOOQO', which is obvious.

cos’ xdx, where n is a posite integer, is

J‘%

Note:- Prove that the rule to write down the value of

the same as that to write down the value of J‘;Vz cos” xdx.
Proof: I%ms” xdx = I%cos“ (z—xj ja. f(x)dx=jlf(a—x)dx
0 0 2 0 0

= J.:/ZCOS” x dx
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Property IV is useful to evaluate a definite integral without first finding the corresponding
indefinite integrals which may be difficult or sometimes impossible to find.

Dear Students, further properties of definite integral be discussed in next UNIT and now let us
improve our understanding of properties discussed above by looking at some of the following
examples:-

Example 1: Show that
b a
jf(x)dx = _[f(a+b—x)dx
a 0

Sol: Putx=a+b-z
= dx =-dz
When x=a,z=b
andwhenx=b,z=a

T f(x)dx = jl f(a+b-2)dz

= jl f(a+b-2)dz {By Property I i.e, .T f(x)dx:j2 f (z)dz}

Example 2: prove that

Tf(x)dx:B mf(

m—| J

am-bl b-a j
+ X |dx
m—1 m-—1

b
Sol: Let | = jf(x)dx

am-bl b-a
_+_

Put X =
m-| m-—|
b-a
dn= ——dt
m—|

am-bl b-a
+ t
m-—| m-—|

When x=a;a=
= am-al=am-bl + (b - a)t
= (b-a)l=(b-a)

= t=1

When x = b; we have
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am-bl b-a
+

b=
m-| m-|
= bm - bl=am - bl + (b - a)t
= (b-aym=(b-a)
= t=m
= b-a mf[am—bIer—atjdt
m—| m—| m-—I|

b m _ _
jf(x)olx:B g[am=bl b=a iy
) m—| % m-I m-I

{By Property | i.e., T f(x)dx:i f (z)dz}

Hence the result
Example 3: Evaluate

j% Jcosx dx
o Jeoosx++/sinx
Sol: Let I = jo% Jms“;isjsinx ax )
[By Property IV i.e, T f (x)dx:jil f (a—x)dx}
| = jé venx__ @)

0 /sinx++/cosx
Adding (1) and (2), we get

e [ e e

0 | Jcosx++/SinX +/sinx++/cosx

B J% \/cosx+\/sinxdX

o Jcosx++/sinx
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o
2
V4
= l=—
4
s 3
n sin® x
Example 4: Evaluate J.A ——————dX
SIN° X+Cos’ X
HIC)
" an® x
0 9n°X+cos’ X

sin{”—xj

2 dx
[ 5 xroo( 5

sin E_X +CoS E—x

l_I% sin’®x

0 sn®x+cos’x

Then |I= J‘;%

dx

Adding (1) and (2), we get

sn®x cos® X

T,
2I=Ié — T+ 5— | dx
0 sn®x+cos’x cos® x+cos® x

_J-% sn® x+cos® x
0 &n®x+cos’x

=J% 1 dx

dx
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z Jeot x
Example 5: Evaluate |”? dx
P IO Jtan x ++/cot x
Sol: Letlzj% /cot X dx
o Jtanx-++/cot x
cot x(ﬂ - X)
Then 1= j{:% 2 dx

(5 (5
{ ! f (x)dx = { f(a— x)dx}

|=j% tan x

o Jtanx++/cot x
Adding (1) and (2), we get

2|=j0”2 Jeot x . tan x }dx

Joot x ++/tanx  /tan x ++/cot x

ax L. 2

B J% \/cotx+\/tanxdx

o Jeot x ++/tan x
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7 dx

Example 6: Evaluate I

0 1+cotX
7 dx
SOI:Letlzj 2 7
0 1+cotx
_ J'% dx
X
* 10X
sin X
=j% SN e (1)
0 SinX+CoSX

. sin(”—xj
= j 2 2 dx
’ sin(”—x}rcos(”—xj
2 2
{ i f(x)dx=ja. f(a—x)dx}
| = J-% COS X

0 COSX+SinX
Adding (1) and (2), we get

x )

dx

7 sin X COS X
21 = jé _ - :
0  SINX+COSX COSX+SinX

B J-% COSX+COSX o
0 SinX+CoSX

=J% 1 dx
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T
= l=—
4
Example 7: Evaluate * ()
o f(x)+ f(2a—X)
Sol: Let | = Iza ) ax (1)

o f(X)+ f(2a—X)

_ Iza f(2a—-x) dx
o f(2a—x)+ f[2a—(2a—x)]

{ i f(x)dx = ja. f(a- x)dx}

_ Iza f(2a—x)
o f(2a—x)+ f(X)
| = J-za f(2a—x)
o f(x)+ f(2a—x)
Adding (1) and (2), we get

ol = J-za f(X) N f(2a—x) dx
ol f(x)+ f(2a—x) f(X)+ f(2a—x)

(2

_ jza f(X)+ f(2a—x) dx
o f(X)+ f(2a-X%)

= Ioza 1 dx

= [x];’
=2a-0
=2a
21 =2a
= l=a

J-za f(X) dx =
o f(x)+f(2a—x)

Example 8: If g(x) = J.: cos’tat,
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then g(x+ x)is equal to g(x) + g( 7).

Sol: Here g(x) = J.: cos’ t dt (1)

gx + 7) = '[OM cos’ t dt

= IX cos*tdt + _[M cos’t dt
0 T
gx+m=g(n) +fx L. 2)

T+X
a

where f(x) = J'
Put t=n+u
dt=du

when t=m;t+u=u=0

cos*t dt

when t=n+X,t+X=n+uUu=>U=X

f(x) = Jj cos* u du [ cos?* (m + u) = cos* u]
" b b

= jo cos* t dt { [ (9dx= f(t)dt

f(¥) =9(x) [~ of (1)]

from (2), g(x + =) = g(n) + 9(x)
Or g(x + ) = g(x) + g(n)

Self-Check Exercise
Q.1 Prove that

sz(x)dx = Tf(Za— X)dx

Q.2 Evaluate

I% dx

o 1+tan®x

Q.3 Evaluate
J% COSX

—  dx
0 SIN X+ COS X
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Q.4 Evaluate

[
0 1+4/tanx

dx

4.6

4.8

Summary

We conclude this unit by summarizing what we have covered in it:-

1. Defined definite integral and discussed its geometrical interpretation.

2. Discussed in detailed definite integral as a limit of sum.

3. Discussed in detailed some properties of definite integral like the integration is
independent of the change of variable; if the limits of definite integral are
changed, then its value changes by minus sign only.

_ b < b
4, Discussed the property J. f(x)dx = If(x)dx + J. f (x)dx
5. Discussed and proved the property j f(x)dx = j f (a—x)dx
0 0

Glossary

1. Let f be a function of x defined in the closed interval [a, b] and ¢ be another
function, such that ¢'(x) = f(x) for all x in the domain of f, then

b b
[ f0odx = [¢(0];
= ¢(b) = ¢(a)
is called the definite integral of the function f(x) over the interval [a, b], a and b
are called the limits of integration, a being the lower limit and b be the upper limit.
2. If f be a real valued non-negative continuous function defined on [a, b]. Then
b . b-a
I f(x)dx= |_|mhlf(a) + f(a + h) +......+ f(a + (n-1))h], where h = 0
a h—0
b b
3. j f (X)dx= j f (2)dz
b a
4, [ 109k =- [ £(x)dx
b
b c b
5, j f (x)dx = j f(x)dx + j f (x)dx
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6. j}f(x)dx = _Tf(a— X)dx

4.8 Answers To Self-Check Exercises
Ans. 1 Result Verified i.e.

Zaf(x)dx = Tf(Za—x)dx

0

O —y

Ans. 2 z
4

Ans. 3 z
4

Ans. 4 z
4

4.9 References/Suggested Readings

1. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.

2. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.

4,10 Terminal Questions

1. If fis a continuous function on [a, b] prove that
b -a
j f (x)dx = j_b f (x)dx, when f is even.
2. Show that

J-% sinx _7
0 SinX+CosX 4

3. Evaluate

j% dx

0 I+tanx

4, Evaluate

j% dx

o 1+cot®x
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Unit-5
Definite Integrals-Il

Structure

51 Introduction

5.2 Learning Objectives

5.3 Further Properties of Definite Integrals
Self-Check Exercise

54 Summary

5.5 Glossary

5.6 Answers to self check exercises

5.7 References/Suggested Readings

5.8 Terminal Questions

5.1 Introduction

Definite integrals are an essential concept in calculus that allow us to calculate the
accumulated change or total amount of a quantity over a given interval. Unlike indefinite
integrals, which represent a family of functions, definite integrals produce a single numerical
value. Properties of definite integrals help us to manipulate and evaluate integrals, making them
powerful tools for solving a wide range of mathematical problems. The definite integral is a
linear operator, which means it satisfies the properties of linearity. This property allows us to
break down complicated integral into simpler ones and apply the integral to each term
separately. The additively property of definite integrals states that the integral of a sum of
functions is equal to the sum of the integral of the individual functions. This property allows us to
split the interval of integration and evaluate the integral over each subinterval separately. It is
particularly useful when dealing with piecewise-defined functions or functions with
discontinuities. The reversal property of definite integrals states that changing the limits of
integration changes the sign of the integral. This property allows us to reverse the direction of
integration without changing the value of the integral. Further, the interval addition property
states that if we split the interval of integration into multiple subintervals and integrate over each
subinterval, the sum of these integrals is equal to the integral over the entire interval. All these
properties we discussed in UNIT-4 and some further properties are discussed in this UNIT.

5.2 Learning Objectives
After studying this unit, you should be able to:-

. discuss the following properties of definite integral:-

0] joza )y dx= [T foax+ [ f2a-x)x
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5.3

2a a a
Property V: jo £ (x) dx = IO £(x) dx + jo f(2a - x) dx.

() If f(2a- x) = f(x), then joz F()dx = 2 joa F(x)dx

(i) If f(x) = f(a + x), then
jO"a F)dx =n joa F()dx
(v)  If fis an eoen function, then
j F(¥)dx = 2 j: F(X)dx
(vi)  If fis an odd function, then
j: F(x)dx =0

. Solve guestions by using these properties.
Further Properties of Definite Integrals

Proof: We have Joza f(x)dx= Ioa f(x) dx + .[Oza f () dx

Let

Put
When
When

It = joza £ (x) dx

X=2a-z, sodx=-dz
X=a, z=a
Xx=2a,z=0

a

0
I1=I f(2a—z)dz=J f(2a-2z)dz

0

=jl f (2a - x) dx
0

2a

j f(x)dx=T f (2a - x) dx
0 0
from (1), we get,

2a

j F(x) dx = j £(x) dx + j f(2a - x) dx
0 0

0

Note. Geometrical lllustration
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—p <

o

Let AB be the curve y = f(X)
and OA, O'B the ordinates x = 0, X = 2a

Let EF be the ordinate x = a

Let P(x, y) be any pt. on the curve EB and MP its ordinate.

For the area EFO'B take O'F and O'B as new axes and let (x',y') be the coordinates of P
referred to them.

Thenx=0M =00'- MO' =2a - X/,

y=MP=Yy'
. from (1), the equation of the curve EB becomes y' = f(2a - x') or, dropping dashes, y =
fea-xy (2

and the equation of the ordinates O'B, FE are x =0, x = a.
from (1) and (2), the theorem

a

T £(x) dx = j £(x) dx + j f(2a - x) dx

expresses that area AOO'B = area AOFE + area BEFO, which is obvious.

2a

Property VI: (i) If f(2a - x) = f(x) then j f(x)dx = 2ja- f(x) dx
0

0

2a

(i) If f(2a - X) = - f(X), then j fx)dx=0

0
Proof: We have f f(x) dx = T f(x) dx + i fRa-x)dx ... (1)
0 0 0

[+ of Theorem V]
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2a
0] If f(2a - x) = f(x), then from (1), J. f(x)dx =

0

JO)dx+ | f(x) dx

O ey
O ey »

2a

j £(x) dx = 2? £(x) dx

2a
(i) If f(2a - x) = f(x), then from (1), J. f(x)dx =

0

JO)dx+ | f(x) dx

O ey »
O ey »

2a

j f(x)dx=0

0
_ a
Cor. Changing a to E we get

a

Q) iffa-x = fx), thenT F(x) dx = 2 J' £(x) dx
0 0

(i)  if fla-x)=- f (x), then j F(x) dx =0
0

Property VII: If f(x) = f(a + x), then T f(x) dx = njﬁ f(x) dx
0

0

na a 2a 3a na
Proof: We have j f(x) dx = nj f(x) dx + .[ f(x) dx + J. f(X) dx +.....+ I f(x) dx
0 0 a 2a (n-1)

Let I1=2J§1 f(x) dx
a
Put XxX=a+z, s.dx=dz
Whenx=a,z=0
When x=2a,z=a

a

h=[ fla+2)dz=[ fla+xdx=[ fdx [ fa+x) = fx)]

0 0

2a

Zf £(x) dx = j f0dx )

0
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3a
Again, let |, = I f(x) dx

2a
Put x=a+z sodx=dz
When x=2a,z=a
When x=3a,z=2a

I = f fla+z)dz

:zf f(a+x) dx

= [ 109 dx [ fa+x) = ()]
[ foydx= [ £0o dx [+ of (2)]
2a 0

and so on.

from (1), we get

a a

f(x) dx + j f(X) dx +....... to n terms.

nf J‘(><)0|X=.a[1 J(x) dx +

O —

na

j £(x) dx = nja‘ £(x) dx

Note. Geometrical lllustration

Let PoP1P2P, be the curve y = f(xX) and OPo, M1P1, M2Ps,....... , MnP,, the ordinates x = 0, x

f(x) = f(a +x) [Given]

the corresponding ordinates shown dotted in the fig, are equal.
the curve consists of the portion PoP1 from x =0to x = a.

area PoOM;P; = area P1M1MoP, = ........

the theorem T ) dx = n.? f(x) dx

expresses that area PobOM,P, = n. area PoOM1P;
which is obvious.
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P_\ pt pZ P"
/\//\\/\/\m
| |
Al |
|
I
! I + X
o X ~11 X M2 Mll
Property VIII:
(@ If f(X) is an even function, then T fX) dx = Zj} F(X) dx
-a 0
(i) If f(X) is an odd function, then T fX)dx=0
a 0 a
Proof: ()  we have j £(x) dx = j £(x) dx + j fdx 1)
“a “a 0
Let 1= j £(x) dx
Put x=-ysothatdx =-dy
When x=-a,y=a;,Whenx=0,y=0
0
=] fCy)dy
=[ feyay
= j (- x) dx
= T f(x) dx [ f(- X) = f(X) as f(X) is an even function]
0
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a a

from (1), j £(%) dxzj £(x) dx + j £(x) dx

-a 0 0

a

j £(x) dx = 2? £(x) dx

-a

(i) We have

(L dx=f £ dx+ [ £(x) dx

-a -a 0

0
Let = J. f(X) dx, Put x = -y so that dx = -dy

When x=-a,y=a

When x=0,y=0
0

=] fCy)dy

a

f(-y) dy

f(-x) dx

ot—» Ot—

= i f(X) dx

0

[ f(-x) =-f(X) as f(x) is an odd function]
from (1), ja. f(x)dx=0

b b
Property IX: I f(x)dx = I f(@a+b-x)dx

a

Proof: Puttingx=a+Db-t
dx = -dt

When x=a,t=b

When x =b, t=a, we get
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b
[ fla+b-1) (-di
=-T fla+b-1dt
b
b
=j fla+b+1t)dt

b
=j fla+b+x) dx

U
D —— T

b
£(x) dx = j f(a+b - x) dx
Let us improve our understanding of these results by looking at some of following examples:-

4
Example 1: Evaluate 'f f(X) dx, where
1

4x+3 if 1<x<2
fx) = :
3x+5 if 2<xk4

Sol: Here

4x+3 if 1<x<2
fx)= :
3x+5 if 2<x<4

Letl =

B —

F(x dxzj £(%) dx+j £(x) dx

1]
P —_—nN

4
(4x + 3)dx + j (3x + 5) dx
2

NG ? NG )
=[4—+3x| +|—+5x
2 1 2 2

=[(8+6)-(2+3)] + {3—)2(2+5x}

= [(8+6)-(2+3)] + [(24+20)—(6+10)]
= (14 - 5) + (44 - 16)
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=9+28=37
Example 2: Evaluate

ji f(x) dx, Wheref(x):{X on [0,]]
[x] on [L3]

0

Sol: Here

[ x on 0<x<1
J9 = [X] on 1<x<3

3

Joy dx+ [ 709 dx

1

Let I=If(x)=
0

Oy

dx + JS. [X] dx

1
O ey

X dx + J% x] dx+i [x}dx

1
O ey

[ [X] has discontinuities at x = 1, 2, 3]

xdx+[1]dx+ [ (2)dx

1
O ey

- [X_;L X+ 2T

= (%—0] +(2-1)+2(3-2)

Example 3: Show that
7.

sin 2x log tan x dx = 0
0
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7
!

Sol: Let | = sin 2x log tan x dx
72 V4 /4
| = J sinz(——x) log tan (——dex
0 2 2
7
= I=J sin 2x log cot x dx
0
72 1
= I=J sin 2x log (—]dx
0 tan X
7
= j sin 2x (log 1 - log tan x) dx
0
7
=j sin 2x (0 - log tan x) dx
0
7
=—'f sin 2x log tan x dx
0
=-1
l=-1
= 21=0
= 1=0

Hence the result
Example 4: Show that

© 1
I log (——1jdx:0
0 X

h 1
Sol: Let | = j log (;—1jdx

0
Put x=cos?0
dx =2 cos 0 (- sin 6)d6
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=-2sin 0 cos 0do
=-sin 20 dO

T
When x=0,c0s?0=0= 0= By

When x=1,c08%0=1=06=0

e 1

| =- _[ log ( 5 —1Jsin 260 do
2 cos ¢
%

_? log 1-cos? @
20

jsin 20 do
Ccos

{jl f(x)dx. = —T f (x)dx

7 . 2
sn“é | .
= lo sin 26 do

= j log tan20 sin 20 do
=2 J log tan 6. sin26d6 . Q)
7%
=2 J log tan(z—ﬁj sin Z(E—HJ do
2 2
{ j f (X)dx = j f (a— x)dx
b 0
=2 J log cot 0. sin 206 do

—2j lo (ijsinzede
d tand@
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=2 _[ (log 1 - log tan 6) sin 26 do

7
I=—2j log tan 6. sin 20 d6
0

=-] [ of (1)]
= 21=0
= 1=0

Example 5: Evaluate the following

I sin® x dx
0
Sol: Let | = I sin®x dx
0

= ZI sin® x dx
0

{ T f(X)dx = Zjl f (x)dxwhen f (2a-x) = f (x)and here sin®(z - x) =sin® x

_o7
"~ 16

Example 6: Evaluate the following

2r
I COS?*X dx, XxeN
0

Y4
Sol: Let| = I COS?*x dx
0

T
= ZI CoS?* x dx
0
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{ T f (X)dx = 2ja‘ f (x)dxwhen f (2a—-x) = f (x)and herecos™ (2 — X) = cos™ x}

0

=22 cosZx dx

[ T f (x)dx = ZT f (x)dxwhen f (2a—x) = f (xX)and herecos® (7 — X) = cos™ x}

0

_,(n-D@n-3).....31 =z
T @2n)@2n-2....42 2

_5 (2n-1(2n-3)......... 3.1
~ T 2n)@2n-2)... 42

Example 7: Evaluate
7y
sin?x dx
iz

Sol: Letlzj sin?x dx

%
74

=2 I sin? x dx

o

[ sin? x is an even function as sin? (-x) = sin?x]

= I (1 - cos 2x) dx

{ SiHZX}%
= X—
2

0
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= Z_Egnﬁ - O—lsinsino
4 2 2 2

7 1
=|———=|-[0-0
4 2} [ ]
_r. 1
4 2
Example 8: Show that
% v
'f log (1 +tan x) dx = — log 2
5 8
7y
Sol: Let | = J' log(L+tanx)dx . 1)

0

:}A log {1+tan(%—xﬂdx

0

{ ja. f(x)dx = jl f(a- x)dx}

7 [, 1-tanx
= _[ log | 1+ dx
0 . 1+tanx
7 [ 1+tan x+1—tan x}
= J. |Og dx
° i 1+tanx
f 2
= _[ log )dx
0 1+tanx
74 74
:J. Iogde-I log (1 + tan x) dx
0 0
74
I=Iong 1.dx-1

0

[+ of (1)]
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=  2l=log 2 [x];%‘

=log2|—-0
’ [4 }
T

= —log 2

4 g

T
= — log 2
3 g

Hence the result
Example 9: Show that

7 xtan x {7: }
(LR
o SECX+tanx 2

X X
Sol: Let | = J. ﬁ dx
X+ X

_ -’f (7 —X) tan(z — X)

5 SeC(7 —X) +tan(z — X)

{ jl f(x)dx = ja‘ f(a- x)dx}

I:T [(n—x)(—tanx)}dx

—SecX—tan X
X) tan X
_[ (7 —x)tanx dx
sec X+ tan X
f tan x i Xtan X
=ch —dx-_[ ——dx
5 Sec X+ tan x 5 Sec X+ tan x
i tan x sec X —tan x
:nj X dx - |
5 secxX+tanx  secxX—tanx

tan xsec x—tan? X

dx
sec? x—tan? X

U

N

|

a
Oty
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Va

2
“_[ sec xtan X —(sec” x-1) dx
5 1

= n_[ (sec x tan x - sec?x + 1)dx
0

n[secx—tan x+ x]g

n [secz —tan 7+ ) —(secO—tan0+0)]

7 [(-1-0+7)—(1-0+0)]

=7 (n-2)

e

Example 10: Prove that

2

]5 xadx T dx
0

a?_cosEx 2aa? -1
.’f xdx
0

—dx
a® — cos’? X

Sol. : Let | =

T—X

= ;[ a’ —cos’ (7 —X) o

{ jl f(x)dx = ja‘ f(a- x)dx}

T T—X
=J. mdx ..... (2)
0

Adding (1) and (2), we get

X T—X

2l = + dx
J(; {az—coszx a’ —cos’ x}

T

—dx
a® — cos’ X

1
O
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0

Put

When

When

{ T f(X)dx = 2ja. f (a—x)dxwhen f (2a—x) = f (X)andhere

dx

d=n]
{ a’—cos’ x
f dx
. a’—cos” x

1

72 dx
=2n
¢ a’(cos” Xx+sin” x) —cos’ X
72 dx
=2n
;[ a’sin® x+(a® —1) cos® x
72 sec’ X
A=on|
,  a‘tan"x+(a" -1
tan x =t

sec? x dx = dt
Xx=0,t=tan0=0

T T
X=—,t=tan — =
2 2

0

a a 0
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[tan™ oo tan™ 0]

2r
aVa’ -1
_ 2r [Z—O}
ajai-112

l= — 2
- 2a\a’-1

Hence the result
Example 11: Find ¢ such that

_[ f(x) dx = 2£(c), where f(x) = x> - 2x + 1

Sol: Here f(x) =x2-2x+1
2 f(c)=2(c*-2(+))

3

Also [ f)dx=] (-2x+1)dx

= (£_§+3j - (1_24_1)
3 2 3 2

We want to find ¢ such that

3

[ 109 dx=2 f(c)

1
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8
—=2(c*-2c+1
32 )

4
= c’-2c+1=—
3

4
Or c-1)72=—
(c-1) 3
2
= c-1=+ —<
B

Or c=1+2,1-

Or c=1+ '.'0:1—%[],3]

2
Example 12: Evaluate J X% + 2x - 3| dx
0

2
Sol: Letlzj X2 + 2x - 3| dx
0

Now x2+2x-3=(x+3)(x+1)
For 0<x<1,x*+2x-3<0
= [x2 + 2% - 3| = - (X? + 2x - 3)
andfor1<x<2,x*+2x-3>0

= [x2+2x - 3| =x2+2x -3

2 1 2
| = I |x2+2x-3|dx=I |x2+2x-3|dx+f [x? + 2x - 3|dx
0 0 1
1 2
= j {—(x2 +2x—3)} dx + J (x2 + 2x - 3)dx
0 1

1 2
:-I (x2+2x-3)dx+j (x2 + 2x - 3)dx
0 1

99



x> s ’
| =X =3+ | =+ X2 -3%
3 0 3 1

Example 13: show that

1
I |x|—xdx=-&
’, 3

Sol: Let | = Jl. JIX]|=x dx
-1

1

:Jq mdx+j mdx
-1 0

1
Le—o

1
| X|—x dx + I | X|—x dx
0
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3

1
== 22
2 V2

22
3

Example 14: If [x] stands for integral part of x, then show that

j [4x] dx = -4

-1

Sol: Since [4X] has integral values at

I
[4xdx + | [4x] dx

0

=12 L 1,113,
42" 47424
[4X] is discontinuous at
x=1.2 1 1,113,
42" 4742 4
1= [ [4x]dx
9 b 4 0
= j [4x] dx + j [4x]dx + j [4x] dx + j
B B/ % B
% % 1
+j [4x]dx + j [ dx+ [ [4x]dx
% % %
B/ 4 N/ 1
= j [-4] dx + j [-3]dx + j (-2)dx + j (-1)dx +
B B/ B %
% % % 1
+| (0)dx+j dx+j 2dx+ | 3dx
0 % % %

=-ald -8 [ -2 [ - [, o
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+ [+ 2 [ + 3],

[ o3 A g o)
[
ORDEORRER R

1
=2 (-4)

=-1

Self-Check Exercise

o
sin8xlog(cot x
Q.1 EvaluateJ. o )dx
0 COS2X
h Jx
Q.2 Evaluate ————=0dX
| Fove
03  Evaluat j‘. 1% dx, where £ 8x+3, 1<x<3
. valuate X) dx, where f(x) =
] X}, 3<x<4
72 Sin X —Cos X
Q.4 EvaIuateJ. = " dx
v l+sinXxcosx
7
Q5 Evaluate | (2log sin x - log sin 2x)dx
0
© Xsinx
Q.6 EvaluateJ- —dx
5 l+sinx
2
Q.7 EvaIuateJ- [x - 1] dx
0
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Q.8 If [x] stands for integral part of x, then evaluate

2
J' [2x] dx
1
54 Summary
We conclude this unit by summarizing what we have covered in it:-
1. Discussed and proved the following properties of definite integrals:-
2a a a
(i) j £(x) dx = j £(x) dx + j f(2a - x) dx
0 0 0
2a a
(i)  If f(2a - X) = f(x), then j F(x) dx = 2 j £(x) dx
0 0
2a
(iii) If f(2a - x) = - f(x), then J. f(x)dx=0
0
(v)  If f(x) = f(a + x), then j f(x) dx =n j £(x) dx
0 0
(V) If £(x) is an even function, then
j F(x) dx = 2 I £(x) dx
-a 0
(vi) If £(x) is an odd function, then j f(x)dx=0
2. Solved some questions using above stated properties.
5.5 Glossary
1. Properties of definite integrals help us to manipulate and evaluate integrals,
making them powerful tool for solving a wide range of mathematical problems.
2. The definite integral is a linear operator, which means it satisfies the properties of
linearity.
Answers To Self-Check Exercises
Ans.1 0
0
Ans. 2 —
2
Ans. 3 81§
4
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5.7

5.8

Ans. 4 0
Ans. 5 Z log 2
2

2
Ans. 6 z -
2

Ans. 7 1
Ans. 8 E
2

References/Suggested Readings

1. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.

2. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.
Terminal Questions

I
Bx i

2. Evaluate [ f(x)dx, where f(x)={

3
1. Evaluate I
2

xX2—8 1<x<2
-2X, 2<x<3

7.
3. Show that I logtan x dx =0
0
1
1
4, Show that J X(A-xdx= ———
° (X+D(x+2)
T Xtan X
5. Evaluate I — dx
y SECXCOSeCX
7
6. Evaluate J. [sin x| dx
T
7. If [X] stands for integral part of x, then show that

[ Deldx=5 23
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Unit - 6
Reduction Formulae For
Isin”xdx, Icos“xdx

Structure

6.1 Introduction
6.2 Learning Objectives

6.3 Reduction Formulae For Isi n" xdx and .[cos“ X
6.4 Reduction Formulae For Itann xdx and J'cotn xdx

6.5 Reduction Formulae For Isec” xax andj.cosecnxdx

Self-Check Exercise
6.6 Summary
6.7 Glossary
6.8 Answers to self check exercises
6.9 References/Suggested Readings
6.10 Terminal Questions
6.1 Introduction

For certain integrals, both definite and indefinite, the function being integrated (that is,
the "integrand") consists of a product of two functions, one of which involves an unspecified
integer, say n. Using the method of integration by parts, it is sometimes possible to express
such on integral in terms of a similar integral where n has been replaced by (n-1), or sometimes
(n-2). The relationship between the two integrals is called a "reduction formula" and by repeated
application of this formula, the original integral may be determined in terms of x. Hence, a
reduction formula for an integral is a formula which connects the integral with one or two other
integrals in which the integrand is of the same type but of lower degree or of lower order.

The repeated application of the reduction formula enables us to express the given
integral into such a simple integral which can be evaluated by one of the methods done in lower
class. Thus, reduction formulae play an important role in systematic integration. There are two
important methods of obtaining reduction formulae:-

@ the method of integration by parts, and

(ii) the method of connecting the integrals.
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6.2 Learning Objectives
After studying this Unit, you should be able to:-

. Define reduction formula
. Find a reduction formula for I sin"x dx and I cos" x dx
. Find a reduction formula for I tan" x dx and I cot" x dx

Find a reduction formula for I sec" x dx and j cosec” x dx
° Solve questions related to these reduction formulae

6.3 Reduction Formulae For _[ sin” x dx and I cos" x dx

Sol: Method to find a reduction formula for I sin” x dx

1 Write sin” x as sin™x. sin x

2 Integrate by parts taking sin"*x as first function.
3. Replace cos?x by 1-sin?x
4

Transpose to get terms of I sin" x dx on L.H.S.

The above method is also applicable for finding a reduction formula for I cos" x dx.

Now we proceed further to find the reduction formulae for I sin"x dx and I cos"X dx.
l. Reduction formula for j sin"x dx
Let In= J. sin"x dx
= I sin™x. sin x dx
[Note this step]
= sin™ x (- cos X) - I (n-1) sin™2 x cos X (- cos X) dx
[Integrating by parts Here f(x) = sin™x, g(x) = sin X]
=-sin™ x cos x + (n-l)J. sin™2x cos?x dx
=-sin™x cos x + (n-l)I sin™2x (1 - sinx) dx
[Note this step]
=-sin™x cos x + (n-l)f sin™2x dx - (n-l)f sin"x dx
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In = - sin™*x cos x + (n-1) l.-2 - (n-1) In Transposing the last term on the L.H.S., we get

= [+ (n-1)] In =-sin"! x cos x + (N-1) In2
= Nn. In = -sin™ x cos x + (n-1) In>
sn"txcosx n-1
= Ih = - + In-2
n n

which is the required reduction formula.

1. Reduction formula for j cos"x dx
Let Ih= I cos"x dx

= J. cos™x cos x dx
[Note this step]
= cos™x (sin x) J' (n-1) cos™2x (- sin x) (sin x) dx
[Integrating by parts. Here f(x) = cos™x, g(x) = cos X]
= cos™x sin x + (n-1) I cos™2x sin?x dx
= cos™x sin x + (n-1) I cos™2x (1-cos?x) dx
= cos™x sin x + (n-1) I cos™?x dx - (n-1) I cos?x dx
In = cos™x sin x + (n-1) In2 - (n-1) In Transposing the last term on the L.H.S., we get
[1 + (n-1) In] = cos™x sin X + (N-1) In-2
= Nn. In = cos™x. sin x + (n-1) In-

cos"txsnx n-1
= n= + In-2
n n

which is the required reduction formula

6.4 Reduction Formulae For j tan"x dx and I cot"x dx

Method to find a reduction formula for I tan"x dx and I cot™x dx

For finding a reduction formula for I tan"x dx, we write tan"x as tan"?x. tan®x and then change
tan®x to (sec®x-1)

Similarly for finding a reduction formula for J. cot"x dx, we write cot"x as cot"™2x. cot?x
and then change cot?x to (cosec?x-1)
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Now we proceed further to find the reduction formulae for j tan™x dx and I cot"x dx
. Reduction formula for I tan"x dx
Let Ih= I tan"x dx

= J. tan"x dx. tan®x dx

= J- tan"™2x (sec? x-1) dx
[ tan®x = sec?X - 1]

= J. tan™2x sec2x dx - J. tan™2x dx

I tan™2x sec?x dx - In.o

tan"* x
n-1

- In-2

{ f (X)}m—l
n

Usingtheformula{ f (x)}" f*(x)dx = 1
+

1
In = —tann'lX = In-2
n-1

which is the required reduction formula

Il. Reduction formula forI cot™x dx
Let In= j cot™x dx
= J. cot™?x cot®x dx

[Note this step]

= I cot™?x (cosec?x - 1) dx [+ cot?x = cosec? x-1)

J. cot™x cosec?x dx - I cot™2x dx

_[ cot™?x (- cosec?x)dX - In-2

cot™ x
n-1

- ln2
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{ f (X)}n+1
n

By using the formulan+1[ { f (x)}" f*(x)dx = .
+

1
In= - 1 cot™X - In-2
which is the required formula
6.5 Reduction Formulae For _[ sec™ dx or I cosec"x dx

Method to find a reduction formula for J. sec"x dx or J. cosec"x dx

For finding a reduction formula for J. sec™x dx, we write

sec™ as sec™?x secx
Now We integrate by parts, taking
f(x) = sec™?x and g(x) = sec?x

After the integration we change tan®x to sec? x-1.
Similarly for I cos"x dx
Now we proceed further to find the reduction formula for J' sec"x dx and I cosec"x dx
l. Reduction formula for I sec"x dx
Let Ih = I sec"x dx
= J. sec™2x sec?x dx

[Note this step]

Integrating by parts, taking f(x) = sec™?x and g(x) = sec?x
= sec™2x tan X - I (n-2) sec™3x sec(x tan x tan x dx
= sec™x tan x - (n-2) I sec™2x tanx dx

[Type is not same as of I
= sec™x tan x - (n-2) I sec™?x (sec?x - 1) dx

(" tan®x = sec? x-1)
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= sec™?x tan x - (n-2) .f sec™?x (sec™ dx + (n-2) I sec™2x dx
=sec™2x tan X - (N-2)In + (N-2) I
Transposing the second term on the L.H.S., we have

{1+(n—2)} Ih = sec™?x tan X + (n-2) In

1
Or I = ——sec™x tan x + In-2
n-1 n-1
which is the required reduction formula

Il. Reduction formulaforI cosec"x dx
Let Ih= I cosec™?x dx

= I cosec™?x cosec?x dx
[Note this step]
Integrating by parts, taking f(x) = cosec™?x and g(x) = cosec?x

= cosec™?x (- cot X) - I {(n— 2) cosec™ *x.(— cosec xcot x)} (- cot x) dx
= - cosec™?x cot X - (n-2) I cosec™2x cot?x dx
= - cosec™?x cot X - (n-2) I cosec™?x (cosec? x-1) dx

= - cosec™?x. cot X - (n-2) I cosec"x dx + (n-2) J' cosec™2x dx

= - cosec™?x cot X - (X-2) In + (N-2) In-2
Transposing the second term on the L.H.S. we have
[1 + (n-2)] In = - cosec™x cot X + (X-2) In-2
= (n-1) I = - cosec™?x cot X + (X-2) In2

1 _
= I, = -——cosec™x cot X +
n-1 n-1

In—2

which is the required reduction formula
Let us do some examples to clear the idea:-

Example 1: obtain a reduction formula for

I cos"x dx. Hence evaluate I cos®x dx
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Sol: Do 6.2 (1)

The reduction formula for I cos™x dx is

cos"txsinx n-1
Ih = + e Ll (1)
n n

Put n =6, we get

cos®t x.sinx .\ 6-1

—_ 6 —
IG—I cos®x dx = 5 5

1 5
= =cos’xsinx+—1, . 2
5 5" (2

Putting n =4 in (1), we have

cos*txsnx 4-1
4= + >

4 4

1 3
= —cos®xsinx+ — 1 ....(3
4 4° ®)

Putting I2 in (1), we have

cos’txsnx 2-1
= + |0

P

2 2
_ cosxsinx N 1 | 4
Also IO=J. (cosx)odxzj. ldx=x ... (5)

Putting values of Isfrom (5) in (4), then of I, from (4) in (3) and then of 14 from (3) in (2), we get

6 1 . 511 5 . 3|cosxsinx 1
j cos®x dx = —cos®x sin x + — | —COS” XSINX+—<{ ————+—X
6 6|4 4 2 2

1 5 . .. .15 15
:ECOSXSII’\X"‘QCOSXSII’]X+—COSXSII’1X+—X

Example 2: Use reduction formula to integrate I tan*x dx
Sol: J. tan"x dx = J. tan™2x. tan?x dx
= I tan?x dx(sec? x - 1)dx

111



= .f tan™?x sec?x dx - j tan™?x dx

n-1

I tan"x = tan X—J. tan"™2x dx

n-1
which is the required reduction formula
Putting n = 4 in (1), we get

an* x

I tan?x dx = tT J. tan?x dx

1
Ztan3x - 2y.
3tan X J. (sec?x-1)dx

1
—tan®x - (tanx - X)

1 3
= —tan°x -tanx + x

Example 3: If I tan"x dx = A(x) + B(x) I tan™2x dx,

get a formula connecting J. tan™x dx with I tan™2x dx
Sol: Here J. tan™x dx = A(x) + B(x) J. tan™2x dx
Now I tan"x dx = I tan™2x tanx dx

= I tan™2x (sec? n-1) dx

= I tan™?x sec®x dx - I tan™?x dx

tan"* x

n-1

comparing it with (1), we get

I tan"x dx = - I tan™2x dx

1
A(X) = ——tan™x, B(x) = -1
)=~ )

1
(1) becomes _[ tan"x dx =n—1 tan™x - J' tan™2x dx
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1
I tan™?x dx :—1tan”'1x - J. tan"x dx

Replacing n by m+2, we get

1
I tan™x dx = —— tan™*x - J. tan™2x dx,
m+1

which is required formula

7
Example 4: If U, = _[ tan"x dx, n> 1,
0

1
Show that Uy, + Upo = ——
n-1

Deduce the value of U3

Deduce the value of Us

Sol: .f tan"x dx = .[ tan™2x tan®x dx
= .f tan™2x (sec? x-1) dx

= I tan™2x sec?x dx J tan™2x dx

n-1
= (tanx) J. tan™2x dx
n-1
7y w177 7
t
tan™x dx = M - J. tan™?x dx
5 n-1 0 0

RN
:[——0}- I tan™2 x dx

n-1 0
1
Up= ——-Un2
n-1
1
= Un+ U= —
n-1

Put n=>5,3in (1), we have
Us+ U —1
5 3 4
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1
Us+ U = E (3)

7
Now U1=J. tan x dx
0

= [—Iog(cosx)];%1

V4
= -log cos Z+ log cos O

=-log i+Iog1
V2
= [Iogl—log\/i} log 1
= log \/2
1
=log 22
-llo 2
5 g
1
from (3), Us = E-Ul
S log 2
272 8

From (2), Us = %- Us

N
+
N

log 2

N

U—lloz1
5550947

Example 5: Obtain a reduction formula for J. cot"x dx, n being a +ve integer. Hence evaluate

I cot®x dx.

Sol: Let In:I cot"™x dx
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= .f cot™?x cot®x dx
= I cot"2x (cosec? x - 1)dx
= I cot™?x cosec?x dx I cot™2x dx

cot"* x
n-1

In - - In—2

1
Or lh=- —1cot”'1x - In2 (1)

which is the required reduction formula

Putting n =5, 3in (1), we get

1
Is = - ZCOt4X- I3 (2)
1
and l3=- > cot?x - Iy
1
= -—cot*x I cot x dx
2
1 .
=- 3 cot?x - log |sin x|

1 1 .
From (2), Is = "2 cot*x +§ cot®x + log |sin x|

Example 6: Obtain a reduction formula for I sec®™! x dx. Hence evaluate j sec®x dx
Sol: Let lns1 = J. sec®™1x dx
= J. sec®™x sec?x dx

= sec®™!x tan x - I {(2n—1) sec”™ % x.sec xtan x} tan x dx

[Integrating by parts]

= sec®™Ix tan x - (2n-1) I sec®™x tan?x dx

= sec®™Ix tan x -(2n-1) I sec®™1x (sec?x - 1)dx
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= sec®!x tan x - (2n-1) I sec?™x dx + (2n-1) j sec?1x dx

lon+1 = s€C?™IX tan X - (2n-1) lons1 + (20-1) l2na

= [1 + (2n-1)] I2n+1 = sec?™x tan x + (2n-1) lI2na
= 2n. lansr = sec®™Ix tan x + (2n-1) lona
1 2n-1
= lons1 = — SECX tan x + lon-1
2n
which is the required reduction formula. (1)

Puttingn =2, 1in (1), we get

1 3
Is = Zsec3x tan x + Z|3 ...(2)

1 1
and I3=§secxtanx+ Ell ..... 3
Now I1= I sec x dx = log [sec x + tan X|
from (3),
1 1
Is = Esecxtan X + Elog |sec x + tan x|
From (2), we have

1 . 3 3
Is = Zsecxtanx+ gsecxtanx+ 3 log |sec x + tan x|

Self-Check Exercise

Q.1  Use reduction formula to integrate

I tan®x dx

7y
Q2 Iflh= I tan" 6 do, show that
0

5

1 g X
In1 + Ins1 = —, hence evaluate I ﬁdx
n ., (2a"-x7)

Q.3  Use reduction formula integrate I cot3x dx
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Q.4  Obtain a reduction formula for I sec"x dx. Hence evaluate J. sec®x dx

6.6

6.7

6.8

6.9

Summary

We conclude this unit by summarizing what we have covered in it:-

1. Defined reduction formula

2. Derived reduction formula for I sin"x dx and I cos"x dx

3. Derived reduction formula for I tan"x dx and I cot"x dx

4, Derived reduction formula for I sec"x dx and J' cosec"x dx

5. Solved examples related to above stated reduction formulae.

Glossary

1. A reduction formula for an integral is a formula which connects the integral with
one or two other integrals in which the integrand is of the same type but of lower
degree or of lower order.

2. Two important methods of obtaining reduction formulae are:-

(@ the method of integration by parts, and
(i) the method of connecting the integrals.

Answers To Self-Check Exercises

1,1 5
Ans. 1 Ztanx-z tan“x - log |cos X|

1
Ans. 2 Z(Z log2-1)

1 :
Ans. 3 "5 cot?x - log |sin x|

1 ) n
Ans. 4 |, = ——sec™x tan X +

In-2;
n-1 n-1 ?

sec’ xtanx 3 3
and ————— + —secxtanx+ — log
4 8 8

T X
tan| = +2=
53)

References/Suggested Readings

1.
2.

G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.

H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.
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6.10 Terminal Questions

1. Obtain a reduction formula for I tan" x dx. Hence evaluate I tans x.
7 1
2. Iflh= J. tan"x dx, prove that In + ln2 = T n being a positive integer > 1.
n —

0
Hence evaluate Is.

3. Obtain a reduction formula for I cot" x dx, n being a +ve integer. Hence
evaluate I cot* x dx.

4, Obtain a reduction formula for I cosec?!x dx and hence evaluate I cosec®x
dx
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Unit-7

Reduction Formulae For

jx”(log x)mdx,feaxén” xadx

Structure

7.1 Introduction

7.2 Learning Objectives

7.3 Reduction Formula For J.x”eax dx
Self-Check Exercise-1

7.4 Reduction Formula For Ix” (log x)™dx
Self-Check Exercise-2

7.5 Reduction Formula For Ie""xsin” X dx

7.6 Summary

7.7 Glossary

7.8 Answers to self check exercises

7.9 References/Suggested Readings

7.10 Terminal Questions

7.1 Introduction

Reduction formulae for integration are mathematical techniques used to evaluate
indefinite integrals that involve repeated applications of integration by parts. These formulas
allow us to express a given integral in terms of integrals that are simpler or have a lower degree.
By reducing the complexity of the integrals, we can after solve them more easily. Reduction
formulae are particularly useful when dealing with integrals involving powers of trigonometric
functions, logarithmic functions or exponential functions, where integration by parts alone may
not lead to a solution. By employing reduction formulae, we can often find closed-form solutions

to these integrals.

7.2

Learning Objectives
After studying this unit, you should be able to:-

. Derive the reduction formula for I x" e dx and solve questions related to it.
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. Derive the reduction formula for J' x" (log X)™ dx and solve questions related to
it.
o Derive the reduction formula for I e® sin" x dx and solve questions related to it.

7.3 Reduction Formula For _[ X" e dx

Let Ih = I X" e® dx

ax ax
e

=x" —I n x"t— dx
a a

[Integration by parts by taking f(x) = x", g(x) = €]

= lxn eax _E J- Xn—l eax dX
a a

1 n
In = _Xn eax ‘_In-]_

a

which is the required reduction formula
Let us do some examples:-
Example 1: Obtain a reduction formula for

I X" e* dx. Hence evaluate I X" e* dx,
0

where n is a positive integer

Sol: Let Inzj X" e™ dx

n e—X n-1 e_x
=X (_1]-J (nx )(_1}dx

[Integrating by parts by taking f(x) = x", g(x) = e™]
=-x"e*X+n J. X" eX dx

InN=-x"e*+n ln1 .-(2)
which is the required reduction formula From (1)

I x"eXdx =-x"e*+ nj X" e dx
o0 o0
R — N —X © n-1 -X
x”eXdX—[—xe ]O+n X"t e* dx
0 0
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=- [Lt X——O} + nj X"t e* dx

X—00
€ 0

:-[o-O]+nj XL e dx
0

I x"e*dx=n J X" e dx ...(2)
0 0
Changing n to n-1, we get
I X" eX dx = (n-1) J x"2eXdx L. 3)
0 0
From (2) and (3), we get
I X" e*dx = n(n-1) I X2 e dx
0 0

Generalizing, we get

T x"e*dx = n(n-1) (n-2) ....... 2.1 T X" eX dx
0 0
=[n T e dx
0
|
=< o~ v e =o]
In

:@{‘j

x"e*dx = |n

o3

Example 2: Obtain a reduction formula for I X" e dx. Hence evaluate I x3 e dx.
Sol: Let I, = I X" e dx

121



€

2X 2X
€
= X" - J. n x"— dx
2 2

[Integrating by parts]
1

— E XN @2x gj' XML @2x dx

1 n
|n= - Xn ezx' - In- 1
> 5 It (1)

which is the required reduction formula.
Puttingn =3, 2, 1in (1), we get

1 3
|3 = §X3 ezx - §|2 ..... (2)
1 2
lb==x2e®-— 1. 3
2= 5 5 (3
1 1
li==xe®-=1o 4
155 5 o (4)
Now Iozj X% e dx
:j e dx
er
)

1 1
from (4), I, = = xe?, = e
4), b > 7
From (3), Iz = %Xz e - 1 xe? + 1 e
1
From (2)1 3= =x3e*- E X2 @2 + E Xe2x - §e2x

3
I X3 e dx = e [XE—§X2+§X_§]

Self-Check Exercise-1

Q.1  Obtain a reduction formula for
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I x"e* dx. Hence evaluate I,

Q.2 Evaluatef x°e* dx

7.4 Reduction Formula For j X" (log x)™ dx
Letly = J. x" (log x)™ dx

= J. (log x)™ x" dx

n+1 n+l

n X ma 1 X
= (log ) h j {m(log X) ;} dx

n+ n+1

[Integrating by parts Here we take f(x) = (log x)™ and g(x) = x"]

n+1

m
= log )™ -—— | X" (log x)™?! dx
n+1( 9%) n+1I (log %)

n+1

m
lo me— I (1
n+1( 9%) n+1 ! @

which is the required reduction formula

Im =

Let us do some examples:-

Example 3: Obtain a reduction formula for I x™ (log X)" dx, x > 0; m, n are natural numbers

1
and hence evaluate I x* (log x)3 dx
0

Sol: Let I, = I xX™ (log x)" dx

= J. (log x)". x™ dx

m+1 m+1

= (log x)" X J- {n(logx)“‘ll} X dx
X/ m

m+1 +1

[Integrating by parts]

m+1 n
= | n_ __ m | n—1d
m+1 (1099 m+1-[ X" (l0gg™ dx
= X og - 1 (1)
n: 0 Xn' - In-
m+1 J m+1 "

which is the required reduction formula
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Now

m+1

X
m+1

j x™ (log x)" dx =

m+1

x™ (log )" dx = { X
m+1

Oy~

m+1

(|09X)”}

o m

1 n i
—— | 0— Lt x™(lo x“}-— Xx™ (log x)™! dx
|0- Lt x™(logx) i) X"l

(logx)" - —— [ %™ (log )" dx
m+1

n 1
— I x™ (log )™ dx
+19

[+ x™Ylog x)" =0 fir x =1, m > 0 and n is a positive integer]

1
m+1

n 1
= ——[0-0]- —_[ x™ (log x)™* dx
m+14

[ Ltoxm+1 (log xX)" =0, m >0 and n is a positive integer]

O >

Putting m =4, n=3in (2), we get

1 3 1

I x* (log x)®* dx = -—— I x* (log x)? dx
5 4+1+

Puttingm =4, n=2in (2), we get

1 2 1

I x* (log x)?2 dx = -—— '[ x* (log x)* dx
5 4+1 5

Puttingm =4, n=1in (2), we get

1 1
I x* (log x)* dxz-ij‘ x* (log x)° dx
5 4+1+

1 1

n 1
X™ (log X)" dx = -—— J X™ (log x)™* dx
m+1<

(4)
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1

25
h 2 1 2
from (4), | x*(log x)?dx=|—— ===
()l (log x) (5}(25} 125
¢ 3 2 6
From (3), | x*(log x)®dx = | —= — =
()l (log x) ( 5}(125) 625
1
Example 4: Evaluatej xX™ (log x)" dx
0
Sol: Let Inzj XM (log x)" dx
=j (log x)" x™ dx
Xm+1 1 Xm+1
= (log x)" - n(logx)"* = dx
(log %) m+l-[ {(g) X}m+l
[Integrating by parts]
x™ n
= | n_ m (] n-ld
m+1(ogx) m+1I X" (log )™ dx
= X g (1)
n = 0 X n. —— nl i
m+1 J m+l

which is the required reduction formula

Now
Xm+l n
I X™ (log x)" dx = (log X)" - —— I X™ (log x)™* dx
m+1 m+1
1 m+l 1 1
I Xx™ (log x)" dx = X (logx)" | - n I X™ (log x)™* dx
5 m+1 o M+17

1 n ¢
—— | 0- Lt x™(lo x”}-— m (log x)"* d
m+1[ x—0 (logx) m+1-([ X" (log x) X

[+ x™(log x)" = 0 for x =1, m > 0 and n is a positive integer]

1 00"

-—— | x™(log x)™* dx
m+1 m+10 (log %)
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[~ Ltoxm+1 (log x)" =0, m >0 and n is a positive integer]

1 1
[ xm (tog x dx = L [ xm (og %™ dx
5 m+1

0
1
Let I} = j x™ (log x)" dx (2)
0

from (2), we have

LN
m+1

= n-1

Changing nto n-1, n-2, ..... , 2,1, we get

I 1

1
Now |5 = I X™ (log x)° dx
0

1
=I XM dx
0
Xm+l 1
- [m+1}0

1
—[1-0
m+1[ ]

1

C m+1

Now
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) ) )

[From the above equation]

_ D P
= (i [n(n-1)(n-2).......2.1]
- 0~ DIn

m

dx
(logx)"

———dx= J- xm”{(log X)™" %} dx

Example 5: Find a reduction formula for I

m

Sol:
° [ oy
[Note this step]

n+1 n+1

— m+1 (IOgX) J‘ (m+1) Xm (ng)
-n+1 -n+1

i f n+1
[lntegrati ng by partsand usi ngj{ F)} F'(dx= %
+
_ 1 X m+1J-
n-1 (logx)"™* (|09 X)" e

which is the required reduction formula

Self-Check Exercise-2

Q.1  Obtain a reduction formula for I xM(log x)" dx. Hence evaluate I x"M(log x)? dx
Q.2  Obtain a reduction formula for Imn = _[ x™ (log x)" dx.

Hence evaluate J- x* (log x)3 dx

7.5 Reduction Formula For J. e sinn* dx
Let Ih = I e sin"x dx

= J- sin™x e® dx
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= sin"x (e—j - I (n sin™ x cos x) [e—j dx
a a

[Integrating by parts by taking f(x) = sin"x and g(x) = e*]

1 . n :
= —e®sin"x - — I (sin™)x cos x) e dx
a a

ax

-1 e sin"x - 1 {(si n"* xcosx)(e—J—.[{n—l)sin“‘2 XCOSXCOSX+sin™* x(—sin x)}(e—j dx}
a a a a

a a a

e*sn"x n|e*sin"™!xcosx

1 : n | €*sin"* xcosx . : e™
—esin"x - — —I{n—l)sm”‘2 xcos” x—sin" x}—dx

a

_ n e ma €
= I{n Hsin™? x(1-sin® x)—sin" x} a dx}

a a a

e*gn"x n|e*sn"xcosx

a a a

e*sn"x n|e®sn"txcosx n-1

a al| a a
e”sn"x n . n(n—1 .
= ———-—e¥sin" xcos x + (—2) I e sin"?x
a a a
e*sn"x n . n(n-1 n’
In= ——-— e*sin" x cos x + %IM- — In
a a a a
n’ ae™sin"x—ne™sin" xcosx  n(n—1)
= 1 2 In = 2 + 2
a a a
= (@2 +n?) In=e*®sin™x (asin x-ncos x) + n(n - 1) In2
e*sn" x(asinx—ncosx) n(n-1)
= In = + In-2

a’+n? a’+n
which is the required reduction formula
Let us do example to clarify it:-
nin-1

Example 6: If U, =
P n*+1

e* sin"x dx, then prove that U, =

o3
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J‘{n—l)sin”‘2 X-nsin" x}idx}

a

. n .
jeaxsn” 2 deJr—J.ef"xsmn xdx}
a

rl2
dx -— I e sin" x dx
a

Un—2



o0
Hence evaluate I e sin*x dx
0

Sol: Now U, = J e-x sin"x dx
0

. ex | 2 . e
= |:S| n" x } I n(sin™* x cos x) 1 dx
0

=(0-0)+ nj (sin™! x cos x)e™ dx
0

[ e*—>0as x— oo, sin"0=0]

=n {(si n"" XCcosX) € J —j{si n"* x(—sinx) + (N—1)(Sin" " X cOSX COS X)
0

0

=n(0-0)+ nj {- sin" x + (n-1) sin"2 x (1-sin?x)}e*dx
0

=n| {-sin"x+ (n-1) sin™2 x - (n-1) sin?x}e™*dx

o3

=n| {-nsin"x+ (n-1) sin"2 x}e>dx

o3

Un=-n?Uy+n (n-1) Uno
Or (1 +n?) Un = n(n-1) Un2

(1 + n?) Un=n(n-1) Un2

which is required reduction formula
Putting n =4, 2in (1), we get

U= 2y
4 17 2
2
and UngUo

Now Ug= j eX dx
0
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=[0+1]
=1

2
from (3), U = —

(3), U2 5

12 2
F 2),Us= — x =
rom (2), Us 17><5
_ A
85
I e'Xsin“xdx:%
5 85

Self-Check Exercise-3

Q.1  Obtain a reduction formula for I e® cos" x dx. Hence evaluate I ex

7.6

7.7

cos* x dx

Summary

We conclude this unit by summarizing what we have covered in it:-

1. Derived the reduction formula for I x" a® dx and solved some questions related
to it.

2. Derived the reduction formula for I x" (log x)™ dx and solved some questions
related toit.

3. Derived the reduction formula for I e® sin" x dx and solved some questions
related to it.

Glossary

1. Reduction formulae allow us to express a given integral in terms of integrals that

are simpler or have a lower degree.

2. Ifl,= J- X" e® dx, then its reduction formula is

1 n
In = _Xn eax - — In-]_
a a
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7.8

7.9

n . : .
3. If In = —x" (log x)™ dx, then its reduction formula is
a

n+1

m
(log X)™ - —— Ima

Im =

+1 n+1
4, Ifl, = J. e sin" x dx, then its reduction formula is
ax

€™ sin"™ x(asin Xx—Ncosx) , Nn-1)

a’+n’ a’+n’

Inh=

In—2

Answers To Self-Check Exercises
Self-Check Exercise-1
Ans. 1 I, =x"€e*-n ln1
and 14 = (x* - 4x3 + 12x2 - 24x + 24)e~
Ans. 2 I X5 eX dx = eX(x® - 5x* + 20x3 - 60x? + 120x - 120)

Self-Check Exercise-2

m+1

Ans. 1 I, =

n
log X)" - —— I
m+l( 9%) m+1 !

m+1
and X |(ogx?- 209X 2
m+1 m+1 — (m+1)

m+1

X
Ans. 2 Inn =

(log X)" - —— |
m+1 g me1

XS 3 2
and %[125(Iogx) —~75(logx)° +30logx—6 |

Self-Check Exercise-3

€™ cos™ x(acosx+nsinx) , N(n-1)

Ans. 1 I, =
a’+n? a’+n’

In-2

and

€™ cos’ x(acosx+4sinx) | €™ cos® x(acosx+2sinx) 2e™
a>+16 a’+4 aa’+4)

References/Suggested Readings
1. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.
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2. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.

7.10 Terminal Questions

1. Obtain a reduction formula for I X" e® dx. Hence evaluate I° and I*
2. Obtain a reduction formula for I XM (log x)" dx, x > 0, m, n are natural numbers

1
and hence evaluate I x2 (log x)3 dx
0

1
3. Iflh= J' (log x)" dx, prove that
0

In + n 1 = x (log x)"

4, Find a reduction formula for

V3
I eXsin" x dx
0
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Unit - 8
Reduction Formulae For

J‘x’“sinnxdx,fsinm xcos” xdx

Structure
8.1 Introduction
8.2 Learning Objectives
8.3 Reduction Formula For J.xsi n" xdxand I X cos" x dx
8.4 Reduction Formula For
I XM sin nx dx And I XM cos nx dx
8.5 Reduction Formula For
I cos™ x sin nx dx And I cos™x cos nx dx
8.6 Reduction Formula For
I sin™x cos"x dx
Self-Check Exercise
8.7 Summary
8.8 Glossary
8.9 Answers to self check exercise
8.10 References/Suggested Readings
8.11 Terminal Questions
8.1 Introduction

A reduction formula for an integral is a formula which connects the integral with one or
two other integrals in which the integrand is of the same type but of lower degree or lower order.
Reduction formulae, also known as recurrence relations, are mathematical formulas that
express integrals or series in terms of simpler forms. They are widely used in calculus to
simplify complex calculations and solve difficult integration problems. Reduction formulae
enable us to express a given integral or series in a recursive manner, allowing us to break down
complex expressions into simpler components. This technique is particularly useful when
dealing with functions that do not have elementary ant derivatives or when closed-form solutions

are not readily available.
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8.2

8.3

Learning Objectives
After studying this unit, you should be able to:-

. Derive reduction formula for j X sin"x dx and j X cos"x dx and solve questions
related to it.

o Derive reduction formula for J. cos™x sin nx dx and J. cos™x cos nx dx

o Derive reduction formula for J' sin™x cos"x dx and solve questions related to it.

Reduction Formula For _[ X sin"x dx And J. X cos" x dx

Reduction formula for I X sin™x dx

Let

Ih = I X sin"x dx
= .f (x sin™x) sin x dx
= (x sin™x) (- cos x) - j [x {(n-1) sin"2 x cos x} + sin™! x.0] (- cos x) dx

[Integrating by parts by taking f(x) = x sin™* x and g(x) = sin X]

=-xsin"! x cos x + (n-1) I X sin"™2 x cos? x dx + J. sin™ x cos x dx

=-xsin" x cos x + (n—1).|. X sin™2 x (1-sin? X) dx + J. sin™! x cos x dx

: . : sin" x
=-xsin"! x cos x + (n-1) I X sin™2 x dx - (n-1) _[ X sin"x dx +
n
- sin" x
Ih =-xsin™ x cos x + (n-1) Ih2 - (N-1) I +
- sin" x
[1+ (n-1)] In=-xsin™ x cos x + + (n-1) I
: sin" x
N. In =-xsin™ x cos x + +(n-1) In2

xsin"™* xcosx .\ sin" x .\ n-1
n NG n

Ih=

In—2

which is the required reduction formula.

Reduction formula for I X cos" x dx
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Let Inh = I X cos" x dx
= .f (x cos™x) cos x dx
= (x cos™x) (sin x) j [x{(n—l) cos"? x(~sinx) +cos™* x.l] (sin x) dx

[Integrating by parts by taking f(x) = x cos"*x and g(x) = cos x]

= x cos™ x sin x + (n-1) I X c0S™2x sin?x dx j cos™x sin x dx
=X cos™! x sin x + (n-1) I X €0S™2x (1-sin?x) dx +J. (cos x)™* (-sin x) dx

(cosx)"
n

= J- cos™ x sin x + (n-1) I X cos™2x dx - (n-1) I X cos"x dx +

. 1
Ih = x cos™x sin X + (N-1) Ih2 - (n-1) In + — cos"x
n

: cos’ X
= [1+ (n-1)] In = X cos™X cosnax sin X + (N-1) In2 +
. cos" X
= Nn. In = X cos™x sin x + +(n-1) In2
1 o 1 n-1
= Ih= — Xcos™Xxsin X+ — Ccos"X + ——In2
n n n

which is the required reduction formula

8.4 Reduction Formula For J' XM sin nx dx AndJ‘ XM cos nx dx
Reduction formula for I XM sin nx dx

Let Imn = I XM sin nx dx

cosn X L cosn X
Xm| — - j mx™t | — dx
n n

[Integrating by parts by taking f(x) = x™ and g(x) = sin nx]

x"cosnx - m
=_0 =" —I X™1 cos nx dx
n n
x"cosnx m [ sinnx sinnx
=2 70 4 XM = —_[(m—l)xrrF2 — |dX
n n n n
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[Again integrating by parts]

x"cosnx m . m(m-1 .
=t = X™1 sin nx - #I X™2 sin nx dx
n n n
x"cosnx & m . . m(m-1)
mn= — + — XM sin nx - —Zlm-z,n
n n n

which is the required reduction formula

Reduction formula for I XM cos nx dx

Let Imn = I X™ cos nx dx

in nx in nx
=xM (S‘ j - I mx”“l(Sl jdx
n n

[Integrating by parts by taking f(x) = x™ and g(x) = cos nx]

X"snnx m
n n

x"sinnx m [xml(— cosnxj_f(m_l)xmz(_ cosnx}dx}
n n

[Again integrating by parts]

.[ X™1 sin nx dx

x"snnx  m m(m—1
= ———+—x™cosnx- # I XM cos nx dx
n n n
x"sinnx . m : m(m-1
lmn= —— + — x™!sinnx - #Im.z,n
n n n

which is the required reduction formula

8.5 Reduction formula forI cos™x sin nx dx

Let Imn = I cos™x sin nx dx

cosn x 1 . cosnx
=cos"x | — - J. m cos™ X (- sin x) | — dx
n n

[Integrating by parts by taking f(x) = cos™x and g(x) = sin nx]

cos" xcosnx M ,
lmp = - — J. cos™! x (cos nx sin x) ...(1)
n n

Now sin (n-1)x = sin nx cOS X - COS NX Sin X
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= COS NX Sin X = sin Nx €os X - sin (n-1)x
Substituting value of cos nx sin x in (1), we have

cos" xcosnx m . .
Im.n = - — J cos™? x [sin nx cos x - sin (n-1)x]dx
n n

cos" xcosnx - m . m .
= - — _[ cos™ x sin nx dx + — J' cos™! x sin (n-1) x dx
n

n n
cos" xcosnx m m
Inn=———- —lnn+ —Inina
n n
m cos”" xcosnx m
:> 1+_ Im r‘|= -t — Im-]_’n-]_
n n n
= (m + n) Impn=-cos™x cos NX + M Im-1, n-1
cos" xcosnx m
= Im,n = - + Im-l,n-l

m+n m+n

which is the required reduction formula

Reduction formula for I cos™x cos nx dx

Let Imn = J. cos™x cos nx dx

sinnx . sinnx
= cos™x ( j - J. m cos™x (- sin x)( )dx
n

n

[Integrating by parts by taking f(x) = cos™x and g(x) = cos nx]

cos™ xsin hx, m
Inp= ——-— I cos™x (sin nx sin x)dx ...(1)

n
Now cos (n-1) X = cos nx cos X + sin nx sin X
= sin nx sin X = cos (n-1) X - cos nx cos X
Substituting value of sin nx sin x in (1), we get

cos™ xsmnx m
n

J. cos™x [cos (n-1) X - cos nx cos X]dx

|m,n

cos'“xsmnx m
n

J- cos™! x cos (n-1) x dx -— j €cOos™X cos nx dx
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cos” xsnnx m m
= Im,n =+ Im—1|n—1 - |m,n
n n n

m cos" Xxsnnx m
= 1+ — {lnpp= —————+—Im1n1
n n
= (m +n) Imn = cos™ sin NX + M Im.1,n-1
_ cos"xsin nx, _m
= Imn = Im-1,n-1

n m+ n
which is the required reduction formula
8.6 Reduction Formula For

I sin™ x cos" x dx
(A) Let Imn = I sin™x cos"x dx
= I sin™x cos™!x cosx dx
[Note this step]
= J. cos™x (sin™x cos x)dx
M+1 s AM+1 X

sin* " x . sin
=cos"IX ———- I (n-1) cos™2x (- sin X) ————dx
m+1 m+1

[Integration by parts by taking f(x) = cos™*x and g(x) = sin™x cos X]

sn™xcos"™x n-1
= + I cos™2 x sin™2x dx
m+1 m+1
sin™! xco n-1
= + J- cos™2 x sin™x sin?x dx
m+1 m+1
sn™xcos™x n-1
= + J. cos™? x sin™x (1-cos?x) dx
m+1 m+1
sin™! xcos™ x n-1
= I cos™ x sin™x sin?x dx - —— cos"x sin™x dx
m+1 m+1 m-+
sn™xcos™x n-1 n-1
|m,n = + mn-2 = Im,n
m+1 m+1 m+1

Im,n—2

n-1 sn™ xcos™ X, n-1
Imn =

= 1+——
( m+1 m+1 m+1
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(B)

(M + n) Imn = sin™x cos™x + (N-1) Imn-2

sin™! xcos™™ x .\ n-1
m+1 m+n

Inn = m,n-2

sin™! xcos™ x .\ n-1
m+1 m+n

I sin™x cos"x dx = I sin™ x cos™? x dx

which is the required reduction formula

LetImn= I sin™ x cos" x dx

I sin™! x sin x cos" x dx

I sin™? x {cos" x (- sin x)} dx

cos**! x}

n+1

+1
- sin"”xw— (m—-1) sin™?* xcosx
n+1

[Integrating by parts by taking f(x) = sin™! x and g(x) = cos" x (- sin X)]

sn™xcos™x m-1 _
=- + J sin™2 x cos**? x dx
n+1 n+1
sn™xcos™x m-1 .
=- + J' sin™2 x cos" x cos? x dx
n+1 n+1

sin™* xcos™™ x .\ m-1

J. sin™?2 x cos" x (1-sin? x) dx

n+1 n+1
sn™txcos™x m-1 _ m-1 .
=- + j sin™2 x cos" X dx - —— I sin™ x cos" x dx
n+1 n+1 n+1
Lo- gnm4xcu§”x+}n—1 m—1I
mn — = Im-2,n = m-2,n
n+1 n+1 n+1
m-1 sn™xcos™x m-1
1+— m,n =- + Im—2,n
n+1 n+1 n+1

(M +n) Imp = - sin™ x cos™?! x + (M-1) In-2,n

sn™xcos™x m-1
|m,n =- + Im-2,n

n+1 n+1

Qﬂﬂxa)”x+m—1
n+1 n+1

I sin™ x cos" x dx = - I sin™2 x cos” x dx
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which is the required reduction formula

Let us improve our understanding of these results by looking at some of following examples:-

72 . n-1 1 .
Example 1: If U, = I 0 sin" 6 do, and n > 1, prove that U, = TUn-2 + F Hence find Us.
0

7
Sol: U= [ @sin"6 do
0
” 7
= [0sin"* (- cos0) | *- | [.9{(n—1)s'n“-2 0cos0)} +sin™ 0.1] (- cos 6) do

0

[Integrating by parts by taking f(x) = 0 sin™* 6 and g(x) = sin 0]

7 7
=(0-0)+(x-1) _[ 0 sin™20 cos?0 do + J. sin™0 cos 0 do
0 0
7 7
=(n-1) | 0sin™ (1-sin?0)do+ | sin™0 cos 0 do
0 0
7 7 T
=(n-1) [ 0sin?0do-(n-1) [ Osin"0do+ Fn ﬂ
0 0 X 0
1(. .7 . .
Un=(n-1) U2 - (n-1) Up + — (sm ——9in Oj
n 2
1
Or  [L+ (D] Un=(n1) Uns +—(1-0)
1
Or N un = (n-1) Upo + E
n-1 1
= Un = — Un_2 + T e (1)
n n
Putting n =5, 3in (1), we get
4 1
U —-U — ...(2
"5 ° 25 @)
2 1
and Us = § Ui = 5 ..... (3)
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Now U;= 0 sind do

oY

%
= [49(—0059)]04— f 1.(- cos 6) do
%
= [50051—00050} + f cos 0 do
2 2

0

= -[0- 0]+ [sing]?

:sinz-sino
2
=1-0
from(3),U3=g+l=6—+1=Z
3 9 9 9
4 7 1
From (2),Us= — x —+ —
5 9 25
U5:&
225
7

Example 2: If I, = j X" sin (2p + 1) x dx, prove that
0

n-1
(2p +1)?2In+n(n-1) In-2 = (-1)P n (%) , hand p being positive integers

7

2

Hence or otherwise evaluate I x* sin 3x dx
0

7
Sol: In = j X" sin (2p + 1) x dx
0

BT Xe ) L Y (€IS TN
2p+1 2p+1

0
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B n %
= 1 (Ej Cos(2p+1)z_o + N I X" cos (2p+1)x dx
2p+1{\2 2 2p+1

n 7
=- 1 (Zj 0-0]| + n J. X" cos (2p+1)x dx
2p+1(\ 2 2p+1

N

_.n _ansin(2p+l)x772
2p+1 || 2p+1

o

(n-1)x"2 sn(2p+1)x dx}
2p+1

0

- %
S L | ) R Z_o|. Nn-1 n2e
"Qp+DZK2) sn@p+d)7 0} pape | @R D XX

L (zj"'l(_l)p -9 .,
" ep+D? |\ 2 (2p+1)?

{.'Sin(2p+l)%=Sin(pﬂ'+%j=C03 pr = (—)p}

@p+1)2lh=n (%) 1P - n (1) I

= (2p + 1)2 I+ n (N-1) ln2 = (-1)° n(%j _

which is required result
Again

% n o n-1
I x"sin (2p + 1) dx = (-1)9(Ej

> (2p+1)°
7
~ n(n-J o
2p+1)? J; X" sin (2p + 1)x dx (1)

Puttingn=4,p=1in (1), we get
7 72

x”sin3xdx=izjl X2 sin 3x dx
0 2+D)°
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% 71_3 4%
I x4sin3xdx:—-—J' X2 sin 3x dx
0 1 3 0

Puttingn=2,p=1in (1), we get

7 7
I xzsin3xdx:-z><z-g X2 sin 3x dx
) 972 94
:_z_g _cos3x%
9 9 3
Vs 2 3r
=-— + — | cos— —cos0
9 27 2
Vs 2
=2+ =0-1
9 27( )
_. T 2
9 27

from (2), we get

72 3
I x4sin3xdx=-ﬂ—-f{—£_£}
0 18 3

72 3
x* sin 3x dx = - + 4—7[+ 8
5 18 27 81

Example 3: Prove that X" sin 3x dx

7
|

= o where n is a positive integer
72

Sol: Let I, = I X" sin 3x dx
0

T,
_ {cos” Xsinnx}% 7
n

0 0
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1
= o (0-0) + | cos™ x (sin nx sin x) dx

oY

72

= _[ cos™! x [cos (n-1)x - cos nx cos X] dx

[+ cos (N-1)x = cos hx cos X + .. sin nx sin X = cos (n-1) X - cos hx cos X]

7 7
= _[ cos™ x cos (n-1)x dx - _[ cos" x cos nx dx
0 0
In=ln1-1In
= 2 In = In-]_
= | —ll
n— 2 n-1
= 2 In = In-]_
1
= In :Eln&
1 .
., = 2 | ,(changingnton-1)
1
In—2 _Eln—S ....... (A)
Similarly oo
1
Il :E IO
7
j COS"X COS Nx = W

0

Example 4: Use a suitable reduction formula to evaluate

)
cos®x sin 3x dx
0

Sol: Let Imn = J. cos™ x sin nx dx

144



cosnx CoSNnx
= cos™ x (— jj {m cos™x (- sin x)} (— jdx
n n

[Integrating by parts]

1 m :
=- —cos™Xxcosnx- — I cos™?! x (cos nx sin x) dx
n n

1 m . .
=-—Ccos™Xcos nNx - — J cos™? x [sin nx cos X - sin (n-1) X]
n n

[*. sin (n-1)X = sin NX COS X - COS NX SiN X = COS NX Sin X = Sin NX €Os X - sin (n-1)x]

1 m . m 1o
=-— cos™Xxcosnx- — I cos™sin nx dx + — I cos™! x sin (n-1) x dx
n

n n

1 m m
Imn=-— cos™x cos NX - — Imn +— Im-1.n1
n n n

m 1 m
(1+ —j Imn =-—C0S™ X COS NX + — Im-1,n-1
n n

=
n
= (m+n) Imn=-cos™x cos NX + M In.1n1
cos”" xcosnx m
= |m,n =- + |m—l,n—1
m+n m+n
o cos" xcosnx . m o
= I cos™x sin nx dx = - + I cos™ x sin (n-1) x dx
m+n m+n
Put m =3, n=3in (1), we have
3
. COS’ XC0S3X 3 .
I cos®x sin 3x dx = - + .f cos?x sin 2x dx
3+3 3+3
cos®x sin 3x dx = E [0053 xcos3x]02+— j cos?x sin 2x dx
0 0
1 1 7 .
=-—-[0-1]+= J. cos?x sin 2x dx
6 2 9
% L 1%
cos®xsin3xdx==+— j cos? x sin 2x dx
0 6 2 0

Put

m=2,n=2in (1), we get
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COS® X COS2X .\ 2

I cos? x sin 2x dx = - J. COS X Sin x dx

2+2 2+2
7 . 7
'f cos? X sin 2x dx = 1 [cos2 XCOSZX]/2+1 ><1 j (2 sin x cos x) dx
5 4 o 2 23

7
-1[0-1]+1j sin 2x dx
4 44

-

{_ COSZX}%
2

0

[cos & - cos O]

R ool N

== - 2[4

NP o0

from (2), we get

2 . 1 1(1
cos®xsin3xdx=—+=| =
6 2\2

T 12

7
Example 5: If f(p, q) = 'f cosP x sin gx dx,

0

show that
(P+a) f(p,a)-p f(p-1,01)=1
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7
Sol: f(p, q) = _[ cosP x sin gx dx

0

Y2 %
{cosp x(—%ﬂ - J {p cosP* x (- sin x)} (__coqu) dx

0 0

[Integrating by parts]

1 p 7
=-=[0-1]- = j cosP? x (cos gx. sin x)dx
q a5
1 p 72
= —- — j cosP! x [sin gx cos X - sin (g-1)x]dx
a g5

—

0 7 D 7
- a j cosP x sin gx dx + — I cosP? x sin (g-1)x dx
0 a5

o |-

f(p,q) = 1 Ef(p, q) + Ef(p-l, g-1)
qa g q

=N (1+£jf(p, q) = 1, Ef(p-l, q-1)
q qa q

= P+a)f(P.a)=1+pf(p-1,9-1)
= pP+a)f(P.a)-pf(p-1,9-1)=1

*.* sin (g-1)x = sin gx cos X - oS gx Sin X = €0S gx Sin X = sin gXx cos X - sin (g-1)X]

Self-Check Exercise

7
I x2 sin x dx
0

Q.2 If Uy = X" sin x dx, and n > 1, prove that

7
|

n-1
Un + n(n-1) Upp = n(%j Hence evaluate Us

Q.1  Obtain a reduction formula for J. X" sin x dx and apply it to evaluate
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7
Q.3 If lmn = I cos™ x cos nx dx, Show that Imn = Im-101. Hence
0 m+n
7
evaluate I cos® x cos 3x dx
0
Summary

We conclude this Unit by summarizing what we have covered in it:-

1. Derived reduction formula for I x sin" x dx and I X cos" x dx

2. Derived reduction formula for I XM sin nx dx and .f XM cos nx dx

3. Derived reduction formula for I cos™ x sin nx dx and I cos™ x cos nx dx

4, Derived reduction formula for I sin™ x cos" x dx

5. Solved some questions related to above stated reduction formulae.

Glossary

1. A reduction formula for an integral is a formula which connects the integral with

one or two other integrals in which the integrand is of he same type but of lower
degree or lower order.

2. Ifl, = .f x sin” xdx, then its reduction formula is

xsin"txcosx sn"x n-1
+ — +

n= In-l

n n n
3. If lm n = I XM sin nx dx, then its reduction formula is
x"cosnx m . m(m-1
Imn= ———+— x™!sinnx - ¥ Im-2.n
n n n
4, If Im n = I cos™ sin nx dx, then its reduction formula is
cos™ X cosnx m
Im, n= + Im—l, n-1
m+n m+n
5. If lmn= I sin™ x cos" xdx, then its reduction formula is
sn™xcos™x n-1
Im, n= + m, n-2

m+n m+n
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8.9 Answers To Self-Check Exercises
Self-Check Exercise-1

Ans. 1 I Xn sin x dx = -x" cos x + nx"! sin x - n(n-1) j X"2 sin xdx

4
and 3i—6
4

4

Ans. 2 2% 152+ 120
16

57
Ans. 3 Isg3 = —
*” 64
8.10 References/Suggested Readings
1. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.
2. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.
8.11 Terminal Questions
7 n-1 1
1. If uy = I xcosndx, x >0, prove that un=| —— | Un2 = F
n
0
Hence evaluate us.
2. Find a reduction formula for I x* cos xdx
3. Find the reduction formula for _[ cos* x cos n xdx and hence find the value of
7
.[ cos® xcos2xdx
0
7
4, Use a suitable reduction formula to evaluate j cos® xcos3xdx
0
7 m
5. If Im'n = j COSm XSIﬂ nXdX ShOW that Im'n = + |m-1, n-1

! m+n  m+n

Hence evaluate s 3.
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Unit -9
Smaller Index +1 Method to Connect
jxm(a+ bx") dx

Structure

9.1 Introduction

9.2 Learning Objectives

9.3  Rule of "Smaller Index +1" to Connect Ixm(a+ bx")Pdxwith A Given Integral of the
Same Type
Self-Check Exercise

9.4 Summary

9.5 Glossary

9.6 Answers to self check exercise

9.7 References/Suggested Readings

9.8 Terminal Questions

9.1 Introduction

Reduction by connecting two integrals, also known as the Smaller Index +1 method, is a
technique used in integral calculus to simplify and evaluate certain types of integrals. this
method is particularly useful when dealing with integrals involving rational functions or when
faced with complex or difficult-to-evaluate integrals. The basic idea behind this method is to
express a given integral a sum or difference of two integrals, where one of the integrals has a
smaller index (power) than the original integral, and the other integral has an index that is one
greater than the original integral. By doing so, we can create a recurrence relation that allows us
to simplify and evaluate the integral iteratively. By applying the reduction by connecting two
integrals method iteratively, we can simplify and evaluate integrals that would otherwise be
challenging or impossible to solve directly. This technique is a powerful tool in integral calculus
and is widely used to solve a variety of integration problems.

9.2 Learning Objectives
After studying this unit, you should be able to:-
o Discuss rule of "Smaller Index +1"
. Discuss rule of "Smaller Index +1" to connect integral Ix"’(a+ bx")Pdx with a

given integral of the same type.

150



9.3  Rule of "Smaller Index +1" to Connect Ixm(a+bx”)pdxwith a Given Integral of the

Solve questions by connecting two integrals by using smaller Index +1 method.

Same Type

(i)

(ii)

(iii)

Let us improve our understanding of this method by looking at some following examples:-

Let P = x*1 (a+b x")Y*1 where X is the smaller of the two indices of x, and uis
the smaller of the two indices of (a+b x") in the two expression whose integrals

are to be connected.

dp

Find dx and express it as a linear function of the two expressions whose
X

integrals are to be connected.

Integrate both sides w.r.t. x, transpose, and solve for the integral given to be

connected.

Example 1: Connect Ixm(a+ bx") P dx

Sol: We have to connect jxm(a+ bx™)Pdx

with [ X" (a+bx")"*dx

(i)

(ii)

(iii)

Let P = x™1 (a + bx")P-1*
[Rule of "smaller index + 1"]
=x™1 (a+ b x")P

Then % = (m+1) x™ (a+b x"P + x™1, p (a+b x")PL. bnx™!
X

= (m+1) x™ (a+bx")P + pbnx™" (a+bx")P!

= (m+1) x™ (a+bxMP + pbnx™x". (a+bx")P?

= (m+1) x™ (a+bx")P + pnxm(a+ bx" —a). (a+bxmPt

[Note this step]
= (m+1) x™ (a+bx")P + pn x™ (a+bx")P - pn a x™ (a+bx")P?
= (m+1 + pn) Xx™ (a+bx")P - pn a x™ (a+bx")P?
Integrate both sides w.r.t. x, we have
P = (m+1+pn) j X"(a+bx")Pdx- pna J' X" (a+bx")P dx
Transposing, we get

(m+1 + pn) Ix”‘(a+ bx")Pdx =P + pna J.xm(a+ bx")P*dx
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Ix’“(a+bx”)”dx= P y P Ixm(a+bx")p‘1dx
m+1+pn  m+1+pn
m+1 ny\p
_ X (a+bx)" , pna Ixm(a+bx”)p*1dx

m+1+ pn m+1+ pn
[Substituting the value of P]
which is the required formula
Example 2: If X = a+bx", then prove that

XX P ,_Ppna

M [xmXPdx=
m+ pn  m+ pn

I X™X Pidx

X"X P b(m+np+n)
am am

(ii) j X™ X Px = j X™ X Peix

Sol: (i) We have to connect I X™ X Pdx with '[X’HX Pldxwhere X = a+bx"
Let P =x™I* XPLL = XM XP = x(a+bx")P

d_ mx™?! (a+bx")P + x™.p (a+bx")P*.bnx™?

dx

=m x™! (@a+bx")P + pn x™* (a+bx")P1.bx"

=mx™* (a+bx")P + pnx™* (a+bx")P* (a+ bx" — a)
= mx™? (a+bx")P + pn x™?! (a+bx")P - pnx™? (a+bx")P?
dP
d_ = (m+p") x™* (a+bx")P - pan x™?! (a+bx")P?
X
Integrating both sides w.r.t. x, we have

P = (m+pn), Ix’“(a+ bx")Pdx- pan J.x"”(a+ bx")Pdx
xm (a+bx")P = (m+pn) Ix"”(a+ bx")P dx- pan Ix"”(a+ bx")P*dx

= (m#pn) [xTH(@+bx")"dx=x"XP + pan [ X" (a+bx")" dx

XX P . _Ppna

- Ix””(a+bx”)pdx=
m+pn  m+ pn

j X" (a+bx")Ptdx

Hence the result

(i)  We have to connect Ixm(a+ bx") P dxwith jxm”’lxpdxwhere X = a+bx"
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Let P =xmit xe
= xMm Xp+l
= x™ (at+bx")Ptt
dP - m-1 nyp+1 m n n-1
o m x™* (a+bx")P™ + x™ (p+1) (a+bx")P nbx
= mx™! (a+bx")P (a+bx") + (p+1) nbx™"* (a+bx")P
=am x™! (a+bx")P + bm x™"1 (a+bx")P + (p+1) nbx™"! (a+bx")P
= am x™1 XP + bm x™"1 XP + (p+1) nb x™™1 XP
dP - m-1 m+n-1
ol am x™* XP + (bm+pnb+nb) x XP

Integrating both sides w.r.t. x, we get

P =am I X™"xPdx + b (m+pn+n) I X™ " xPdx
amJ.x””X Pdx = P - b(m+pn+n) jx””"lxpdx

X"X P b(m+ pn+n)
am am

= I XX Pdx = J' X™ " xPax

Hence the result
: : X"dx . : -
Example 3: Find reduction formula for I— and obtain the value of i.e. fxa(x3 -1 %dx

(-1
xTdx . meod Y%
Sol.: W t | ——ie | X"(X* -1 2dx
o e connec J.(x3—1)%le J

. X" . m3,u3 %
with J‘de ie. IX (x —1)}/dx

1y
Let P= x""3'+1(x3 —1) 3’

2

= xm-2 ( X3 — 1)§
2
Z—I: = (M-2) x™3(X° ~1)3+ x2 % (X —1) 3 (3x)
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= (M-2) X™2 (¢ - 1) ¢ =1) 2+ 2xm (xC —1) 73

= (Mm-2) x™ (x3—1)% - (M-2) xm2 (x3—1)%+ 2xm(x3—1)%

%Fx): mx™ (¢ 1) 2= (m-2) xm3 (x° ~1)

Integrating both sides w.r.t. x, we get

P=m [X"(¢-1) Sdx- m-2) [x"(~1) dx

m j X" (X3 —1)% dx=P + (m-2) J. X™3(x3 —1)% dx

X™3(x¢ —1) 5 dx

2
B m-2,.,3 _1\3 _
o [xnpe -y ke X, M2
m

X" 1 2 m-2 X3
m-2 3_13
I(X 1)y m> (x°-2)+ m I(Xg_l)%

which is the required reduction formula

Or

Putting m = 8in (1), we get

5

dx= 2 0 (% 1) P2 [

8

J' X

(g5 .
Putting m =5in (1), we get
X° 1 23 X2
= —x3( X =1)3+ — dx
I(X 1)}/ X ( ) I(Xs—l)%

X3 (x3 —1)§ + % J(x3—1)_% (3x?) dx

- 1y (¢ -1)s + .

[

(x 1)y

from (2), we get
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8 2 2

J.X—d)(:

(-1

2[ 6 3
= (X3_1)3 X_+3l+g
8 20 40
Example 4: Show that
J‘ dx _ X + 2n-3 J- dx
C+D"  2(n=-D(x+D"t  2(n-1) I (X +D™

Sol: We have to connect

j(xdrl) Le. [X°0¢ +1)"dx

with i.e. jxo(xz +1) " dx

dx
Joery
Let P =x%(x2+1)™
= x (x2+ 1)"1
P=1(X*+1)"+x (-n+1) (x2+ 1)"(2x)
= (x2+ 1)™1- 2 (n-1) (x2 + 1)"x?

= (@ + 1)™1- 2 (n-1) (2 + 1) (x2 +1—1)
= X2+ 1)™-2 (n-1) (x2+ 1)™1+ 2 (n-1) (x> + )™

B e @n-3) e+ )™ 2 (01) (2 + 1)

Integrating both sides w.r.t. x, we get

P=(n- 3)_..(x2 +1) " dx+ 2 (n-1) I(xz +1)"dx

%xe (x3—1)3+%x3 (1) % (x-1):

2

or _[ 21 dx = X2 _ 2n-3 I i 1 i
0D 22— D™ 2n=1) J (:C +1)"

Hence the result

Example 5: If U, = IX”\/aZ — x%dx, prove that
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n+2 n+2

Sol: We have to connect U, = J-X” (a® - Xz)% dx

with U, = Ix”‘z(a2 - xz)}/2 dx
}+l
Let P = x"2*1 (&% —x?)2
3
= x"! (a? —x?)?
dp 3

3 3 1
—X = (n=-Dx" (@ -x*)2 +x"?=(a®> - x*)?(-2x
X (n—=1)x™( )2+ 2( )2(=2x)

3 1
= (n—1)x"?(a® - x*)2 —3x"(a® - xX°)2

1 1
= (n=D)x"?(a° —x*)(a® —x*)2 —3x"(a® — x*)2

1 1 1
= (n=Da®x"?(a® - x*)2 —(n—-1)x"(a® — x*)2 —3x"(a® — x?)2

dp 2.,n-2 2 2 2 n 2 2 2
v = (n-Dax"“(a"—x%)2—(n+2)x"(a” — x°)?
Integrating both sides, we get
1 1
P = (n-1a°[x"*(a* - x*)?dx—(n+2) [ x"(a’ - X*)?
= P =(n-1)a? Uy - (n+2) U,
= (n +2) Un = -P+(n - 1)a® Un2

x”*l(az—xz)}/2 , n-1

= Un =
n+2 n+2

a2 Un-2

2
Example 6 : Calculate the value of _[Oaxm\IZax—xz dx (m being a positive integer) by the use
of reduction formula.

Sol. : We have to find a reduction formula for J.Xm\/2ax— X% dx
1
Now | X"\/2ax—x" dx = jxm 2(2a—x) 2
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[Form Ixm(a+ bx")? dx]
met m-1 1
Let us connect J.X 2(2a— X)}/Z dx with '[X 2(2a—x)? dx

rTH—E-Pl E-¢—1
LetP=x 2 (2a—X)2 [Rule of "smaller index +1" method]

met 3
=X ?(2a-x)?

1 R, 3
o _ [mﬁjx 2(2a-x)7 + X" 2.2 (2a-%)7(-1)
dx 2 2

1

1 m—é 1 3 m+1 =
=(m+5)x 2(2a—x)(2a—x)2—§x 2(2a—x)?

Mt 1 1 m-t 1 3 me 1
= (2m+1)ax 2(2a—x)2—(m+5Jx 2(2a—x)2—5x 2(2a—x)?

1 1 mt 1
= (2m+Dax ?(2a—x)2-(Mm+2)x 2(2a—Xx)2

Integrating both sides w.r.t. x, we get

mt 1 me L 1
P= (2m+Dafx ?(2a-x)2dx—(m+2) [x ?(2a—x)?dx
By transposing, we get

1 1 1 1
(2m+D)[ X" 2(2a-x)?dx=—P+(2m+1) a[x 2(2a—x)2dx

1 1 m-L 1
or .[x 2(2a—x)2dx=— P +(2m+1)ajx 2(2a—x)2dx
m+2 m+ 2
1 1 me L
X 2(2a-Xx)2 X 2(2ax—x2)%
or I—dx:- 3
x}/2 (m+2)x/2
mt 1
2 _ 2
N (2m+Da J-x (2a-x) dx
m+ 2 72
2
[+ 2a-x= 2ax—X ]
X
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m-1 _ 2 %
Ixm\/2ax—x2 dx=- X ((2ax 2)X) + (2212‘3 Jxm‘l 2ax—x* dx
m-+

which is the required reduction formula
Now

X" 2ax—x? dx

0 0

2a
_fzaxm 2ax— X2 dx = X" (2ax X) " + (2m+da J-Za
(m+2) m+ 2

- M J.zaxn‘“l«, aX—XZ dx (1)

m+2 Jo
Changing m to m-1, we get

2a

2m+1
, i 2ax—2 dx = 2m+ha

22 m2 2
> J'O X 2ax— X~ dx ..(2)
From (1) and (2), we get
(2m+1(2m-1) o 2

. *x™2\2ax— x2 dx
(Mm+2)(Mm+1) 0

2a
_[0 X"/ 2ax—x? dx =

Proceeding in this way, we get

J-Zaxm a2 dx = (2m+1)(2m—1)....tomfactors.am- Zaxwmmdx
0 (m+2)(m+1)....to mfactors 0

2m+1,2m-1, ... isan A.P., . m"term=2m+ 1+ (m- 1) (-2) = 3,

andm+1,m-1,... isan A.P., . mhterm=m+ 2+ (m - 1) (-1) = 3]
2m+1)(2m-1).......... 3 2a >

a™ | /2ax— X2 dx ...(3

(Mm+2)(M+1).......... 3 IO )

Now

["V2ax—x dx = [ \[-(¢ - 2a%)

- joza\/—(x2 —2ax+a?)+a’

2a

a

[y {(Xaﬂa;“af o2 gt

0

2 2
2 §nt- a—sin’l(—l)
2 2
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I}
|
a

From (30, we get

a _ 2
J-z " J2ax 3 dx = 2m+1)(2m-1).......... 3 an &
0 (Mm+2)(m+17).......... 3 2

_ (2m+1(2m-1).......... 3 a

(M+2)(M+D).......... 3 2

Example 7 : If I, = x" \/a—Xx prove that

2
(2x+3) In= —2xn(a—x)*+2an |,

Hence evaluate Ioaxleax—xz dx
Sol. : Hence I, = IXZ\/a—xdx, Ih1 = J’X'H\/a—xdx

we have to connect
1 1
jx”(a— X)2 with jx”’l(a— X)2 dx

1
—+1
LetP = x**(a-x)?

3
= X'(a—x)?
3 1
Z—I: = X" (a—x)2 +x”g(a—x)2(—1)
13 L
nx"*(a—x)(a—x)?2 +§x”(a—x)2

1 1 1
nax"*(a—x)2 —nx"(a—x)2 —g X"(a—Xx)2

1 1
a® nax"*(a— x)2 —(n+§] x"(a—x)2
dx 2

Integrating both sides w.r.t. x
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1 1
P=na _[x”‘l(a—x)z dx 2n+3 jx“(a— X)2 dx

2n+3

jx”\/a—x =-P+na J.x”’lxla—xdx

= (2n + 3) jx”\/a—x dx = —2x"(a—X)2 +2an J'x“\/a—xdx ..(1)

3
= (2n +3) In= -2x"(a—x)? +2an I

From (1), we get

.[x“\/a—x dx = - x"(@a—x mJa—xdx
2n+3
& n [ _ 3 2an pa —
J.Ox\/a xdx = n [x (a—x) 2}0 2n+3fox Ja—xdx
=2 (0-0)+ 2an J'ax”‘%/a—xdx
2n+3 2n+3 Jo
2an a

or J'x\/ —Xdx= - J *Ja—xdx (2

Putting n = g in (2), we get

2
5 2ax
J-Oaxixfa—xdxz - —5J‘ X/2Ja—x dx

2x—=+3
5

5
jo x2Ja-xdx = - gafjx%\/a—xdx (3

Putting n = g in (2), we get

3
2
_|'x2 -Xxdx= - - ZJ‘ %\/_dx

2x— +3
2
= % J'Oa«/ax—x2 dx
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N o

dx

N o
N
N

1l
N |
—
K_H
o
+
!D
3
Py
e
\—ﬂf_J
r—’%\
o
+
| 9,
(2]
=)
—~~
N’
%r_l
L

_aja x &«
218 2 8 2
a ra’
= —X
2 8
_na’
16
From(3) we get
3
J' x2 —X dx = @ x 7a
8 16
a 4
J‘XZ a—X2 _ 572'3.
0 128

Self - Check Exercise

Q.1 Ifx=a+bx" then prove that
XX P , M+ pn+n
na(p+1) na(p+2

jx”“xp dx = - J‘x”“xp+1 dx

Q.2 Connect J’x"”(a+ bx")P dx with

8
J.X”H] '(a+bx")P dx and hence evaluate I

e
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m

If Im,n = Im dX, then

= (n'l) Im,n = 'Xm_l (X2 + 1)-(“—1) + (m - 1) Im.z' n-1

Q.4 Obtain a reduction formula for

dx . e
Jﬁ , Where n is a positive integer.
(a”+x9)
9.4 Summary
We conclude this Unit by summarizing what we have covered in it:-
1. Discussed "Smaller Index +1 method".
2. Discussed the rule of "Smaller Index +1" to connect I X™ (a + bx")P dx with a
given integral of the same type.
3. Solved questions related to reduction by connecting two integrals by using
smaller Index +1 method.
9.5 Glossary
1. Reduction by connecting two integrals, also known as the Smaller Index + 1
method.
2. Basic idea behind Smaller Index + 1 method is to express a given integral as a
sum or difference of two integrals, where one of the integrals has a smaller index
(power) than the original integral, and the other integral has an index that is one
greater than the original integral.
9.9 Answers To Self-Check Exercise

Self-Check Exercise

Ans. 1 By connecting J. X™-1 xP dx with
I xm-1 XP+1 dx, we get the result.

x""(a+bx")*  a(m-n)
b(m+ pn) b(m-+ pn)

Ans. 2 Ix"”(a+ bx")Pdx = J'X"H“l(a+ bx™)P dx

8 20 40
Ans. 3 By connecting Imn = Ix—mdx
(X +D"
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9.7

9.8

m-2

, X
with  Imon1 = IW dx, we get the result.
AnS.4I 212 dx= 2 Xz IvE 22n_3 J. 2dX2 1
(@ +x°)" 2a°(n-D(@ +x)" 2a°(n-1) 7 (@ +x°)"
References/Suggested Readings
1. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.
2. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.
Terminal Questions
1. What are the integrals with which I x™*(a+bx")Pdxcan be connected by
reduction formulae?
2. If X =a + bx", then prove that
Xm—nx p+1 _
J.x"“x Polx = j __Mm=n jx"”x Pdx
bn(p+1) bn(p+1)
3. Prove that
2n+1 2n+1 2n-1
2n+1
2 2\ o _ 2 2\ 2 2 2 2y 2
a +Xx a+ + a a +X dx
J@+xt) 2 = —— (@+x) 7 +==a* [(a®+X)
5
4 Find j(a2+x2)2dx
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Unit - 10
Smaller Inex+1 Method

To connect jsjnpxcosq xdx

And Reduction Formulae

7 7
For jsjn" xdx jsinpxcosqxdx
0 0

Structure

10.1 Introduction
10.2 Learning Objectives

10.3 Rule of "Smaller Index +1" to Connect Ignpxcosq xdx with A Given Integral Of The
Same Type
Self-Check Exercise-1
7

10.4 Evaluate j sin” xdx where n is A Positive Integer
0

10.5 Evaluate I cos"xdx, where n Is A Positive Integer

Self-Check Exercise-2
7

10.6 Evaluate J. sin® xcos’ xdx, Where p And g Are Positive Integers
0

Self-Check Exercise-3
10.7 Summary
10.8 Glossary
10.9 Answers to self check exercise
10.10 References/Suggested Readings
10.11 Terminal Questions
10.1 Introduction

The "smaller index + 1 rule" is a technique used in integral calculus to connect a given
integral with another integral of the same type. This rule is particularly useful when the given
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integral is difficult to evaluate directly but can be related to a simpler integral. The rule states
that if we have an integral of the form I f (X)dx and we can rewrite as J.g'(x)dx, where g(x is a

function, then we can establish a connection between the two integrals by applying the "smaller
index + 1 rule". This rule is often employed when dealing with definite integrals, where the limits
of integration are specified. The rule states that if you have an integral with a certain index or
variable, and you want to connect it to an integral with the same type but a different index, you
can simply increment the index by + 1. By applying this rule, you can establish a relationship
between the integrals and use it to simplify calculations our solve problems more efficiently.

10.2 Learning Objectives

After studying this unit, you should be able to:-

Discuss rule of "Smaller Index +1" to connect J.sin”xcosq xdx with a given
integral of the same type.
Solve questions of integrals of this type by smaller Index +1 method.

7

Evaluate integral of the type I sin" xdx, where n is a positive integer.
0

7
Evaluate integral of the type I cos" xdx, where n is a positive integer.
0

Evaluate integral of the type I sin® xcos® xdx, where p and g are positive
integers.

Solve questions related to these types of integrals.

10.3 Rule of "Smaller Index +1" to Connect _[sinpxcosq xdx with a Given Integral of the

Same Type

(i)

(ii)

(iii)

Let P = x**1 x cos Y *1x, where 2 is the smaller of the two indices of sin x, and uis
the smaller of the two indices of cos x in the two expression whose integrals are
to be connected.

. .d : . . :
Find d_p and express it as a linear function of the two expressions whose
X

integrals are to be connected.

Integrate both sides w.r.t. x, transpose, and solve for the integral given to be
connected.

Let us improve our understanding of this rule by looking at some following examples:-

Example 1: Connect Idnp xcos? xdx with
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Sol:

Let

Or

jsin"’2 xcos® xdx
We have to connect
J’sinp xcos” xdx with J‘sin"*2 X c0os™ xdx
P= I sin® " xcos™ x
[Rule of "smaller index+1"]
= sinP! x cos*t x

d : _
P (p-1) sin”2x cos x cosx + sinP*x. (q+1)

dx
dp inp-2 +2 i
o = (p-1) sinPx cos%“ x - (g+1) sin® x cos?x

= (p-1) sin2 x cos® x cos?x - (q+1) sin® x cosx

= (p-1) sin2x cos%% (1-sin?x) - (q+1)

= (p-1) sin2x cos - (p-1) sinPx cosx - (g+1) sin’x cos9x
= (p-1) sinP2x cos - (p+q) sinPx cos’x

Integrating both sides w.r.t. x, we get

P=(p-1) 'fsin"‘2 xcos? xdx - (p+q) J'sinp xcos? xdx

By transposing, we get

(p+a) jsinp xcos? xdx = -P + (p-1) Isin"*2 xcos? xdx

jén"xcos‘*xdxz— + p-1 Isin”‘zxcosq xdx
pP+q p+q
i~ Pp-1 g+1 _
__Sn" xcosTx p-1 Ignp’zxcosqxdx
p+q p+q

which is the required reduction formula,

Example 2: If Inn = ISiﬂm xcos” xdx, then prove that

|m,n -

sin™* xcos™ X, m+n+ 2
m+1 m+1

dx
cosxsin® x

Im+2,n

Hence evaluate I
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Sol: We have to connect Iymn = J.sinm Xxcos" xdx

with  Imsan = I sin™? xcos” xdx

Let P =sin™x cos™x
dp inm n+1 inMm+1 n i
d_ = (m+1) sin™x cos x cos"™x + sin™!x (n+1) cos"x (-sin X)
X

= (m+1) sin™x cos" X cos?X - (n+1) sin™?2x cos"x

= (m+1) sin™x cos"x (1-sin?x) - (n+1) sin™2x. cos"x

= (m+1) sin™x cos"x - (m+1) sin™2x cos"x - (n+1) sin™?x cos"x
dp

— = (m+1) sin™x cos"X - (m+n+2) sin™2x cos"x

dx

Integrating both sides w.r.t. x, we get

P = (m+1) Ignm xcos" xdx - (m+n+2)'|.sinm+2 xcos" xdx

(m+1) Isinm xcos” xdx= P + (m+n+2)'fsin”‘+2 xcos” xdx

. sn™ xcos™x m+n+2 . .
Isn’“ xcos” xdx = + Isn”‘*zxcos” xdx
m+1 m+1
sn™ xcos"™x m+n+2
Im’n = + m+2,n
m+1 m+1
which is the required reduction formula.
dx
To evaluate J —
cosxsin® X
Puttingm =-4,n=-1in (1), we get
(snx)Pcos’x -4-1+2
l41= + l2,1
-3 -3
i.e. |.4,.1 = - 35 n3 X + |.2,.1 ..... (2)

Now put m =-2, n =-1in (1), we have

(sinx)*cos’ x , 2-1+2
-1 —2+1

l21= 0-1

1 i 0 -1
=- — + | 9n” x(cosx) " dx
sin X I ( )
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1 1
=-— + I dx
sin X COS X

1
=- — +Isecxdx
sin X

1
lo1=- + log |sec x + tan x|
X

from (2), we get

dx 1 1
J' — = - ———-——+log [sec x + tan x|
sin® XCos X 3sin” X sinx

Example 3: Use suitable reduction formula to evaluate

dx

J-sin4 X
cos® X
Sol: We will show that
sin®*xcos™ x , P-1

g+1 q+1

js‘inp xcos® xdx = - J’sinp’2 XC0s*? xdx

Let P = sinP2*1x cos*ix

= sin”1x cos"*1x

d
d—s = (p-1) sinP?x cosx cosx + sin®*x (g+1) cos (-sin x)
dp .

Or o (p-1) sinP?x cos¥*2x - (g+1) cos cos’ x

Integrating both sides w.r.t. x, we get

P = (p-1) J‘sinp‘2 Xxc0s™2 xdx - (q+1) .[sinp xcos? xdx
(q+1) jsinp xcos” xdx = -P + (p-1) _[sinp’2 xcos™2 xdx

sin®* xcos®* x , p-1
q+1 q+1

= J‘sin"xc:osq xdx = - jgnp’zxmsq*z xdx

Putting p =4, q = -2, we get

H3 Hec} -1 4_1
J-sm de:-sm X(cosX) .

sin? x(cosx)°dx
cos® X -2+1 -2+1 j ( )
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sn®x 3

= - = _[25in2 xdx
cos X 2
. 3 3
=3nx = J.(l—COSZX)dX
cos X 2
_sin’x 3 (X_sin2x]
cos X 2 2
sn®x 3 3
= - —X+ —sin 2x
cos X 2 4
Example 4: prove that
J- dx B 1 N p+q-2 J~ dx
sin®xcos’x  (g-1sin"'xcos®tx g-1 - sin®xcos'?x
and have evaluate ———
Sin Xcos” x
dx

Sol:

Let

We have to connect J.ﬁ
sin® xcos' X

. dx

with jﬁ
sin® xcos™™“ x

P = sin®?*x cosa*1x

d
d_)F:: (-p + 1) sinPx. cosx. cos¥*1x + (-q + 1) cosx (-sin x) sin®™*1x

= (-p + 1) sin®x cos™2x + (g-1) cosx SinPx. sin?x
= (-p + 1) sinPx cos*2x + (g-1) cosx sinPx (1-cos?x)
= (-p + 1) sin®x cos¥*2x + (g-1) cosx sin®Px - (g-1) sinx cos*2x

d
d_s = (-p + 2) sin?x cos¥?x + (g-1) sin®x cosx

Integrating both sides w.r.t. x, we get

P=(p-q+2) J'sin’p Xcos 2 xdx + (g-1) Isi n P xcos 9 xdx

T §n? xcosTx P sin® xcos®? x
J- dx B dx N (p+q-2) dx 1)
sin®xcos’x  (q-1)sin®*xcos™" x q-1 sn’xcos™*x
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which is the required reduction formula
Puttingp=1,q=4in (1), we get

dx 1 dx
j - 7 = 3 + I - >
SiNXCoS' X  3sin° X Sin XCos~ X

Puttingp=1,q=2in (1), we get

J dx _ 1+Idx_1+ICOSGCXdX

SNXcos’X COSX Y sSinX CosX

dx
J ; = - log |cosec x + cot X|
Snxcos’X  COoSX

ax 1
sinxcos’x 3sin®x cosx

from (2), we get I

1
+ - log |cosec x + cot x|

Self-check Exercise-1

and hence evaluate Isinz xc0os® xdx

sin™! xcos™™ x n-1

Q.1 If lmn = Isinm x00s" xdx, Show that Inn = + -1

m+n m+n

Q.2 Use suitable reduction formula for evaluate Ising XCoS” X

7

10.4 Evaluate ISiﬂ” xdxwhere n is A Positive Integer
0

Let us connect Ign” xdx with _[si n"?% xdx
ie. Isinn xcos’ dx with IQ n"2 xcos’ dx
Let P = sin™?*! x cos®*! x
= sin™! x cos x
dp

™ =(n-1) sin™ x cos X cos X + sin™ x (-sin x)
X

=(n - 1) sin™? x cos? x - sin" x
=(n-1)sin™ x (1 - sin? x) -sin x
=(n-1)sin™?x - (x- 1) sin" x -sin" x
=(n-1)sin™ x - nsin" x
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Integrating both sides w.r.t. x, we get
P=(n-1) J‘sin”‘2 xdx—n Isin“ xdx
Transposing,

n '[sin“ xdx =-P + (n - 1) J‘sin”‘2 xdx

-1
Ism”xdxz-— + —= |sin™? xdx
n
sn"*xcosx n-1 -
= — Isn" 2 xdx
n n
% - N-1 % %

. SiN™ XCOS X n-1 .
J'sm” xdx = {— } + Ism” 2 xdx
0 n 0 n 0
) n—1 )

J.sin“ xdx = —— Jsin”‘2 xdx
0 n 0

T
[~ whenx= E sin™ x cos x = 0, and when x = Q]

if nis a +ve integer > 1]
Changing n to n-2,

;on-4

) V2
n-3
—— | sin"" xdx

f sin"? xdx =
0

._.\

n

o

Substituting this value of n"? xdx in (1), we have

—2
)
jsi

7

j sin" xdx = w
0 nn-2) 3
Generalizing from (1) and (2),

Case | If nis a positive odd integer,

72 7
Isin” X = (n-H(n-3)....... 2 Isinlxdx
0 n(n-2)........ 3 5

_ (n=)(n-3)......2 A
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jsin”‘4 xdx (2

(1)

[ Isinlxdx = [—cosx];y2 =-[0-1]=1]
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Case Il : If n is a positive even integer,

72 72
Isin” wlx = (n=DH(n-3)....... 1 ISiI‘IOXdX
5 n(n-2)........ 2 3%

Note : Working rule to write down the value of

7

I sin" xdx, where n is a positive integer.
0

7

J'sin“ xdx =
0

(n—1x go ondiminishing by 2 o . :
—— — only if n is a positive even integer
n x go on diminishing by 2 2

(otherwise no. E)’ each series of factors being continued so long as the factors are positive

(i.e. omitting zero and negative factors)

7

10.5 Evaluate ‘[sin” xdx , where n Is A Positive Integer
0

Let us connect Icos” xdx with J‘cos"’2 xdx
i.e. Isi n°® xcos" xdx with _[sino x00S"? xdx
Let P =sin®*! x cos™?*1x [Rule of "smaller index +1"]
= sin x cos™? x
dp " . 5 .
d_ = cos x cos™* x + sin x (n-1) cos™= x (-sin x)
X
= cos" X - (n-1) sin? x cos™? x
= cos" x - (n-1) (1 - cos? x) cos™? x
=cos" X - (n-1) cos™?x + (n - 1) cos" x
=cos" x - (n-1) cos"™? x
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Integrating both sides w.r.t X, we have w.r.t. X, we have
P=n Jbos“ xdx—(n—1) J'cos“‘2 xdx

By transposing, we get
n Ic;os4 xdx =P + (n—l)J'cos“‘2 x dx

P n-1
J'cos“ xdx = — + —J.cos”‘zxdx
n n
snxcos™x n-1 :
or J'c:os4 xdx = + Icos” 2 xdx
n n
T T T,
72 n sinxcos™* x 72 n—lé -
jcos X dx = + Icos X dx
0 n 0 n 0
[Now where x = —, sin x cos™? x = 0, if n is a +ve integer > 1
and when x = 0, sin x cos™! x = Q]
7 n—17?
Icos“xdx = — J'cos"’zxdx (1)
n
0 0

Changing n to n-2, we have

7

. n-3 7%
J'cos" Zx dx= ——
5 n-2

cos™™ x dx

7

Substituting this value of I cos™? x dxin (1), we get
0

7

7
J' cos" X dx (n-DH(n-3

72
I cos™* x dx (2
n(n—2) 0

Generalizing from (1) and (2), we get
Case | : If n is a positive odd integer,

7 7
j cos" x dx (n-J(n-3)....2 I cos’ x dx
5 n(n-2)....3 ¢

7

[Now .[coslx dx= [sinx]?2 =1-0=1]
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7 72
[Now jcosoxdx=fldx = [x];% = %]
0 0

7

J' cos" x dx
0

V.5
2

Working rule to write down the value of _[ cos" x dx, where n is a positive integer :
0

7
Same as the rule to write down the value of j sin" x dx
0

Let us consider the following examples to clear the idea :-

7
Example 5 : Write down the value of j sin®6 do
0

7
Sol. : jsingﬁ do

0
7

Compare with j sin"@ dd, heren=8
0

7

[sin®o do = 7531 @

) 8.6.42 2

[%('-' n =8, a+ +ve even integer)]

(n=1)x goondiminishing by 2

[By using the formula .
n x go on diminishing by 2

> only if n is a +ve even integer]
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7
[sin®0 do = .
O 256
7
Example 6 : Evaluate _[sin3t9 do
0

7 2
Sol. : jgn39 de = =
) 3

7 16
Example 7 : Show that J.Sin7 3xdx = —
0

105
™%
Sol.: Letl= I§n73x dx
0

Put3x=0, ... 3dx =d6
= dlede
3
When x=0,0=0

When x=£,9=z
6 2
L 7
== jgn79de
3 0
1 753

3642
_ 16
105

T,

2
Example 8 : Write down the value of _[ sin’@ dé
0

i
Sol. : js‘ngede _ 8642 128
! 9.753 315
dx 7531 =7

1+x3)° 8642 2

Example 9: Show that I:
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o dx

Sol.: Letl=| ———
IO 1+x°)°

Putx=tan 0

. dx=sec?6do

Whenx=0,tan0=0=0=0

= = -7
When x=oo,tan 0 =0 = 0 = /2

7 sec’ 0 do

¢ (L+tan’6)°

%secze do
sn g

0

7
= Jcosge dé
0

_ 7531 1
8.6.4.2 2

Self-Check Exercise-2
)

Q.1 Evaluate J. sin* x dx
0

5za°

6
a X
Q.2 Showthat | dx =
NP

7
10.6 Evaluate _[ sin® xcos’ x, Where p And g Are Positive Integers
0

Let us connect J.sinp xcos? x dx with J.sin"’2 xcos? x dx

Let P = sinP?*! x cos*! x
[Rule of "smaller index +1"]
= sin”2*1 x cosd*! x

dP : . .
Then O =(p - 1) sin®? x cos x cos®?! x + sin®! x (q + 1) cos®*! x (-sin x)
X
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=(p-1)sin"2x cos? x - (q+1) sin® x cos? x
= (p - 1) sinP?2 x cos? x + cos? X - (q + 1) sin® x cos? x
=(p-1)sin"2x cos?x (1 -sin?x) - (g + 1) sin® x cos? x
=(p-1)sin"2xcos?x-(p-1)sin®x cos?x - (q+ 1) sin® x cos? x
=(p-1)sin"2x cos?x - (p + q) sin x cos? x

Integrating both sides w.r.t. X, we have

P=(p-1)I sinp'zxcosqxdx-(p+q)j sinP x cosY x dx

By transposing, we get

or

(P+Q)I Siancosqxdx=-P+(p-1)I sinP2 x cosY x dx

sec”* xcos™ x  p-1
+

I sinP x cos? x dx = - j sinP2 x cos® x dx

p+q p+d
% p-1 g+1 % %
'[sinpxcosqx dx = [_sec XCOS X} + p-1 jgnp‘zxcosqxdx
0 p+q o P+q %

[when x = % , sinP1x cos™ x =0

(* gis a +ve integer) and when x = 0,
sinP! x cos™! x = 0, if p is a +ve integer > 1]

% o1
Ignpxcosqx dx= —= jgnp’zxcosqxdx (1)
0 P+d %
Changing p to p-2 in (1), we get
% 5 %
j Sin"2xcos? x dx = —P—°_ j sin®* xcos® x dx
0 pP+Q-2 g
7
Substituting this value of I sin?? xcos® xdx in (1), we have
0
% %
J'sinpxcosqx dx = (p—D(p-2) J'sinp’4 xcos? x dx (2
0 (p+a)(P+0-2) 4

Generalizing from (1) and (2), we get
Case | : If pis a +ve odd integer,
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72 72

2
'[sinpxcosqx dx = (P-D)(P—3).....2 sin* xcos® x dx
0 (p+a)(P+g-2)....(d+3) ¢
7 ™
But _[sinlxcosq xdx = - Icosq X(—sin x) dx
0 0
_ _cosq”x 72
q+l |,
1
= - [0-1
q+1 [ ]
-1
q+1
)
'[sinpxcosqx dx = (P-D)(p=3).....2 . 1
0 (p+a)(p+g-2)....(d+3) gq+1

Case Il : If p is a +ve even integer,

72 72

jsinp xcos? X dx = (p-H(P-9I)....1 fsinz xcos® xdx
0 (p+a)(p+9=-2)....(d+2) q
7
(P=D(p=3)....1 2cosq dx ..(3)

C (p+a)(p+q-2)...(q+2) ¢

Sub-case (i) If q is a +ve odd integer, then from (3),

?Sinpxcosqxdxz (p-D(p-3).....1 -(q—l)(q—3) ....... 2
0 (p+q)(p+g—2)....(a+2) g(q—2)............ 3

Sub-case (ii) If g is a +ve even integer, then from (3), we have

7

Ignpxcosqxdxz (p-H(p-3...1  (@-9(@-3)....1 7

0 (p+q)(p+g—2)....(a+2) a(q—2)............ 2 2
7

Working rule to write down the value of _[ sin® xcos® x dx
0

where p, g are positive integers
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(p—2Dx goondiminishing by 2x (p—1)x go on diminishing by 2 T
(p+9q) x goondiminishing by 2 )

Only if both p and g are positive even integers (otherwise no%), each series of factors

being continued so long as the factors are positive (i.e. omitting zero and negative
factors)

Let us consider the following examples to clear the idea :

7

Example 10 : Write down the value of j sin®#cos’ 4 db
0

)
Sol. : J-SiHSQCOSGQ do
0

7
[Compare with J sin®@cos’x df, herep=5,q=6
0

4.2x53.1 /4
= — no. —, °.© p(=5), g(=6) are not both +ve even integers
1107531 [no. .= P(E9). a(=6) gers]

(p—2x goondiminishing by 2x(p—21) x go on diminishing by 2 z
(p+q) x goondiminishing by 2 2

only if both p and g are +ve even integers]

_ 8
693
7
Example 11 : Write down the value of I sin® xcos® x dx
0
7
Sol. : J‘sinz‘xcos4 xdx = M z
0 12.10.8.6.4.2 2
Iz
2048
7

Example 12 : Find the value of J. sin’™ @ cos™ B d@ , for positive integral values of m and n.
0
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)
Sol.:- Let | = jsinzmé’cosZ”Q dé =
0

[ 2m, 2n are both positive even integers)

2a
Example 13 : Evaluate Ix3\/2ax+ X2 dx
0

2a
So. : Letl= Ix3\/2ax+ x?dx

0
Put x = 2a sin®0,
dx =4a sin 0 cos 0 do
When x =0, then2asin?6=0=sin6=0=0=0

Whenx=2a,then2asin29=2a:>sin6=O:9=%

7
j (2asin® 0)° \/2asin® —4a’sn* 0 4a sin 6 cos 6 d 0
=0
7
= J8a33in69.2asin0c030. 4asin®cos0do
0
7
- 642’ I sin® @ cos’ 6do
0
7531
_ 5—m
=642°10864.2 " 5
_ Tr&
8

Self-Check Exercise-3

7
Q.1 Write down the value of I sin* @ cos’ dH
0

7
Q.2 Write down the value of J. sin® @ cos® xdx
0
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g 3
Q.3 Evaluate sz(az + x2)/2 dx
0

10.7 Summary

We conclude this Unit by summarizing what we have covered in it:-

1.

5.

Discussed rule of "Smaller Index +1" to connect Jﬁnp xcos? x dx with a given
integral of the same type and solved questions related to this type of integral.

72

Evaluated integral of the type J' sin" x dx, where n is a positive integer.
0

7
Evaluated integral of the type I cosn x dx, where n is a positive integer.
0

7

Evaluated integral of the type I sin p x cos® x dx, where p and q are positive

o

integers
Solved questions related to above stated integrals.

10.8 Glossary

1.

The "smaller index + 1 rule" is a technique used in integral calculus to connect a
given integral with another integral of the some type.

Sin x dx = (n—I)xgoondiminishingby 2 =

. only
5 nxgoondiminishingby2 2

If n is a positive even integer (otherwise onE), each series of factors being

continued so long as the factors are positive (i.e., omitting zero and negative
factors).

10.9 Answers To Self-Check Exercise
Self-Check Exercise-1

Ans. 1 Connect j sin™ x cos” x dx with

I sim™ x cos™2x dx, we get the required reduction formula

- . sin®xcos’x | sin®xcosx | 1
and J sin® x cos* x dx = + + — | X—
6 8 16

sin2xj
2
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Ans. 2 Connect I sin™ x cos" x dx with J sin™2 x cos" x dx, we get the reduction
formula as

sin™ xcos™ x

J' sim™ x cos" x dx =
m+n

m-1
m+n

+

I sin™2 x cos” x dx

. 1. 2
and J sin® x cos? x dx = - =sin? x cos® X - — cos® x
5 15
Self-Check Exercise-2
Ans. 1 3—”
16

Ans. 2 By substituting x = a sin 0, we get the required result
Self-Check Exercise-3

Ans. 1 3—”
5/2
Ans. 2 i
315
6
Ans. 3 ﬁ
32
10.10 References/Suggested Readings
1. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.
2. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.
10.11 Terminal Questions
1. If lmn = _[ sinm x cosn x dx, then show that
Lo sinm‘lxcos”*lx+ m+n+2,
" m+1 m+1

Hence evaluate

sin* xcos®™ x
p+l

2. Show that I sinP x cosY x dx =
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q-1
p+1

+

I sinP*? x cos%? x dx

Show that

J‘3 x* dx = 3ra
0

NE 16
Show that

T dx  _ (2n-2)(2n-4).....2
0 Lex)"e  @n-D@n-93)....3

Write down the value of

7
cos® x sin? x dx
0
)
Show that [ sin®™ 6 cos®™! 0 do
0
(2m-2)(2m-4)....... 4.2

= , m being a positive integer > 1
(4m-D(4m-3).......(2m+1)

Evaluate j x4 (1— x2)32 dx
0
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Unit - 11

Length of An Arc of A Plane Curve

With Cartesian Equations

Structure

11.1  Introduction

11.2 Learning Objectives

11.3 Some Definitions

11.4  Arc Forfula For Cartesian Equation
Self-Check Exercise

11.5 Summary

11.6 Glossary

11.7 Answers to self check exercise

11.8 References/Suggested Readings

11.9 Terminal Questions

11.1  Introduction

Dear Students, you are already familiar with the idea of a curve. Here we are to find the
length of a curve.

Let AB the curve defined by continuous function y = f(x) on [a, b]

Y
&

P (_\gﬂ ™

I

» X

Ol a=x; % X X
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Let P ={a = Xo, X1, X2,......Xn-1, Xn = b} be a partition of [a, b] into n equal parts, each of length

h, where h = E.
n

Let Pi (xi, f(x;))) be a point on the curve AB. Then Py = A, P, = B. Now Py, P4, P,......, Py are
consecutive points on the curve. Join each pair Pi.1, P; of consecutive points by line segments
and we get broken lines PoP4,.....,Pn1Pn. When n is very large, the line segment Pi.1P; will be the
approximate part of the curve which corresponds to the sub-interval [Xi.1, Xil.

as n — oo, the broken line approaches the curve.

Let L, denote the sum of lengths of segments of broken lines, then
L= > IP4R
i=1

If |_t L, exists, then it is called length of the curve and is denoted by L. The number L, if

N—o0

it exists, is unique.

Let AB the curve defined by continuous function y = f(x) on [a, b]

Let P = {a = Xo, X1, X2,.....Xn-1, Xn = b} be a partition of [a, b] into n equal parts, each of

length h, where h = b-a
n

Let Pi(i, f(xi)) be a point on the curve AB. Then Po = A, P, = B. Now Po, P31, P,.....,P, are
consecutive points on the curve. Join each pair Pi1, P; of consecutive points by line segments
and we get broken lines PoPs,......,Pn.iPn. When n is very large, the line segment Pi.1P; will be
the approximate part of the curve which corresponds to the sub-interval [xi.1, Xi]

as n — oo, the broken line approaches the curve.

Let L, denote the sum of lengths of segments of broken lines, then
n
L= |R,R|
i=1

If |t L~ exists, then it is called length of the curve and is denoted by L. The number L, if

N—o0

it exists, is unique.
11.2 Learning Objectives
After studying this unit, you should be able to:-
. Define curve, rectifiable curve, rectification.

. Derive are formula for Cartesian equation.
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11.3

11.4

. Do questions related to length of the curves.
Some Definitions

Curve:Let f be a continuous function on [a, b]. Then the graph of f on [a, b] i.e. [(X),
f(xX)): a<x < Db}is called a curve.

Rectifiable Curve: A continuous curve, which has length, is called rectifiable.

Rectification: The process of finding the length of an are of a curve between two given
points is called rectification.

ARC Formula for Cartesian

Equation : If c is a curve defined by y = f(x), where f has a continuous derivative f'(x) on [a, b],

Proof:

Now

b
then the length of the curve c is given by I JIH F1 (%)} dx

Let P = {@a=X;, X, %1 X g3 X seeeeees X 10 X, =D} b @ partition of [a, b] in n equal parts

each of length h so that nh = b - a. Then Pi1 < (X1, f(X1)) and P; (i, f(xi)) are two
consecutive points on the curve C. (Refer figure of 11-1)

IRLR1= {06 %) +{F (%)~ F (%)

- )= f(X.0) 2
P.P|=|x-x_| .11 (1
IPLR =[x x|J+{ X x. } (1)

f is continuous and differentiable in [a, b]

f is continuous and differentiable in |)§71, >g|

by Lagrange's Mean Value Theorem, there exists a point
Fx) - f (%0

-1

Ci € (X_4, %) such that = f'(c) ..(2)

From (1) and (2), we get, | PR [=]x —x_| 1/1+{f '(q)}2

Or

IR I=h1+{f () []% =x|=h]

Now length of arc = |_{ La

n—o0

n

where L= > |P_P|

i=1
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= Zl]h,/u{f'(q)}z
Lt L= Lt 2011

= Lt Zl:h,/1+{f'(q)}2

*n—>ow=h—0=lenght of [x_;,x ] —>0
=>X%X,>X=>C =XasX ,<C<X
= f'(c)— f'(x)asf'iscontinuous at X,

= Lt Yh 1+ @riny

Lt Ln= Lt 2 hF@+ih (3)

where F(x) = \[1+{f '(x)}2

Now f'(x) is continuous on [a, b] and therefore 1+{f'(x)}2 is continuous and hence
integrable on [a, b]

n b
Lt Z hF(a +ih) = .[ F(x) dx [By def. of integral as a limit of a sum]
n—o =1 a

from (3), we get,

b

LtLe= | FOOdx

N—o0 a

1
D C—y T

1+{f'(x)}" dx

|_t L, exists and hence

N—o0

b
Length of the curve C = I «/1+{f '(x)}2 dx
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Note i. - f'x= ﬂ
dx
b 2
length of curve C = I 1+ (gj dx
A dx

Note 2: If C is a curve defined by x = f (y) where f has a continuous derivative f''(y) on [a, b],

then the length of the curve C is given by

i@dy

Let us consider the following examples to clear the idea:

Example 1: find the length of the arc of the parabola x? = 4 a y extending from teh vertex to one
extremity of the latus rectum.

Sol: The equation of the parabolais x>=4 ayy.

Let A be the vertex and L one extremity of the latus rectum.

¥

f

X
Now = —
y 4a
ﬂ = i(ZX) = i
dx 4a 2a
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2a dy 2
arc AL = J. 1+(—j X [+~ atA,x=0;andat L, x = 2a]
0
2a 2
= _[ 1,1+X—2 dx
0 4a
2a
=1 V4a + X2 dx
2a 5
2a
- Zi J(2a)2 +5¢ dx
a
0
2a
_ 1 {xd(Za)ﬂxz s (2a)? sinhll}
2 2

2a 2a
0
= 4i [2a.2+/2 a + 4a? sinhh™ 1 - 0 (0 + 4a2.0)]
a

= i—i[ﬁ +sinh? 1]
= a[\/i+log(1+\/i+(1)z)}

[-:sin‘lx: Iog(x+\/1+7ﬂ
- a[\/i+|og(1+ﬁ)}

Example 2: Find the length of the boundary of the region bounded by the curve y = %xz =1

and the linesy=x,x=0and x = 2.
Sol: The equation of the curve isy = %xz +1 (1)

Or 2y =x%+2
Or x2=2y-2
Or x2=2(y-1)

which represents an upward parabola with vertex at A(O, 1). Its rough sketch is given in
the figure. The line x = 2 meets the parabola in C(2, 3) and the line y = x meels the line x = 2 in
B(2, 2)

Now |OA|=1
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|0B| = \/(2—-0)? +(2-0)°

= J4+4=8=22

(0,0) M

IBC| = {(2-2%+(3-2)% =1

From (1), % = 1 22X =X

2

2 d 2
length of arc AC = J 1+ [—yj dx

0

1+ X2 dx

1 O =y N

2

2
S [ XX L
2 2

0

= 2—\/ngEsinh*Z - O+Esinh’10
2 2 2

1 . 1
=|J5+=sinh™*2|- | 0+=0
v5 2 j ( 2 j
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S5+ lsinh'1 2
2
Required length = |0A| + |0OB| + |BC| + length of arc AC

1+2J§+1+ J§+ %sinh‘lz

=2+ 2\/§+ \/§+ %sinh‘lz
Example 3: find the length of the arc of the curve
% _ _
y = 3(x +2) fromx=0tox=3
Sol: The equation of the curve is
_li o %
y= 3 (x +2)

dy13
dx32

= XX +2

(+2) 29

Required length of arc =

3
:j J1+ X (¢ +2) dx
0

o t—_
[Ey
+
TN
Q_|Q.
X |I<
N~
N
o
x

X+ 2%% +1dx

JO& +1)7? dx

1 1
O ey W O ey

1]
O ey

)

X

N

+

'_\
N
o

X
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=9+3
=12 units

Example 4: Find the length of the curve
y = x%fromx=—1t0x=8

Sol: The equation of the curve isy = x’3

dy_2 x%= 2 , which does not exist at
x=0
We find ﬂ

dx

TY
A S ELY
A1)
Do o o

Now y= X3
— y3:x2
3
= x=ty?
curve has two branches
3 3
X=-y'2 andx = y/2

Now ﬂ=+§y%

dx 2

h dx ) ° dx )
Required length =J 1+[—] dy+J 1+(—J dy
0 dy 0 dy
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+

|

<
N——
NS

o

<

+
—
VY

[ERY

+

|

<
N——
NS

Q.

<

HEINIEE

_8 (%j yg (Hﬂﬂ
27 4 27 4

%
_ 8 9 8 3

5 (2 ) 4o

-8 13\él_s+10\/1_0—2}

y
Example 5: Show that the length of an arc of the curve x? = a2 (1—64) measured from (0, 0)

a+X
a—X

to (x,y) is a log

Sol: The equation of the curve is
Y
x? = a? (1—%)
y
Or X’ =a’- aZeA

y
Or a’e’a=g2-x2

2 2

Y a?-x
or A= .
a

22
Or leog(a ZXJ
a a
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Or y = a[log (a2 - x?) = log a?]
Or b =a —2X
dx a’-x°

. =2X
a’-x?

X \/(az—x2)2+4a2x2
=I BN dx
5 a —X
2,2
a +X
:j > dX
, a —X

= —x+2a2ilogﬂ
2a “|a—X|],

i a+x a
= | —x+alog|—| |- | -0+ alog|—
i a—Xx a
a+Xx
=-x+alog |——
a—-X
a+X
=zalog |—|-x
a—X

Example 6: Find the length of the arc of the parabola y? - 4y + 2x = 0 which lies in the first
guadrant.

Sol: The equation of the parabola is

y?-4y +2x=0 (1)
Or y? - 4y = - 2X
Or y2-4y+4=-2x+4

194



Or (y - 2)2 =- 2 (x - 2), which is left handed parabola with vertex at A(2, 2). Its rough shetch
is given in the figure.

Differentiating (1) w.r.t. y, we get
2y-4+2 % =0
dy

b, I
dy Y

Now length of arc OAB
= 2 (length of arc OA)

2 / dx}2
=2 1+ [— dy
J; dy

J1+(2-y)* dy

=2

O —y N

J1+t2 dt SLooo—dy = dt

oo dy = -—dt

=-2

O —y N

2
:2J' 1+12 dt
0
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tyl+t? 1

r 2
=2 +=sinh™t
2 2

0

=2 2—\/§+lsinh’12 - 0+lsinh10j
2 2 2

=2 (\/§+%sinh12—(0+0)ﬂ

= (2J§ +sinh™® 2)units

Example 7: Find the length of a loop of the curve 9ay? = x (x - 3a)?,a>0
Sol: The equation of a curve is

9ay? = x (x - 3a)?
A rough sketch of the curve is shown in the figure.

-
|
|
34 t-—‘i—_ — A {B.—[,n :;
- B
From given equation,
g2 = X(x=3a)°
9a
y= YxIx-3a]
3a
dy 1 x=3a :
—Z = X Fix=3alo
dx  3/a {J_'X‘Sal | |2&}
_ 1 | 2x(x=3a)+(x-3a)
3a| 2J/x|x-3a
Ja | 2/x|x-3a]
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2.[3a

=S la+al

Ja
= 4/3a

= % (3a)v/3a + a@}

-2 {% (3a)% + a(3a)%} —{0+ 0}}

Self-Check Exercise

Q.1 Find the length of the arc of the curve

y= (x+1)% on[3, 8]
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Q.2

Find the length of the arc of the curve

y =log (e Jfromletoxzz
+1

eX

Q.3 Use integrals to compute perimeter of a circle of radius a
Q.4 Find the length of the arc of the semi-cubical parabola ay? = x3 from the cusp
(where x = 0) to any point.
11.5 Summary
We conclude this Unit by summarizing what we have covered in it:-
1. Defined curve, rectifiable curve, rectification.
2. Derived the arc formula i.e. derived the formula for calculating length of the curve
for Cartesian equation.
3. Solved questions to find the length of the curve for Cartesian equation.
11.6 Glossary
1. Let f be a continuous function on [a, b]. Then the graph of f on [a, b] i.e. {(x,
f(X)): a<x <Db}is called a curve.
A continuous curve, which has length, is called rectifiable.
The process of finding the length of on arc of a curve between two given points is
called rectification.
4, If ¢ is a curve defined by y = f(x), where f has a continuous derivative f '(x) on
[a, b], then the length of the curve c is given by
b
j JLH{ () dx
a
11.7 Answers To Self-Check Exercise

Ans. 1 [17@—16«/5} units

Ans. 2 log (e+lj
e

Ans.3 2arn

Ans. 4 L\/_ [(9x+ 4a)% _(4@%]

27Va
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11.8 References/Suggested Readings

1. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.
2. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.

11.9 Terminal Questions
1. Find the length of the arc of the curve

y=|09(cosx)on05x5%

2. Find the length of the arc of the curve
2y =x?fromx=atox="hb

3. Find the length of the arc of the parabola y? = 4ax from the vertex to on extremity
of the latus rectum.

4, Show that the length of the arc of the parabola y? = 4ax cut off by the line 3y = 8x
isa | log 2+E

° 16
5. Find the perimeter of the loop of the curve

Qay? = (x-2a) (x-5a)%,,a>0
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Unit - 12

Length of an Arc of a Plane Curve

With Parametric Equations

Structure

12.1  Introduction

12.2 Learning Objectives

12.3 Arc Formula for Parametric Equations
Self-Check Exercise

12.4 Summary

12.5 Glossary

12.6 Answers to self check exercise

12.7 References/Suggested Readings

12.8 Terminal Questions

12.1 Introduction

In mathematics, the concept of the length of a curve in the plane refers to the
measurement of the distance along the curve between the two points. When a curve is defined
by parametric equations, the coordinates of points on the curve are expressed as functions of a
parameter Let's consider a curve defined by the parametric equations:-

X = f(t); y = g(t), where f(t) and g(t) are continuous functions that define the relationship
between the parameter t and the coordinates (x, y) on the curve. The parameter t usually
represents time or some other independent variable. To find the length of the curve between
two points, say fromt = a to t = b we can approximate the curve by dividing it into small
segments and summing the lengths of those segments. As the segments get smaller, the
approximation becomes more accurate

12.2 Learning Objectives

After studying this unit, you should be able to:-

. Discuss and derive arc formula for parametric equations.

. Do questions related to finding the length of the curve for parametric equations.
12.3 Arc Formula For Parametric Equations

If C is a curve defined by parametric equations x = f(t), y=g(), a<t<pfand f't) z0 V t
€[a,B], then length L of curve C is given by
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SEEREE

Proof: Here x = f(t), y = g(t)

dy
dy_da_ 90
dx dx  f(t)
dt
Also  x=f(t) = dx = f' (t) dt

Now L = Length of curve C

1 / dy\’

-{ 1+(&j dx
/1+{?8} (0 dt
JEOF +{g®) d

(2] (2] a

Let us consider the following examples to clear the idea:-

1
R

1
R

Example 1: find the distance travelled between t = 0 to t = %by a particle P(x, y) whose

position at time tis givenby x=a (cost+tsint),y=a(snt-tcost)
Sol: The position of the particle at time t is given by

x=a(cost+tsint),y=a(sint-tcost)

dx . .
Eza[-smtﬂ. cost+sint.l]=atcost

d
and d—i/:a[cost-t(- sint)-costl]=atsint

A 2 2
required distance = J- \/(%) +(%) dt

0
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i
I Jalt2 oot +a%2sin’t dt

i
oc_[ tyJcos’t+sn’t dt
0

7
ocJ. t dt

I

N
1
7\

NN
N—
N

[

—~~

=)

N
I |

Example 2: Find the distance travelled by the particle P(x, y) between t = 0 and t = 4 if its
position at time t is given by
1 1 3
Xx==ty=-(2+1)7
5ty =5 (24

Sol: The position of the particle at time t is given by

-1 ,y= %(2t+1)%

2
%zl(zt),ﬂzl 3 (z+1)%2
dt 2 dt 32

ax_ t, dy (2t+1)y2
dt dt

4 2 2
Required distance = J. \/(%j +(Qj dt
0 dt dt

:ji JE+(2t+D) dt
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:f (t+2)* dt

4
:I (t+1)dt
0

5
2 0
= (?+4}- (0+0)

=12

Example 3: Find the length of the curve
x = cos®t, y =sin®t on [0, 2x]

Sol: The parametric equations of the curve are
x = cos®t, y = sin®t

A rough sketch of the curve is shown in the figure. The curve is symmetrical about both
the axes.

Now
dx )
—=-3cos%sint
dt
d .
—y=35|n2tcost
dt
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Length of the curve

A 2 2
- (&7
5 dt dt

{ in the first quadrant, t varies from O to %}

7%
=4 f J9cos*tsn’t +9sin* t cost dit
0

)
= 4.3'|. sin t cos ty/cos’t +sn?t dt
0

=1ZI sintcost dt

7
=6j sin 2t dt
0

:6{—00521%
2

0

=-3 [cosZt];%
=-3[cos - cos 0]
=-3[-1-1]

=6

Example 4: Find the entire length of the curve

-

Sol: The equation of the curve is

% %
Z + X =1
a b
The parametric equation of the curve are

Xx=acos®0,y=Dbsin0
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A rough sketch of the curve is shown in the figure. The curve is symmetrical about both
the axes.

dx
Now — =-30c0s?6 sin6
dée

and ﬂ =3b sin?6 cos
dée

A 2 2
dx dy
Length of th =4 — |+ —| db
engin o e curve .!; \/(dgj (dgj

{ in the first quadrant, @ varies from O to %}

7
=4[ 9a?cos' Osin? 0+ 9b”sin® Hcos’ O do
0

=12 j (a? cos? 0 + b? sin? 0)Y2? sin 6 cos 6 dO

Put  a?cos?0 +b?sin?20 =t
(-2a% cos 0 sin 6 + 2b? sin 6 cos 0) dO = dt
Or 2(b? - a?) sin 6 cos 0 do = dt
1
—— . dt
2(b"—a%)

When 6 =0,t=a?cos?0 + b?sin?0 = a?

sin© cos 0do =
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When 0 = z,tz a? cos? 4 b? sin? Z - b?
2 2 2

length of the arc

2T g

(b -ad) 4
o
6 |12
b’-a?| 3
2 |z

al

=]
b* —a’ &

e @t

b? - a®

bz ~ a2 [b3 - a3]

_ 4
" (b-a)(b+a)

_ 4@ +b” +ba)
a+b

[ (o-a)(b*+a° +ba) |

Example 5: Find the length of an arc of the cycloid whose equations are

x=a(0+sin0B),y=a(l+cos0)

Sol: The parametric equations of the cycloid are

x=a(®+sin6),y=a(1+cosb)
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ez A r)rk YE |
6=-1T" ¢=17
One arc of the cycloid is shown in the figure. The cycloid is symmetrical bout the line
through the point where 6 = 0 and perpencticular to x-axis.

Now ﬁza(1+cose)
do

= a.2 cos® —
2

0
= 2a cos®—
2

and ﬂz—asine

de

.0 0
=a.2sin —cos —
2 2

0 0
=-2asin — cos —
2 2

Length of one arc for the cycloid

of (%) (%)

\/4a2 cos“g+4azsin ~cos’ = do
2 2 2

O’—;tl

1
N
Ot

\/cos cos z do
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Example 6: Find the length of the arc of the curve
xzeesin9,y=e9cosefrom9=0t06=%

Sol: The parametric equations of the curve are

x=e%sin0,y=e’cos 0

dx )
—=e®cos 0 +e’sino

déo
= e% (cos 0 + sin 0)

and dy =e%(-sin0) +e’cos O
do

=e® (cos 0 - sin 0)

A 2 2
Now Required length of arc = j (%) +(ﬂj do
5 do do

72
= | €’ (coso+sind)’ +€”) cosd—sin6)® do

0

%
:I e® \/2(cos? 6+sin?6) do

0
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7

= _[ e*2 do

0

%
=\/§ I e’ do
=2 [¢]}

- [s

-l
Example 7: Find the length of loop of the curve
1
x=ty=t- =t
=3
Sol: The equations of the curve are

1
X=ty=t- =t
y=t-3

dt dt

Now for tracing the curve, we find the Cartesian equation of the curve.

1 2
From (1), y?= = - = t*
).y 9 3

Or y2:X+lX3-gX2

9 3
Or 9y? = 9x + X3 - 6x?
Or 9y? = x (x?-6X + 9)
Or 9y? = x (x - 3)?
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Y

L=
— A0\

|

A rough sketch of this curve is shown in the figure. Curve is symmetrical about x-axis and for
upper half of the loop, x varies from 0 to 3 and therefore t varies from 0 to \/§

N 2 2
length of loop = 2 J. (%j +(Q) dt
0 at at
B
2 j Jat? +(1-17)? dt
0
Ne]
=2 Ja+t2) dt
0

B
=2j (1 + 1) dt

=2 _(\/§+¥)—(O+ O)]

=2|\3+43]
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Self-Check Exercise

3 1
Q.1 The position of a particle at time tis given x = = (2t +3)A, y=5 2+t

Wl

Find the distance moved by it betweent=0tot=3
Q.2 Find the length of the curve x =t3, y = 2t? on [0, 1]
Q. 3 Find the length of one arc of the cycloid
x=a(0-sinB),y=a(l-cosb)
Q.4 Find the length of the arc of the curve

X = e® (sing+ Zcosgj
2 2

cose Zsine
y= o257

measured from0=0to0=nx

12.4 Summary

We conclude this Unit by summarizing what we have covered in it:-

1. Derived the arc formula i.e. to calculate the length of the curve for parametric
equations.

2. Solved questions related to finding the length of the curve for parametric
equations.

12.5 Glossary

1. The concept of the length of a curve in the plane refers to the measurement of
the distance along the curve between the two points.

2. If ¢ is a curve defined by parametric equations x = f(t), y = g(t), cc<t < p and f'(t)
0 V t € [oc,f], then length L of curve c is given by

B 2 2
X
L= j o + & dt
. dt dt
12.6  Answers To Self-Check Exercise
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Ans. 1 é
2

Ans. 2 ﬂ
27
Ans. 3 8a
Ans. 4 g (-1

12.7 References/Suggested Readings

1. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.
2. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.

12.8 Terminal Questions

1. The position of a particle at any time t is given by

1 1
X=-(2t+3),y=-t?+1
g Gt+3)y =75

Find the distance moved by it betweent=1tot=3

2. Find the whose length of the curve
X% + y% = a 3
3. Show that the length of the curve X% + y% = &’ measured from (0, a) to the

point (x, y) is given by g Wax?

4, Prove that the length of the arc of the curve
X =asin 20 (1 + cos 26),

y =acos 20 (1 - cos 26)
4
measured from (0, 0) to (x, y) is equal to 3 a sin 36

5. Show that the length (s) of an arc of the curve
xsin @ +ycos 0= f(0)
X cos 0 -y sin 6= f"(0)
is given by s = f(6) + f'(0) + c,
where c is a constant of integration.
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Unit - 13

Area of Curves in the Plane

Structure

13.1 Introduction
13.2 Learning Objectives
13.3 Some Relevant Theorems
Self-Check Exercise-1
13.4 Area Formulae For Parametric
13.5 Equation
Self-Check Exercise-2
13.6 Summary
13.7 Glossary
13.8 Answers to self check exercise
13.9 References/Suggested Readings
13.10 Terminal Questions
13.1 Introduction

Quadrature, also known as finding the area of curves in the plane, is a mathematical
concept that deals with determining the area enclosed by a curve or a set of curves. It is a
fundamental topic in integral calculus and has wide-ranging application in various fields,
including physics, engineering and geometry. In modern mathematics, the area under a curve is
calculated using definite integral. Given a function f(x) defined ever a certain interval [a, b], the
area under the curve and above the x-axis can be found by evaluating the definite integrals of
f(x) from a to b. This integral represents the signed area, considering the portions above and
below the x-axis separately. The process of finding the area under a curve can be divided into
several steps the identity the curve, determine the interval [a, b] over which you want to find the
area, formulating the definite integral that represents the area under the curve and then using
integration techniques, such as antiderivatives, substitution or integration by parts, to evaluate
the definite integral. This unit, we will try to find the area under a curve y = f(x), the x-axis and
the ordinates x = a, x = b.

13.2 Learning Objectives
After studying this unit, you should be able to:-

. define quadrature.
. find the area bounded by the curve y = f(x), the x-axis and the ordinates x = a,
x=b.
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. and the area bounded by the curves y = f9x), y = g(x) and the ordinates x = a

and x = b.
. solve questions related to finding the area as stated above.
. derive the area formulae for parametric equation and solve questions related to

it.
13.3 Some Relevant Theorem
We know that if

f be a non=negative continuous function defined on [a, b]. Then the area bounded by
the curve y = f(x), the x-axis and the ordinates

x=a,x=bis-lff(x)dx=j)ydx

a

Y
?

O

Theorem 1 : Let f be a non-positive continuous function defined on [a, b]. Then the area

b
bounded by the curve y = f(x), the x-axis and the ordinates x =a, x=b is j| f(X) ] dx

Proof : Since f(x) is a non-positive continuous function on [a, b].
fX)<0Vxela,b]

= -fX) >0V x e [a b]

= -f(x) is a non-negative continuous function defined on [a, b].

area of region bounded by the curve y = f(x), the x-axis and the ordinates x =a, x = b is
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b

[{flax or jl f(x)] dx [ 1 001 = -£09 if £() < O]

a

Y
4
L M
A rs
pfa-)
¥ B
YI

Note 1. Combining the above two results, we get the result :

If y = f (X) be a single-valued continuous function for a < x < b, then the area of the

b
region bounded by x = a, x = b, the x-axis and the curve y = f(x) is given by I| f(x) | dx

Y
ES

» X
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Note 2. If x = f (y) be a single-valued continuous function for ¢ <y < d, then the area of the

d
region bounded by y = ¢, y = d, the y-axis and the curve x = f (y) is given J.| f(y)|dy
Cc

Theorem 2 : If f and g be two continuous functions defined on [a, b] such that g (x) < f (x) on
[a, b], then the area bounded by the curve y = f (x), y = g (X) and the ordinates x =a, x =b is

[{f(9-g(}d

Proof : Three cases arise :
Case I. Both f(x) and g (x) are non-negative on [a, b] i.e.,
f(¥)>0,9(x) >0V xe[ab]

Y

?

Y=rix) 4B

= 20x)

0O L M

Required area = ACDB
= area ALMB - area CLMD

jf(x) dx- jg(x) dx

[ F09-g09 ax
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Casell: f(x)>0andg(x) <0V e[a, b]

H s
A = f(x
y ) B
A
x=a x=h
» X
o| t /// M
D
C
y = glx)
Required area = area ACDB = area ALMB + area LCDM
b b
[ 109 dx+ [1909 lax
b b
[ 1) ax+ | {909} dx
b b
= [ 769 dx-[ g(9dx
b
= [ 1/ () - g0} dx
Case lll. fX)<0,g(xX)<0V xelab]
Y
&~
L M x
0 X =a l v=b

y=/[(x) l

A
B

C
y=g(x) 8D

J
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Required area = area ACDB = area LCDM - area LABM
b

b
= [ 19691 ax- [ 1] dx

a

b b
= [ 90 dx-[ £ f00} dx

b

=-| g(x)dx+f £ (x) dx

a

b
=[ 1 (9 - 909} dx

Note. For finding the area, first draw the graph of curve.
Let us consider the following examples to the idea:

Example 1: Find the area of the region enclosed by the curve y = x? and the lines x =0,y =0
and x =2

Sol: The equation of the curve is y = x?

2 2 X 8 8
required area = _[ y dx =J‘ x2dx=|—| = = -0= —=sq. units.
0 0 0 3 3

Example 2: Find the area bounded by the linesy = x, x =-1 and x = 1.

Sol: The equations of the linesarey =x,x=-1,x=1

Y

Required area = 2 (area OAB)
1
=2 _[ y dx
0
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=2 l—o}zl
2

Example 3: Find the area of the curve y? = - 4y + 2x = 0 and y-axis
Sol: The equation of the curve isy? =-4y + 2x =0
Or y2-4y+4=-2x+4
Or (Y-2)?=-2(x-2)
which is a left-handed parabola with vertex at (2, 2)
Putting x =0 in (1), we get
y?-4y=0 ory(y-4)=0
y=0,4
curve meets y-axis in O(0, 0), B(0, 4)

i §

#
~B (0, 4)

A (2, 2)

O (0, 0)

2
1
Required area = 2(area OAM) = 2_[ > (4y - y?) dy
0
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~18-8| . 0.0=16
[s-9)-00

2
= @y-yyay= {Zyz—ﬁ} 3

5 3
Example 4: Find the area above the x-axis included between the curves
y? = 2ax - x? and y? = ax

Sol: The equations of the curves are

y?=2ax-x?orx?+y?-2ax=0 ..(1)
which is a circle whose centre is (a, 0) and redius a;
and y? = ax
which is a parabola. . (2)

- <

» X

ON ¢ C

To find the points of intersection, substituting the value of y? from (2) in (1),
X%+ ax - 2ax =0,

Or x2-ax =0,

Or X(x-a)=0

x = 0, a which are the limits of integration.

required area = jl- {f () - g(x)} dx

0
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:T (m_@&) x @3)

Now —(2ax—x2) dx

O ey

:I \/—(x2—2ax+a2)+a2 dx
J ’)

a
:f az—(x—a
0
_ {(x—a) az—(x—a)2 +a—zsinflx_a
2

a
0

o 7| | #md®
[Oa+a (0)- {(—a)0+a (—EJH_ 2

Also I \/5\/? dx
0

I\Jll—\

a

e

0

E
Safioh e

2 2
from (3), required area = ra 2 az=g2| 2 -2
4 3 4 3

Note: Takea=1

(r 2
area enclosed between two parabolas y? = 2x - x> and y? = x is (— ——]

3
Example 5:Find the area of the region bounded by the curve:
y=x?+1,y=x,x=0andy=2
Sol: The equations of the curves are
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y=x2+1, y=x,x=0andy=2
Solvingy =x2+ 1, and x = 0 we get, A as (0,1)

Y.

f

X

Required area - shaded area
= Area of AODC - area of region ADBA (1)

2
Now area of AODC =J‘ x dy
0

(Area bounded by y=x,y=0,y=2)

2
Area of region ADBA = I x dy (Area bounded by x2+1=y,y=1,y=2)
1
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1
P C— N
—_~
T
N
N
Q.
<

[vxX+1=y=Xx :«/y—l as x > 0 for the region]

2
3
_| (y=D?
3
2
2
1-0]=—
[ 1= 3
2 4
f 1), ired =2-— ==
rom (1), required area 33

Example 6: Find the area of the region bounded by the curves
=sin X, y = €OS X x—zandx—5—ﬂ
Y Y TG 4

Sol: The equations of the curves are
y=sinx . D
y=cosx . (2

Required area is shaded in the figure
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57/4
Required area = j (sin x - cos x) dx
/4

{ of T{ f(x)— g(x)}dx}

a

) 5
= —cosx—smx],;%1
2

4

[
= (—cos%—sin%j - [—cosz—sin%j
[

=il e

-4

V2
oS V4 /4 1 =Y T .71
AsCcos— =C0S| 7+— |=—C0S— =——=andsin—=sin| 7+~ |=—Sh—=—F
4 4 4 2 4 4 4 2

=22

Example 7: Find the area of the smaller region enclosed by the curves y? = 8x and x? + y? =9
Sol: The equations of curve

y2=8x (1)
and x*+y*=a . (2)

Q\1, -2[2)
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From (1) and (2), we have

X2+ 8x=9

x*+8x-9=0
= x+9x-1)=0
= x=1,-9
= x=1

[ x=-9 = y?=-72, which gives, imaginary values of y]

y?=8
= y=:+22

curves (1) and (2) intersect in points P (:L 2\/5) and Q (L —2\/5)

Required Area = 2 (area OAPO)
=2 (area OMPO + area MAPM)

1 3
=2 {[ 232/ xdx + Zj N xzdx}
0 1
[ infirst quadrant,theequationsof parabolaandcirclearey = 22, y=+9-x J

=4«/§j x;dx+2f 4/(3)2—X2dx
0 1

r 1

2
= 42 X +2{X +—sml(

| w

N W)

_t -
3 2 2
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= & + 9—7[—93in'1 (1)
2 3

3

Example 8: Find the area of the region enclosed between the two circles x? + y? = 1 and (x - 1)?
+y2=1

Sol: The equations of two circles are

x2+y?=1
and (x-1)2+y?=1
Centre of circle (1) is O (0, 0) and redius OA=1
Centre of circle (2) is A (1, 0) and redius AO =1
Subtracting (1) from (2), we get.

-2x+1=0

= X==
2

: 1.
Putting x = > in (1), we get,

N
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+

N

y

points of intersection of circles (1) and (2) are P [2

Required area = Area of region OQAP = 2 (area of

143 3

2" 2

2

o]

region OMAP)

|

= (area of region OMPO + area of region MAPM)

VJ1-x%dx

1
2
j 1—(x—1)%dx+
0

,\,“_.t—.,_\

1
2

(x— 1)~/1 (X-1)2 sm’l(x 1)}

0

—O—ESin‘l(—
2

-OM = L(om =L
ou-Lon- ]

{(0 1),/1 (0—1)? sm’l(O 1)}

V3
2
2

1.
——sin
2

21
2

1
1 [+2 %sin‘ll 2

+2



Self-Check Exercise-1

Q.1  Find the area of the region bounded by y = x? - x + 2, x-axis and the
linesx=0,x=3

Q.2  Find the area bounded by the parabola
y = 2x - x2 and the x-axis.

Q.3 Find the area between the curve y = sin x and the x-axis from x = 0 to x
= 2.

Q.4  compute the area bounded by the curvesy = \/; and y = x?

Q.5 Find the area common to the circle x2 + y2 = 4 and the ellipse x? + 4y?
=9

13.4 Area Formulae For Parametric
Equations

The area bounded by the curve x = f(t), y = ¢(t), the x-axis and the ordinates at the

5 dx
points wheret=a,t=Dbis j y Edt
a

Proof: The parametric equations of the curve are

x=f®,y = o0

Let x=ocwhent=aandx=pwhent=b

B
Required Area = I y dx

Note: Similarly the area bounded by the curve x = f(t), y = ¢(t), the y-axis and the abscissas at

b
. . d

the points wheret=0,t=bis j y dt
- dt

Let us consider the following examples to clear the idea:-

Example 9: Find the area of the curve

X =acos®t,
y=bsin®t

Sol: The parametric equations of the curve are
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Xx=acos’t,y=bsin’t

(1
%:—3acosztsint )
dt

The curve is symmetrical about both area, and in the first quadrant, t varies from 0 to >

Y
~
B

I
|

/2

area of the curve = 4 y — dt
dt
0

dx

7/2
=4 I b sin®t [-3a cos? t sin t] dt
0

/2
=-12ab I sin*t cos? t dt
0

3
= 3 nab (in magnitude)
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/2
Note: If we apply the formula 4 j (X%j dt, we get positive area.
0
Example 10: Find the area included between one of the cycloid
x=a(0 + sin 0), y =a(l - cos 0)
Sol: The parametric equations of the cycloid are
x=a(0 +sin 0), y =a(l - cos 0)

ﬂzasine

do

A rough sketch of the sketch of the curve is given in the figure.

\f

Required arc = ZI (Xﬂj do
5 déo

= 2[ a(o + sin 0) a sin 6do
0
= 2a2j (0 sin 0 + sin? 6) do
0

T

= 2a2j 0 sin 0 do + a2 2a2j (2 sin? 6) do
0 0
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= 2a? {9[—cos@]g Il.(— cosH)dH} + a2 _[ (1 - cos 260) do
0

0

sinze}”

0

= 20 {z+[sind]; |+ a{(n—%gnznj—(o%gnoﬂ

= 2a%{r + sin - sin 0} + a2 [(7—0)—(0+0)]

= 2a? {(—nc05n+0)+jc059d9}+ a2 {«9—
0

=2a%[n+ 0-0] + a? [r]
= 2na? + na® = 3na?
A
2

X .
Example 11: Prove that the area bounded by the hyperbola — - b = 1, the x-axis and the
a

1
ordinate from P(a cosh 6, b sinh 0) is 2 ab (sinh 26 - 26)

X2 y2
Sol: The equation of hyperbola is —; - F =1
a
its parametric equations are
x=acosh6,y=bsinh 6
A rough sketch of the curve is given in the figure.

Y

!

We require area AMP. At A, 6 = 0.
dx

Now ——=asinh6
déo
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Required area = _9[ [y%j do
ST
9
=j b sinh 0, a sinh 0 do
0
0
= ab_[ sinh? 6 do
0

1 6
= —abj 2 sinh? 6 do
2 0

1 0
== abJ‘ (cosh 26 - 1) do
2 0

_ a_b_sinhZQ_QT
2| 2 0

_ab (isinhza—ej—(isinho—oﬂ
2 |12 >

-2 _(%sinhze—ej—(O—O)}

Example 12: Prove that the area bounded by the cissoid

- asin’t z w . . ?
X=asin’t,y = ,-— <t< — and its asymptote is
cost 2 2
Sol: The parametric equations of the curve are
- asin’t
X=asin‘t,y =
cost

4 s
where -— <t< —
2 2

dx .
— =2asintcost
dt
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The curve is symmetrical about x-axis and 0 <t < 5

= dx
Required Area = 2 j y —dt
5 dt
" asn’t

=2 2asintcostdt

. cost

7/2
=4a2I sin* t dt

o

= 4a2.£>< z
42 2
_ 3ra’
4

Hence the result

Self-check Exercise-2

Q.1  Find the total area of the curve

2 2
(éjg + [%js =1,wherea>0,b>0

Q.2  Find the area included between one arc of the cycloid

x=a(t-sint), y=a (1 - cost) and the x-axis.
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13.5 Summary
We conclude this Unit by summarizing what we have covered in it:-

1.
2.

4.
5.

Defined quadrature

Derived the formula for finding the area bounded by the curve y = f(x), the x-axis
and the ordinates x =a and x = b.

Derived the formula for finding the area bounded by the curves y = f(x), y = g(X)
and the ordinates x =aand x=Db

Derived the area formulae for parametric equation
Solved questions related to finding the area as stated above

13.6 Glossary

1.

Quadrature, also known as finding the area of curves in the plane, is a
mathematical concept that deals with determining the area enclosed by a curve
or a set of curves.

If f be a non-positive continuous function defined on [a, b] Then the area
bounded by the curve y = f(x), the x-axis and the ordinates x = a, x = b is
b

[ 17091 ax

a

13.7 Answers To Self-Check Exercise

Ans. 1 10 E
2

4
Ans. 2 —
3

Ans.3 4

1
Ans. 4 —
3

f?
Ans. 5 4n + 9 sint ( 1] 8 sin‘l( E]
\/27

Self-Check Exercise-2

Ans.1

Ans.2

gnab (M magnitude)

3na?

13.8 References/Suggested Readings

1.

G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.
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2. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.

13.9 Terminal Questions

2 2

. . X .

1. Find the area bounded by the ellipse — + y—2 =1, the ordinates x = ¢, x = d and
a

the x-axis. Deduce the area of the whole ellipse
Find the area of the region bounded by the curve y? = 2y - x and the y-axis
Find the area included between the curve

y? = (x + 1)° and the y-axis.

4, Find the area of the region enclosed by the curvesy =x,y=x?+1,x=0and x =
2
5. prove that the area between the curve y? (a + x) = (a - x)® and its asymptote is

three times the area of the circle whose radius is a.

6. Using the parametric equations, prove that the area of the ellipse is nab.
Find the area of the loop of the curve
x=a(l-t?),y=at(1-t?
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Unit - 14

Volumes Of Solids Of Revolution

Structure

14.1  Introduction

14.2 Learning Objectives

14.3 Some Definitions

14.4  Volume Of The Solid Generated By Revolution About The x-Axis
Self-Check Exercise-1

14.5 Volume Formulae For Parametric Equations
Self-Check Exercise-2

14.6 Summary

14.7 Glossary

14.8 Answers to self check exercise

14.9 References/Suggested Readings

14.10 Terminal Questions

14.1 Introduction

Solids of revolution are three dimensional objects that are formed by rotating a two-
dimensional shape around on axis. The resulting solid has a symmetrical structure and is often
characterized by its volume. The volume of a solid of revolution can be calculated using various
mathematical techniques, such as the disk method, the shell method, and the method of
cylindrical shells. To understand the concept of volumes of solids of revolution, let us consider a
simple example. Imagine a function f(x) defined on a closed interval [a, b]. If we rotate the
graph of this function around the x-axis, it will generate a solid skape. The volume of this solid
can be determined by integrating the cross-sectional areas of the infinitesimally thin slices

obtained by slicing the solid perpendicular to the axis of rotation.

14.2

Learning Objectives
After studying this unit, you should be able to:-

. Define solid of revolution, surface of revolution and axis of revolution.

. Discuss the volume of the solid generated by the revolution about the x-axis of
the area bounded by the curve y = f(x), the x-axis and the ordinates x = a and x
=b

. Discuss the volume of the solid generated by the revolution about the x-axis of

the area bounded by the curves y = f(x), y = g(x) and the ordinates x = a and x =

b.
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. Discuss volume formulae for parametric equations.
. Solve questions related to finding the volume of the solid as stated above.
14.3 Some Relevant Theorem

If a plane area is revolved about a fixed straight line in its own plane, then the body so
generated by the plane area is called the solid of revolution and surface generated by the
boundary of the plane is called the surface of revolution. The fixed line about which the plane
area rotates is called the axis of revolution.

14.4 Volume of the Solid Generated By Revolution About The x-axis

The volume of the solid generated by the revolution about the x-axis of the area
b

bounded by the curve y = f(x), the x-axis and the ordinates x =a, x=Db is I ny? dx.

a
Proof: Let AB be the curve y = f(x) and CA, DB be the ordinate x = a, x = b respectively.
Let P(x, y) be any point on the curve AB. From P, draw PM L OY so that OM = x, MP =

-

L

0O C M N D

Let V denote the volume of the solid generated by the revolution about x-axis of the area
ACMP. Clearly V is a function x.

Let Q(x + dx,y+ dy) be a point on the curve in the neighborhood of P. Then the volume of
the solid generated by the revolution about x-axis of the area ACNQ will be V + 8V, so that the
volume of the solid generated by the revolution about x-axis of the area PMNQ is d V.

Complete the rectangle PRQS.

Then the volume of the solid generated by the revolution about the x-axis of the area of
PMNQ lies between the right circular cylinders generated by the rectangles PMNR and SMNQ
i.e.,

3V lies between ny?d x and n (y + dy)? dx

oV
Or S lies between ty? and n(y + 3 y)?
X
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Let Q —>Psothat 3x—0, 3y —0

Lt N lies between ny? and |_{ n(y + dy)?

ox—0 X ox—0

\
C;— lies between my? and my?

X

dv

oY

b b dV
_a[ ny2dx='a|: ’m
=[v];

= (Volume V when x = b) - (Volume V when x = a)
= Volume generated by the area ACDB - 0

= Volume generated by the area ACDB
b
Volume of the solid generated by the area ACDB about the x-axis is I ny? dx

a

Note 1: Revolution about y-axis

The volume of the solid generated by the revolution about the y-axis of the area
b

bounded by the curve x = f(y), the y-axis and abscissaey =a,y =b s I nx? dy

a
This result can be proved by the students.

Note 2: Revolution about any axis




1. Take any point P(x, y) on the curve.
Draw PM L on the line CD about which the curve is to be revolved and find PM.

Find the distance OM of the foot of perpendicular from a fixed point O (say) on
the line and take its differential.

oD
4. ThenV = I n (PM)?2 d (OM) gives the required volume.
oC

Note 3: Volume between two solids
The volume of the solid generated by the revolution about the x-axis, of the area
b
bounded by the curves y = f(x), y = g(x), and the ordinates x = a, x = b is J. n(yf—yg)dx,

a

where y; is the y of the upper curve and y- that of the lower curve.
Let us improve our understanding of these results by looking at some following examples:-

2 2
. : . X
Example 1: Find the volume of the solid generated by revolving the ellipse —2+§ =1 about
a
the x-axis.
2 y2
Sol: The given ellipse is —+-— =1
a~ b
2 2 2
X b
%:1- ? = y? = ?(az-xz) (1)

Required volume = 2 x Volume generated by arc BA about x-axis.

= ZJ- ny? dx
0
a b2
= 2nj = (a2 - x?) dx [ of D]

0
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27Z'b2 2 3T

= = |a'x—-=
a~ | 31,

270? | X
e %] ool
_ 2zb*  2a’

T @ 3
_ 4grab’
3

. . . 1

Example 2: A segment in cut off from a sphere of radius a by a plane at a distance — a from the
.5

centre. Show that the volume of the segment is — of the volume of the sphere.

Sol: The required volume of the segment is generated by revolving the area ABCA of the circle

: _ a
x2 + y? = a? about the x-axis and for the arc BA, x varies from — to a.

g e e 4"
—

x

Required volume = | ny2dXx,

N | C——y

where x%+y?=a?
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(a2 - x?) dx

I
a
N | D C——y

a
n azx—} xﬂ
3

[
a
o
moo
I

4
- S —ra’ |= > [volume of the sphere of radius a]
32| 3 32

Example 3: Show that the volume of the solid generated by the revolution of the curve (a - x) y?

. 1
= a? x about its asymptote is 3 n?ad,

Sol: The equation of curve is y?(a - x) = a? x
The shape of the curve is as shown in the figure.

A

Its asymptote is x = a
Let (P(x, y) be any point on the curve.

From P, draw PN L x-axis and PM L asymptote.
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Required volume = 2 j © (PM)2. d(AM)
0

2
T ay’ o ay’
= 27’[J- |:a.— > 2:| dy |:. X:Tyz, from(l):|

a

1
N
S
Q
o
O — N

asec’ 6 do Puty = atané
(a® + y* tan® 0)° . dy = asec’0do

asec’ 6 dé
a‘sect 0

1
N
S
Q
o
O — [N

=2na®| cos?6do

O N

1
= 2nas. E X

NN

1
= —n%as.

2

Example 4: Find the volume of the solid generated by revolving the part of the parabola y? =
4ax between vertex and the latus rectum about tangent at the vertex.

Sol: Given parabola is y? = 4ax

y2
= — 1
X~ 49 @

Let LSL' be the latus rectum
Required volume

= 2 x volume generated by the arc AL about y-axs

2a
=2 I nx? dy

0
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1
4
—_—
<
B
o
<

1
N
—
<0
L
i

Example 5: Find the volume of the spindle shaped solid generated by revolving the asteroid
2 2 2
x3+ y3= a®about the x-axis.

2 2 2
Sol: The equation of the astriod is x3+ y3= a3

The required volume is generated by revolving the area ABA'OA about y-axis = 2 x volume

a
generated by revolving the area ABOA about y-axis = 2_[ ny? dx
0
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3
= ZnI a? cos® 0 3a sin?0 cos 0 do [Put x = a sin® 0]
0

sin%0 cos’0 do

1
D
a
QD
w
O NN

6.4.2.1
97531

_ 32xa’
105

Example 6: The area of the parabola y? = 4ax lying between the vertex and the latus rectum is
revolved about the x-axis. Find the volume generated.

=6na

Sol: The equation of parabola is y? = 4ax
Let A be the vertex and LSL' be the latest rectum
Required volume

= Volume generated by the area ASL about x-axis

a
= I ny? dx
0
a
= _[ n.4ax dx
0
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T .
21
——
T————
’7’1\ a =
\_—\
T
=4anJ. x dx
0
_X2 a
=dan | —
_2:|a
A2
= 4an a——O}
2
= 2na’d

Example 7: A loop of the curve a%y? = x? (a2 - x?) is rotated about the x-axis. Find the volume
generated.

Sol: The equation of the curve is a%y? = x? (a2 - x?)
A rough sketch of the curve is shown in the figure.

’V\/

i — — e

- 5
(..c_)y@')\\h_ __/-'O ————— L gl

The curve is symmetrical about both the axes.
a

Required Volume = I ny? dx
0
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a
%I X2 (a2 - x2) dx
a 0

T a
= ?i (a2x2 - x4) dx
KRS XT
== -z
a“| 3 5],
(a8 L, &
=71 xa-2 |-(0-0
_z|a &
a®| 3 5
_z 2=
a> 15
_ 2za’
15

Example 8: Find the volume generated by revolving about the x-axis, the area common to the
two parabolas y?> = x and x> =y

Sol: The equations of the curves are
y? =X

and x%’=y

The curve (1) is symmetrical about x-axis and curve (2) is symmetrical about y-axis.
From (1) and (2), we get
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x*=x

Or x*-x=0

Or x(x3-1)=0

= x=0,1
y=0,1

two curves intersect in (0, 0) and (1, 1)

1
Required Volume = nJ‘ (yl2 —~ yzz)dx
0
1
=nj (x - x*) dx
0
X X
o
2 5|
~o|(3-5)-e-0)

_15=2|_ 3«
=T —|= —
10 10

Self-Check Exercise-1

N
gl

2 2

Q.1 Find the volume generated by revolving the ellipse i(—6+y3= 1 about its

major axis.

Q.2 Find the volume generated by rotating about the y-axis the area bounded by
the co-ordinate axes and the graph of the curve y = cos x from x = 0 to x =

8

Q.3  Aloop of the curve y? = x2 (1 - x?) is rotated about the x-axis. Find the volume
generated.

14.5 Volume Formulae for Parametric Equations

The volume of the solid generated by the revolution, about the x-axis, of the area

bounded by the curve x = f(t), y = ¢(t), the x-axis and the ordinates at the points wheret=a, t =
b

bis j nyz%dt.

a
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The parametric equations of the curve are x = f(t), y = ().

Volume = j ny? dx = J nyz%dt

. f dx
required volume = I my? Edt

a

Similarly, the volume of the solid generated by the revolution, about the y-axis, of the
area bounded by the curve x = f(t), y = ¢(t), the y-axis and the abscissae at the points where t =
b
a,t=bis= J. X2 ﬂdt.
dt

a
Let us improve our understanding of these results by looking at some following examples:-

Example 9: Find the volume of the solid obtained by revolving one arc of the cycloid x = a(6 +
sin 0) and y = a (1 + cos 0) about x-axis.

Sol: The equations of the given curve are x = a(6 + sin 0), y = a(1 + cos 6)

Y
ks

6 = 0}(0, 2a)
(a, 0)

X' >X

2 dX
Required volume = I ny?— do
0 déo

:nJ- a?(l+cos0)?a(l+cos6)do
2

= na’ I (1 + cos 0)% do
0
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271' 9 3
= 2na® j (stz—j do
2

0

= 16na3I cos® Q do
< 2

Put Q =t, -.do=2dt
2
When 6=0,t=0

When G):n,tzZ
2

2
Required volume = 16na® I cos®t. 2dt
0

531

6.4.2 2
= 5r?as

Example 10:tFind the volume of the solid generated by the revolution of the tractrix x = a cost +

=32 na®

> a log tan? 2y=a sin t, about its asymptote.
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Sol: Here the asymptote is x-axis and for the curve from A' to B and B to A, t varies from 0O to

%and % to m.

Volume = 2 x Volume generated by the area A'B OA'

3 dx
=2| my? — dt .1
{ Vo (1)
t 1
Also %z—asinHa sec? —.—
dt t t 2 2
2
. a
=-asint+
) t
29N —CoS—
2 2
Or %z-asinH_i
dt sint

a
—(1 - sin? t)
sint

_acos’t
sint
from (1),
2 2
. . acos"t
The required volume = ZI na? sin? t —
0 sint

3
= 2nad I sin t cos? t dt
0

|
N
a
QD

w

Self-Check Exercise-2
Q.1  Find the volume generated by revolving one arc of the cycloid

x=a (0-sin0),y=a (1l - cos 0) about its base.
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Q.2  Find the volume generated by the revolution of the loop of the curve x =

1
t2,y=t- 3 t® about the x-axis.

14.6  Summary
We conclude this Unit by summarizing what we have covered in it:-
1. Defined Solid of revolution, surface of revolution and axis of revolution.

2. Derived the formula for finding the volume of the solid generated by the
revolution about the x-axis of the area bounded by the curve y = f(x), the x-axis
and the ordinates x =a and x = b.

3. Derived the formula for finding the volume of the solid generated by the
revolution about the x-axis of the area bounded by the curves y = f(x), y = g(X)
and the ordinates x =a and x = b.

4, Solved questions to finding the volume of the solid as stated above.

14.7 Glossary

1. When a plane area is revolved about a fixed straight line in its own plane, then
the body so generated by the plane area is called the solid of revolution.

2. Surface generated by the boundary of the plane is called the surface of
revolution.

3. The fixed line about which the plane area rotates is called the axis of revolution.

14.8 Answers To Self-Check Exercise
Ans. 1 48«

Ans. 2 nt (t - 2) (numerically)

Ans. 3 2—”
15

Self-Check Exercise-2

Ans. 1 5n?a®
Ans. 2 3—”
4

14.9 References/Suggested Readings
1. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, 2005.

2. H. Anton, I. Bivens and S. Dans, Calculus, John Wiley and Sons (Asia) P. Ltd.
2002.
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14.10 Terminal Questions

1. Find the surface of the solid generated by revolving the arc of the parabola y? =
4ax bounded by its latus rectum about x-axis.

2. Find the volume of the paraboloid generated by the revolution of the parabola y?
= 4ax about the x-axis from x =0 to x = h.

3. Find the volume of the right circular cone with radius of the base as r and height
h.

4. Show that the volume of the solid obtained by revolving the area included

.. 5
between the curves y? = x® and x? = y® about the x-axis is %8 .

5. Find the volume of the reel formed by the revolution of the cycloid x = a (t + sin t),
y = a (1 - cos t) about the tangent at the vertex.
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Unit - 15

Surfaces of Solids of Revolution

Structure

15.1 Introduction

15.2 Learning Objectives

15.3 Surface of the Solid Generated by the Revolution About the x-Axis
Self-Check Exercise-1

15.4 Surface Formula For Parametric Equations
Self-Check Exercise-2

15.5 Summary

15.6 Glossary

15.7 Answers to self check exercise

15.8 References/Suggested Readings

15.9 Terminal Questions

15.1 Introduction

Surfaces of solids of revolution are an important concept in calculus and geometry.

When a curve is rotated around a specific axis, it generates a three-dimensional solid object.
The surface of this solid object is known as the surface of revolution. To understand surfaces of
solids of revolution, let us consider a simple example. Imagine you have a curve, such as line
segment, a parabola, or any other smooth curve, and you rotate it around a straight line called
the axis of revolution. The resulting solid is called a solid of revolution. For example, rotating a
line segment around its mid-point generates a three-dimensional object known at a cylinder.
The surface of revolution refers specifically to the outer boundary or the skin of the solid of
revolution. It is the curved surface that encloses the solid and can be visualized as the shape
obtained by sweeping the curve around the axis. The surface of revolution can take various
forms depending on the shape of the curve and the axis of revolution.

15.2

Learning Objectives

After studying this unit, you should be able to:-

o Define surface of revolution

. Discuss surface of the solid generated by the revolution about the x-axis.
. Discuss surface formula for parametric equations.

. Solve questions related to surface of the solid as stated above.
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15.3 Surface of the Solid Generated by the Revolution About the x-Axis

The curved surface of the solid generated by the revolution, about the x-axis, of the area
x=b

bounded by the curve y = f(x), the x-axis and the ordinates x =a, x=Db is J. 2nyds

X=a
where s is the length of the arc of the curve measured from a fixed point on it to any
point (x, y)
Proof: Let AB be the curve y = f(x) and CA, DB be the ordinates x = a, X = b respectively.
Let P(x, y) be any point on the curve AB. From P, draw PM _L x-axis so that OM = x, MP =Yy.

Let S denote the curved surface of the solid generated by the revolution about x-axis of
the area ACMP. Clearly S is a function of s.

Let Q(x + dx, y + dy) be a point on the curve in the neighbourhood of P such that arc
PQ = ds. Then the curved surface of the solid of revolution of the area PMNQ about the x-aix is
dS.

Complete the paralielogram PRQS.

Y
ES
B
> X
o) C M N D

The area of the curved surface generated by the arc PQ lies between the areas of
curved surfaces of the cylinders whose base radii are PM and NQ.

ie., d S lies between2ny dsand2rn (y+ dy) &s

oS
E lies between 2ny and 2t (y + dy)
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Taking limitsasQ - Pie.as 8x—0, dy —, 8s — 0,

das
— lies between 2ny and 2ny
ds
ds 5
= —on
ds Y
x=b x=b
dES x=b
2ny ds = —ds=|S
| o I < 9s=[S]

= (Value of S when x = b) - (Value of S when x = a)
= area of the surface area of the solid generated by the revolution of area ACDB - 0

surface area of the solid generated by the revolution of area ACDB x = b

b
= j 2nyds

X=a

x=b x=b
ds ds dy
Note 1: .. S= 2ny ds = 2ny — dx, where—=,|1+| —
X-L ™ X-[a ™ dx dx (dx]
Note 2: Revolution about y-axis

The curved surface of the solid generated by the revolution about the y-axis of the area

bounded by the curve x = f(y), the y-axis and the abscissaey=a,y=b is _[ 2nx ds.
y=a

Let us improve our understanding of these results by looking at some following examples:-

Example 1: Find the area of the surface formed by the revolution of y2 = 4ax about the x-axis
by the arc from the vertex to one end of the latus rectum.

Sol: The equation of parabola is y? = 4ax
or y=2Jax (1)

dy 1 a
=24a. z& N

\I dx \)
X+a
dx /T (2)
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Let LSL' be the latus rectum. For the portion AL, x varies from O to a.

Y
k)
L i‘(“.."'))
T 0]
— X
S
L

t ds
required surface = J 2ty —dx
5 dx

=2n] 23X 2 o

0
a 1
= 4n\/gj (X+a)2dx
0

a
3
2

_ 48.\/; (x+3a)

= % za | (x+ a)z}

= % za (2a)g —ag}

) [ 3 3
=§7z\/5 Zﬁaz—az}

= gm/a.ag(zﬁ—l)
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= %TCaZ(Z\/E—l)

Example 2: Find the surface of the solid generated by the revolution of the ellipse x? + 4y? = 16
about its major axis.

Sol:  The equation of ellipse is x2 + 4y? = 16
Or 4y? =16 - x?

1
y==416-%° (1)
2
dy 1 -
dx 2 216—x
_ X
2416 — X2
2
Now E= 1+(Qj
dx X
X2
4(16—X?)
64— 4% + X
4(16— x%)
64—3x°
4(16-x%)

The ellipse meets x-axis wherey =0

\
SIS
A’ (-4, 0)\ AL 0)
-~
-—-J'/
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putting y = 0 in x? + 4y? = 16, we get,
x>=160rx=-4,4

for upper half of the ellipse in first quadrant, x varies from 0 to 4.

_ c ds
required surface = 2 I 2ty —dx
5 dx

:4”.? J16—x° /64-3x2
: 2 4(16-X°)
=nj 64—3%% dx

0

B [«
=r BI E—X dx

1
a
o

—
7N\
|oo

N—

N
|
>
N
o
<

64 64 . 3
= /3 2/——16+—S|n1 N3
AE 3 3 ( 2 ]]

= nx/é Z.i-i-%.z}

o 1022

Example 3: Show that the surface of the solid obtained by revolving the arc of the curve y = sin
x from x = 0 to x = & about x-axis is 2« [\/5+ log(1+ \/5)]

Sol: The equation of the given curve is

y = sin x
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— = COS X
dx
e l'_' {.53
* -
‘l
\
e
— T 7

Now ﬁ: l+(ﬂj

dx

= 1+ cos’ X

T ds
Required surface = I 2ny —dx
0 dx

= ]Z. 27 sin xy/1+C0s” X dx
0
=2n ]E sin x v/1+cos® X dx
0

Put COS X=t, .. -sin x dx =dt
i.e. sin x dx = - dt
When x=0,t=cosOie.t=1

When x=mxn,t=cosie.t=-1

-1
Required surface = 2n j V1412 (- di)
1
-1

=2n [ 1+t

1
1
=212 j 1+t dt
0
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1

2

i 2
= g | DL +%Iog(1+\/1+t2)}

0

- 4n 1“12+1+%|og(1+ \/1+1)—0—%Iogl}

=2n [\/5+ log(1+ \/E)}

Example 4: Find the surface of a sphere of radius a.

Sol: We known that the sphere is generated by the revolution of a semi-circle ACB about its
diameter AB.

Let the equation of the circle be

X2+ y2 = @2
y = PN
dy ~ -2x

dx  2Ja2—x

2
% = |1+ (ﬂj
dx dx
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Require surface = IZ;zy% dx
a X

a
a
=2 \/az—X2 . ———— dx
" _J; NEe

= 2na Tldx

=2na [X]:
=2nz 0a+ a)
= 4na?

Example 5 : Find the surface of the right circular cone formed by the revolution of right-angled
triangle about a side which contains the right angel.

Sol. : Let 0 be the vertex of the cone, OA, h be the height of the cone, AB = r be the radius of
the base and OB = | be the slant side

r
tan 0 = — (1
an N D

Where 0 is the semi-vertical angle.

~Y
|

Also sec 6 = lﬁ ..(2)
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The equation of OB is

y=Xtan 0

dy

dx

tan 0

dx

2
Now 1+ (ﬂj
dx
= {1+tan’@

=seco

h
Required surface area = j27z y% dx
0

h
=2n jxtan@sec@ dx
0

h
= 2n tan® sec ejx dx
0

= 2n tand sec 0

=2n tand sec 0

n h? sec O tan 6

nh2£.L
h h

wrl

.(3)

[+ of (1), (2)]

Self-check Exercise-1

Q.1

Q.2

Find the curved surface of the solid generated by the revolution about
the x-axis of the area bounded by the parabola y? = 4ax, the ordinate x =
3a and the x-axis.

Show that the surface of the spherical zone contained between two
parallel planes is 2r ah where a is the radius of the sphere and h the
distance between the planes.
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15.4 Surface formula for parametric Equations

The curved surface of the solid generated by the revolution, about the x-axis, of the area
bounded by the curve x = f(t), y = ¢(t), the x-axis and the ordinates at the point wheret=a,t="b

is
. ds ds dx\* (dy)’
2Ty — dt, where — = || — | +| —
£ g S e T L)
Revolution about any axis

The curved surface of the solid generated by the revolution, about an axis CD, of the
area bounded by a curve AE, the axis CD and the perpendiculars AC, BD an the axis, is

jzﬂ PM ds,

where PM is the perpendicular from any point P of the curve on the axis and arc AP = s,
the limits of integration being the values of the independent variable at the ends of the revolving
arc.

Let us prove our understanding of these results by looking at some following examples:-

Example 6: Show that the ratio of the surface formed by the rotation of the arc of the cycloid x =
a (6 +sin 0), y = a (1 + cos 0) between two consecutive cusps about the axis of x to the area

enclosed by the cycloid end the axis of x is %

Sol. : The equation of given cycloid are

x=a(®+sinB),y=a(l+cosb)

% =a(l + cos 0)
% =asinb
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o (& (&)
do  \\do do

= Ja%(1+cosh)? +(-asing)’

= a1+ cos2 @+ 20050 +5n2 0

= a y/1+(9n? 0+ cos’ 0) + 20050
= a 2+ 2cosd
= a \J2+(L+cos6)

—a ,/Z.ZCOSZQ
2

=2acos§
2

Required surface = 2J'27ry as do
5 de

=2 j 2rza (1+ cosdb) 2acosg do
0

= 8r a2 IZ coschoste
) 272
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=16m a? ICOSs Qdﬁ
0 2

Putgzt, c.do=2dt
2
when09=0,t=0

when0=mx,t=

2
7%
Required surface = 16n a2 _[ cos’ t.2dt
0
s
= 32n a2 _f cos’ t. dt
0
=32t a?. 2
3
= 64 n a2
3
Area enclosed by the cycloid and the axis of x
S fy o
oo do

=2|la(l+cosb)a.(1+cos6)do

O =33

=2a? j2 cos? Q . 2 cos? Qde
: 2 2

= 8a? j cos* . Qde
. 2

Putgzt, S.do=2dt
2
when0=0,t=0

Whene:n,t:z
2
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.. area enclosed by the cycloid and the axis of x

7
=8a? Icos“t.Zdt
0

™
=16 a2 jcos4 t dt
0

.. ratio of surface and area

_ b4
9

Example 7 : Find the surface of the solid generated by the revolution y the curve

2 2 2
X3 + y3 - a3
Or
x =acos®t, y = a sin® t about the axis of x.
Sol. : The equation of the given curve are

x=acos®t,y=asin®t

; b
S 1

X
ox =a.3cos?t (-sint)
dt
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=-3asintcos?t

dy
dt

=3asin’tcost

s (372
dat — \\dt dt

= J9a?sin?t cos’t +9a2 sin*t cost

=a.3sin’t cost

=3asintcost ycos’t+sn’t
=3asintcost

Required surface = jZﬂy %dt
0

= IZﬂasin?; t.3asintcostdt
(0]

7

= 121 a2 j sin“t cost dt
0

sinst}%

=12n az[
5

0

2
= 127a I:S.nsz—slns O:|
5 2

_12z@°

(1-0)

= —na?

5

Self-check Exercise - 2

Q.1 Find the surface area of the solid generated by revolving once complete
arch of the cycloid x = a (6 - sin 0), y = a(1 - cos 0) about

(i) the x - axis, and (ii) the line y = 2a

15,5 Summary
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15.6

15.7

We conclude this Unit by summarizing what we have covered in it:-

1. Defined surface of revolution.

2. Derived the formula for finding the curved surface of the solid generated by the
revolution, about the x-axis, of the area bounded by the curve y = f(x), the x-axis
and the ordinates x =a and x = b.

3. Derived the formula for finding the curved surface of the solid generated by the
revolution about the x-axis, of the area bounded by the curves x = f(t), y = ¢(t),
the x-axis and the ordinates at the points where x =a and x = b.

4, Solved questions related to finding the surface of the solid.

Glossary

1. When a curve is rotated around a specific axis, it generated a three-dimensional
solid object. The surface of this solid object is known as the surface of revolution.

2. The curved surface of the solid generated by the revolution, about the x-axis, of
the area bounded by the curve y = (x), the x-axis and the ordinates x =a, x =b is
x=b
I 27yds, where is the length of the arc of the curve measured from a fixed
X=a
point on it to any point (X, y).

3. The curved surface of the solid generated by the revolution, about the x-axis, of

the area bounded by the curve x = f(t), y = #(t), the x-axis and the ordinates at
the pointwheret=a,t=bis

8 ds ds dx ) (dy)’
27y = dt, where — = || = | +[ =2
! Yo S \/(dtj J{dtj

Answers To Self-Check Exercise
Self-Check Exercise-1

Ans. 1

5677a>

Ans. 2 2rxah
Self-Check Exercise-2

Ans. 1 (i)

64ra’
3

327a?
3

(ii)
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15.9 Terminal Questions

1.

Show that the surface of a belt of the paraboloid formed by the revolution, about
the x-axis, of the parabola y? = 4ax is

= \/5{(&+a)2—(><1+a)2}

The part of the parabola y? = 4ax cut off by the lotus rectum revolves about the
tangent at the vertex. Find the curved surface of the real thus formed.

Prove that the surface of the solid obtained by revolving the ellipse b?x? + a? y? =
a? b? about axis of x is

1.
2r ab [\/1— e +=sn* e] e being the eccentricity of the ellipse.
e

Prove that the surface generated by the revolution of the tractrix

1 t
X=acost+— alogtan® —
2 2

y=asint
about its asymptote is equal to the surface of a sphere of radius a.
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Unit - 16
Repeated Integral Over A Rectangle and Region 'A’

Structure

16.1 Introduction

16.2 Learning Objectives

16.3 Repeated (or Iterated) Integral Over a Rectangle
Self-Check Exercise-1

16.4 Repeated (or iterated) Integral Over a Region 'A'

16.5 Double integral Over a Rectangle
Self-Check Exercise-2

16.6 Refinement of a Partition

16.7 Summary

16.8 Glossary

16.9 Answers to self check exercise

16.10 References/Suggested Readings

16.11 Terminal Questions

16.1 Introduction

A about integral is a mathematical tool used to compute the signed area or volume
under a two-dimensional surface or solid in three-dimensional space. It extends the concept of a
single integral from one dimension to two dimension. To understand double integrals, let us start
by considering a function of two variables f(x, y) defined over a region in the xy-plane. The

double integral of f (x, y) over the region R is denoted as ” f (x,y) dA, where dA represents
R

an infinitesimal element of area in the xy-plane. It is defined as the product of the differential dx
and dy, which represent infinitesimal changes in x and y, respectively. The region R is typically
described by specifying its boundaries or inequalities.

The double integral computes the sum of the function values f(x, y) over each
infinitesimal area element within the region R. This process involves dividing the region R into
small sub regions and approximating the function values over those sub regions. As the size of
the sub regions approaches zero, the approximation becomes more accurate, and the sum
approaches the exact value of the double integral.
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16.2

16.3

Learning Objectives

After studying this unit, you should be able to:-

Discuss repeated (or iterated) integral over a rectangle.
Discuss repeated (or iterated) integral over a region 'A'.
Discuss double integral over a rectangle.

Define and discuss refinement of a partition

Solve questions related repeated integral ever a rectangle, a region 'A'.

Repeated (or iterated) Integral over a Rectangle

Let f(x, y) be a continuous function of x and y defined on the rectangle A where

A={(x,y):a<x<b,c<y<d}

The sides of this rectangle are taken parallel to axes.

For any fixed x e [a, b], the function g(y) = f (X, y) is a continuous function of y on [c, d]

d
jg(y)dy exists [*-g (y) = f (x, y) is a continuous function of y]

d
Then the integral jg(y)dy defines a function of x. Let this function be denoted by F(x).
Cc

Fo9 = [g(y)dy = [ f(xy) ¥ xina, b]

We will show that F is continuous on [a, b],

Since f is continuous on A

for

f is uniformly continuous on A.

given ¢ 0, however small, there exists & > 0 such that

If (%, y) - f (xuy)l <

d—c+1 ~()

If (%) - (xuy))l < & and (x,y), (x1,y1) € A

for x, X1 3 [a, b], |X1- X1| < &, we have

d

IF 09 - Foa)l =|[ 06 y)dy— [ £ (4, y)dy,
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= J{f(x,y)—f(xl,y)}dy‘

c

d
< JIf oY) - f (¢, y)|dy RS
d &
<-([d—c+1 Y
£ d
“d_c+l !dy
&
) d—c+1(d_ )
< [ d-c <e}
d-c+1

[F (X) - F(x1)| <efor|x-xi < &,x X1 € [a,b]

F is continuous on [a, b] and

| = le(x) dx = T[T f (X, y)dyJ dx exists.

a\c

This integral | is called a repeated integral and is obtained by integrating f(x, y) over [c,
d] treating it as a function of y (regarding x as a constant) and then integrating the resulting
function of x over the interval [a, b].

Note 1. Integrating f(x, y) w.r.t. x first and y later, we can defined another repeated integral.
d/b
= I(J'f(x,y)de dy

Note 2. It is possible that one of the repeated integrals exists, but the other is not even defined.
Note 3. It is also possible that both the repeated integrals exists but are unequal.
The following examples will illustrate the idea more clearly :-

Example 1. Verify that i[jf(xy+ey)dXJ dy = T(J%(Xy+ey)ddex

x=4

I[j: (xy+e’) de dy = j{ N y+xey} dy

x=3
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1]
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1
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N

X
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|
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o

X

= F%z +(e - e)x}3

=[12+4 (- €)]- [2747+3(e2—e)}

21
— +e?-e
4

HT(XW ey)j dy = f@(xwey)dy) dy

3 3

Example 2 : Verify

274



42 24
”x+y dy dx = ”x+y dxdy
31 13

- L.H.S.

W ——y

I

X2+ y? dydx

2
x+y :|

L1
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2 38 44
=— - — = — ..(2)
3 3 3
From (1 and (2)
L.H.S. =R.H.S.

Self-check Exercise-1

Q.1 Let f(x,y) = x+Yy be defined in the rectangle
A={(xy):3<x<4,1<y<?2}
the show that

TU f(x y)de dy = T[f f(x y)dyde

1\3 3\1

16.4 Repeated (or iterated) integral over a Region 'A'

Just as we have defined repeated integral over a rectangle A in xy-plane, we defined
repeated integral over a particular region A defined as

Casel. When A={(x,y): yi(X) =y <wy2 (X); a< x < b}
Let f(x, y) be a continuous function, defined over the region A, where y1(x) and y2(x)

a\ yi(x)

b wa(x)
are continuous in [a, b], then the corresponding repeated integral J[ I f (X, y) dy] dx exists.
Case llwhen A ={(X,y); d1 () <X < ¢2 (y) < x < d}

Let f(x, y) be a continuous function defined over the region A. where ¢1(y) and ¢2(y) are
continuous in [c, d], then the corresponding repeated integral.

d #,(2)
j [j f(x,)dx}dyexists

A (y)

c

e.g., consider f(x, y) to be a continuous function defined on a region A bounded by a
circle with centre at origin and radius 'r' i.e., x? + y? = r?

A={(x y); X2 +y? <r?)
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= {(x, y):—r2—=x2 <y<r’—x%,—r <x< r}
= {(x, Y)i—ri—y? <x<Jri—y? —r<ys< r}

The two repeated (or iterated) integrals of f(x, y) over A are

| [ fecyydydcand [ f(x,y) dxdy

- /rZ_XZ

In the subsequent work we shall prove and verify that if the function is continuous over
A, then these two repeated integrals are equal.

16.5 Double Integral Over a Rectangle

Let A={(X,y):a<x<bh,c<y<d}be arectangle in the xy-plane and f: A — R be a
bounded function of two variables x and y.

€ a positive real number M such that |f(x, y)| < M for all (x, y) € A.
Let P1 = {a = Xo, X1, X2,.....,Xm = b} be a partition of [a, b]
and P2={c=yYo, Y1, Y2....., Yn = b} be a partition of [c, d]

P = P1 x P, is a partition of A into sub-rectangles

Aj = {(X Y): Xia S X< X, V< y < i}
where 1<i<mandl<j<n.

Let mj= Inf f(x,y)and Mj= Sup f(X,Yy)
(x.y)eh; (x.y)eA;

Aij = (Xi - Xi-1) (Y - Yi-1)

Let L(P, /)= ii Mmij Ajj and Upp,f) = ii Mj A
i1 j1 i1 j1

Here L(P,f) and U(P,f) are called the lower sum and upper sum corresponding to the partition
P.

/[ WISM V(X y)eA
-M<f(x,y) <M V(Xy)eA

= -M<msMsM VG

= - M.Aj < mijAj < M Aj < MLA;

= -M Zz Aj < Zz mj Aj < MiinjSMz Ajj
i1 j-1 i1 j-1 i1 -1 i1 j-1

= -M({-a)d-c)<L(P, /) <sUP, /)sM(b-a)(d-c)
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> > A, =Areacf rectangleA = (b—a)(d —c)

i-1 j=1

Hence the set {L (P,f) : P is a partition of A} is bounded above and has the least upper bound L,
say; and the set {U(P,f): P is a partion of A} is bounded below and has the greatest lower bound
U, say

If L = U, then we say that f is integer able over A or the double integral of f over A exists. The
common value is denoted by one of the following expressions.

[ £ o [ rxyydxdy o [[ fxy)ydxdy  or [ f0x y)dydx
A A a<x<b c<y<d
c<y<d a<x<b
Let us consider the following examples to clear the idea:-
Example 1: Let A be the rectangle given by A={(X,y): 1 <x<2,3,<y<4}

Let f:A—>Rbedefinedas f(x,y)=1V (X,y) € A
Show that _[ f=1 by using the definition
A

Sol: Here f(x,y) =1V (x,y) € A
where A= f(X,y):1<x<2,3%,<4}
Let P1 = {1 = Xo, X1, X2,....., Xm = 2} be any partition of [1, 2]
and P2={3=yi,VY2,....., Yn = 4} that of [3, 4]
P = P1 x P, is a partition of the rectangle A into sub-rectangle
Ai={(X, y): X1 <X<X,Yi1<Yy<y}wherel<i<mandl<j<n.

Now m;= Inf f(x,y)=1
(xy)eh)

and Mij= up f(x,y)=1
(x.y)eA;

Let  Ajbe area of rectangle Aj

Zmlzn: Aj=(2-1)(4-3)=1x1=1

i=1 j=1

LeN=3Y ma=3Y =33 a1

i=1 j=1 i=1 j=1 i=1 j=1

i 1A=1

=

and U(P,f) = Zm:i Mj Ay =

i=1 j=1 i

L=lub. L(P,f) =1

m
=1
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U=glb.UP,f=1

L=U=1
= f is integrable over A
JJ r=1

A
Example 2: If A is the region given by A ={(x,y); 1 <x<2,3<y<4}
and if f: A— Risdefinedby f(x,y) =3,V (X,y) € A

Evaluate J.J. f(x, y) dx dy starting from definition of double integral.
A

Sol:  Here f(x,y) =3 V(x,y) e Awhere A=((x,y): 1 <x<2,3<y<4}is arectangle.
Let  P1={1=Xo, X1, X2,...., Xm = 2} be any partition of [1, 2]
and  P2={3=Yo, VY1, Y2,......, Yn = 4} that of [3, 4]
P = P1 x P2 is a partition of the rectangle A into sub-rectangles
A ={(X%y) 1 X1 <X <X, Via <Y <V}
where 1<i<mandl<j<n

Now mj= Inf f(x,y)=3
(% y)eA

and M= Sup f(x,y)=3
(X, y)eA;

Let Aj be area of rectangle Aj.

Zm:Z Al=(2-1)(4-3)=1x1=1

i1 j-1
L(P,f)zzz miinj=ZZ 3.Ai= 322 Aj=3(1)=3
i1 j1 i1 j-1 i1 j-1

and U(P, f)= Zmlzn: Mi .Aj ZZm:Zn: 3.A;=3

i=1 j=1 i=1 j=1
L=lLub.L(P, f)=3
and U=g.lbU(P, f)=3

= f is integrable over A.

ﬂ F(x,y) dx dy = 3

Example 3: consider the region A ={(x,y): 1 <x<2,3<y<4}
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Let f:A—>Rbedefinedas f(x,y)=2 V(xyeA)

Evaluate H f(x, y) dx dy starting from definition of double integral.
A

Sol: Do line above example. Ans. = 2
Example 4: consider the region A ={(X, y): 1 <x<2,3<y<4}
1if xisrationl

Let f : A — R be defined by f(x,y) = {—l,if wisirrational

Show that f is not integrable over the region A.

Sol: Here f(x,y) = { lh_c ).<i.srati-0nl
-Lif xisirrationa
and A={XYy):1<x<2,3<y<4}
Let P1 = {1 = Xo, X1, X2,...., Xm = 2} be any partition of [1, 2]
and P2={3=yo, VY1, Y2,......, Yn = 4} be any patrtition of [3, 4]
P = Py x Py is a patrtition of the rectangle A into sub-rectangles
A ={(X%y) 1 X1 <X <X, Via <Y <V}
where 1<i<mandl<j<n

Now mj= Inf f(x,y)=-1
(x.y)eA;

and Mij= up f(x,y)=1
(xy)eA;

Let Aj be area of rectangle Aj.

m n

D> Ai=(2-1)(4-3)=1x1=1

i=1 j=1

L (P, /) =ZZ MijAj

-1 j-1
m n
=22, (D
i1 -1
m n
:_Z A“:-(l):-l
i1 -1
m n
and U(P, f)= M; .Aj
i1 -1
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n

= Z (1) Ay

i=1 j=1
= Z Aijz 1

i=1 j=1
L =lLu.b. L(P, /) =-1and U=glbUP, f)=1
LU

f is not integrable over the region A.

Self-Check Exercise-2

Q.1 Let A be the rectangle givenby A={(x,y) :1<x<2,3<y<4}
Let f : A — R be defined as f(x, y) = 1 vud)eAﬁmwmmI f=
A

1 by using the definition.

16.6
Let
Let
and

Let

Refinement of a Partition
A={(x,y):a<x<b,c<y<d}bearectangle in R?
P1 = {ao = Xo, X1, X2,....., Xn = b} be any patrtition of [a, b]
P2 = {c = yo, V1, ¥2,......, Yo = d} be any partition of [c, d]
P = P1 x Py is a partitions of [a, b]

P1', P2' be partition of [a, b], [c, d] respectively such that

P:' > P4, P2' > P2. Then the partition

P'=P;' x P, of A is said to be a refinement of P = Py x P»

We also say that P' is finer than P.

Art 1: Let P and P' be two partitions of rectangle A and f : A — R be a bounded function. If P' is
finer than P, then U (P, f) > U (P, f) and L (P, f) <L (P', f)Proof: Same as done is lower class.

Cor.L<U

Art 2: Let A be arectangle and f : A — R be bounded. Then f is integrable over A iff for every
&> 0, there exists a partition P of A such that U(P,f) - L(P,f) <¢

Proof: (i) Assume that U(P,f) - (P,f) < ¢

U(P.f) <L(P.f) +e
U<U(P./)<L(P,f)+e<L+ ¢ [- L(P.f)<Land U (P,f) > U]
U<L+e (D)

This result is true for all ¢
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u<L )

Also L<U .(3)
From (2) and (3), we get,

L=U
= f is integrable over A.

(i) Assume that f is integrable over A
: L=U
Now L=1LublL(P,f)

for a given ¢ > 0, there exists a partition Py of A such that
L (Prf)>L- %

Again as U = g.l.b. U (P,f)

for a given ¢> 0, there exists a partition P, of A such that
&
U(Po2 f)>U+—
2
Let P be any partition finer than both P; and P», then

L(P,f)zL(Pl,f)zL-g=U- [ L=U]

2
2
and UP./)<U(Psf)<U +%

—L(P,f)<—U+g andU(P,f)<U+%

UPR.NH-LPNH<e

Art 3: Let f be continuouson A={(x,y):a<x<b,c<y<d}

Then fis integrable over A i.e. ” f(x, y) dx dy exists.
A

Proof: Since f is continuous on rectangle A
f is uniformly continuous on A.

given ¢ > 0 however small, there exists 9 1, d » > 0 such that

[f O y) = (&)

¢ ()
2(b—a)l)(d—c+1)
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forall (x,y), ({,7) e Aandx- £<d1<y-73< 32
Let P1 = {a = Xo, X1,....Xn = b} be a partition of [a, b] such that
Xi-X1< 01Vi=1,2,....m
and P2 ={c=yYo, Y1,Y2,....,¥n = b} be a partition of [c, d] such that
Vi-Vii< 01Vi=1.23,..,n
Let P = P1 x P2 be the corresponding partition of A dividing it into sub-rectangles
A= (X, Y): Xia S X< Xi-Yin Y <Y}
Let Ay be area of rectangle A;

2.2 di=(b-a)(d-c)

i=1 j=1

Let M;= (Sﬁ f(x,y) = f(x,y), say
X,Y)eA;

and mj= Inf f(x,y)=f(x",y"), say

(XY)eA,

U (P,f) ZZZ M;.Ai.L (P,f) = Zz mi Ajj

i=1 j=1 i=1 j=1
U(P.f)-L(P.f) =ZZ (M - m;) Aj ..(2)
i=1 j=1
Now  (Mj - mj) = Mj - mj
&
IMi-ml < iydesy @
[~ of (1)]
from (2), we get,
. g

VEN-LED <iZ:1: = (b—a+1)(d-c+))

Ajj

" (b- a+1)(d c+1),z_1:; A

_ g
"~ (b-a+1)(d-c+1)

(b-2a)(d-c)
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<¢g { b-a <1 d-c <1}
b-a+1 d-c+1
UMP,/))-LL(P,f)<¢

= f is integrable over A.

= J.J. f(x, y) dx dy exists.

Note. If (x, y) is continuous in A where

A={(x,y); 1 <x<2,1<y<2} Then show that ” f(x, y) dx dy exists.
A

Exactly same as above article. Here replace a by 1, b by 2, c by 1 and d by 2.
Art 4: Let A={(X,y);a<x<b,c<y<d} Let f: A— R be continuous then

d

ﬂ f(x,y)dxdy=jl Uf(x,y)dy]dxzj Uf(x,y)dx}dy.

A a C
Proof: Here A={(x,y);a<x<b,c<y<d}

f is continuous on A.

J.J. f(x,y)dx dy = j’ ﬁ f (X, y)dy] dx and d [T f(x, y)de dy exists.

A a c a
Let P1 = {a = Xo, X1,....Xn = b} be any partition of [a, b]
and P2 ={c=Yo, y1,Y2,....,yn = b} be any partition of [c, d]
P = P, x P, is a patrtition of A into sub-rectangles
A= (X y): Xia S X<Xi-Yia <Y <Y}
where i=1.2,...mj=1,2,..,n.

Let  my= Inf f(x,y),Mj= Sup f(x,y)
(X,y)eA; (x.y)eh;

Let Aj be area of rectangle Aj

Ay = (Xi - Xi.1) (Y; - Vi)
Now mi<f(X)y) <MV (X, y) €A

[ (fmodons] [Jromslors] (fmacl

Yia X Yia X1 Yia X1
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Yi %
= My (- Xia) (¥ - Vi) < I [ I f(x, Y)dXJ dy < M (xi - Xi-1) (¥ - Vi)

Yia X1

Yi %
= MiA< | [ [ fx, Y)dXJ dy < Mi (Xi - 1) (¥ - Yi)

LEY

= Zm: miiniEZm: n T [T f(X,y)dx]dyg Zm: y Mj A

i=1 j=1 i1 =1y \xy

%
[ j f (X, y)dxjdy <U(P.f)
X1

d m X
= Lens| | 2] f(x,y)dx]dysU(P,f)

=1 %,

f (X, y)dX) dy < U (P,f) for every partition P.

—
—_
.0
<
N—r
IN

—
QO C— T

Since ” f(X, y) dx dy exists
A

L=U:H f(X,y) dx dy

above result can be written as H f(x,y)dxdy<J< J.J. f(x,y) dx dy
A A
J= ” f(x,y) dx dy

=N J.J. f(x,y) dx dy = .T (I f(x, Y)dX) dy

A c a

similarly [ f(x, y) dx dy:T Uf(x, y)dy] dx

a C

we have

| f(x,y)dxdy=f Uf(xy)dy}dwﬂ f(x,y)dxdy=T [If(x,y)dedy

A a c [+ a

Note: If f: A — Ris continuous, then | = J
285



Cor:

Let

and double integral = repeated integral.

LetA={x,y):a<x<b,c<y<d}Letf:A— Rbe continuous.
f(xy) = F(x) G(y) ¥(x,y) € A, then

[[ 16 v) dxdy=f F(X) dxf G(y) dy

Proof: We have

16.7

16.8

16.9

Il f(X,y)dxdy=T Uf(x,y)dx]dyzi TF(x)G(y)dxdy

A

Cc a

[G(y)j F(x)dx)dy:i F(x) dxi G(y) dy.

Summary

We conclude this unit by summarizing what we have covered in it:-

1. Discussed repeated (or iterated) integral over a rectangle and illustrated some
examples in this support.
Discussed repeated (or iterated) integral over a region 'A'
Discussed double integral over a rectangle and given some solved examples
related to it.
4, Discussed in detail refinement of a partition.
Glossary
1. If f(x, y) is a function of two variables defined over a region in the xy-plane, then
the double integral of f(x, y) over the region R is denoted as ﬂ f(x, y) dA,
R
where dA represents on infinitesimal element of area in the xy-plane.
b d
2. If I = _[ [I f(x, y)dyJ dx, then this integral | is called a repeated integral and is

a Cc

obtained by integrating f(x, y) over [c, d] treating it as a function of y (regarding x
as a constant) and then integrating the resulting function of x over the interval [a,
b]

Answer To Self-Check Exercise
Self-Check Exercise-1

Ans. 1 JZ. U (X, y)dx] dy = jA' [JZ‘ f(x, y)dxj dy=5
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Self-Check Exercise-2
m n
Ans.1L(P, )= > mya=1
i=1 j=1

n

and U(P, f)= Zm:Z Mij Aj =1

j=1

16.10 References/Suggested Readings

1. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd,
2002
2. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, Delhi, 2005

16.11 Terminal Questions
1. Let  f(x, y) be defined as
fxy)=1linl<x<2; 1 <ys 3
2 2
showthatl=1,J=1
2. LetA={(X,y):2<x<3,3<y<4}
Let A — R be defined by
Lif  xisrationl
O,if xisirrational

fxy) = {
Show that ” f(X, y) dx dy does not exist.
A

3. Consider theregion A={(x,y) 1<x<2,3<y<4}
Let f:A—>Rbedefinedas f(x,y)=2V (X,y) € A

Evaluate J.J. f(x, y) dx dy starting from definition of double integral.
A
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Unit - 17

Double Integral Over a General Region and Properties of

The Double Integral

Structure

17.1 Introduction

17.2 Learning Objectives

17.3 Double Integral Over A General Region

17.4 Properties of The Double Integral
Self-Check Exercise-1

17.5 Double Integral In Polar Co-ordinates
Self-Check Exercise-2

17.6  Summary

17.7 Glossary

17.8 Answers to self check exercise

17.9 References/Suggested Readings

17.10 Terminal Questions

16.1 Introduction

Double integrals are a fundamental concept in calculus, specifically in multivariable
calculus. They extend the idea of single-variables over a region in the plane. A double integral
allow us to calculate the signed volume under a surface or the total accumulated value of a
function over a two-dimensional region. Double integrals satisfies the properties of linearity. In
double integrals, under certain conditions, the order of integration can be reversed. This
property is known as Fubini's theorem and allows us to evaluate the double integral by iterated
integration with respect to one variable at a time. The value of a double integral is independent
of the path taken to obtain it. As long as the region of integration remains the same, the value of
the integral will be unaffected by the specific choice of the order of integration or the coordinate
system.

17.2 Learning Objectives
After studying this unit, you should be able to:-

. Define double integral over a general region
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. Discuss different properties of double integral

. Solve guestions related to double integral by using properties of double integral
. Define and discuss double integral in polar coordinates
o Solve questions of double integral in polar coordinates

17.3 Double Integral Over a General Region

Let f: B — R be a bounded function where B is a bounded subset of R?. Let A be any
rectangle containing B.

f(x,y),if (x,y)eB

We define a function F: A - Ras F(x, y) = {0 if(x,y)e A-B
1 ’ = -

Then the function f is said to be integrable over B if the function F is integrable over A
and in this case

” f(x,y) dx dy =J.J. F(x, y) dx dy

Note: The result is independent of the choice of rectangle A.
17.4 Properties of the Double Integral

Property I: Let c be a non-zero number. Let f : B — R be a bounded function where B is a
bounded sub-set of R2. Then H c f exists iff H cf= c” f.
B B B

Property Il: Let A={(x,y):a<x<b,c<y<d}

and B={(x,y):b<x<e,c<y<d}

Let f be continuous on A U B. Then H f= ” f+_U f
A B

AUB

Property lll: f: B — Ris integrable and if f(x,y) >0 V (X, y) € B, then H f>0.
B

Property IV: If f and g are integrable over B, then f + g are also integrable over B and ” (f £
B

w=gfigg-

Property V: If f and g are integrable over B and if
f ) 2ay) ¥ (xy) eB then [[ 7> o
B B

Property VI: Let y1, w2 be two continuous functions defined on [a, b] such that

y1(X) < w2 (x) V x € [a, b]
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Let  A={(xy):asx<b yi(X)<y<y2(X)}
Let  f: A — Rbe continuous, then

b w2(X)
J.J. f(x,y) dx dy and I { J‘ f (X, y)dyJ dx exist and are equal.
A

a y1(X)

Property VII: Let y1, w2 be two continuous functions defined on [a, b] such that
y1(X) w2 (X) V x e [a b

Let  A={(xy)as<x<b,yi(X)<y<y2(X)}

Let  f: A— Rbe continuous, then

b w2(X)
J.J. f(x,y) dx dy and I { J‘ f (X, y)dyJ dx exist and are equal.
A

a w1(X)

Property VIII: If f: B — R is integrable on B, then the function |f] is integrable over B and

[ 1 y)axdy

B

< [[ 176 )l dxdy

Proof: Let A be a rectangle containing B.
Let F : A — R be deined by

{f(x,y)‘v(x,y)e B

FXN=10 wixy)cA-B

f is integrable over B
F is integrable over A.
given ¢ > 0, however small, these exists a partition P' of A such that
UP,F)-LP,F<e¢ (1)
Sup.[F[(xy)—-Inf.[F[(xYy)
{ xy)eh (xyeh }

{Sup.F(x,y)—lnf.F(x,y)} ._

Now U (P, |F|)-L(PIF)= Y,
ij

)

i

1]

xy)eh (xy)eh
=U(P,F)-L((P,F) [ of (1)]
|F| is integrable over A = |f| is integrable over B.
Now for every partition P of A,
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UP fH=>. }Au =U (P, F|)

I

Sup.F(x,y) A < Z Sup.|F(x,y)]|
(le)EAj = 0 (X’y)EAj

JIF

A

<inf U RN = [[ IFI=[] 1A

sij 1

Let us improve our understanding of these results by looking at some following examples.

=[Inf. U (P, /)

JIt

B

Example 1: If Ais arectangle given by A ={(x,y) : 1<x<2,3<y<4}
and if f: A— Ris defined by f(x,y) =1V (X, y) € A, show that J. f=1
A

Sol: Here f(x,y) =1V (x,y) € A
where A={(x,y):1<x<2,3<y<4}
Since f(x, y) is a continuous function of x and y

[ 7= @f(x,y)dy]dxzf (Ildyjdxzi [y]:dx

A 1 1

P C— N

Example 2: Evaluate .U (x2 + y?) dx dy

0<x<1
0<y<1
Sol: Here f (x, y) = x? + y? is continuous over A where
A={(xy):0<x<10<y<1}

1

H (x2+y?) dx dy = I U (X* + yz)dx) dy

0<x<1 0

O<y<1
1 [y 1
= I 4y’ | dy
5 L3

0
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1 y31
= —y+—
%]

(L) -0e0-2
3 3 3

2aJ2ax—x?

Example 3: Evaluate j I (x% + y?) dy dx

Sol: Letl = .[

Put

When

When

1
o'-—.y

1
o'—.g'\,’

T
0

X =2asin? 9, .. dx =2a.2 sin 6 cos 6 do

2a [JZaxxz

0 0

, , ) 2a , y3 2ax—x
(X +y“)dy dx—j xy+§ dx
0

0

l
i 3
X2/ 2ax— x° +%(2ax— xz)z}dx

[ 5 3 3
x2/2a—x +%x2 (2a— x)z}dx

3

x2+[2a— x
3

[3x + (2a - x)] dx

3
2
X? J2a—X (2x + 2a) dx

x=1,0= z
2
x=0,0=0
| = j 3 (2asin2 9)2 J2acos 6.2 (2a sin? 0 + a).4a sin 6 cos 6 do
0
323t}

3

.f sin® 0 cos? 0 (2sin?0 + 1) do
0
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_ 32a*

(2 sin® 0 cos? 0 + sin* 6 cos? 0) dO

|
w
O NN

3 32a* 5 53.11 £+3.1.1 z
3 ‘8642 2 6412

_%alz) 15,3
3 2192 48
a7 27
3 2192

3ra’
4

Example 4: Evaluate the integral H X2 cos (x? + xy) dx dy where D is region in R? bounded by
D
sides of a triangle whose vertices are (0, 0), (1, 0), (0, 1)

Sol: The vertices of triangle OQR are (1, 0) (1, 0), (0, 1)
equation of line QR is
X
Xy =lorx+y=1
1 1

D={(x,y):0<x<1,0<y<1-x}

\R(o.l)

where D is the region.

(0, 0)
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J.‘[ X2 cos (x2 + xy) dx dy
D

1
O ey

X2 (T 00S(X* + xy) dy} dx

. 2 1-x
2 (s n(xX+ Xy) j dx

1]
O ey

0

X (sin(x2 +X(1-X)—sin(x* + x(O))) dx

1]
O ey

X sin xdx - % (2x) sin x? dx

1
O ey
O ey

= [X(—COSX)]z- j; 1.(- cos x) dx - % [—COSXZJ

1
0

) 1
=-cosl+ [Slnx]z+§(cos 1- cos 0)
1 1
=-cosl+sinl-0+—cosl-—
2 2

1 1
=sinl-—cosl-—
2 2
Example 5: Evaluate the double integral j j (4 - X2 - y?) dy dx if the region D is bounded by the
D

straight linesx=0,x=1,y=0andy = g

Sol: Here f(x, y) = 4 - x2 - y? is continuous over D,

where D = {(x,y):Os x<10< ysg}

1 (%
[[ @-x-yydyax=[ | [@-x-y’)dy |ax

D 0

3%
y}dx

0
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I
|oo
©
I
NP
N
1
~
o
1
o
N

Example 6: Show that
2< jj (2 +y?) dx dy < 8

1<x<2
I<y<2

Or
Let A={(Xy):1<x<2,1<y<2}, show that

2< J[ fexy)dxdy<8

where f(x,y) = X% + y?
Sol: Here A={(x,y): 1<x<2,1<y<2}

The function f(x, y) = x* + y? is continuous on A.

Given integral I I (x2 + y?) dx dy exists
A

Now 1<x<2,1<y<2 = 1<x*<4,1<y?’<4
— 1+1<x?+y?’<4+4= 2<x2+y?<8

H 2dxdy5ﬂ (x2+y2)dxdy§j 8 dx dy

A A A

= 2.[;\[ 1dxdy5.|;§|. (x2+y2)dxdy58J.A|. 1 dx dy

= 2W)<[ 6&+y)dxdy<8()

295



{-.-'gldxdy:j@ldx)dy:j fdy:_ifldy:[y]f:Z—lzl

= 25” (x2+y?) dxdy<8
A
Example 7: Evaluate J.J. x2y? dx dy over the region x> + y> < 1

Sol: Here x2 +y? =1

x2<1 and y?<1-x?

2
Or x2<1 and y2< (xll— x2)
-1<x<1 and - J1-x% <y < {1-X?

[(c X2<t?2=-t<x<H]

Now  f(x, y) = x? y?is continuous over the region A given by x> + y>< 1

1 (el
J.J. x2y2 dx dy = f [ 1'[ x°y? dyJ dx
A 1

-1 2.3 y:\/ﬁ
=I {X y } dx
1 3 y=—\1-%?

i
i

% x2(1- Xz)% dx

%[ ~Ji-x ﬂdx
[

X 2% % g
T a0 x)}

2 j x%(1- XZ)% dx

0

2
3

[ x? (1 - x?) is an even function of X]
Put x=sin6, .. dx=cos 6 do

when x=0,sin0=0=0=0
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when le,sin8:1:>9:%

47 P
_U x2y? dx dy = 3 j sin?0 (1-sin“#)’2cos 0 do
A 0

sin? 6 cos* 6 do

o3

1.3.1 i
3642 2

Ay wid wlib

Example 8: Evaluate ” e2*¥ dx dy over the triangle bounded by the lines x =0,y =0 and x +
y=1
Sol: Here A={(x,y):0<x<1,0<y<1-x}

J.J. e2x+3y dx dy — j (lx e2x+3y dyJ dx
0

A 0

1 2x+3y 1-X
=I [63 } dx

0 0

\

>
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(e3> - &%) dx

1
Wk
O t—y

Wl

1
Wl
O t—y
|
P
N
(DN
N—
|
|
(Dw
|
N
N
1

Wl Wl
1
N

_ez(e—l) —%(e2 —1)}

_ez —%(e+1)}

(e-1)[2e?-e-1]

Ol ol Wik

(e-1)(e-1)(2e +1)

= %(e-1)2(2e+1)

Example 9: Evaluate J.J. xy dx dy, where A is the region common to the circles
A

x2+y2=x,x2+y2=y
Sol: The equations of two circles are

X2 +y?=x (1)
and x*+y*=y 2
From (1) and (2), we get

X=y
Putting x =y in (1), we get

y?+y?=y or  2y?-y=0

yy-1)=0 = y 0,%
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Xx=0,

N~

11
circles (1) and (2) intersect in points (0, 0) and (E_Ej

Now from (1), y = +4/X—X*

1+1-4%°
and from (2),y= SENTEX

1
But Osxsi,Osys

1-+1-4x
y varies from Tto VX=X

_ _ 2
A= {(x,y):\/x—x2 < ygﬂ,og xél}

Now  f(Xx, y) = Xy is continuous over A.

ﬂ Xy dx dy
A
}é X=X?
:I X ydy |dx
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[ (e[
? X‘1+(1_4x2>_2m
0 4

+(x—x2)]dx

v
[ x —{1+1—4x2—2 1—4X2}+4X—4x2}dx
0

X
=2 | x[2—4x—2 1—4x2}dx
8 0

% 1 1
I {2x—4x2 *7 (1-4x%)2 (—8x)} dx

r bz
2¢ _4¢ 1(1- 4x2)% ] i
- N 4 3

i 2 3 4 /2 i

_ 3 1
xz—g 3+(—15(1—4x2)2}

@ |
T

0

(13}
b

|-

96

|, |k

Self-Check Exercise-1
Q.1 Evaluate H Xy dx dy
A
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where A={(x,y):1<x<2,1<y<2}
Q.2 Ifaregion A is defined as
A={(x,y):0<x<3,2<y<5}, show that
108 < [[ (2 +3y?) dx dy <837
A

Q.3 Evaluate]i I y dy dx
0

0

Q.4 IfA={(x,y):x>0,x%+y?=1}, then evaluate ” dx dy
A

Q.5 Evaluate J.J. \/4X2 — y2 dx dy, where A is the triangle bounded by the lines
A

y=0,y=x,x=1

17.5 Double Integral in Polar Co-ordinates
0, 1,

The integral J. J. f(r, ©) dr do is double integral in Polar co-ordinates bounded by the

6 n

lines 6 = 61, 6 = 62 and the curves r = r1, r = r. We first integrate w.r.t. r and then w.r.t. 6
between the limits 6 = 0;. 0 = 0.

Note: If 61 = a, 6 = b and r1 = ¢, r, = d then integration can be evaluated separately w.r.t. 6 and r.

[More over f(r, 0) = f () ()]

b b

ie. j j 1(r, 0) drdezj £(0) derjz £(r) dr

6 1 6

301



Let us consider the following examples to clear the idea:-

Example 10: Evaluate J.J. r2 dr do over the Area included between the circles r = 2 sin 6 and r
=4sin6
Sol:

r=4sin@

v
>

4sing

1
—N N

r3 dr do

2sin@

NN

1
— [ N

a[r T

NN

1
ANl
— N

(256 sin* 0 - 16 sin* 0) do

NN

Il
N
—— N

(240 sin* 0 . do

NN
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:
=—j sin*0.do

r drdé _ o o
Example 11. Evaluate Hﬁ over one loop of the lemniscate r* = a“ cos 26.
a“+r

Sol. : Given lemniscate is r? = a? cos 26.

g =T
4

2 = o* cos 20

. . T T
Now for the one loop of the Lemniscate r varies from 0 to a+/cos26 and 6 from -= to

4
rdrdg  4aos E
H—Z 2=j j E(a2+r2)2.2r do
RVa*+r> 1z o 2
4
ayfcos20
4 2, .2
= [ 1@+r) de
- (2 1
4 2

303



[(a2 +r2 cosZ@); - a} do

1
AN C— Y

1

(1+cos26)2 —1} déo

1]
QD
INER et E

1]
QD
INER e Y]

(2cos2 9)2 —1}19

(\/Ecose—l)de

1
o]
ANy

(\/Ecose—l)de

1
N
QD
AN~y

{ Tf(x)dx:zjl f(x)dx if f(—x):f(x)}

:za[ﬁsine—e]oZ

1 =
oa | J2.—-Z
[ J2 4}

e

Self-check Exercise-2

7 asing

Q.1 Evaluatej I r dr do
0

0

Q.2 Evaluate ”r sin@dr dé over the area of the cardioid r = a (1+ cos6) above the
initial line.
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17.6 Summary

17.7

17.8

We conclude this unit by summarizing what we have covered in it:-

1. Defined double integral over a general region.
2. Discussed properties of double integral.
3. Solved questions related to double integral by using properties of double integral.
4, Discussed double integral in polar coordinates.
5. Solved questions of double integral in polar coordinates.
Glossary
1. If f: B — R be a bounded function where B is bounded subset of R Let A be
any rectangle containing B.
We define a function F : A— R as
f(xy), Iif(x,y)eB
Fxy)= ,
0, if(x,y)e A-B
Then the function f is said to be integrable over B if the function F is integral over
A and in this case
” F(x, y)dxdy = ” F(x, y)dxdy
B A
2. If e be a non-zero number and F : B—R be a bounded function where B is a
bounded sub-set of R2. Then H cf exists iff H cf =c ” f
B B B
O, 1,
3. The integral J.If(r,H) dr d@ is double integral in polar co-ordinates bounded
6,

be the lines 0 = 04, 0 = 0, and the curvesr =ry, r =ro.

Answer To Self-Check Exercise
Self-Check Exercise-1

9
Ans. 1
4

Ans. 2

Ans. 3 dl

Ans. 4

Hint : 12 < 2x2 + 3y? < 93, then after double integration, we get the result.

4
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17.9

17.10

Ans. 5 l [£+2—”J

3(2 3

Self-Check Exercise-2

4

Ans. 1 a
4
4
Ans. 2 —a?
3
References/Suggested Readings
1. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd,
2002
2. G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, Delhi, 2005

Terminal Questions

1.

Evaluate ﬂ(x3 +Yy°) dx dy, where A is the rectangle bounded by the lines x = 0,
A
x=1landy=0,y=2.
LetA={(X,y):2<x<3,4<y<5}
Show that 56 < ﬂ (2x2 +3y?) dx dy < 93
A

1+x2 dx

1
Evaluate _
-([ 1+X°+y°

O oy

Evaluate _U x?y? dx dy, where A is the region in the first quadrant enclosed by x
=0,y=0andx?+y?>=1

Evaluate ﬂ (x+y) dx dyover the region bounded by x=0,y =0, x+y =1

% acosé

Evaluate J[ _[ rya2+r?) dr } de

0 0

. 2a’
Show that Irzsmﬁ dr dﬁz?, where R is the region bounded by the semi
R

circle r = 2a cos 0, above the initial line.
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Unit - 18

Change of Order of Integration and

Change of Variables in Double Integral

Structure

18.1 Introduction
18.2 Learning Objectives
18.3 Change Order of Integration
Self-Check Exercise-1
18.4 Integral
Self-Check Exercise-2
18.5 Summary
18.6 Glossary
18.7 Answers to self check exercise
18.8 References/Suggested Readings
18.9 Terminal Questions
18.1 Introduction

Dear students, when changing the order of integration in a double integral, we exchange
the roles of the variables of integration. This technique is useful in simplifying the evaluation of
integrals, especially when the original order of integration leads to complicated expressions on

limits of integration. Suppose we have the following integral ” f(x,y) dA, where R is a region
R

in the xy-plane and f(x,y) is the integrand. To change the order of integration, we need to
determine the new limits of integration based on the new order. Let us say we want to change
the order from integrating with respect x first to integrating with respect to y first. To do this, we
need to express the region R in terms of the new variables of integration. This involves finding
the bounds of y as function of x. Let's denote the new region S. Once we have determined the
new limits of integration, the integral becomes :

J.J. f (x,y) dA, where the limits of integration are defined by the region S.
S

Also, the change of variables techniques is a powerful tool used to simplify the
evaluation of integrals. Changing variables can help transform the original integral into a more
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manageable form. In this UNIT, we are going to study change of order of integration and change
of variables in double integral.

18.2

18.3

Learning Objectives

After studying this unit, you should be able to:-

. Discuss change of order of integration and solve the questions related to change
of integration in double integrals.

. Discuss the change of variables in double integral.

. Discuss the particular case of change to polar coordinates.

. Solve questions of double integral by change variables.

Change of Order of Integration
While evaluating double integrals if the limits of integration are variables, then the

change or order of integration changes the limits of integration. In changing the order of
integration sometimes it is required to split up the region and express the given double integral
as a sum of the number of double integrals with changed limits. Sometimes it is advisable to
draw rough sketch of the region of integration.

The following examples will illustrate the idea more clearly.

13
Example 1 : Evaluate IJ e“dx dy by reversing the order of integration.

03y

13
Sol. : Given integral is “. e“dx dy .

0 3y
Here the region of integrationis R={(x,y) :0<y<1;3y<x<3}
i.e., it is bounded by the curves

x=3y,x=3;y=0,y=1

X x=3
T =y
3 y=1
D,/ﬂ B
—p X

While changing the order of integration the horizontal strip is changed into vertical strip.

308



Region R can be written as
= {(x, y);0<x<3,0< ysg}

given integral on change of order of integration becomes

”e dy dx
00

1l

O = W
('DXN
| <

= % fexzzxdx

1 P 1r,
= —| e = — —
6 |: }o 6 [e 1]
aa
Example 2 : Change the order of integration in “ dex dZ and hence evaluate the same.
X +y
oy
Sol. Let | = ”XdXdy
X+ y?

e v
» o

From the limits of integration, it is clear that the region of integration is bounded by x =y,
x=a,y =0 andy = a. Thus the region of integration is the AOPQ and is divided into horizontal
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strips. For changing the order of integration, we divide the region of integration into vertical
strips. The new limits of integration become : y varies from 0 to x and varies from 0 to a.

Example 3 : Write an equivalent double integral with order of integration reversed for
2 a2y

y dx dy. check your answer by evaluating both double integrals.

0 _\fa2y?
V2 \a-2y?
leenlsj I y dx dy
0 a2y

The region Fr of integration is given by

= {(x, y):—\J4-2y? < X< \4-2y?,0< ysﬁ}

Now, x = + /4—2y* = X=y-2y? = x2+2y2=4
which is an ellipse

given region of integration is bounded by ellipse x?> + 2y? =4 for0 <y < J2 and
is shown shaded in the figure.

To change the order of integration, the vertical line enters the region where y = 0 and
2

leaves it where y = . Also minimum value of x is -2 and maximum value is 2.
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zdy

4-2y?
—\/4-2y

(1)
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2\ 2 2 y2 2
Again, I I y dy dx = J{?} dx
-2 0 0

_ "y
= 1 4x—X—
L 3 0
1] 8}
==|8-=|-0
21 3
4-x?
2 2
[ ] ydxdy-— (2)
-2 0
From (1) and (2), we get
\/E\M"Zyz ZE 8
I _[ ydxdyzzj I ydxdy=§
0 _ 472),2 -2 0

1 1-x2
Example 4 : Change the order of integration in the integral and
‘[ 'c[ A+€)J1- X2 —y?

evaluate it.

. _ 1 1-x2 dde
Sol: Letl—l; l (1+ey)m

Here integration is done first w.r.t. y and later w.r.t. x. So y varies from 0 to 41— x> while
x varies from 0 to 1. Now y = 41— x? = 1, which is circle with centre at (0, 0) and radius 1.

So domain of integration OAB is shaded as shown in figure and is bounded by unit circle
in the first quadrant.

When the order of integration is changed integrate first w.r.t. and later w.r.t. y.
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For this, consider a horizontal strip whose length varies from 0 to «/1— y2 and width y
varies from O to 1.

Thus the given integral can be written with change of order of integration as

1 1}1—y2

I e
5 o (1+€)J1-x*—y?

I dx g
_I 1+e’ J. 1y |
0 o @+y’)—x

2

1 1 -y
- I snt_=X J dy
0

1+ ey 1_ y2

0

1 2
) 1- :
:j L ; sin™® Y _sn? 0 dy
° 1+e 1— y2 1— y2

to1
=I S (sin™ 1 - sin™ 0) dy
, 1te
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{Iog(e‘y+1)}:) (U sin gj%dyzlogf(y)j

% (log(e™ +1) - log(e’ +1))

HE

=z [Iog 2_|091L6j
2 e

n 2e j
=—log | —
2 (l+e

Example 5: Evaluate after changing the order of integration.

N
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Here y varies from x to « along vertical strip and x varies from 0 to o.

After changing the order of integration the limit of x becomes x = 0 to x = y along horizontal strip
PQ and y varies fromy=0toy = o.

=TT ;dydx

0 y=x

I al

0

1]
O 8

1
O 8
[¢»)
< |2
L |
X
eed
S <
o
<

® w4
=[ =w-0dy
0
=T e¥ dy
0
g
-1 o
=(e-¢)
=1

Example 6: Change the order of integration and evaluate the integral

TEH ],-y dy dx
0 a-Ja?-y?
Sol: Given integral is T* ? V dy dx
00 22y

Here x varies from a-\/a* - y* to a+/a’ -y’ and y varies from 0 to a.
As x varies from a-«/a -y* to a+1/ -y

=  x=a+a -y = (x-a)PZ=a?-y?

= x2+y?-2ax=0
which is the circle with centre at (a, 0) and radius = a
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;'Yﬂ\ gl

¥4

S —— — o [

00,0 p (a, O) (24 é? A

This integration is performed along the horizontal strip PQ. Now change the strip horizontal to
vertical strip P'Q", then y varies from 0 to y/2ax—x? and x varies from 0 to 2a.

= TH ].-y dy dx
0 a-Ja?-y?
2a\Pax—x
= '[ dy dx
0 0

2a
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N

Example 7: Change the order of integration and evaluate the integral:
a24/ax

lj dy dx

Iy

XZ

4a

4a2\fax
Sol: Given integral is J. dy dx

0 x%

Q

Q

Y
i‘ = 4an
" 44
| ¥ _yeda
\ ; “ A (du )
\ | J
v..l 1 |
}"J"‘-ll Q' | =4
Sl | >
. % -
v

2
. X :
Here y varies from — to 2+/ax and k varies from 0 to 4a

4a
Here integration is carried along the vertical strip PQ. When we change the order of integration
2
the vertical strip must be changed to horizontal strip P'Q' where x varies from x = Z—to X =
a

2,/ay andy varies from O to 4a. The point of intersection of the curves is A(4a, 4a).

4a 2Jax 4a 2\Jax
Izjf dy dx = _[ dx dy

OX%a OX%a
4a 2@
= X[, d
A
4a y2
= |2Jay-2|d
[ 2o
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|
N
=1
‘~<
|
<

3
/2 34a0
4 3, 64a°
= —+a(4a)?
3[( ) 12a
_32 , lea’
3 3
_ 16a’°
3

Example 8: Change the order of integration and then evaluate the double integral

>

€

I dy dx
1

O N

Sol: Here integration is done first w.r.t. y and later w.r.t x. So y varies from 1 to ex while x varies
from O to 2

Y
A== =18 .
(Ov 1) ('2‘ 1)\)"1

y  0(0,0) 2,00 X

Thus the domain of integration ABE is shaded as shown in figure, and is bounded by the curve
y = e*and the straight linesy =1, x=0and x = 2.
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Here vertices of region are A(0), B(2,1), E(2, €?). When the order of integration is changed,
integrate first w.r.t. x and later w.r.t. y. For this, consider a horizontal strip whose length x varies

from x = log y to x = 2 and width y varies fromy =1toy = e?
Thus the given integral can be written with change of order of integration as

2 e 2
I dydxzj [ I dx]dy
0 1

x=logy
=] Xy,

[ S—

@

=[ 12-log y] dy

1
= [2y-ylogy+ y]fz
= [3y-ylogy]
= (3e?-e?log e?) - (3-log 1)
=3e?-2e?-3
=e?-3
Example 9: Write an equivalent double integral with order of integration reversed for

a 2a-x

-2a x7
a

Hence evaluate for f(x,y) =1

f(X, y) dy dx

a 2a-x

Sol: Given integral is I j f(x,y) dy dx
-2a x7

The region of integration is
X2
{(x, y):—2a<x<a,—<y< 2a—x}
a

which is bounded by vertical strips between

2
X

= —and
a

y=2a-xand
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of (4,0

Shown by shaded region in the figure.

To change order of integration, we change vertical to horizontal strips. The region is
divided into two regions R1, Rz represented by region POQ and PQM respectively in figure.

where R; = {(x,y)|0s ySa,—@SXS@}

X2

y = —

a

and Rzz{(x,y)|asys4a,— aysxsZa—y} = x* = ay
= x = tfay

a ,\/a;y 4a2a-y
1= [ reyydxdy+ [ [ fixy)dxdy
0 - fay a —fay
lInd Part : When f(x,y) =1
a \/5 4a 2a-y a \/a; 4a 2a-y
Then Izj I 1 dx dy + J. _[ f(x,y)dxdyzj (x)f\/i_ydy+ J (X)_\/a;ydy
0 —fay a —fay 0 0

a

:I (\/5+\/§)dy+]‘a (2a—y+\/5)dy

0 0

a 5 %
J ’ [2ay_y7+\/a}é_]

0

4a

3

|ey

a
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4 av’) -0+ 2827 —822 + 2 Jaga®) | 222 & L 2 2
(Sx/a(y ) OJ (48a 8a +3\/5(8a )j (Za 2+3aj

2
fa2+ Ea2—2a2+ a——gazz 2 2
3 3 2 3 2

Self-Check Exercise-1

14
Q.1 Evaluate_[ I ex? dx dy by changing the order of integration.

04y
Q.2  Change the order of integration of j I f(x,y) dy dx.
—al 7 2
Leise

Hence evaluate it when f(x,y) =1

12-x
Q.3 Change the order of integration and hence evaluate I I f(x,y) dy dx
0 x2
when f(x, y) = xy
Q.4  Evaluate after changing the order of integration.
T f ydxdy
0y, (@-X)ax-y’

18.4 Change of Variables In Double Integral

If Ais a simple closed subregion of the xy-plane which is mapped into the region B of the
uv-plane by the transformations

X=0(u, V), y = w(u, v)

and
0] ¢, v have continuous partial derivatives on B.
x o
iy 3= 20Y)_jou av|
o(u,v) oy oy
ou ov
Vv (u,Vv) EB

then H f(x,y) dx dy = H f(¢(u,v),1//(u,v))|J| du dv
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We accept this result without proof.
Particular Case : Change to Polar Coordinates

Here x=rcos 6,y =rsin o

OX OX
o o6l |cos@ -rsing
J:ar 08| , =r(cos?0+sin?20)=r
ay oy sind rcosé
o 06
_U f(x,y) dx dy =I f(rcos 6, rsin0)rdodr
A A

The following examples will illustrate the idea more clearly:-

Example 10: Evaluate ” sin T (x? + y?) dx dy over the circle x> +y?< 1

Sol: Here the region is A = {(X, Y)X +y? < 1}
Changing to polar co-ordinates by x =r cos 6, y =r sin 9, it becomes
A= {(r,0);0<r<%0<0<2r} where x? +y? =2

J.J. sinm (X2 +y?) dxdy = TJ{ sin (xr?)r dr do
0

A 0
2z

= |

1 1
de.— J. sin wr?.2mr dr
0 272- 0

= 27:.% [—cosmzllj

=-[cos &t - cos 0]
=-[-1-1]=2
Example 11: Evaluate ” idx dy where A is the region bounded by the four circles x? + y? =

A
ax, aix, by, bly such thata: >a>0and b. >b > 0.

Sol: Let | = J.J. idx dy where A is the region bounded by the four circles x? + y? = ax, aix, by,
A

b1y such thata; >a>0and b, >b > 0.

2 2 2 2

X+y :uanduzv
X y

Put
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Then the transformed region A" in UV-plane is

A= {(uVv):asu<a,b<v<h}

1YY
ouv) _| x* X
oaxy) | 2x ;X

_ e x*) 2x 2y
_ (¢ +y?)?
eyt

(R +Y)+4AXY
- x2y2

Now,

] (XZ + y2)2
X2y2
uv

_X2+y2 X2+y2 w
Xy

1
X y Xy
o y)|_ %y
o(u,v)| uv

IJI=‘

T 1
=(log a1 - log a) I —dv
v

by
= log % [logv],
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=1og 2 (log b: - log b)
a

= log iIog bl—
a

b
Example 12: Evaluate ”\/az — x? — y? dx dy over the circle x? + y? < ax in the positive quadrant

where a>0
Sol: Consider the circle X2+ y>=axor x>+ y?-ax=0

Its centre is (g,OJ and radius = %

1 oo, )

Put x=rcos6,y=rsin6
given circle becomes re cos? 0 + r? sin? § = ar cos 0

i.e. r=acoso

region of integration A is shown in the figure and for this region 0 varies from O to %

and r varies from 0 to a cos 0

[[ Ja®—x*—y* dxdy= jfaTg Ja?—r?cos’ 6—r2sin’6. rdr do
A 0 0
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% ["acosd

= | \/ﬁrdr}de

0 L O

% B 1aoos€ 1
= 1-= (az—rz)z(—Zr)dr}de

o L 2 0

3 acosd

1| (a®-r?)2

=== "2 de
3

2| 3 0

17 3 3
=3 J {(az—azcosze)z—(az)z}de

0

1 7%

=-Za°[ (sin®0-1)do
0
23 7 s 7

=2 sin3ede+%j 1do
0

W]
o

over the positive quadrant of the ellipse

2 2
X
_+y_ =1

a’ b?

X
Sol: Put —=u, Y =v
a b
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ie. X=au,y=bv
dx = adu, dy = bdv
X2 y2
ellipse —2+F = 1 in the positive quadrant of xy-plane transforms into the circle u? + v?
=1 in the positive quadrant of the uv-plane.
x ox
3= 9%y _ou

o(u,v) oy

ou

2@ 2

where Aistheregionu>0,v>0,u?+v?<1

Put u=rcosoO,v=rsin®

ou ou
;2 or 06| _|cosé -rsing
- @ ﬂ_ sin@ rcosé
or 00

=r(cos?0 +sin?20)=r

Also A= {(r,@):ogr 310303%}

ab.r dr do

\/1—r2c052¢9—r25in2¢9
1+r?cos’ @+r?sin® 6
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Example 14: Using the transformation x + y = u, y = uv, show that

2
_U ,/xy(l—x— y) dx dy = é where the integration being taken over the area of the

triangle bounded by the linesx=0,y=0,x+y=1
Sol: Giventriangleisx=0,y=0,x+y=1

0 é:'l‘? A 7)(

Given transformation is x +y = u, and y = uv

= X+uv=u
x=u(l-v) .-(2)
and y=uv .-(2)

when x =0, from (1), we get

u=0,v=1
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when y =0, from (2), we get
u=0,v=0
when Xx+y=1=u-uv+uv=1=u=1

which is a square in uv-plane as shown.

Now
oX OX
al= ou ov|_[l-v -u
oy oy \ u
U ov

=u-uv+uv=u

YV

| = _U ,/xy(l—x— y) dx dy

= || Ju@-v)wv@-u)ududv

= Jl'Jl. JUZ(L-U)V(L-V) u du dv
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1 1
= I u?+/1-udu I v(1-v) dv
0 0
1
=y x|, ; wherel, = I u2+/1-udu
0

and |2 = Jl‘ JV(3-V) dv

Now
1
l1 = (1—u)2du
[Putu=sin?0 .. du=2sin 0 cos 0 do]
7
= j sin* ® cos 0 2 sin 6 cos 0 do
0
)
= j 2 sin® 0 cos? 0 do
0
421
7531
_ 16
105

1
and I2=I v/1-Vdv
0
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_ 6.7
105 8

2%
105

Self-check Exercise-2

Q.1 Change into polar coordinates and evaluate ” e“x2+y2)dydx
00

Q.2 Evaluate ” (x? + y?) dx dy, where A is the region bounded by the four
A

hyperbolas x? - y? =2, 9 and xy = 2,4.

Q.3 Evaluate _U sin [X y]dx dy, where E is the region bounded by the
: X+Yy

coordinate axes and x + y = 1 in the first quadrant.

18.5 Summary

We conclude this unit by summarizing what we have covered in it:-

1.
2.
3.

4.

Discussed change of order of integration.
Solved questions related to change of order of integration in double integral.

Discussed the change of variables in double integral. Also discussed the
particular case of change to polar coordinates.

Solved questions of double integrals by change of variables.

18.6 Glossary

1.

While evaluating double integrals if the limits of integration are variables, then
change of order of integration changes the limits of integration.

If A'is a simple closed subregion of the xy-plane which is mapped into the region
B of the uv-plane by the transformations x = ¢(u, v), y = y(u, v) and (i) ¢, v have

oX OX
a(x,y) _|ou av
o(uv) |dy oy
ou ov

Then ([ f(x y)dxdy = [[ (6 (u,v), v (u, V) 13| du dv.

continuous partial derivatives on B, (ii) J = #0,V(u,v)eB
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18.7

18.8

18.9

Answer To Self-Check Exercise
Self-Check Exercise-1

6_
Ans. 1 ¢ -1
a a?-x? %x}az—zwz
Ans. 2 j I f(x,y)dy dx = I J f(x,y) dx dy +
,agm 0 _Ja2_y?
% 22—y % faz—yz
[ [ sxyydedy+ [ [ f(xy)dxdy
0 _Ja2_ay? %7 2_y?
and
T
2

12-x 22-y

1y
Ans.3.(['[ f(x,y)dydxzj;'([y f(x,y)dxdy+j£ f(x,y) dx dy

1

3
and —
8
a
Ans. 4 za
2
Self-Check Exercise-2
T
Ans.1 —
4
Ans. 2 7
Ans. 3 0
References/Suggested Readings
1. G.B. Thomas and R.L. Finney, Calculus, 9™ Ed., Pearson Education, Delhi, 2005
2. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd,
2002

Terminal Questions

o X
1. Evaluate ” X e‘leydydx by change of order of integration.
00
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Evaluate after changing the order of integration:

N
I y2 - dy dx
0

O ey

Evaluate after changing the order of integration:

[ ] 02+y?dydx

° %

Change the order of integration and then evaluate the double integral

1 3x+2
dy dx

-2 x%+4x

By changing into Cartesian coordinates evaluate J. r3 sin © cos 0 dr dr
0

Ot

Evaluate ” x2 dx dy, where A is the region enclosed be the four parabolas y? =
A
4ax, y? = bx, x2 = ¢y, x2 = dy where a, b, ¢, d are positive reals. (a< b, ¢ <d)

Show that H %z n log 3 over the region A between the concentric
A -X -y
circlesx?+y?=1and x> +y?>=3
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Unit - 19

Triple Integral

Structure

19.1 Introduction
19.2 Learning Objectives
19.3 Triple Integration
Self-Check Exercise-1
19.4 Change of Variables in Triple Integral
19.5 Change to Cylindrical Coordinates
19.6 Change to Spherical Coordinates
Self-Check Exercise-2
19.7 Summary
19.8 Glossary
19.9 Answers to self check exercise
19.10 References/Suggested Readings
19.11 Terminal Questions
19.1 Introduction

Triple integration is a mathematical technique used to calculate the volume of three-
dimensional regions and evaluate various quantities within those regions. It extends the concept
of integration from one dimension (single integration) and two dimensions (double integration) to
three dimensions. In triple integration, we integrate a function over a three-dimensional region in
space. This region can be described using Cartesian, Cylindrical or Spherical coordinates,
depending on the nature of the problem and the symmetry of the region. The general form of a
triple integral is given by:-

ﬂ f(x,y, z) dv

Here f(x, y, z) represents the integrand, which is the function being integrated and dv
represents an infinitesimal volume element. The triple integral is performed over the region of
interest. To evaluate a triple integral, we divide the three-dimensional region into small volume
elements, calculate the contribution of each element, and sum them up over the entire region.
This process involves setting up the limits of integration for each variable and applying
appropriate coordinate transformations if necessary.
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19.2 Learning Objectives
After studying this unit, you should be able to:-

. Discuss triple integration and solve questions related to it.

. Discuss change of variables in triple integral.

o Discuss change to cylindrical co-ordinates.

o Discuss change to spherical co-ordinates.

o Solve questions related to change of variables in triple integral.

19.3 Triple Integration

Let f(x, y, z) be a continuous function of three independent variables x, y and z, defined
over a closed and bounded region enclosing a volume V in R2. Divide the Region into a number
of parallelepipeds by drawing planes parallel to the co-ordinate planes inside the Region

enclosing volumes 8 Vi, d Va,......, Vi, then the sum;
Lt Lt /cyzddVi— [[[ sy, 2avor [[[ sy, 2) dxdydz
N—o N—w \Y \%
oV, >0

For evaluation, it can be expressed as the repeated integral

Z Yo %

j j j fx,y,z)dxdydz .. (1)

a4 Nh %
and the order of integration depends upon the limits.

Let zi=f1(x,y) and  zz = fa(x, Y); Y1 = ¢1 (X) and y2 = d2 (X) and X1, X2 be constants say
X1=a, X2=h.

Then (1) can be written as

x=h y=¢,(x) [ z=T5(x,y)
j [j[ j f(x,y,z)dszy}dx

x=a y=¢1(x) \ z=f1(x,y)

i.e. we integrate f(x, y, z) first w.r.t. z (treating X, y as constants), then resulting
expression w.r.t. y (keeping x constant) and finally w.r.t. x.

When x1, X2, y1, Y2 and zi, z> are constant then the order of the integration is immaterial

i.e.
]yﬁ fx, y.z) dx dy dz = szfyf f(x, y, 2) dy dz dx
ann X 4N

= TT]Z f(x,y, z) dz dy dx

X N4
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Let us consider the following examples to clear the idea:

elogye*
Example 1: Evaluate I _[ I log z dz dx dy
1 1

Sol: Letl = Ti? log z dz dx dy
1 0 1
Iogy e
{j j og zdz dx}dy ..... 1)
0 0

Now jlogzdz Ilogz,ldz
0

0

N | —

= [log z.z]lex- j zdz
0

=(eXIogeX-Iogl)-I 1dz
0

ex
X
Xe -[Z]l
=xe*-(e*-1)
=xe*-e*+1

from (1), we get

| = T{Ioj!y(xex—ex+1)dx}dy

1 0
¢ logy

= I[x ex—ex—eXer]O dy
1

_T[ e +x gydy
1
[ jx e“dx = xe* —Il.exdx =X € —ex]

T{ logy-2) e 'Ogy+logy—(—2)} dy
1
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T (logy—2) +logy+2} dy
1

= |[(y+D —2y+2] dy

P — 0

je.(y+1).log y dy—2J€ y dy+ Zjl.dy
1 1 1

[ Lo [ 5 (Sorfor2[ £ o2

1

= e_22+ej log e — O—I( y+1jdy (e -1)+2(e-1)

e2

= E+ej.1 -~ {y{+ yl (& -1 +2(e-1)

1
|
+
N
D
+
|

1
—(1+ 8e-3e?
4( )

Example 2 : Evaluate ﬂj (X+y+2) dx dy dz over the tetrahedron bounded by the planes x =
0,y=0,z=0,x+y+z=1
Sol. The tetrahedron is bounded by the planes

x=0,y=0,z=0,x+y+z=1

X+y+z<1

X<1,x+y<1l x+y+z<l1

Xx<1l,y<l-Xx,z<1l-x-Yy

V={(XYy,2):0<x<1,0<y<1-%x0<z <1l-x-y}
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jﬂ(x+ y+2z) dx dy dz = Hljx[l__x[_y(x+ y+2) dzJ dy} dx

0 0

ey o

{ _[X[(x+ y+1-x-y)* = (x+ y)ﬂdy} dx

N |-

O ey

N |~

O ey

{T[l— (x+y)* ] dy} dx

r 3 1-x
Sy ey } o
3 0

N |~

O ey

(315

1 3
I X——x+ngx
0

N |~

O ey

N |~

3 3

|
N |-
o
|
| %
+
[N
5s—+

N~ N |-
T
(@)]
+
(o]
L 1
|
N[
X

Example 3 : Evaluate _m (a x+b y+c z)*dx dy dz

x2+y2+22<1

Sol. Since x? +y?+z2=1

X><1,x2+y?<1,x°+y?+72<1

= —gxgl,—\/l—xz,—\/1—x2,—\/1—x2—y2 <z<1-X -y
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XC+y?+72<1

1 1-x2 m
”J. x°dx dy dz = Ixz[ j { _[ dz}dy]dx
1 (bl ey

_2_2_2 2
J1- X2\ 1-3( X*)  1-x

Sn

. N1

2 2

1
B
—_—
x

N
—_—
T
x
N
N—
o
X

Similarly j j j (y)’dx dy dz = j j j (2)%dx dy dz = —
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4z
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X2+y?+22<1 N sy
1 (1
= jx[ j y( 1x2y2)dy]dx
1\ ik
= jx(o)dx

=0 ( 2y\/1-x* — y* isan odd function w.r.t. y)

Similarly Hj yzdxdydz = Hj zxdxdydz=0

x+y+zl x+yzl

m' (a X +b y+c z)%dx dy dz

I” (a2 x> +b? y?+¢* Z2+2abxy+2bcyz+2caz x) dx dy dz

=a jjszolxolyolub2 [[[ y?ax dy dz+c [[[ Z°dx dy dz

+2ab [[[ xy dx dy dz+2bc [[[ yz dx dy dz+2ca [[[ ¢ dx dy dz
(47[} (47[) (47[)
=a? 15 ) * b? 15 c?| 75 | *+ 2ab(0) + 2bc(0) + 2ca(0)

= (a2 + b2 +c2) 4z
15

By

31
Example 4 : Evaluate “. J. XYy z dz dy dx
1Ux O

X

0

{21 o]

31 3(1 N
Sol. : U‘Xixyz dz dy dx= Jl'{ﬂfxxy J'xyz] dy}dx
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Example 5 : Evaluate the following triple integral over the region given :

” X adv whereV=_{XYy,2):2<x<4;1<y<x; 0<z<X;
\%
Sol. : _[\J; x dv = IIEX dz dy dx

Jx'xxdydx
1

340



Example 6: Evaluate I\J;I

o2t

- 60- 2
3

_ 124
3

dxdydz
(x+y+z+1)°

Sol: Sincex+y+z<1,x>0,y>0,z2>0

X<1,x+y<l x+y+z<l1
Xx<1l,y<l-Xx,z<1l-x-y

V={(xy,2):0<x<1,0<y<1-x0<z<1-x-y}
dxdydz (Y dz
J.\{J‘(Xer+z+l)3 - -!{;[( -([ (x+y+z+1° dy o
0

I (x+ y-|_‘22+1)_2 T_X_y dy}dx

1-

T
<

y

1
O ey
o t—

(X+y+ z+1)3dzJ dy} dx

aralit 1
E[{Z_(XJF y+1)2} dy}dx

1r 1 1-x
J- ly_(x+ y+1) } dx
0 -1 0

1]
®| -
O ey
VR

T

X

+

?
X
+
=
N——

o

X
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r 1
1| x°
== | -2 _4log(1+ x) + 3x
5l 32 g1+ X) }

0

= % (—%—4I092+ 3]—(0—4Iogl+ O)}

1[5
=-—|=-4log2
8|16 d }
1 5
= —log2- —
2 g 16
X2 y2 ZZ
Example 7: Evaluate J'Ijxyzdxdydz over the ellipsoid — - +— <1
a b c
2 2 2
Sol: Since X—z—y—2+z—2£1
a b c
2 2 2 2 2 2
X—zg 1, X—2+y—5 1, X——y—+z—sl
a a> b’ a> b* ¢
b2 X2 y2
b 2 2 ' y2
-agxga,—\/a -X,z2<¢? | 1-——-= |,
a a b
2 2
a b
jjjxyzdxdydz=f .[ Xy I z dz |dy dx
LS -a | b 2T N
2 b2 C2 2 b2
=0 { zisan odd function of x and .- j zdz:o}
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Example 8: Evaluate (Ix* + my? +nz*) dx dy dz.

X+y?+ 72 <a

Sol: Since x? + y? + 72 < a2
x2<a X2+ y2<a? x2+y2+ 72 < a?
az_xz_yz

~a<x<a -Ja-X<y< V@ -x, - Jai-xX -y <z<
a m 22—y
Now jﬂ 2dxdydz=_|'x2{ j { J' 1dz]dy}dx

X2+y?+7°<al -a _Ja2—x

i &/a—Tdy} o

g

a \W
= J.ZXZ{Z J' J(@ xz)yzdy}dx
-a 0

XZ{ aIx [ ]¢a2 xX*-y? dy}dx

=4.afx2 yya'-x'-y sin
_a 2 2 a’—x
a | Nai-xtjal-x—(al-x?) g2_y2 2_ 2
O i N = A
,a 2 2 a?—x?
a 2
:4jx20+{a —X (Zj dx
b 2
a 3 572
-ar(Z)Ix2 a2l X
0 3 5 0

2dxdydz =— a5
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m (IX* + my? + nz*) dx dy dz

Xry?+72<a?

=[] 2xdxdydz+m m y? dxdydz + n m 2% dxdy dz

X +y2+22<a X + +Z <a X +y +Z <a
(k] (fe){ )
15 15 15
5
—(+m+n) 4ra

Self-Check Exercise-1

2.3

Q.1 Evaluate Z°r’sin6drdzdz

O =

|

Q.2 Evaluate the following triple integral over the region given

O ey N

_m xydv, where V = {(x,y,2):1<x<21<z<x1<y<Z
\

Q.3  Evaluate H_[ (x+ y+2)° dx dy dz over the region defined by

x>0,y>0,z>0,x+y+z<1

Q.4 Evaluate I j J.xdxdydz

X2 2
—+ y—2+ —=<1
a“ b® c

14.4 Change of Variables in Triple Integral

Let V be a simple closed sub-region of the xyz space and f : V — R be integrable over
V. If the region V of the xyz space is mapped on the region V' of the uvw space by
transformations x = f1(u,v,w), y = f2(u,v,w), z = f>(u,v,w) and

(@ f1.f2,f3 have continuous partial derivatives on V'
ou ov ow
(i) _ 0.2 1Y N NIy v w) eV then
o(u,v,w) |[ou ov ow
oz oz &z
ou ov ow
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[[] f(xy.2) dxdydz= [[[ £(f,, T, f) 9] du dv dw.

19.5 Change to Cylindrical Coordinates
Let P(x, y, z) be any point in the region V. From P draw PM _L xy-plane, Join OM.

Let OM =r, | XOM = 0. Then
X=rcos0,y=rsin0,z=MP

(r cos 0, r sin 6, z) are called cylindrical coordinates of P.

4

P(rcos 6, rsin 4, z)

4

>
A Y
i
M
X
ou oV OW| |cos9 —rsingd O
ng—y % %v: sngd rcosfé O
u
a2 oz oz 0 0 1
ou ov ow
=rcos?0+rsin?0=r(cos?0 +sin?0) =r(1)=r
Here V=V

[[] f(x v, 2dxdydz = [[] f(r cost,rsind, 2)r dr dodz
v v

19.6 Change to Spherical Coordinates
Let P(x, y, z) be any point in the region V. From P, draw PM L xy-plane. Join OM.

Let OP =r, |[ XOM =0, |ZOP = ¢

X=rsin¢pcosO,y=rsindsin6, z=rcos ¢
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OX OX OX

or 00 0g singcosf rcosgsing —rsingsingd
J= ¥ ¥y N sngsing rcossing rsingcosd |=r?sin ¢
or 00 0¢ .
CoS¢ —-sng 0
2 oz @z
or 00 0¢
HereV =V

m' f(x,y,2)dxdydz = m' f(rsingcosd,rsingsing,r cosg) r? sin ¢ dr do d¢

Note 1: The polar spherical coordinates are useful when the region of integration is a part of a
sphere.

>y

Note 2: Under these transformations V = {(x, V,2) X+ Yy +7°< az} is mapped onto

V'={(r,0,¢):0<r<a,0<60<2r,0<¢<r}
Let us consider the following examples to clear the idea:-

Example 9: Evaluate ”I 7(x* + y*)dxdydz
\%

where V = {(x, Y,2): X +y*<1,2< 233}

Sol: Since the region of integration is a part of a right circular cylinder, so we change to
cylindrical coordinates.

V={(r,0,2):0<r<1,0<6<2r,2<7z<3}
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Now m.z(x2+y2)dxdydz=Jl. j.z(rzcosz6'+rzsin26')rdzd9dr
\% 0 2

I
AP
|
o
N—
—~
N
a
1
o
N
7 N\
N ©
|
NS
N

Example 10: Evaluate .[.” (ax® + by® + cz*)dxdy dz
R

where R is the region x> + y> + z2< 1

Sol: Since the region of integration is a ball bounded by the sphere x? + y? + z2 < 1, so we
change to spherical coordinates by substituting

r=rsingcosO,y=rsin¢sind, z=rcos ¢
V={(r0,2):0<r<1,0<¢<7,0<0<2r}

2r

{

1
(rsingcosé)? risin ¢ dr d6 d¢ + CJ.
0

1
m (ax® +by” +cz’)dxdydz=a I (r singcosd)? risin ¢ dr do do
R 0

127 2z
+bJ.
0

{ {

= ajr“dr Tco329d9 fs‘n3¢0d¢+b Jl'r“dr fs‘nzg do Tsinw dg
0 0 0 0 0 0

N
O =y N

O

(r cosg)® rsin ¢ dr do do

O =33

+ ch'r“dr 2J?dé? jm§¢sin¢d¢
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K

coszedezjsm ¢d¢+b{5}

oo o o]
5 0 ° 3 0

al1o0]alsZox2ip(tolaliZox 2,
5 2 2773 |5 2° 2773
2

K

sin edezjsm $dg

1

O"—-.N\N

I
1
o] T
||
o -
O'—.N‘§

0

c(é—Oj.(Zn - 0).(%) 0+1)

a 4 b 4 c
= —X\UX —F+F—XT X —+ —X 21 X
5 3 5
:4—ﬁ(a+b+c)
15
-y -
Example 11: Evaluate H —_ dx dy dz, where

1+ X+ Yy + 7

= {(x,y,z):st,ysO,st,x2+y2+zzsl}

Sol; Letl—j”lJrX v dxdydz

where V = {(x,y,z):st,ysO,ZSO,x2+y2+2231}

Put x=rsinbcos¢,y=rsingsing, z=rcoso

|J] = r? sin 6 and V is mapped into V, where

= {(r,9,¢):0£r sloses%,os¢s%}

= [ e
= ) e resin 6 dr do d¢

2

1-r
5 r2 dr

1+r

d¢ |sing do

1
Oy
O =N [ N
O t—N [N

sing dg -
1+r

2
2rdr

O'-—;N\'El
NN

I
O ey
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_ J'r(l r)

1+r?

T 7 2
=Tl 2
2 1+r

— r2 1
=z 2r———2tan‘1r}
2 3
L 0
T i 1 -1 -1
-7 (2———2tan 1)—(0—0—2tan o}
2[\” 3
=z 2———2——0+0+0}
2
_r §_£j
213 2

dxdydz

/l— X -y -2

sphere X2 +y?+z2=1

Example 12: Evaluate Hj over the positive octant of the

Sol: Since the region of integration is that part of the ball of radius 1 and centred at origin which
lies is the positive octant.

= {(x, y,2):x>0,y>0,>>0,x*+y* + 7 Sl}
Changing to spherical coordinates by substituting

X=rsin¢$cos0O,y=rsin¢sinb, z=rcos ¢, we get

= {(r,¢,9):0§ r,Os@s%,Ogﬁs%}

1% 2
dxdyd drdéd
m- dyz Z‘M‘!‘-rsmgzﬁr o

’ 2 1_r2
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oo|"‘,\,

r.2
J1-r2
Put r =sint, .".dr = cosdt
whenr=0,t=0

dr

1
Byletting | =j
0

VA
whenr=1t=—
L 2

Yy 2 )
cost dt = J'sinzt
0

Self-check Exercise-2
Q.1 Evaluate J'_U z (X* +y* + %) dv where
v:{(x, y,2): X +y*<a*,0<z< h}

Q.2 Evaluate m 7> dx dy dz

x2+y2+2251

Q. 3 Evaluate J‘”(x2 + y?)dxdy dz over the region bounded by X* + y* +z°=1.

19.7 Summary
We conclude this unit by summarizing what we have covered in it:-

1. Defined and discussed triple integration.
2. Solved some questions related to triple integration.
3. Discussed change of variables in triple integral. Also discussed change to

cylindrical coordinates and change to spherical co-ordinates.
4. Solved some questions related to change of variables in triple integral.
350



19.8 Glossary

1.

Let f(x, y, z) be a continuous function of three independent variables x, y and z,
defined over a closed and bounded region enclosing a volume V in R3. Divide the
Region into a number of parallelepipeds by drawing planes parallel to the co-

ordinate planes inside the Region enclosing volumes d Vi, d Va,...... , 0V, then
the sum |t Z(xr,yr,zr) 3V, — J‘”f(x,y,z) dV or m‘f(x,y,z) dx, dy dz is
n—oo r=1 \Y/ \
oV,—0

called the triple integration and for evaluation, it can be expressed as the

L Y %
repeated integral III f (x,y,2) dxdy dz

a2 9%

19.9 Answer To Self-Check Exercise
Self-Check Exercise-1
Ans.1 72

1
Ans. 2

Ans. 3

1
30
1

24

Ans. 4 0
Self-Check Exercise-2

Ans. 1

Ans. 2

Ans. 3

2|2
za‘h (@ + 1)

4r
15
8r

a5
15

19.10 References/Suggested Readings

1.
2.

G.B. Thomas and R.L. Finney, Calculus, 9" Ed., Pearson Education, Delhi, 2005

H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) P. Ltd,
2002

19.11 Terminal Questions

1.

11-x2-x

Evaluate .[ j j dyz dz dy dx
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N

44 16— z2
Evaluate .” I 16—r rzdr dz d@
00 0

Compute the integral _mxyz dx dy dzover a domain bounded by x=0,y =0, z =
\%

O, x+y+z=1

Evaluate ”'[ (2 +2) dx dy dz

X+y?+72<1

Show that m (ax+by+cz) dx dy dz=0

x2+y2+22£1

Show that H_[ (X% + y? + Z))dxdy dz= 4?” over the region x>+ y*+7°< 1

dxdydz .
Evaluate m. over the region a’+ x* + y*< a2
a+xe+ Yy + 72

Xy 7 mlabe
Prove that \/l—————— dx dy dz =
I\{I a.2 b2 C2 4

X2 y2 ZZ
here v=1(X,¥,2): 5 +5+—5<1
" {( ¥:2) a? b* c? }
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Unit - 20

Applications of Double And Triple Integral

Structure

20.1 Introduction

20.2 Learning Objectives

20.3 Area By Use of Double Integration
Self-Check Exercise-1

20.4 Volume By Use of Triple Integration
Self-Check Exercise-2

20.5 Summary

20.6 Glossary

20.7 Answers to self check exercise

20.8 References/Suggested Readings

20.9 Terminal Questions

20.1 Introduction

Double and triple integration have various applications in mathematics, physics,
engineering and other fields. Double integration is commonly used to calculate areas and
volumes of irregular shapes. By integrating a function over a region in the plane, you can
determine the area enclosed by the curve or the volume under a surface. Double integration is
also employed to find the center of mass of an object with non-uniform density. By using the
concept of moments, you can calculate the coordinates of the object's center of mass. Triple
integration extends the concept of double integration by calculating volumes of three-
dimensional objects or regions. It is especially useful for irregular or complex shapes. Triple
integration is also used to calculate the mass and density distribution of three-dimensional
objects with varying densities. Triple integration is also used to calculate the moment of inertia
of three-dimensional objects.

20.2 Learning Objectives
After studying this unit, you should be able to:-

. Discuss the formulae for calculation of area by use of double integration.
. Solve questions related to finding the area by double integration.
. Discuss the formulae for calculation of volume by use of triple integration.
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. Solve questions related to finding the volume by triple integration.
20.3 Areaby Use of Double Integration

(1)  The area A of the region {(x,y):a<x<b, f,(x) <y< f,(x)}is given by

b f2(x)

Azf j dy dx

a f;(x)
(2)  Thearea A of the region {(x,y):c<y<d,g,(y) <x<g,(y)}is given by

d 9,(y)
A= f J dx dy

c ai(y)
(3)  TheareaA of the region {(r,0):a <8< S, f,(6)<r < f,(0)}is given by

£ 1,(0)
A= I _[ r dr do
a f,(6)

(4)  The area A of the region {(r,8):1, <r <r,,0,(r) <O < g,(r)}is given by

0 (r)
Azj j r de dr

ngy(r)
The following examples will illustrate the idea more clearly:
Example 1: Find the area of the circle using the double integration
Sol: Let the equation of circle be x? + y? = a2
We know that circle x? + y? = a%is symmetrical about both the axes.

Also in first quadrant, y =</a?—x*, 0<x<a

a 2

required area = 4j j dy dx
0

0
a
=4j\/a2—x2dx
0
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B 2 2
=4l 0+Z sn'1|-| 0+ & snt0
2 2

Example 2: Find the are enclosed using double integration by the ellipse —+§ =1
a’

y*

Sol: The equation of ellipse is _+F =1
a

We know that ellipse —+§ 1 is symmetrical about both the axes.
a’

2

o b
Also in first quadrant, y = — y/& —-x2 .0 <x<a
a

b
a?-x?

required area = 4j I dy dx
0 0
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i 2 2
=10+ & gnt1]-[ 0+ ™ dnto
a 2 4

ala? r»
= — — X —
a _2 2
= wab

Example 3: Find the area bounded by the parabola y = x? and the liney = x + 2
Sol: The equation of the parabola is y = x? ..(1)

The equation of the lineisy =x + 2 ..(2)
From (1) and (2), x + 2 = x?

s ,"
F B g —é’\
\ PR e *
\ o
N\ p. .
\ 7@3{3 :
\\\ Lb;/ //\8;::_-2-'
\\ __// s
\ ,//
,/
=)
(b /
2 i
¥
x?-x-2=0
= x-2)x+1)=0
= x=-1,2
y=1,4

region of integration A is given by
A= {(x,y):—lg X<2,X*<y< x+2}

Required are = Jz.xrdy dx

-1 2
2 X+2
= _[ [y]x2
-1
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_10 7 _20+7_27 _9
3 6 6 6 2

Example 4: Using double integration find the area bounded by the curves x = 2y - y? and x = y?

Sol: The equation y? = x is a parabola with vertex at (0, 0) and x = 2y - y? is also a parabola with
vertex (1, 1) and can be written as (y - 1)>=- (x - 1)

......

They will intersect when y2 = 2y - y?

Or 2y?2-2y=0 = 2y(y-1)=0

Or y=0,1

Put y=0,1liny’=x,wegetx=0,1

i.e. Point of intersection are (0, 0) and (1, 1)

2y-y?

1
The required area = II Zyy
0 2

O'—.l—'

- [@y-y -y dy= f(2y—2y2>dy
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1 yz yzl
Area=2 |(y-2y?)dy=2 |-
rea !(y 2y?)dy {2 31
=2F_1}=1

2 3| 3

Example 5: Find the area enclosed by the cardioids r = a (1 + cos 0)

Sol: The equation of the cardioids isr =a (1 + cos 6)

From the figure, it is clear that cardioids is symmetrical about the initial line.

7 a(1+cosh)
Area = _[ J r dr d@
0 0

O

a(1+cosd)
[ _[ r dr}de
0

e 2 a(1+cos@)
r
=2 f| = do
ol 2

0

= azj(1+ c0sh)*do
0

VA

2
- 22 ‘[{Zcosz Q} de
0 2
= 4a2jcos4gd¢9
0 2

Put gz t ie. 0 =2t,
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when 0=0,t=

when 0=mx,t=

)
Area = 4a2.2 J. cos*t dt
0

:8a2£ Z: 372'32
42 2 2

Self-Check Exercise-1
Q.1  Find the area enclosed by the parabolas
y?=4ax and x> =4ay, a>0
Q.2  Find the area of the region bounded by
1
Xx=0,y=0,x2+y*=1,y= >
Q.3  Find the area enclosed by the cardioids

r=a(l-cos0),a>0

20.4 Volume by use of Triple Integration

(i) In case of Cartesian coordinates, V = H I dx dy dz

element of volume is 8V =030x dy &z

(i) In case of cylindrical coordinates, V = ”J.r dé dr dz

element of volumeis 8V =rd6 &r &z
(i) In case of spherical coordinates, V = ”er sing dr d¢ do

element of volume is 3V =r?dsingdr 3¢ d o
where V stands for volume of the region.

Let us consider the following examples to clear the idea :-

2 2 2

X z .4

Example 6 : Prove that the volume of the ellipsoid —2+§+—2= lis ?ﬁ abc.
a c

Sol. : Required volume .m dx dy dz
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2 2 2
.. X z
over the ellipsoid —2+y—2+—2 =1
a- b” c
X z
Put — =u, sz, — =W
a b c

= dx=adu,dy=bdv,dz=cdw
volume = ”J.abc du dv dw

over the sphere u? + v2 + w? = 1
Changing to spherical coordinates by the relations
u=rsing cos 6, v=rsing sin 6, w =r cos ¢

volume = abc J.J.J.rz sing dr d¢ d@

over the region {(r, ¢, 0),0<r<1,0<¢ <= 0<0< 21}

= abcjrzdrisingb d¢2fd9
0 0 0

_ abc[g}l [-cos]; [0

0

ach3 — Oj (—cosxz +cos0).(27 —0)

abc x %xeZn

4—” abc
3

Example 7 : (i) Find the volume of the tetrahedron bounded by the coordinate planes and the
X 'y z i
plane 3 + b +E =1, where a, b, c are positive.

(i) Find the volume of the tetrahedron bounded by the coordinate planes and the
plane passing through points (a, 0, 0), (0, b, 0), (O, O, c).

Sol. (i) Required volume m dx dy dz
\%

where V = {(x,y,z):xzo,y20,220,§+z+5£1}

a b c
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X z
Put > =x, 2=v, 2=z
a b c

dx=adX,dY =bdY,dz=cdz
V={(X,Y,2):X>0,Y>0,Z>0,X+Y +Z<1}
={(X,Y,2):0<Z<1,0<Y<1-7Z,0<X<1-Y-2}
Required volume dex dy dz
\%

= jj abc dX dY dz
\Y)
1
]
0
1-

= abc j ”Zdvdz
0

T
N

1-Y-z

]- dx dy dz
0

[
O ey

N

o

1(1-Z
abcj{j 1-Y - z}dz
0 0

T v? 1-Z
= abcj Y—?—YZ} dz

0

(1-2)*

= abcj_(l—Z)—

_ ab {a—zﬂl
2 (DO ],
=a—bc[(1 1°-(1-0)%

-z~ Z)} dz

abe
5
. . . Xy z
(ii) the equation of plane passing through (a, O, 0), (O, b, 0), (0, O, c) is 5 + E +E = 1.

Now solution is same as that of part (i).
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Example 8 : Prove that the volume of a tetrahedron bounded by the coordinate planes and the

plane x +y + z =1 is equal to %
Sol. : Required volume = m dx dy dz
\%

whereV={(x,y,2):x>0,y>0,z>0,x+y+z<1}
={X,y,2):0<z<1,0<y<1-70<x<1l-y-17}

11-z1-y-z
Required volume = I I I dx dy dz
00 O
11-z
- J'I[x]z_y_zdy dz
00

1
O ey

0

{T (1-y— z)} oz

I
i
1
h
<
|
N
T
N
o
N

O ——y

1
O ey

_(1— z)—@— 2(1- z)}dz

- 2a-2- 4=

1}
O ey

-z(1- z)} dz

ll
= —j(l—z)zdz
20

L {(1— 2’ }
2 (D3,
217~ (1- 0]

1
"5 (-1)

1
6
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Example 9 : Find the volume of a cylinder with base radius r and height h.

Sol. : Let O be the centre of the base and A that of the top. Take O as origin, OA as z-axis and
two perpendicular lines through O in the plane of the base as x-axis and y-axis.

,rz.

Let P(x, y, z) be any point on the cylinder Form P, draw PM --OA such that MP =r

JE+Y =rorx@+y2=1,
which is one equation of cylinder.
Let V be the region bounded by the cylinder.
V={xy,2):0<z<h -r<x<r -y, <y< yi}

2 2

wherey: = r°+X

Required volume = ”J. dx dy dz = j T }dz dy dx
\%

ek

:hj{T dy}dx:h'r[ 2y, dx

- -n
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= 2h _[\/rz—xz dx
2 r
=2h F\/rz—x2 +r—sin‘1(§”
2 2 r)l.

_ ST L
= 2h {Esn @ 2sm ( 1)}

= nr?h

Example 10 : Find the volume cut off from the sphere x? + y2 + z2 = a2 by the cylinder x + y? =
ax.

Sol. : Given equation of the sphere is
X2 + yz +72=32

= z=+Ja’—x*—y® =+ 1z (say)

Also, given equation of cylinder is

X2 +y? = ax.

= y = tjax—x* =y, (say)

X2+y?=zax,y=0=>x’=ax=x=0,a

Required volume = T T T dz dy dx
0-%-2
= ja. T 2z, dy dx
0-y

A

Put x=xcosb,y=rsinb

%> acos6

Required volume =4 J. j Jai—r?r drdé

0 0
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/2 acosd
=2 j{ j €% r)(2r)dr}

r r=a cosé

_ (@ -r?? r)
=.2 —a do

2 r=0
47 . 3 3
=3 J; (a®>-a’cos’9)? —(a )Z}de

L 7
=-—a [ (sin’0-1dg
3 0

As(2 7
3 31 2

8 2r
:-—a3+—a3

3

= 2%(% 2)

Self-check Exercise-2
Q.1 Find the volume of the sphere x2 + y? + z? = a?
Q.2 Find the volume of the tetrahedron bounded by the planes x = 0, y = 0,

z=0and ~+2+2=1,
2 3

6

Q. 3 Find the volume of a right circular cone with base radius r and height h
by triple integration.

Q.4 Find the volume of the solid bounded by the coordinate planes and the
planes.

ZX+y+z=2, 2x+y+z=4.

20.5 Summary
We conclude this unit by summarizing what we have covered in it:-
1. Discussed the formulae for calculation of area by use of double integration.
2. Solved some questions related to finding the area by double integration.
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3. Discussed the formulae for calculation of volume by use of triple integration.
4, Solved some questions related to finding the volume by use of triple integration.
20.6 Glossary

1. The area A of the region
{(x,y) ra<x<b, f1(x) <y < fa(X) } is given by
b f2(x)
A=[ [ dydx
a fi(x)
2. The area A of the region
{(r,0) :x<0<B, f1(0) <r< f2A0) } is given by
B 1(0)
A= I _[ rdr dé
x f,(0)
3. In case of Cartesian coordinates,

Volume V = 'm.dx dy dz

4, In case of Cylindrical coordinates,

Volume V = jﬂr dé@ dr dz

5. In case of Spherical coordinates,
Volume v = [[[r*sing dr d¢ do
20.7 Answer To Self-Check Exercise
Self-Check Exercise-1

16a>
Ans. 1

Ans.p N3+27
24

Ans. 3 §na2
2

Self-Check Exercise-2
4

Ans.1 — gmad
3

Ans. 2 6
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20.8

20.9

Ans. 3 1 nreh
3

Ans. 4 E
3
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Terminal Questions

1.

Find the area of the region in the first quadrant which is bounded by the parabola
y2 = 4ax and the line x = 2a.

Using double integration find the area of the region bounded by the lines.
Find the area enclosed by the leminscate r?> = a cos = 0.

Show that the entire volume of the solid

2 2 2
BRURERE
a b c 35

Find the volume of a truncated cone with end radii a and b and height h.

Show that the volume bounder by the cylinder x> + y> = 4 and planesy +z =4, z
=0is 16 =.

Find the volume common to the cylinder

X2+y2=a? x2+2z2=al
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