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Introduction

Dear student, in this unit we will study about some of basic concepts which will be useful
throughout the course of Algebra. We are families with all these topic, we will only summarize
them. In this unit we will discuss about logics, set, function, binary operation.

Learning Objectives:

After studying this unit students will be able to

1.
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define mathematical logic and toutologies.

solve questions based on logic.

define set and basic operations on sets.

define function and solve questions based on them.

define binary operation and solve question based on them.



1.3 Mathematical Logic

In order to express our idea we use sentences. In mathematics we only deal with
sentences which are either true or false but not both. Such sentences are of greater importance
and a new term comes into existence i.e.

Statement
A sentence which is either true or false but not both is known as statement for example,

QD Shimla is capital of Himachal Pradesh. This is a true sentences, so it is a
statement.

(2) 9 is smaller than 7, this is a false sentence, so it is a statement.
3) How are you? This is not a statement because it is neither true nor false.

The statements are mathematically denoted by small letters p, g, r, s etc. If p is a
statement then we use 'T' for true statement and 'F' for false statement. 'T' and 'F' are known as
truth values of the statement.

Some symbols and Notations
Following symbols are useful to express our ideas in mathematical form.

1. The Symbol V : This symbol stand for “for all" or 'For every'. It is known as
universal guantities.

for exampleV real number x, we have x*> 0.

2. The Symbol 3 : This symbol is used for "there exists". It is known as existential
guantities.
3. The Symbol I. :This symbol is used for "such that". Sometime "' or 's.t." are also

useed for such that.

4, The Symbol V : (Disjunction) : when two or more statement joined by the word

or', the compound statement is formed which is known as disjunction. The
symbol 'V' is a connective which represents or.

So, p v q is statement which is read as 'p or q'
The statement p v q is true if

1. either p or q is true

2. both p and q are true

The statement p v q is false

1. both p and q are false

5. The Symbol A or conjunction : When two or more statements are joined by word
"and ". Then the compound statement so formed is known as a conjunction. The
symbol 'A' is used for conjunction. So p A q is a statement which is read as 'p
and '

The statement p A g is true iff
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1. both p and g are true
The statement p A q is false if
1. p is false or q is false
2. both p and q are false

The Symbol =if p and g are two statement such that the truth of p implies that of
g then we write p = q, this is one way implication and we read it as 'p implies g'".
For example

X=2=>x2=4
The statement p = q is false if
1. p is true and q is false

or we can say a true statement can imply only a true statement while a
false statement can imply a true or false statement.

The symbol < :The symbol < is used for "if and only if" or "implies and is
implied by". We also use 'iff' for this symbol. if the truth of the statement p implies
that of g and also the truth of g implies that of p, then we write p<q, this is both
way implication.

Forexamplex+3=10x=7
The statement p < q is true only when p and q are either both true or both false.
The statement p<q is false when one of the statement is true and other is false.

The symbol ~ or negation :- opposite of a statement is known as negation of
statement. The symbol '~' is used for negation. For example p is a statement 'x is
10' then '~p' is a statement "x is not 10".

Negation of true statement is false and negation of false statement is true.

Tautologies : A statement is a tautologies if it is always true.

Self Check Exercise - 1
Q.1 Show that the statement (pAq) = p is a tautology.
Q.2 Show that the statement ~ (pAq) < (U p V ~ Q) is a tautology.

In day today life, we talked about thegroup of objects of a specifictype, such as, numbers

on a dics, a handball team, girlsof height 5 feets in a school etc. In mathematics, we also come
across collection, such as, collection of natural number, collection of prime numbers, collection
of real number, collection of rational numbers number etc. Some other examples of such
collections are,natural numbers greater than 10, the set of consonents, the root of quadratice
equation x*>-5x+6 = 0. In all of the preceding examples, we highlighted that each is clearly
defined set of items in which we can determine with certainty whether a particular item is a
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member of the set or not.. For instance, 1, 2, 3, 4,....9are not the elements of the set of natural
numbers more than 10 but 11, 12, 13, 14,..... belong to this collection.

In mathematics, some other common examples of the sets that are used more frequently
are :

N : the set of all natural numbers.

W : the set of whole numbers.

Z : the set of integers.

Q : the set of all rational numbers.

R : the set of real numbers.

Z+ : the set of positive integers.

Q+ : the set of positive rational numbers.

R+ : the set of positive real numbers.

Definition :

“A set is a clearly defined group of items.” We use the synonymous words objects,
elements and members while defining a set. Capital letters are mainly used to indicate setslike
R, S, T, etc whereas small alphabets of English indicates the elemnentof the set like a, b, c, etc.
If 'a' is a member of the set 'A’, then "a belongs to A" and mathematically we write it as a €A,

where '€ is a greek symbol known as epsilon having meaning 'belongs to'. Also if b is not a
member of the set A we write itas b ¢ A, means "b does not belongs to A".

Representation of Set
Set is mainly written by two methods::
1. Tabular or Roster method
2. Set-builder method

Tabular or Roster method:

In tabular method, we make list of all the elements of the set andandseprate them by
commas, also braces { } are used to write the members of the set. The set of all odd integers
greater than zero and less than 10, in tabular method is written as {1, 3, 5, 7, 9}. Also the set of
all vowels in English alphabet is {a, e, i, 0, u} is another example of a set in tabular method.
While writtingthe set intabular method we should not write the repeated element i.e. every
element is unique. Also the order in which elenents are written does not matter which means we
can place element in any position.

For example, the set of letter forming the word 'MATHEMATICS'is {M, A, T, H, E, M, A,
T, 1, C, S}. If can we written as {S, C, I, E, M, A, T, H}, where the sequence of elements has no
meaning

Set-Builder method



In set-builder method, every member of the set has a single common feature which is
not satisfed by any member outside the set. For example, in the set {2, 3, 5, 7, 11}, all members
are prime number less than 13, and no other number less than 13has this property. So in set-
builder methodwe can write it as, X = {a :a is prime number less than 13}. Here we use a (small
letter) formember of the set, then we place symbol of colon ™" after that we write that property
which is satisfied by all the members of the set and then use braces for whole statement.
Mathematically we read it as, "A is a set of all a such that a is a is prime number less than 13"
Here "set of all" is given mathematically by the braces { }, and ' such that' is shown
mathematically by colon ":'.

Consider a set X= {1, 4, 9, 16, 25, .....} in tabularmethod, in set-builder method it can be
written as X ={a : a is the square of a natural number}.

To clarify what we have just said, consider the following examples :

_ 123456]. .
Example 1: Write theset R = y=<,=,—,—=,=,5 in the set-builder form.

Solution : We observe that each member of the set has the numerator one less than the
denominator. Also, the numerator begin from 1 but less than 6.

Hence, in the set-builder form is it is written as
n .
R={a:a= —1 where n is a natural number such that 1 < n <6}
n+
Example 2 : Write the roster form of X = {a : a is a letter of the word principal }.
Solution :X={P, R, I, N, C, A, L} is a roster form of given set X.
Example 3 : Write the solution set of equation x*+x-2 = 0 in roster form.

Solution : On factorization we can write this equation as (x-1) (x+2) = 0 so x = 1, -2. Therefore,
the set of solutionof given equation in roster form is {1, -2}.

Now, you can try the following exercises -2

Self Check Exercise - 2

Q.1 Write the following sets in the set-builder form.

(1) {3,6,9,12} 2) {2, 4,8, 16,32}
(3) {5, 25, 125, 625} @) {246, ...}
) {1,409, ... 100}

Q.2 Write in the roster form
(2) X ={a:ais aninteger and -3 <a< 7}
(2) Y ={y :y is a natural number smaller than 6}

3) Z = {z :z is a two-digit natural number such that sum of its digits is 8}




4) D = {The set of letters in ‘school’ word}
(5) X ={b:bis a prime divisor of 50}.

Types of the Set
The Null Set

“A set which does not contain any element is called the empty set or the null set or the
void set. We represent the empty set by the symbol ¢ or { }.”

For example, X = {a :a is prime number bigger than 2 and divisible by 2 }. Then the set X
is an empty set because 2 is the only even prime number.

Also, Y = {b :b? = 4, b is odd}, Here the set Y is empty because the equation b? = 4 is not
satisfied for any odd value of b.

Finite And Infinite Sets

“A set which is empty or consists of a definite number of elements is called finite set
otherwise the set is called infinite set.”

For example, let W be the set of days of the week. The W is a finite set. As a week has
seven days, this set has 7 members. Mathematically we write it as n(W)=7.Also, the set of
natural numbers, the set of even numbers, the set of integers, set of red numbers etc are all the
examples of infinite set.

Equal Set

“Two sets A and B are said to be equal if they have exactly the same elements and we
write A = B. If two sets are not equal then we write A = B i.e. set A is not equal to set B.”

For example, A={1, 2, 3,4}and B ={4, 3, 2, 1}
Then the set A = B.
Also, A={x:x-5=0}and B = {x: x is an integral positive root of equation x>-2x-15 = 0}.

Since the roots of equation x2-2x-15 = 9 are x = 5 and x = -3 and the integral positive
root is x-5 = 0. Which is same as the given set A. So the set A = B.

Also the set A={1, 2, 3}and B = {2, 1, 3, 2, 3} are equal since each element of set A is
in B and vide-versa. So a set does not change of one or more elements of the set are repeated.

Subset

“A set A is said to be a subset of a set B if every element of A is also an element of B. If
A is a subset of B then we write it as A < B.” The symbol '<' stands for 'is a subset of' or is
‘contained in'

Also we can write A < B if a eA=ae B, means "A is a subset of B of a is an element of A
implies that a is also an element of B."

In order to be a subset of B, A must have all of its elements in B. It is possible that not all
of the elements in B are in A. If all elements of B are also in A, then B < A. then A and B are the
same set, we have A<B & B<A <A=B




Hence, every set A is a subset of itself, i.e. A < A. Also empty set ¢ has not element, so ¢ is a
subset of every set.

Some example of subset are
1. The set R of real numbers contains all the rational numbers, hence Q <R.

2. If X is the set of all divisions of 56 and Y is the set of all prime divisors of 56 than
X={1,2,4,7,8,14,28,56}and Y ={1, 2, 7} so B < A.

Operations on Set
Union of Sets :

“Let A and B be any two sets. The union of A and B is the set which consists of all the
elements of A and all the elements of B, the common elements being taken only once. The
symbol 'U' is used to denote the union of two sets.” Mathematically we write AUB and read it as
‘A union B'.

—

Shaded portion of the diagram shows AUB i.e. A union B.

“So, union of two sets A and B is the set C which consists of all those elements which
are either in A or in B (including those which are in both).”

AUB ={x:x € Aorx e B}
Intersection of Sets :

“The intersection of sets A and B is the set of all elements which are common to both A
and B. The symbol 'N' is used to denote the intersection. So, intersection of two sets A and B is
a set ¢ which contains all those elements which belongs to both A and B.” Mathematically

ANB={x:x<Aandx e B}
|




Shaded portion of the diagram show ANB i.e. A intersection B
Disjoint Sets
If the intersection two set is empty means there is no common element in sets A and B
then the sets are called disjoint sets. Mathematically for disjoint set ANB = ¢

T Duent)
)\'sjf"

C/G

The difference of the sets A and B in this order, is the set of elements which belongs to
A but not to B. Symbolically, we write A-B and read it as 'A minus B' mathematically A-B = {x : x
e Aand x ¢ B}

—

Difference of Sets

Shaded region shows the difference of Set A and B.
Complement of a set

let U be the universal set and A is a subset of U, then the complement of A is the set of
all elements of U which are not the elements of A. Symbolically we write A* or A° to denote
complement of A with respect to U. Mathematically

A'=A°= {x:x e Uandx ¢ A}
SoA'=U-A

Shaded portion of the diagram shows A’ or A°.
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To clarify all above topics, consider the following examples.

Example4:LetU={1,2,3,4,5/6,7,8,9},A={1,2,3,4B={2,4,6,8and C={3, 4, 5, 6}.
Find A", B', (AUC)', (AUB), (A", (B-C)'

Solution: A' = Ac = {6, 6, 7, 8, 9}
B'=Bc={1, 3,5, 7, 9}
AUC = {1, 2, 3, 4, 5, 6}
(AUC) = {7, 8, 9}
AUB ={1, 2, 3, 4, 6, 8}
(AUB)' = {5, 7, 9}
(A ={1, 2, 3, 4}
B-C=1{2 8
(B-C)'=(1,3,4,5,6,7,9)

Example 5: Show that the set of letters needed to spell "CATARACT" and the set of letters
needed to spell "TRACT" are equal.

Solution: Let X be the set of letters in "CATARACT" then
X = {CATR}
Let Y be the set of letters in TRACT' then
Y = {TRAC}
Since all the members of the set X and Y are same so X =Y.
Example 6: LetU={1, 2, 3,4, 5,6}, A={2,3}and B ={3, 4, 5}
Find A", B', A' N B', AUB and hence show that (AUB)' = A'NB'
Solution: For the given set A, A'={1, 4, 5, 6}
and for the set B, B' = {1, 2, 6}

Now A'N B' = {1, 6} (1)
AUB = {2, 3, 4, 5}
Now (AUB)' = {1, 6} )

- Using (1) and (2)
(AUB)' =A'NB'={1, 6}
Example 7: LetU={1,2,3,4,5,6,7,8,9,10tand A={1, 3,5, 7, 9}
Find A" and show that (A") = A
Solution: Given A={1, 3,5, 7, 9}
then A'={2, 4, 6, 8, 10}



Now, (A)={1,3,5,7,9}=A
Cartesian Product of Two Sets

Consider two sets A and B. Let a €A and b €B. Then (a, b) denotes the ordered pair.
The object a is called first co-ordinate of ordered pair (a, b) and the object b is known as its
second co-ordinate.

Definition:

“If A and B are sets, the set of all distinct ordered pairs whose first co-ordinate is an
element of A and whose second coordinate is an element of B is called the Cartesian product of
A and B and is denoted by AxB”

Mathematically
AxB={(@, b):acAandb e B}.

For Example: Let A={a, b, c} and B = {p, g} then AxB ={(a, p), (a, q), (b, p), (b, q) (c, p), (c, 9)}
Similarly BxA = {(p, a) (b, b), (b, ©). (a. &), (q, b). (9, ¢)}-

For here we can see that AxB #Bx A

Self Check Exercise - 2
Q.3 IfA={1,223,4,56,7,8,9}

B={2,3, 4,5}
C={2 4,68}
D={4,5,6,7}

Find BUC, BND and verify that (BUC) U (AUD) = A.

1.5 Functions:

LetA={a, b, ctand B ={x,y, z, t}. Let a is associated to x, b is associated to y and c is
associated to z, by virtue of some rule we assign to each element of A, a unique element of B.

Then the set {(a, X),(a,y), (b, z)} of such assignment is called function from A to B. If we

denotes. This function by f , then we write f : A>B and read if as fis mapping or f is a
function from A to B.

Definition:

“Let A and B be two given non empty sets. Let a cossespondance ' f ' which associates
to each member of A a uniqgue member of B.” Then This mapping is written as

f:A>B.

Range And Domain of Function:

10



“Let fis a function from Ato Bi.e. f : A B, then the set A is called domain of function

f and the set B is called co-domain of function f .” Range of f consist of those elements of B
which are images of at least one element in A.

Mathematically, We denote range of f: A— Bby f (A)
So f(A)={f (x);xeA}also f(A)cB.
Transformations OR Operators:-

If f:A->B i.e. if the domain and codain of a function is same, then we call f as an
operator or transformation of A.

Equality of two functions: Two functions f and q of A — B are said to be equal iff f (c) = g(x) v
x € A and then we write f =g.

If mappings, f =g, from A to B. then 3 at least one element x € A such that T (x) = g(x).
Diagrammatic Representation of a function:
Let f :A— Bwhere

A={a, b, c,d}

B={t X%y, z}

definedas f (a)=y, f (b)=x, T (c) =2z f(d) =y. then, diagrammatically.

= 3

A-
Then from definition of function, we have
1. every element of A is joined to some element in B
2. an element in A cannot be joined to two or more distinct elements in B. (unique
image)
3. two or more element in A may be joined to same element in B. (two elements can

have same image)
4. There are some element in B which are not joined to any element of A.

Types of Functions:-

11



Into Function:-

“If the function or mapping f : A 5B is such that there is at least one element in B which

is not the f -image of any element in A. Then we say that f is a mapping or function A 'into' B.”
Diagrammatic representation of into function.

Here the range of F is a proper sub set of the co-domain of fi.e. f (A) CB, So in 'into’

mapping at least one member of the co-domain B is left converged by the f -images of the
domain A.

Onto Function:

“A mapping or function f: A — B is such that each element in B is the f image of at
least one element in A, then the mapping is known as 'onto’ mapping or function.”

Here the range of f is same as the co-domain of f i.e. f (A) =B. So in 'onto’ mapping
the co-domain B is completely covered by the f -images of the domain A.

One-One Function

“A mapping or function f: A — B is said to be one-one if different elements in A have

different f -images in B,” i.e. if

12



foy- fx)=x=x

In one-one function an element in B has only one pre-image in A.
Many-one Function

“A function f: A — B is said to be many-one if two (or more than two) distinct elements
in A have the same f -image in B” i.e.

f )= f(x)x=x

In many-one function some element in B have more than one pre-image in A.

One-One On To Function

“If f: A — Bis one-one and onto B, then f is called a one to one correspondence
between A and B.*

A mapping which is one-one and onto is a bijection mapping.
Identity Function:

“Let A be a non empty set. Let the function f : A >A be defined as f (x) = x ¥xe A, that

is each element of A be mapped on itself. Then f is called the identity function or identity
transformation on A.”

Identity function is always one-one and onto.

Constant Function

“A function f: A — B is called a constant function if the same element b eB is assigned

to each element of A.” or we can say f : A — B is a constant function if f (A) =range of f=b
(only one element)

Inverse Image of An Element):-

“Let T be afunction of AtoBi.e. f:A — Bandletb eB. then the inverse image of the
element b under f denoted by f '(b), and it consists of others elements in A which have b as
their f -image”

Mathematically, if f: A —>B
then f'(b)={x:x e Aand f (x) = b}.
f is read as " f inverse" also. f' (b) is always a subset of A.

Inverse Function:

13



“&f f: A > Bis a one-one and onto function then f': B — A is known as inverse
function of the function f , which associates to each element b B the element a A, such that
f@=b"

. only one-one onto function can have inverse function.
. If f:A— Bisone-one andontothen ' B — Ais also one-one and onto
. The inverse function of a function is unique.

Self Check Exercise - 3

Q1 LetA={2-1,01 2}and f:A > Risdefined by f (x)=x*+1.
Find the range of f .

Q.2 Findtherangeof f (x)=x3 f (x)=sinx, f (x)=x*+1.

Q3 Let f: Q —Q defined as f (x) = 2x + 3, x € Q set of rational

numbers. Show that f is one-one and onto. Also drive the
formula for inverse function.

1.6 Binary Operations

In earlier classes, we studied various operations like addition, subtraction, multiplication
and division of numbers along with union intersection of sets, and composition of function etc. In
all these operations any two elements of given set are operated to get a unique element of the
same set. Consider the operation of addition of natural number. When the addition '+' operates
on any two natural numbers a, and b, it gives a unique natural number a+b. Or we can say that
operation of addition '+' associates every ordered pair (a, b) of natural numbers a and b to a
unique natural number a+b.

Definition:
“A binary operation *' : AxA—A is called a binary operation on the set A.

If a set A is closed with respect to the composition *' then we say that *' is a binary
operation on the set A.”

For example:-

1. Addition is a binary operation on the set of natured number
2. Addition is binary operation on the set of even natural number.
3. Addition is not a binary operation on the set of odd natural number. .. 35 €

odd natural number but 3 + 5 = even number.
4, Subtraction is not a binary operation n the set of natural number.
14



Types of Binary Operations

1.

Commutative Operation:- A binary operation *' or a set A is called commutative
if

a*b=b*a V abeA

Associative Operation:- A binary operation "' on a set A is called associative if
a*(b*c)=(@a*b)*c Vv a, b,c eA.

Distributive Operations:- Let A be a set on which two binary operations *' and
'0" are defined. Thena* (b 0c) =(a*b) 0 (a* c) is fifth distributive (b 0 c) *a =
(b *a) O (c * a) is right distributive w.r.t. 0.

Identity And Inverse Element of Binary Operation

1.7

Let * : AxA—A be a binary operation on A. then an element e € A is called an identity
element for operation * if

e*a=aVvVe V a eA.

Also an element a of the set A has inverse or is inversible for a binary operation * with
identity e if 3 b € A such that

a*b=e=b*a.

Then b is the inverse of a and is written as a'.

Self Check Exercise - 4

Q.1  What is additive identity for set of real number.

Q.2  What is multiplicative identity for set of natural number.

Summary

Dear students in this unit we studied that

1.

a > w DN
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A sentence which is either true or false but not both is a statement.
A statement which is always true a tautology.
A well defined collection of objects is a set.

Set can be presented in roster or set builder form.

If f:A— Bbeamapping or function then A is domain and B is co-domain of f .
If f:A— Bthen f(A)=rangeof f={f (x):x e A}

one-one-onto function is a bijective function.

one-one-onto functiononly can have inverses function.

Inverse function if exists then it is unique.
15



10. If a set is closed with respect to composition ™' then '*' is a binary operation.

Glossary

. Power Set:- It is the set of all subset of S, where S is any set.

. Relation:- A Relation R is the subset of the Cartesian product of the two non-
empty set AxB.

. Groupaid:- It is the set having one binary operations satisfying only closure.

Answers to Self Check Exercises
Self Check Exercise - 1

Ql p q PAQ pAg=p

T T T T

T F F T

F T F T

F F F T
p q pAg  V(pAd) vp VvVq VvVpVvqQ
T T T F F F F
T F F T F T T
F T F T T T T
F F F T T T T
Self Check Exercise - 2
Q1 1 A = {x: xis a multiple of 3}

2 A={2"'n=1,2,3, 4,5}

3 A={2"n"<5neN}

4 A = {x; xis an even integer > 2}

5 A={x%xeNx<10}
Q2 1 X={3,-2,-1,0, 1,2, 3,4,5, 6}

2 Y={1,2,3,4,5}

3 Z ={17, 80, 44, 62, 26, 35, 53, 71}

4 D={S,C,H, O, L}

5 X={2,5}
Q.3 BUC={23,4,5,6,8}

BND = {4, 5}

AUO ={1, 2, 3,4,5,6, 7,8, 9}
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Self Check Exercise - 3
Q1 fm®=¢521

Q.2 R,[-1,1],[1, «]

-3
Q.3  Use definition of one-one and onto to prove this. Also f * (y) = yT yeQis

the formula for defining the inverse function f'>Q-0Q.

1.10 References/Suggested Readings
1. Vijay k. Khanna and S.K. Bhaimbri, A course in Abstract Algebra.
2. Joseph A. Gallian, Contemporary Abstract Algebra.
3. Frank Ayres Jr. Modern Algebra, Schaum's outline Series.
4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.

1.11 Terminal Questions

Q1 X-= [—%%} and

Y={Y:YeRand-1<y<1}Y=[-1,1]
show that the function f: X — Y defined by f (x) = sin x, x ex, is one-one and
onto Also find the inverse map f 'Y — X.

Q.2  Let C be the set of complex number. Prove that f:C — R givenby f (z) = |z|, z
e C is neither one-one nor onto.

Q.3  Define binary operation. Show that the relation * given by a*b = a° is a binary
operation on the set of natural numbers. Also check for associative nature.

*kkkk
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Unit - 2
Group
Structure
2.1 Introduction
2.2 Learning Objectives
2.3 Group Paid, Semi Group And Monoid
Self Check Exercise-1
24 Groups
Self Check Exercise-2
2.5 Elementary Properties of Group
Self Check Exercise-3
2.6 Summary
2.7 Glossary
2.8  Answers to self check exercises
2.9 References/Suggested Readings
2.10 Terminal Questions
2.1 Introduction

Dear student, in unit 1we revised the basic concepts of sets and binary operations. Here
we shall study an algebraic system with a binary operation defined on its elements, which
satisfies certain postulates, called group.

The term group was used by Galois around 1830 to describe sets of one to-one
functions on finite sets that could be grouped together to form a set closed under composition.
As is the case with most fundamental concepts in mathematics, the modern definition of a group
that follows is the outcome of a long evolutionary process. Although this definition was given by
both Heinrich weber and wather von Dyck in 1882, it did not gain universal acceptance until the
20th century.

Groups have widespread applications in various branches of mathematics, including
algebra, number theory, geometry, physics and chemistry. They provide a framework for
studying symmetry, transformations and abstract algebraic structures. The study of groups,
known as group theory, is a rich and important area of mathematics with numberous
applications and connections to other fields.

2.2 Objectives Learning
After studying this unit, students will be able to

o Understand Grouoid, semigroup and monoid
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. Understand the Group.

. Define and prove different properties of group
o Solve questions related to group.

2.3 Groupoid, Semi Group And Monoid

Groupoid

A non-empty set G together with a binary operation "*' defined on it is called a groupoid if
it satisfies the closure property only

a*beGVabeG
Semigroup

A non-empty set G together with a binary operation *' defined on it is called a semigroup
if it satisfies, closure property and associative property i.e.

1. a*tbeG,Va,beG
2. a*(b*c) = (a*b)*c, V a, b, c € G.
Monoid

A non empty set G together with a binary operation " defined on it is called a monoid if it
satisfies following properties

1. a*beGVabeG
2. a*(b*c)=(a*b)*cVvabceG
3. 3 an element e € G such that

a*e=a=-e*aVvaeG.
Here 'e' is known as identity element of G with respect to binary operation *'.
In order to understand more about semi group and monold let us take following examples.

Example 1: Show that the set of all natural numbers form a semi-group under the composition
of addition.

Solution: Let N={1, 2, 3, 4, ...... } be the set of natural numbers.
() Closure Property : Sincen+m e N
N is closed under addition.
(i) Associative Property : Since
(n+m)+p=n+M+p),Vvn mpeN.
Associative property hold in N under addition.
Hence N is semi-group under addition.

Note: (N, +) is not a monoid, as (n, +) do not have identity (zero) element.
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Xy

Example 2: Show that the set G = {{
Xy

} ' X, ¥ € R, s.t. x +y = 0} form a semi-group under

the operation of matrix multiplication.
Solution: The G satisfies the following under multiplication of matrices.

X, %}Bz{& Y,

} be any two elements of G,
Yi X Y

() Closure Property : Let A = {

where x; + y3# 0 and X, + y,= 0.

= (X1 +y1) (2 +Y2) =Xe Xo + Y1 Xo + X X2 + Y1 Y2# 0

/m:{‘ %”& n}

X N]l% Y.
:{&&+M@ &n+mn}66
XX+ Y% XY, tVYiY,

for X1 Xo + Y1 Xo + X1 Yo + Y1 Yo O.

G is closed under multiplication.
(i) Associative Property : Since matrix multiplication is associative.

Associative property hold in G also.

Hence G form a semi-group under multiplication.
Note: The above set do not form a monoid under multiplication. Since it has no identity element.

ab
Proof: LetE = { b} be the element of G such that
a

X y

~ [x yl[a b Xy a bl[x y
l.e. = =

X y|la b Xy a blix vy
[xa+vya xb+ yb} _ {x y} _ {ax+bx ay+by}

| xa+ya xb+yb Xy | ax+bx ay+ by

}e G, where x +y = 0.

i.e.

Taking first two, we get

x+y)a=x = a=
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y
X+Yy

x+y)b=zy = b=

Also, taking, last two, we get
@a+b)x=x = (a+b-1)x=0
(@a+by=y = (a+b-1)y=0.onadding we get
@+b-1)(x+y)=0,butx+y=0
= a+b-1=0
= atb=1
Thus, the element E in G is not unique.
Hence the identity element in G donot exist.

Example 3: Show that the set of natural numbers form a monoid under the composition of
multiplication.

Solution: LetN={1, 2, 3, 4, .......... } be the set of natural numbers.
(1) Closure Property : Sincemn eN, Vm,n eN
N is closed under multiplication.
(ii) Associative Property : Since(mn)p=m((np),vm,n,p N
N is associative under multiplication.
(iii) Existence of identity : There exist 1 € N such that
m.l=m=1m, v m € N, then
1 is the identity element of N under multiplication.
Hence (N, .) form a monoid.
Example 4: Let X be any non-empty set, let P(X) denote the power set of X. Then show that
(a) P(X) form a monoid under the operation N, intersection of sets.
(b) P(X) form a monoid under the operation U, union of sets.
Solution: (a) (i) Closure Property: For any elements A, B € P(X).
= A, B are subsets of X .. AN B is also subset of X.
ie. ANB e P(X)
Closure property hold in P(X)

(ii) Associative Property : Since associative law hold under intersection of sets.

In particular, it hold in P(X) also
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ie. (ANB)yNC=ANBNC),V, A, B, CePX).

(iii) Existence of identity : There exist an element X € P(X) such that
ANX=A VA e P(X)
X is the identity element of P(X).

Hence, (P(X), N) is a monoid.
(b) (i) Closure Property: For any element A, B € P(X)

= A, B are subsets of X AU B is also subset of X

ie. AUBeP(X)
Closure property hold in P(X).

(i) Associative Property : Since associative law hold under union of sets
in particular, it hold in P(X) also.

(iii) Existence of identity : There exist an element ¢ P(X) such that
AUp=A VA ePX)
Hence, (P(X), U) is a monoid.

Example 5: Let M(X) be the set of all mapping of a non-empty set X into itself, then show that
M(X) form a monoid under the composition of composite of mapping.

Solution: Let M(X) ={ f | f : X >X is a mapping}
(@ Closure Property : Let f, ge M(X) be any two elements, then
f 0.g: X —Xis also mapping.
fogeMX) VT, geM(X).
M(X) is closed under the composite of mapping.
h € M(X) be any elements. Then
(fog)oh) () =(fog) (hx) = f(gh(x)) and
fo@oh) (= f(goh) )= f(ghe)
(fogyon) = T(@oh) ()= f(ghx)
= (fogloh=f o(@ohyvf, g heMX)

Associative law hold in M(X).
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(iii) Existence of identity : There exist an element i : X —»X defined by i (x) = X, V X
eX such that

foi= f=iofvfeMX)
i is called the identity element of M(X) under composite of mapping.
Hence M(X) form a moniod.

Example 6: Let M,(l) be the set of all 2 x 2 matrices over the set of integers. Show that the set
M,(1) form a monoid under the composition of multiplication of matrices.

a b
Solution: Let My(l) = {L d} :wherea, b,c,d eI}

8] [% 0

be any two elements of
dl C2 d2:| y

0] Closure Property : Let A = {

Mz(l), where a;, Ao, b]_, bz, Cq, Cy, dl, dzE |
_ {ai bl} {az bz}_ {alaﬁblcz a1b2+bld2}
Now AB = =
d1 CZ d2 C.La2 + d].CZ Clbz + d1dZ
Clearly, AB € My(I) V A, B € My(])
My(l) is closed under multiplication.
(i) Associative Property : Since multiplication of matrices is associative.
in particular, associative law hold in Mx(l) also

ie. (AB)C=A(BC)VA, B, C e Myl

Self Check Exercises - 1
Q.1  Showthat (n, +), (N, ), (Z, +) and (R, +) are semi groups.

24 Group - Definition

A non-empty set 'G' togather with a binary operation "+' on

G is sais to form a group if it satisfies following postulates:

1. Closure Property: for all a, b, in G,
a*beG,VabeG.

2. Associative Property: For all a, b, ¢ in G,
(a*xb) *c = ax(b*c) V a, b, c € G.

3. Existence of identity: For alla € G, 3 an elemente € G, suchthat,a*e=e*a=
a Vae G.
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Here e € G is called Identity element of G.

4. Existence of Inverse: For alla € G, 3 a' € G (depending upon a), such that, a *a'
—a'xa=e.

Here 'a', is called an inverse of ‘a’, we write a' = a™.

The algebraic structure <G,*> satisfying above properties is called a group.

Note: A group is always a group paid or semi group or monoid, but the converse is not true.
Finite and Infinite Groups

If the set G in the group <G,*> is a finite set, then it is called a finite group otherwise it is
called an infinite group.

Order of a Group

The order of a finite group < G, *> is defined as the number of distinct elements in G. It
is denoted by 0(G) of |G|. If a group G has n elements, then o(G) = n.

Remark: The order of an infinite group is not defined or we say that the order is infinite.
Abelian and Non-abelian Group

A group <G, *> is called an abelian group or commutative group

iff azb=b=*a,VabeG.

If a * b #b=a, V a, b € G, then the group <G, *> is called a non-abelian group.
Some lllustrative Examples of Groups

Example 1: Let Z be the set of all integers and let * is the binary opration '+' then to prove that
(Z, +) is a group.

Solution: Here the non empty set is Z and the binary operation is ordinary addition. In order to
prove that (Z, +) is a group, we have to prove all the four axioms of the group, as follows:

1. Closure Property:- Let us take two numbers from the set of integers and apply
the operation of addition on them, the result and number will be the integer. For
example, Let 2,5 € Zand 2 + 5 = 7 € Z Hence it satisfies the closure property.
Sowecansay VvV a,b e Z, a+b €Z (as sum of two integer is an integer).

2. Associative Property:- Just like closure property, if we take three intger and
apply the operation of addition on then, we get the number which is an integer.
For example, let 2, 5, 7 are three integers than

2+ (5+7) =2+ (12) = 14

and

2+5)+7=7+7=14

So 2+5+7)=(2+5)+7=14

Hence it satisfies the Associative Law.
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Mathematically vV a, b, ¢c € Z, a+ (b+c) = (a+b)+c.

Existence of identity: For the existence of identity in the set of integer under
addition, we have to find an integer when added to an integer gives the same
integer. As we know 0 is an integer and when we add O to any given integer we
get the same integer. For example if we add 0 to 5, So '0" will act as identity
element for 5. This '0" will act as identity element for the whole set of integer. So,
mathematically we can write itas V 0 € Z, 3 0 € Z, such that

a+0=a=0+a.
Here '0' is identity element for the set of integers.

Existence of Inverse:- For the existence of inverse, in the set of integer under
addition, we have to find integer which when added, we have to find integer
which when added to a given integer gives the identity element (which is zero in
present case). As we know that set of integers contains negative, zero and
positive numbers. When we add negative of an integer to itself we get zero which
is identify element. As when we add (-5) to 5 i.e. 5+ (-5), we get '0' which is
identity element, This is true for al integers. So, mathematically, we can write it
as

at+(-a)=0=(-a) +a

Here (-a) is the additive inverse of a in Z.

Since all the four properties are satisfied for the set of integer under addition, So
algebraic stature (z, +) forms a group.

Note: To prove (Z, +) is a commutative group or Abelian group.

Commutative Property:

When we add 2 and 5 we get 7 and also when we add 5 and 2 we get 7 i.e. 2+5 =7 =
5+2, and this result holds for every integer, mean commutative law hold for the set of integers.
Mathematically, we can write it as;

Va,beZ a+b=b+a
As (Z, +) hold commutative Property, so (Z, +) is an abelian group.

Example 2: Let Q" be the set of +ve rational numbers. Define * on Q" as under: for a, b € Q+,

ab
a*b = 3 verify that (Q*, *) is an abelian group.

Solution: To prove (Q+, *), an abelian group will will prove five properties as:

1. Closure Property:

Leta, b e Q", = ab e Q" [because product of two positive rational numbers is a positive
rational number]

=

ab
3 e Q" ['. division of a positive rational number of 3 is a
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positive rational number]
= a*beQ’
Associative Law:

Va,b e Q"
)
(a*b)*Cz(a_bj*c= 3) _ (abje_abe
3 3 33 a

(a*b)xc=a*(b=*xc)vVa b ceQ’
Thus associative law holds.
Existence of Identity:
For each a € Q*, there must be an identity element e € Q" such that

a*e-a=-e*a
- ae
Now by defininga*e= —=a
a

= ea=3a
= e=3
Thus 3 e Q. is the identity element

@O _,

Now, a*3=
3

3xa
and 3 *a= ; =a

Thus 3*3=a=3*a

Existence of Inverse:

For each a € Q°, there must exists a number a' € Q" such that
ara'=e=0=a=a

Now, a=x*a'=3

aa'

= — =3
3
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9
a. 9
Now,a*alza*gz —@ =£—j=3=e
a 3 3

9 . .
—e Q'istheinverse ofa € Q".
a

5. Commutative Law:
For each a, b €Q",

a*b=b*a
a*bzﬁ
3

ba ab N
andb *a= ?z ? ['.'abzbaVa,beQ ]

a*b=b*aVva, beQ’

Hence (Q°, *) is an abelian group.

Example 3: Show that the set S = {-1, 1} under the operation of usual multiplication of integers,
is an abelian finite group.

Solution: We will prove all the five properties for both the elements of set S as follows:
Closure Property:
1,-1eS
1x-1=-1e8S,forl,-1S
-1x1=-1eS,for-1,1eS
1x1=1eS,forl,1eS
-1x-1=1€S,for-1,-1S
Thusva,beS axbeS
Hence closure property satisfied.
Associative Law:
Since 1, -1 are integers and multiplication of integer is associative so
(axb)xc = ax(bxc) A a,bceS
Thus associative property holds in S.
Existence of Identity:
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Here we find the identity element for both the elements. Since 1x1 =1 and -1 x 1 =-1 So
it satisfies the property axe = a = e*a, where 'e' is identity element. Hence in this given set 'l' €
act as identify element

Existence of Inverse:

Here we find the inverse of each element which also belongs to the set S. Since 1x1 =1
and -1x-1 = 1, which holds the property axa' = e = a'x a. So 1 is inverse of 1 and -1 is inverse
of -1. Therefore every element of S has an inverse which belongs to S.

Commutative Property
1x-1=-1
Since -1x1=-1VvV1-1€S

which holds the property a xb = b x a, which shows that S is a commutative under
multiplication.

So, the given set S = {1, -1} is abedian group of finite order.

Example 4 : Show that the set C of all complex numbers forms on infinite abelian group under
the addition of complex number.

Solution : Given C is the set of complex number, so
C={x:x=a+ib,a, beR}

Closure Property
Let x, and x,e C then x, = a; + ib; and

X, = a, +ib, be any two complex numbers, where a;; by; a1 b,e R

Then X1+Xo = (a]_ + |b1) (a2 +ib2)
= (a1 + ap) (by+by)
= X1+Xe C [... iy b11 doy sz R and a;+tae R b1+b26 R]

C is closed under addition.
Associative Property

Let z; = a; +ib;, z, = a, +ib, , z3 = a3 +ibs be any three complex numbers, where a;, a,,
ag, by, by, bse R.

Then (x3+x2) + X3 = (ay +iby) + (a2 + ib2)+ (a3 + iba)
= (ay + @p) +i (by + bo)+ (az + ibs)
= [(a1 + @) +ag] +i[(by + bo)+ bg
= [aq + @z +ag] + i [by + byt by
= [a1 + (a2 +ag)] + i [by + (b2 b3)]
= (aq +iby) + (a2 +ag) + i (bo+ bs)
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= (Xa+X2) + X3 = Xat+ (X2 + X3)
Therefore addition is associative in C.
Existence of identity :
Since for all x = a + ibe C there exist
a complex number 0 =0 + i- € C such that
x+0 = (a+ib) +(a+ib)
= (a+0) +i(b+0)
=a+ib
=X
and 0+x = (a+i0) + (a+ib)
= (a+a) +i(0+b)
=a+ib
=X
Hence x+0 = x = 0+x
Existence of inverse :

Since for all x = a+ibe ¢, a, b € R, there exist a complex number -x = -a - ibec, -a, -
be R, such that, x+(-x) = (a+ib) + (-a-ib)

= [a+(-a)] +i [b+(-b)]
0+i0
= 0 [-identity of c]
also -x+x = (-a-ib) + (a+ib)
= (-a-a) +i (-b+b)
= 0 [identity of c]
Hence x+(-x) = 0 = -x+x
Therefore ¢ has inverse element -Z = -a-ibe c.
Commutative Property:
Since for all x; = a;+ib; and x, = a,+ib,, a;, a,, by, b,e R, we have
X1 + Xo = (artiby) + (axt+iby)
= (agt+ay) +i (by+by)
= (agtay) + i (batby)
= (axtib,) + (ay+iby) = xo+x;

Hence X;+X, = Xo+X;
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Therefore, addition is commutative in C.
Hence C is an abelian group under usual addition.

Also as the set C of complex number is infinite set. So (C, +) is an infinite abelian group under
addition.

Examples:- Let Q* denotes the set of all rational numbers except 1, then show that Q* forms
an infinite abelian group under the operation * defined by axb = a+b - ab V a, € Qx.

Solution: Given Q= be the set of all rational numbers except 1, and the binary operation * on
Q= is defined as:

at*b =a+b-ab, a, b, € Q=
To prove (Qx, *) is a abelian group we have to prove five properties as follows:

Closure Property: Let a, b € Q* be two elements of Q* Here to prove axb € Q*, we will prove
that atb - ab € Q and a+b-ab= 1. V a, b € Q*.

Let atb-ab=1

atb-ab-1=0
a(l-b) -1 (-1b)=0
(a-1) (1-b)=0
a-1=0 or 1-b=0
= a=1 |, b =1, whichis not possible as a, b € Q*. as Qx is the set of

all rational number except 1.
Hence a+b-ab= 1 and at+b-abe Q, therefore a+b-abeQ*
therefore a,beQ*
axb = at+b-abe Qx.
Hence closure property satisfied.
Associative Property:
Let a, b, c € Q= be any three elements of Q.
then (axb) *c = (at+b-ab) *c
= a+b-ab+c - (a+b-ab) c
= a+b+c-ab- [ac+bc-abc]
= a+b+c-ab-ac-bc+abc.
Also ax(b*c) = a * (b+c-bc)
= at+b+c-bc-a (b+c-bc)

= a+b+c-bc-ab-ac+abc
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= a+b+c-ab-ac-bc+abc
Hence (a*b) * ¢ = a* (b*c)
Thus associative property holds in Q.
Existence of Identity:
Let dee Qx*, where e is identity element such that
exa=a=axe,Vae Q=

Now, e*a=a=a*e-aa.

e*a = e+a-ea (using the defining of *)
= e-ea=0
= e(l-a)=0
= e=0 or 1-a=0

if1-a=0

then a = 1, but as a € Qx, set of all rational numbers except 1, so a = 1.
Therefore, e =0 € Q=
Now, a*0 =a+0-a0
=0
O+a = 0+a-0.a
—a
Therefore, e = 0 € Q* works as identity element for Q*.
Existence of Inverse:

Let acQx, be any element, Let 3 Q'eQ= such that a=a’ = e = a'+a.

Now, a*a'=a+a'=at+a'-a.a’'=0=a'+ta-a'a [ e=0]
= ata'-aa' = 0
= a+a' (1-a)=0
=X a'(l-a)=-a
., -a a
= a=-——=——-.,a1=%0
l1-a a-1
a a

Now axa'=a* = a+ - ax

a-1  a-1 a-1

_a(@a-Y+a-a’
a-1
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2_ _ 2 0
:—a a+a a:—:O:e

a-1 a-1
Similarly a'xa = e
Hence axa' =e=a'xa
S
S a-1 e Q=* works as inverse element of Qx.
Commutative Law:
Let a, b € Q* be any two elements then
a*b = a+b-ab
= b+a-ba
= b=a.
a*b = bxa v a, beQ*

Also since Q=+, set of all rational numbers except 1, is an infinite set, so Q* form an.
infinite abelian group under the given binary composition.

Example 6: Show that the set of rational numbers does not form a group under multiplication.
Solution: Let Q be the set of all rational numbers.

Closure Property:

Leta,beQ
I:)l I:)2 1T R2 142 1 2
a=—andb=— forsome b, b5, q'q°e Zandq, g=0
G 0,
[By using definition of rational numbers]
P, b, bb, _ . TR,
thena.b=—. —=——¢ Q. [ set of integers is closed under multiplication.]
& % Q%

Also as g1 0 = g,, So q1q,# 0.
Closures property hold for Q under multiplication.

b
Associative Property: Leta; b; ¢ € Q, suchthat0 =—, b= —2 and

h 7

b
and c= q—gfor P1, by, bs, 91, 92, 93 Z and q, g2, qs# O.
3
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then (a.b).c= (& &] Py - %& - P,P,P,
% 9192 O 0,0,9;

G O,
(DIDZ).ID3 D(Dzbs) _ E (Dzbs)
(%)% (k%) 9 (%%)

Therefore, (a. b) . c=a. (b. ¢) [ set of integers is associative

under multiplication.

Existence of identity:

Forallae Q,a= E, P, g € Z and q = 0, there must exist some e € Q such that
q

a.ez-a=e. a.
Since 1 € Q such that
a.l=a=1a

= Pa-P_4 P
a g g

Hence 1 € Q, act here as identity element.
Existence of Inverse:
Since the set of rational number contain 0. and no element of Q satisfies
0.a'=1=al.0
Hence 0 € Q has no multiplicative Inverse in Q.
Therefore (Q, .) is not a group.

X
Example 7:Prove that the set G = { y]x,yeRsuchthatX+ y;tO} form. a semi group
Xy

under the operation of matrix multiplication.

X
Solution: The given setis G = { y} X, YyeERStL.X+Yy# 0}
Xy

Closure Property:

X W X Y,

that  (Xi+y1) (Xo+Y2) = XaXo + V1Yo + X1Y2 + Xoy1# 0

LetA= {Xl yl] B = {XZ yz} be any two element of G where x;+y1# 0. Xo+y,= 0
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Therefore A.B:{Xl yl} {Xz Yz}
X W% %Y

:{&&+mw XY+ WY
XX+ VY, XY+ WY,

G is closed under multiplication.

} e G, For xiXo + y1y2 + X3Yo + Xoy1# 0

Associative Property:
Since matrix multiplication is associative.

Therefore Associative property holds in G also, as.

Let Al = {Xl yl] B= {XZ yz} ,C= {)% yﬂ be any three elements of
X Y % Y X Y,

G where x;+y1# 0, Xo+Y,# 0 and Xg+ys= 0.
Such that (Xa+y1) (Xaty2) . (Xatys) = XXz + YiY2 + XiY2 + XaY1) (Xs+Y3)
= X1XoX3 + Y1YoYs + Y1YoXs + X1YoX3 + XoY1Xz + XiXoY3 + Y1YoYs

+ X1YaYs + XoY1Ys# O

Now, (A.B).C= uxl yl}{xz YZD [Xs Yﬂ
X Yill% Y X Y,
_ e+ v &w+mw“¥ %}
X% +Y X% XYtV || X Y

XXX+ VoK + X Yo X YiYoXe  XXoXs+ YiXoYs XY, Vst YaYaYs
[ XX T YIOX + X YK+ V1Yo X XXX+ YKo Y+ X Yo Y+ YiYoYs

Also A.(B.C) = {Xl yl} [[Xz Yﬂ{xs Ye,D
X Y X Yol % Vs
{& MH§&+w& &w+n%}
X Y| X%%5+Y.% XY;tY,Y;

:{&&&+&w&+m&&+mw& XX,Ys+ X Y5Ys+ YiXoYa+ V1YY
XXX+ XY, Xs Yo Xs + YiYoXs  XKoYs X YoYs+ YiXoYst VY, Ys

Therefore (AB) C =A. (BC)

Hence G forms a semi-group under multiplication.
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Example 8: The set of all 2x2 matrices over the set of integers i.e. M,(l) forms a monoid under
matrix multiplication.

Solution: Let My(l) = {i (ﬂ:whereaiblcldel}

Closure Property:

a b _[a b
Cldl, C2d2

of MZ(I), where ai, b]_, Cy, d]_, do, b2, Co, d2€ .

Now, AB:[al blHaz Q}z{aiaﬁb@z alb2+bldz}
G 4 ca,+dc, cb,+dd,

C2 d2
As integer are closed under addition and multiplication. So ABe My(l) V A, BeMy(l)

LetA= { } be any two elements

Hence My(]) is closed under multiplication.
Associative Property:

Since multiplication of matrices is associative.

Therefore associative law hold in My(l) also.

(AB)C = A(BC) v A.B; C e My(l)
Existence of Identity:

10
There exist an element | = [O J e My(1) such that

NE [a b]|[1 0] [a+0 0+b]| [a b]
“|lc d||0 1] |c+0 0+d| |c d]
A 1 0][a b] [a+0 b+0] [a b]
|0 1]|c d] |0+c 0+d]| |c d]

Al=A=1A ¥V A e My(l)
10|, o o
Here | 01 is the identity element of M(I) under multiplication.

Hence My(l) Forms a monoid under multiplication

Example 9: Show that the set of all 2x2 non singular matrices over real forms on infinite non-
abelian group under the composition of matrix multiplication.
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a
Solution: Let G = { L

}Where a; by c;d, e Rsuch

that ad - bc= 0 and as matrix is non singular.
Closure Property:

a b _[a b
Cldl1 CZ d2

ai, b]_, Cq, d]_, do, b2, Co, dzE R and a.ld]_ - blcﬁf 0 and a2d2 - Czb2¢ 0
d
Then AB = [ai bl}[az bz} {aiaﬁblcz ab,+bd, |
¢ djlc d, ca,+dc, cb,+dd,

Let A= { }Where

as |AB| = |A| |B| # 0.
Hence G is closed under multiplication.
Associative Property:

For A, B, C € M we have

(AB) C = A(BC) as metric multiplication is associative.
Existence of ldentity:

For all A € M, there exist | € M such that

O I

Al=A=IA
10 _ _
So | = 01 act as identity element of M.

Existence of Inverse:
Since for all A € M we have |A| = 0.
Therefore A™ exist in M such that
AAT=1=A" A
So A is the inverse of A.

Commutative Property:

11
LetA= such that |A| =0
10
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10

11
then AB =

[0 1]
and B=

such that }B} = 0

1 0] [0+1 1+0] [1 1
01 |0 1] |01

BA_1011_0+10+o_1o
1o 1{|1 ol |1+0 1+0]| (1 1

So that AB # BA

Hence commutative does not holds

a b
So G { d]ab—cb #* 0} forms a non-abelian group under matrix multiplication.
C

E 1.
E 2.

E 3.

E 4.

E 5.

E 6.

E7.

E 8.

EO9.

E 10.

Self Check Exercise - 2
Try the following exercises:

Show that (Z, -) is not a group, where Z is the set of integers.

Show that the set of all non zero rational numbers is commutative group

ab
form with operation * defined by a*b = 7

Show that the set E of all even integers does not form a group under
binary operation axb = 2a+2b.

Show that the set R of real number form an infinite abelian group under
usual addition of real number and also .

Show that usual multiplication of real number. It does not forms a group
show that the set R* of all non zero real numbers forms an infinite abelian
group under usual multiplication of real number.

Show that set C of all complex number does not form a group under
usual multiplication of complex number.

Let Q" denotes the set of all rational number except - 1. Show that Q"
forms an infinite abelian group under the operation * defined by a&b =
a+b+ab, Va,b e Q".

Show that the set of all non-zero rational numbers forms a group under
multiplication.

The set C* of all non-zero complex numbers forms an infinite abelian
group under the operation of multiplication of complex number.

Does the set E of all even integers forms a group under usual addition?
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E 11. Show that the set G of all mxnmatrias over Z forms an infinite abelian
group under addition of matrix.

2.5 Elementary Properties of Group

Let < G, *> be a group under the operation *. Then G has the following elementary
properties.

Proof l.Uniqueness of identity element
The identity element of a group is unique.
Proof: If possible, suppose that e; - e, are two identity elements of a group.
exe,=e, (Since e, is identity element) ..... D
also exe;=e; (Since e, is identity element) ....(2)
Thus e;=e, [From (1) and (2)]
the identity element of a group is unique.
Prop Il. Uniqueness of inverse element
The inverse of each element of a group is unique.
Proof: Let e be the identity element of the group (G, *) and a € G be an arbitrary element.

If possible, let by, b,e G, be two inverses of a

a*by=e=bxa (.~ by is inverse of a) (1)
andax*b,=e=byxa (= b, is inverse of a) ...(2)
Now b;=bxe (Since e is identity of G)
= by (a * by) [ of (2)]
= (by*x a) * by (By associatively in G)
=e=x*bh, [+ or (1)]
=h,
b; = b,

Hence each element of a group has unique inverse.
Prop lII. Cancellation laws hold in a group
For a, b, c € G, we have
a*b=axc = b=c {Left cancellation law)
bxa=c+*a = b=c (Right cancellation law)
Proof: Leta, b, c € G so ate G such that

a'*aze=a=xa’ (1)
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Now suppose thata *b=a * ¢

= a'x (a=*b)=a'*(axc)
= (@'xa)*b=(a'*a)c, (By associative law in G.)
= exb=exc
= b=c
a*b=a*xc = b=c

Similarly, we can prove that

bxa=c+xa = b=c.
Prop IV. For every a € G, (a')™* = a., where a™ stands for inverse of a
Proof:Vae G = ale G,

then aa'=e=a'a

= inverse of ais a™

Again ata=e=aa’

= inverse of a'is a
e. (@hH'=za
Proof V. Reversal law for inverse of the product/Socks-Shoes Property

(@a*b)*=b**a’ v a,begG.

Proof. Sincea, b € G ax*beG
= ceGwherec=axh (1)
Also b,aeG = b' ale G = b+« a'le G
= deG where d=b™xa' ... (2)
Considerc*d=(a*b) *d [ of (1)]
=ax* (b =*d) (Associative law in G)
=a=* (b= (b"*a") [ of (2)]
=ax*((b=*b")=*al), (By associatively in G)
—a*x(exaf)=axa'=e.
cxd=e.
Now consider d * ¢ = (b™* a™) * ¢ [ of (2)]
=b*x (@™ c) (Associative law in G)
=b*x (@t (a * b)) [ of (2)]
= bt ((@'x a) * b) (Associative law in G)
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=b™ (exb)y=b™*b=e
dxc=e
cxd=e=d=xc

= ct=d

= (@a+b)y'=btxal.

Prop VI. If a, b € G be any elements. Then the equations a * x = b and y * a = b have unique
solution in G.

Proof. We first prove that the equation a * x = b has a solution in G.
Since a € G, so 3 a’e G such that
a*ra'=e=a'xa
Since a',beG SO al*xbeG
Take x=a'xb xeG
Now a=#*x=a=*(a'*b)
=(@axal)xb (Associative law in G)
=exhb
=b
the equation a * x = b has a solution in G.
Unigueness.
Let x4, X» be two solutions of the equation a * x =b in G.
ax*x;=b and ax%xx,=Db
= a*x;=a*X = X1 = X (By left cancellation law in a group).
Hence the equation a * x = b has a unique solution in G.

Similarly, we can prove that the equation y * a = b has a unique solution in G.
(Solution is b = a™)

Prop VII. Left identity and right identity are the same in a group
Let e and e’ be the left identity and right identity in the group (G, *).
Then
exe'=¢' (Here e is the left identity)
also exe'=e (Here €' is the right identity)
Thus e'=e.

Hence left identity and right identity in a group are same.
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Prop VIII. Left inverse and right inverse of every element in a group is same

Let e be the identity of the group (G, *) and let b and c be the left and right inverse of the
element a € G respectively. Then

bxa=e and axc=e
Now b=Db=xe

=b*(@=*c)=(b*a)*c

—ex*cC

=c.
Hence the left inverse and the right inverse of every element in a group is same.
Theorem Based on Elementary Properties of Group.

Theorem I. Let G be a non-empty set together with a binary operation such that closure
property and associative law hold in g. Then the existence of left identity and left inverse in G
implies the existence of same right identity and same right inverse in G.

Proof. Let e be the left identity and a™ be the left inverse of a in G.
ie. e+ra=a,VaeG and a'sx=z=e.
We first show that left cancellation law holds in G.

ie. if a*b=axc then b=c
Now a*b=axc

= atx(axb)=a'(axc)

= (@'*a)*b=(a'xa)=*c

= exb=e=xc

= b=c.

Next, we show that e is also the right identity in G.
ie. a*e=a, VaeG.
Now a'+x(a*xe)=(a'xa)+*e

—e*e=¢e

=a'xa.

By left cancellation law, we have a * e = a.
Secondly, we show that a™ is also the right inverse of a in G.
ie. axa'=e.

Now a'+(a*a')=(a'+xa)=*a®

—exal=zalt=zalxe
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By left cancellation law, we have a * a™* = e.
Definition of a Group based on Left axioms

Let G be a non-empty set together with a binary operation * defined on it, then the
algebraic structure G, => is a group if it satisfies the following axioms.

0] a*beG,Va,beG (Closure Property)
(i) (a*b)xc=a=x(b=xc),Vab,ceG (Associative Property)
(iii) 3 an element e € G such that

exra=a,vVaeG (Existence of left identity)
(iv) For alla € G, 3 an element b € G such that

bxa=e. (Existence of left inverse)

Definition of a Group based on Right axioms

Let G be a non-empty set together with a binary operation * defined on it, then the algebraic
structure G, => is a group if it satisfies the following axioms

0] a*beG,VabeG (Closure Property)
(i) (a*b)xc=a=x(b=xc),Vab,ceG (Associative Property)
(i) 3 an element e € G such that
a*e=a,vVaeG (Existence of right identity)
(iv) For alla € G, 3 an element b € G such that
a*b=e (Existence of right inverse)

Note: If < G, *> be an algebraic system in which closure property, associative property holds. Then G
need not be a group if left identity and right inverse exist in G (or right identity and left inverse exist in G).

For example : Let G be any set containing atleast two elements.
Define a binary operation *onGbya*b=b,Va,b e G.

Clearly, closure property, associative law holds in G.

Also the element e € G be the left identityin G fore *a=a, Va e G.

Moreover, a*e=e = e is the right inverse of a.

But <G, *> is not a group, for if a, b be two distinct elements of G then a * b = b also b *b
=bsoaxb=b*h = a = b (by right cancellation law), a contradiction.

Theorem 2. A semi-group in which both the equations a x = b and y a = b have a unique
solution, is a group. Prove it.

(It is also called a definition of a group)

Or
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Let G be a set with binary operation which is associative. Assume that for all elements a
and b in G, the equations a x = b and y a = b have unique solution in G, then prove that G is a

group.

Proof. Let G be a semi-group under an operation denoted multiplicatively in which both the
equations

ax=b ....(1) and vya=b

have a unique solution.

To show that G be a group. For this we show that

(1) identity element exists in G. and

(i) inverse of each element exists in G.

For (i) By condition (1). For any element a € G, we have
ax = a, has a unique solution in G.
Janelemente € Gsuchthatae=a

Let b € G be any element of g. Then by condition (2)
ya=bhi.e. b=ya

Now be=(ya)e=y(ae)=ya=b

= be=b
e is the right identity of G.

Similarly, by condition (2), for any element a € G, we ahve
y a = a, has a unique solution in G.

Janelement f e Gsuchthat fa=aand fb=Db

ie. f is the left identity of G.

Now, fe=f [ e is the right identity]
and fe=e [ f is the left identity]
= e=f

e is the identity element in G.

For (ii) Let a € G be any element and e be the identity element of G. Then by condition
(1) and (2) 3 @', a" € G such that

aa'=eand a"a=e
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Now a''=a'e=a'(aa)=(a'aja=ea=a
Thus inverse of each element in G exists and is unique.
Hence G is a group.

Note: If in a semi-group G only one of the equation has a solution. Then G may not be a
group.

Theorem 3. Prove that any finite semi-group iff both the cancellation laws hold.
(Itis also called a definition of a group, but for finite sets)

Proof: Let G be a semi-group under an operation denoted multiplicatively.
Let G be a group, then both the cancellation laws hold.

(already proved in 1.2 (111))
Conversely, let both the cancellation laws hold.

To prove G is a group

Since G is finite. Let G = {a,, ay, ....... , an} be different elements of G.
O(G) =n.
vV a € G, consider S = {a;a, a4, ....... , ana}

Due to closed property in G, S c G
Further all the elements of S are different.
For it, let aa=aa,i#] ie. azae G.
Using Right cancellation law, we get.
a; = a;, which is absurd.
all the elements of S are different.
O(S) =n=0(G) = S=G
VabeGbutG=S = beS
let b=aa
i.e. a; is a solution of the equationya=Db, Va, b € G.
Consider another set T = {aay, aa,, ..... , @an}.
T < G and all the elements of T are different.
For it let aa; = aa;, i#] i.e. a#ae G.
Using left cancellation law, we get
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a; = a;, which is absurd.
all the elements of T are different
i.e. O(T) =n=0O(G) = T=0G.
Va,beG beGbutG=T = beT
Let b =aa
ay is a solution of the equationax=b, V a, b € G.
Thus both the equationax=bandya=Db Vv a, b € G have solutions in G.

Hence G is a group.

Note: If one cancellation law holds, then the system may not be a group.

For example: Let G be any set containing at least two elements. Define a binary

operation*onGbya*b=b,Va,beG.

2.6

2.7

Clearly closed property and associative law holds
i.e. G is a semi group.
HereVa, b,ceG,a*xb=banda=*c=c.
a*b=axc = b=c ie. left cancellation law holds.
But G is not a group under *.

Here right cancellation law does not hold.

Self Check Exercise =3
Q.1  Give example of semi-group where cancellation Law may not hold.

Q.2 Give example of semi group, which are not group, but they satisfy
cancellation law.

Summary

We conclude this unit by summarizing what we have covered in it:
Concept of groupsid, semi group and monoid.

Group set,

Finite and infinite groups

Abeliane and non-abelian groups

o M D kE

Examples of different types of groups.
Glossary
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2.7

Group: A mathematical structure consisting of a set of elements and an
operation that combines any two elements in the set, satisfying four properties :
Closures, associatively, identity and invariability.

Element: An object that belongs to a group
Operation: A binary operation defined on the elements of a group.

Closures: A property of a group in which the result of performing the group
operation on any two elements is always another element in the group.

Associatively: A property of a group in which the order of performing the group
operation on three elements does not effect the final result.

Identity Element: An element of a group that, when combined with any other
element, leaver the other element unchanged. It is denoted by the symbol e.

Inverse Element: For each element in a group, there exist another element such
that their combination results in the identity element. The inverse of element 'a’ is
denoted by a'.

Commutatively: A property of a group in which the order of performing the
group operation on two elements does not affect the final result. If a group
satisfies this property, it is called an abelian group.

Answers to Self Check Exercise
Self Check Exercise - 2

Q.1
Q.2

Q.3
Q.4

Q.5
Q.6
Q.7

Q.8

Q.9

Does not hold associative property.

. . _ 4
Identity element is 2 and the inverse is —for the element a.
a
Does not hold associative property.

Identity element is O and the inverse for on element a is -a. [For usual addition of
real number] But for usual multiplication, for the element 0, there is no
multiplicative inverse.

. : . 1
Identity Element is 1 and the inverse of an element ais —.
a

For the element 0 + i0 € C, there does not exists in inverse.

-a
Identity element is 0 and a' = 1— act as inverse fora e Q".
+a
Identity element is 1, and for a = E o= gwhich act as inverse element.
q

Here identity elementis1+i0=1 e C".
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andforZ=a+ibe C*, —=
— c , —
Z a2+b2

+ i(a2_+bb2 j will act at inverse of Z.
Q.10 Yes.
Self Check Exercise - 3
Q.1 S = Set of 2x2 metrics over integers.
Then S is a semi group under multiplication

10 00 00
If A= ,B= and C = then AB = Ac But B = C.
00 10 0 1

Q.2  Set of natural number is a semi group under multiplication which hold both
celellation law but is not a group.

2.7 References/Suggested Readings
1. Vijay k. Khanna and S.K. Bhaimbri, A course in Abstract Algebra.
2. Joseph A. Gallian, Contemporary Abstract Algebra.
3. Frank Ayres Jr. Modern Algebra, Schaum's outline Series.
4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.
2.10 Terminal Questions

1. Show that the set of all natural numbers form a semi group under addition.

2. Show that the set of all natural number form a monoid under multiplication

3. Show that the set of positive integers does not form a group under addition and
multiplication.

Check whether the set O of all odd integers Forms a group under addition.

Prove that the set of complex number Z, such that |Z| = 1, forms a group under
multiplication of complex numbers.

6. Show that the set of all rational numbers of the form 23 is a group under addition.
q

a
7. Show that the set G = {L

b
d} ,wherea,b,c,deRst.ad —bc # 1} forms a non-

abelian group.

K*kkkk
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Unit - 3
Some Special Group

Structure

3.1 Introduction

3.2 Learning Objectives

3.3 The composition Table
Self Check Exercise-1

3.4 The Group of Integers Under Addition Modulo N
Self Check Exercise-2

3.5 The Group of Units Under Multiplication Modulo N
Self Check Exercise-3

3.6 The Group of Complex Root of Unity
Self Check Exercise-4

3.7 Summary

3.8 Glossary

3.9  Answers to self check exercises

3.10 References/Suggested Readings

3.11 Terminal Questions

3.1 Introduction

Dear student, in this unit we will studied about some special types of groups, like group
of integers under addition modulo n, the group of units under multiplication modulo n the group
of complex root of unit. These groups has several practical applications in various field like
cryptography, computer graphics and image processing, network addressing, game
development and simulation. The group of root of unity has its application in signal processing
and polynomial inter potation etc.

But before studying about these group, we will study about the compaosition table and
know how we can use this table, to prove given set is a group under certain binary operation.

3.2 Objectives Learning

After studying this unit, students will be able to

. understand the concept of composition table
. understand to write composition table for a given set under defined binary
operation.
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. able to understand the group of addition modulo n and multiplication modulo n.

. solve the question relate to groups of addition modulo n and multiplication
modulo n.
. understand group of complex root of unity and solve questions related to its.

3.3 The Composition Table

A binary operation on finite set can be completely described by means of a table known
as a composition table. A composition table provides a systematic way of listing all possible
combinations of the group's elements on applying the group operation on them. It is a square
array which indicates all the possible product in the system.

Composition table is also known as Cayley table, which is named after the 19th century
British Mathematician Arthur Cayley. While writing the composition table, we write the elements
of a finite set S in the top horizontal row and the left vertical column in the same order, and
apply the rule.

(i)™ entry in table = (i" entry on the left) . (j entry on the top).

To understand and write a composition table let us take a simple set S = {1, -1} under
ordinary multiplication.

Multiplication X 1 -1 Elements of given set

1 1x1=1 1x-1=1

Elements of given set
-1 Ix1=-1 | -1x-1=1

We can check closure property, commutative property, identity element and inverse
element by using the composition table, as

1. Closure property : If all the entries of the table are elements of the given set
and each element of S appears once and only once in each row and in each
column, then the set S is closed under the given binary operation.

2. Commutative property : If the entries in the table are symmetric with respect to
the diagonal (which starts at the upper left corner of the table and terminates at
the lower right corner) then the given set S is commutative with respect to given
binary operation.

3. Existence of Identity Element : If any row is same as the first row in the
composition table then the extrem left element in the 2nd row is the left identity of
S. Similarly, if any column is same as the first column. Then the element at the
top of 2nd column is the right identity of S.

4, Existence of inverse : If each row except the topmost row or each column
except the left most column contains the identity element then every element of S
is invertible with respect to the binary operation. To find the inverse of an
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element, we consider that row (or column) in which the element is present and
determine the position of identity element 'e' in that row (or column). The
corresponding Column (or row) in which e appear act as inverse of that particular
element.

To clarify what we have just said, consider the following examples :

Example 1 : The set G = {1, w, w?} i.e. three roots of unity form a finite abelion group with
respect to multiplication by using composition table.

Solution : Here the given setis G = {1, w, w?} and the binary operation is multiplication

alsow® =1.

Write all elements of the set in row and column and given operation (X) on the corner
and multiply the elements of column with row element one by one and write it in the row, as

follow :

X 1 w w2

1 1x1=1 1xw=w Ixw’=w?
w wx1=w wxw=w? | wxw?=w?
w2 wx1=w? | wPxw=w® | wxw’=w*

Using the property w’=1, w*=w®.w=w, above table can be written as

(1)

(2)

3)

(4)

X 1 w w

1 1 w w2
w w w? 1
w2 w? 1 w

Closure Property: Since all the elements in the composition table are elements
of the set G, so G is closed under multiplication.

Associative Property: Since element of, G are complex numbers and
multiplication of complex numbers is associative, so multiplication is associative
in G also.

Existence of Identity: Since 2nd row is same as I* row. Therefore 1 (extreme
left element in 2™ row) is the left identity element of G. Also 2™ column is same
as I* column. Therefore 1 is the right identity element of G.

Existence of Inverse: Here each raw (Column) of the composition table
contains identity element '1' once and only once.
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X 1 W w2
1 1 W w?
2
w w w 1
w2 w? 1 w

From the table inverse of 1 is 1, inverse of w is w? and inverse of w? is w. as
1x1=e, wxw’=1= e, and w’xw = 1 Hence every element of G has its inverse in G.

(5) Commutative Property: Since the entries in the composition table are
symmetrical about the principal diagonal so the commutative property holds.

As G is afinite set. So G is a finite abelian group under multiplication.

Example 2: Prove that four roots of unity form a finite abelian group under multiplication using
composition table.

Solution: The set of four roots of unity is G = {l,—SLi—i}, here the binary operation is
multiplication. So the composition table, after using the property i* = -1, -1 = 1

X 1 -1 [ -i
1 1 i |
-1 1 | i

Closure Property:

Since all the element in the composition table are elements of the set G, So G is closed
under multiplication.

Associative Property:

Since element of G are complex number and multiplication of complex numbers is
associative. So multiplication is associative in G also.

3) Existence of Identity: Since 2™ row is same as I* row, and 2™ column is same
as I* column, so 1 is the identity element of the given set G.

(4) Existence of Inverse: Since each row (column) of the composition table contain
identity element once and only once.
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Therefore inverse of 1 is 1, inverse of -1 is -1, inverse of i is -i and inverse of -i is i, as
Ixl=1=e

Ix-1=1=¢e

ix-i=-F=-(-)=1=e

Cixi=-f=-(-1)=1=e

So each element of G has its inverse in G.

(5) Commutative Property: Since the entries in the composition table are
symmetrical about the principal diagonal, so commutative property holds.

Hence G = {l—:Li —i} four roots of unity, a finite set, is a finite abelian group under
multiplication.

Self Check Exercise - 1
Q.1 Consider the binary operation * and 0 defined by the following tables on set

S = {a,b,c,d} forms a group?

(i)
* a b c d
a a b c d
b b a d c
c c d a b
d d c b a

(ii)
0 a b c d
a a b c d
b b c d a
c c d a b
d d a b c

Check that both binary operation are commutative.
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Q.2 Let a set G {ga,b,cjunder the composition defined as below by the
composition table.

* e a b o
e e a b c
a a e c b
b b c e a
c c b a e

Is G is a group? If it is, whether abelian or not? * G = {e, a,b, C} is known
as Klein's four group.

3.4 Group of Integers under Addition Modulo n (Zn).

The group of integers under addition modulo n is a mathematical structure that consists
of positive integers modulo n under addition (®,). Before studying about this group, let us study
about addition modulo n.

Addition Modulo n

Let n be a positive integer greater than 1 and a, b € Z, where Zn =
{0,1i 2,3....... ,(n—l)} . Then we define addition modulo n i.e. @, as follows:

a ®, b = least non negative remainder when a+b is divided by n.

For example,
1. 11 ®; 9 = (Least non-negative remainder when 11+9=20 is divided by 7) = 6
2. 8 @5 7 = (Least non-negative remainder when 8+7=15 is divided by 5) = 0, as 15

is divided by 5 and remainder is zero.
3. 8 @19 6 = (Least non-negative remainder when 8+6=14 is divided by 10) = 4.

Note: When a and b are integers such that a-b is divisible by n (a fixed positive integer),
then we write it as a = b (mod n) and read it as a is congruent to b modulo n.

For example,
17 =2 (mod 5), as 17-2 = 15, and 15 is divisible by 5.
16 =1 (mod 3), as 16-1 = 15, 15 is divisible by 3
20 =0 (mod 4), as 20-0 = 20 is divisible by 4, addition modulo n.

Now, we will study about group of integers under addition modul n. If a set -
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Zn = {0,1, 2. ,(n—1)}n > 1, n e Z forms a finite abelian group under the composition

of addition modulo n, then it is known as group of integers under addition modulo n, or additive
group of integers modulo n.

Example 1: Show that Z, = {O,:L 2y ,(n—l)}, n be a positive integer greater than 1, forms a
finite abelian group under the composition of addition modulo n.

Solution: Given Z, = {0,1,2,3,....... ,n—1, n>1,n e Z Also the composition defined here is
addition modulo n.

Vv a, b €], a ®, b =least non-negative remainder 'r', when a+b is divided by n.
i.e. ad,b=r = a+b-r is divisible by n
= a+b=r (mod n)

In order to prove above set Z, is a group under addition modulo n, we have to satisfy
properties of group, as follows:

D Closure Property:
VabeZn 0<a,b<n
a+b=r (mod n) where 0<r<n.
As r e Z,, therefore the closure property holds.
2 Associative property:
Vv a, b, ¢ € ],, the least non-negative remainder remains the same if
(a+b)+c or a+(b+c) are divided by n as addition of positive integers is associative.
ad®(,b+.c) = (a®b) @, c
Thus associative property holds in Z,.
3) Existence of ldentity:
VaeZ,0<a<n,we have 0 € Z, such that a ®, 0 = the least non negative remainder
when (a+0) is divided by n = a
a®,0=a=0®, a
Hence 0 € Z, is the identity element.
(4) Existence of Inverse:
ForO0 e Z,,0®n 0 =0, so 0 is inverse of 0.

AlsoVaeZ, a=#0,n-ae Z,such that
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a+ (n-a) = 0 (mod n)

and (n-a) +a=0(mod n)

i.e. a®,(n-a)=0=(n-a) ®,a
Thus n-a act as inverse of a.

(5) Commutative Property:
vYabelz,

a®,b=b®, a, the least positive remainder remains the same as a+b or b+a is divided
by n. So commutative property holds.

As the set Z, is finite. So Zn is a finite abelian group under addition modulo n. This group
is known as additive group of integers modulo n.

In the above example, we studies how to prove Z,. to be a group by using the definition
of group, under addition modulo n. Now, we will do the same task by using the composition
table, in the next examples.

Example 2: Show that the set Z5{O,l 2,3 4}is a finite abelian group of order 5 under addition
modulo 5.

Solution: Here the given set is Zs = {0,1,2,3 4} and the binary operation is addition modulo 5
ie.
a ®s b = Least non-negative remainder when a+b is divided by 5.

0 @5 b = (remainder when 0+1=1 is divided by 5) 1 +5 2 = (remainder when 1+2=3 is
divided by 5) and so n. Therefore the composition table is as follows:

+5 0 1 2 3 4
0 0+0_0 0+1 0+2 0+3 0+4
5 5 5 5
0 2 3 4
0 0+0 1+1 1+2 1+3 1+4 5
5 5 5 5 5
1 2 3 4 0
2 2+0 2+1 2+2 2+3_5 | 2+4_6
5 5 5 b 5 b
2 4 0 1
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3 3+0 3+1 3+2_§ 3+3 § 3+4_Z
5 5 5 5 5 5 5 5
3 4 0 1 2
4 4+0 4+1 4+2_6 | 4+3_7 | 4+4_ 8
5 5 5 5 5 5 5
0 1 2 3
i.e.
+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

We observe following points from the composition table.
8} Closure Property:

Since all the elements in the composition table are element of Zs, So Zs is closed under
addition modulo 5.

2) Associative Property:
Letl,3,4€Zs
then (1 +5 3) +5 4 = 4 +5 4 = 3{Least positive remainder when 8 is divided by 5}
and 1+s(3+54)=1+57=3
Hence (1 +53) +5s4=1+5(3+54)
Similarly, it can be verified for other elements of Zs also.
So Addition modulo 5 is associative on Zs.
3) Existence of Identity:

Let a € Zs be any element Also 0 € Zs, such thata +5 0 =a = 0 +5 9, Hence 0 is identity
element of Zs.
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(4) Existence of Inverse:

Each row and column consist of the identity element 0. so, every element of Zs is
invertible.

Also 0+;0=0 = 0 is inverse of itself
1+;4=0 = 4 is inverse of 1
24+;3=0 = 3is inverse of 2
3+;2=0 = 2 is inverse of 3
4+51=0 = 1is inverse of 4

(5) Commutative Property:
Since the composition table is symmetrical with respect to the principal diagonal.

Therefore, +5 is a commutative binary operation on Zs. As Zs has finite number of
elements Hence order of Zs is 5.

Hence Zs = {O,:L 2,3 4} is a finite abelian group of order 5 under addition modulo 5.
Example 3: Show that the set G = {O,L 2,3 4,5} is a finite abelian group of order 6 under
addition modulo 6.

Solution: The given setis G = {0,1,2,3,4,5} and the binary operation here is addition modulo
6. i.e. a +¢ b = a+b (mod 6) = Remainder when a+b is divided by 6.

The composition table of G = {0,1,2,3,4,5} under addition modulo 6 is

e 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

(2) Closure Property: Since all the elements in the composition table are element of Z, So
G is closed under the composition of addition modulo 6.
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(2)

3)

(4)

(5)

Associative Property:Associative property can be cheeked by using any three
elements of the set G

Let 1,2,3eG

then (1 +¢2) +¢3 =3 +3=0 {Remainder when 6 is divided by 6}

again 1+g(2+s3)=1+s5=0

So Associative property holds in G

Existence of Identity: Let a €G be any element, also 0 €G, thena+;0=a =0 +¢a
0 is the identity element of the group.

Existence of Inverse:From the composition table, we find that each row and column
consists of the identity element 0. So, every element of G is invertible.

Also 0+;0=0 = O is inverse of O
1+5=0 = 5isinverse of 1
2+s4=0 = 4 is inverse of 2
3+,3=0 = 3is inverse of 3
4+42=0 = 2 is inverse of 4
5+,1=0 = 7 isinverse of 5

Commutative Property: Since the composition table is symmetrical with respect to the
principal diagonal.

Therefore, +5 is a commutative binary operation on G. Since G is a finite set satisfying

commutative property. Hence G is a finite abelian group under addition modulo 6.

3.5

Self Check Exercise - 2

Q.1  Show that the set G = {0,1,2,3,4,5,6} s a finite abelian group of order 6
under the composition of addition modulo 7.

Q.2 Show that the set G = {0,1,2,3} forms a group 6 under addition modulo
4.

The Group of Units under Multiplication Modulo n. (U,)

The group Zn consists of the elements {O,l, 2,3 e ,(n—l)} with addition modulo n as

the operation. When we multiply the element of Z,, we did not get a group, as the element 0O
does not have a multiplicative inverse. However, if we take only that elements of Z,, which have
multiplicative inverse, called units, we get a group under multiplication modulo n (X;) It is
denoted by U, and is called group of units in Z,. Before studying about this group, Let us study
about multiplication modulo n.
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Multiplication Modulo n

Let n be a positive integer greater than 1 and a, b € Z, where Z, =
{0,1, 2,3, ,(n—l)} then, we define multiplication modulo n i.e. X,, as follows:

a x, b = Least non-negative remainder when ab is divided by n.

For example:
1. 4 x5 3 = Least non-negative remainder when 4x3 = 12 is divided by 5 = 2
2. 4 xg 6 = Least not-negative remainder when 4x6 = 24 is divided by 8 = 0
3. 7 %1, 8 = Least non-negative remainder when 7x8 = 56 is divided by 12 = 8

As we said earlier that the set U, consists of only those elements of Z, which have
multiplicative inverse. An integer 'a' has a multiplicative inverse modulo n if and only if a and n
are co-prime or relative prime.

Forn=10
Zn = {0,1, 2,3,4,5,6,7,8,9)}

But for U, we have to select only those element of Z, which has multiplicative inverse
and only those element has multiplicative inverse which are co-prime to 10 and those elements
arel,3,5,7,9

Therefore for n = 10
Uy = {13, 7,9}
Now, to prove that set U, forms a group.
Example 1: Prove that U, = {XE Z;(x,n)=1,1<x< h} is a group under multiplication modulo
n.
Solution:
Closure Property:

Let a, b € U, and the binary operation is multiplication modulo n. i.e. a x, b = r i.e least
non-negative remainder when ab is divided by n.

Mathematically ab = (q) n+r, 0 <r <n-1.
as a,beU,so(@an)=1and(b,n)=1
[ aand b are co-prime to n.
So gcd of a and n will be 1 and bond n]
As a xp b =r,to prove r € U,, we have to prove
1) r=0
2 rn=1
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Let r=0 = ab =an = n/ab {.'a/b.c,(a,b):djglc}

and (na)=1 = 2|b = n/b = (b, n) # 1 which is a
contradiction as b € Un and (b, n) = 1.

So r<0
(2) Now, to prove (r,n) =1

If(r,n) =1 [(a,b) #1,3 primeP suchthat P/ aand P/ b]

3 prime no bs.t.p/r and P/n
Now, b/n = P/gn
and  b/r =
= P/qn+r= p/ab
= either b/a or P/b

If P/n and b/a = P =1 which is a contradiction
again b/n and b/b = P =1 which is a contradiction
rn=1r=0

Hence re U(n)
Closure property is satisfied under multiplication modulo n.

2 Associative Property:

Va b ceU,

The least non-negative remainder remains the same if (ab) c or a(bc) is divided by n.

(@x,b) x,c=ax,(bx,c)

Thus associatively holds in U,,.
3) Existence of Identity:

Since for a € U,.

axpl=1x,a=aandl1l e U,as

a.l and 1.a leaves the same remainder when divided by n.

So 1 € Un act as identity element of U,.
(4) Existence of Inverse:

Letae U,so(a,n)=1
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3 integer I, m € Z such that [+ (&, b)=1, 31, meZsuch that l(a) + m(b) = 1]
la+mn=1
I=q(n)+r, 0<r<n-1
We claim that r is the inverse of a we have to prove.
QD axpr=1
2) reu, = r«0and(r,n)=1
(gn+rna+mn=1
gna+mn+ra=1
n(ga+m)+ar =1
ar = (_qa_ m)n+1

= ax,r=1
Now to prover € U,, r=0
Let r=0
(ga+m)n+0=1
(ga + m) n = 1, which is not possible for n>2
= r«<0
Now to prove (r,n) =1
Let(r,n)=d
= d/r and d/n
d/ar and d/(ga+m) n
d/ar + (ga+m) n
d/1 and 1/d
d=1
(r,n)=1

asr=0and(r,n)=1 ..

b 4

Therefore ax,r=1
a-l1=re U,

(5) Commutative Property:V a, b € U, the least non-negative remained remains the same
if ab or ba is divided by n.

i.e. axnb=bx,a

Thus commutative property holds in U,.

61



Thus U, is an abelian group. Under multiplication modulo n. This completer the result.
Now we will prove the group U, be an abelian group using composition table.

Example 2:  Prove that group of unit Uy, forms a group under multiplication modulo 10 using
composition table.

Solution: Since the elements of U, will be the elements of Z,, = {O,L 2,34,5,6,7,8, 9} which are
co-prime to 10.

U, = {1,3,7,9}
To prove Uy = {1,3,7,9} is a group under multiplication modulo 10

i.e. a x1p b = least non negative remainder when ab is divided by 10
3 x30 7 = Least non negative remainder when 3 x 7 = 21 is divided by 10 = 1
9 x30 7 = Least non negative remainder when 9 x 7 = 63 is divided by 10 =13

The composition table is:

+10 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

D Closure Property: Since all the elements in composition table are element of
U10, so U10 is closed under multiplication modulo 10.

(2) Associative Property: Since the least non-negative remainder remains the
same if (ab)c or a(bc) is divided by n.

(& x10 b) x10 € =@ x19 (b x50 C)
So associativity holds in Ujp.

3) Existence of identity: For any a € U;pd 1 € Ujp such that a x;0 1 =a =1 xq a,
Hence 1 is the identity element of Uy.

(4) Existence of Inverse: Since each row and column consist of identity element 1
once and only once, so every element of Uy is invertible.

Also 1x,1=1 1is inverse of 1

3x,07=1 = 7 is inverse of 3
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7xp3=1 = 3isinverse of 7
9x9=1 = 9 is inverse of 9

(5) Commutative Property: Since the composition table is symmetrical with respect
to the principal diagonal.

Therefore X9 is a commutative binary operation on Uy

Since Uy has 4 elements, so Uy is finite abelian group of order 4.

Example 3: Prove that Ug forms a group under multiplication modulo 6 using composition table.

Solution: Since Us = {1,5}, so the composition table will be.

(1)

(2)

(3)

(4)

(5)

+6 1 5
1 1 5
5 5 1

5 x¢ 5 = Least non negative
remainder when 5 x 5 = 25 is divided by 6 = 1

Closure Property: Since all the elements in the composition table are elements of Ug,
so U6 is closed under multiplication modulo 6

Associative Property: Since the least non-negative remainder remarks the same if (ab)
c or a (bc) divided by 6.

(aXGb) XGC:aXG(bXGC)
So associativity holds in Ug

Existence of Identity: For a € Us3 1 € Ug such that a x¢ 1 = a = 1 x5 a. Hence 1 is the
identity element of Ug

Existence of Inverse: Since each row and column contains the identity element 1, so
every element of U6 is invertible.

Also 1xgl=1solisinverseofl
5x¢5=1so05isinverse of 5

Commutative Property: Since the composition table is symmetrical with respect to the
principal diagonal. Therefore xg is a commutative binary operation on Us.

Since U6 has 2 element. Hence Us is a finite abelian group of order 2
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Example 4: Show that the set G = {O,ZL 2,3,4,5, 6} is a finite abelian group of order 6 under the
composition, multiplication modulo 7.

Solution: The composition table of G = {O,:L 2,3,4,5, 6} under the operation multiplication
modulo 7 i.e. a x; b = least hon negative remainder when ab is divided by 7

+; 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1
1. Closure Property: Since all the elements in the composition table are elements of G.

So G is closed under multiplication

2. Associative Property: Since the least non-negative remainder remains the same if
(ab)c or a(bc) is divided by 7

i.e. (ax7b) x;c=ax;(bx;0)

So associatively holds in G

3. Existence of Identity: Foralla € G,3 1 € Gsuchthatax;1=a=1x;a. Hencelis
the identity element of G
4. Existence of Inverse: Since each row and column contains the identity element
1, so every element of G is invertible.
Also 1x;,1=1 = 1isinverse of 1
2x74=1 = 4 is inverse of 2
3x;5=1 = 5is inverse of 3
4 x,2=1 = 2 is inverse of 4
5x;,3=1 = 3is inverse of 5
6x;6=1 = 6 is inverse of 6
5. Commutative Property: Since the composition table is symmetrical with respect tothe

principal diagonal. Therefore, x; is a commutative binary operation on G.
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Since G has 6 element, so G is finite abelian group of order 6.

Note: Above result can be generalised as.

The set Jp= {:L 2,3....... ( p—l)}where P is a prime number, forms a finite abelian groupof
order (P-1), under the composition of multiplication modulo p.

Self Check Exercise - 3

Q.1  Prove that group of units U, forms a group under multiplication
modulo 12 using composition table.

Q.2 Prove that G = {0,1,234,56,7,8910} forms a group under
multiplication modulo 11

Q.3  Prove that U;; forms a group under multiplication modulo 17

Q.4  prove that U.;g forms a group under multiplication modulo 18

Q.5 Uy is an abelian group under multiplication modulo 11.

3.6 Group of Complex
Roots of Unity

A complex number is just a pair z = (a, b) real numbers. We usually write this pair in the
form z = a+ib. The number a is called real part of z, write b is called imaginary part of z, and we
denote set of complex number by C. Also for every complex number z, we have i.z = z.1 =
z./Addition and multiplication of complex number obeys commutative, distributive and
associative laws and they also have additive and multiplicative identity.

Also i = -1, for complex number. In polar form complex number z is written as
zZ=rcox 0 =r(cox 0+ 1sin @) = re"”

If we multiply a complex number by itself repeatedly, then by De Moiner's Formula we
have

[r(cox@+ising]" =r"(coxnd+isinng)

This formula can be use to find n™ root of any complex number. There are n-1 different
n™ root of any complex number.

Primitive nth Root of Unity:

N L 27
The primitive nth root of unity is the complex number w = e=— . All other n™ roots of
n

unity are powers of w. So the n nth root of unity are

Proof: Since,
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1 1 1
(l)E =(1+i0)" = (coxO+isinQ)"
1

= [cox(2kz +0) +i sin(2kr + 0)] [ period of sin and cox is 2 7]

= [cox2kz +isin an]%

2k . 2k
:cox—”+sm—”,[k=0,12, ....... n-1]]
n n
1 27i
@y = o2
n
0
k=0 =cox0+isin0=1+i0=1(cox2k—”+sin2k—7zj =w =1
n n
2r . 27w
k=1 =COX—+SN—-=w
n n
Ar . . Ar 27 . . 21
k=2 =COX—+iSin— =cox2| — |[+isin2| —
n n n n
2r . . 2& _
= COX?-HSmT [By demoives Theorem]
:W2
6r . . 6r 2r\ . 2
k=3=cox —+isin — =cox 3| — |+isihn3| —
n n n n
=|coX| — |+18n3| —
n n
:W2
k=n-1 we get wn-1
k=n= {Cox(z—ﬂjﬂsm(—ﬂﬂ =(cox2z +isin2z)=1+i0=1=w°
n n
G={W’ wh W w
={1, W, W o, w1
Therefore the set G = {w°, W', W?, ................ w™} is the set of n™ root of unity



Example 1: Prove that the set G = {1, w, W?, ................ w™}, set of nth root of unity is a finite
abelian group w.r.t. multiplication.

Solution: Since the given setis G = {1, w, W2, e, w"!} This set has n element so set is
finite set of order n.

Closure Property:
Letw, W, 0<i,j<n-leG
Now w.w =w"
Three cases are there
case i, when i+j<n
then wi, wje G are as G = {1, w, W, ................ w™
Caseii;wheni+j=n
then w,w=w=w"
= [coxz—”ﬂ sing}n
n n
=cox2rx +isin2rx
=1+i0
=1eG
Case (iii) when i+j>n
then i+j=ng+t,0<+<n-1

W, w = w = Wt = Wt
= (wW"9 w!
=19 w asw'"=1
=1 w ast<n-1
w,ow =wle G
Therefore for w', we G w.we G.

So the set of n™ not of unity is closed under multiplication.
Associative Property:

Since multiplication is associative in complex number, so Associative property holds in
G, as G is a set of complex number.

Existence of identity:
Since 1 € G works as identity element for the set G.

1w =rw =w,i we G
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Existence of Inverse:

Since rw'e G 3 w"'e G such that ww"™ = w"w =w"™ =w" =1 € G so for we G w"
works as inverse element so every element of a has a inverse element.
Commutative Property:

Since complex number holds mutative property under multiplication, so the set G also
obeys commutative property.

Hence the set G = {\/\/0\/\/1\/\/2 .......... vv”‘l} form a finite abelian group under
multiplication.

Self Check Exercise - 4
Q.1  Show that the set G = {\A/O,\A/l,\AF,V\F,V\/‘,\AF} 6" root of unity form an

abelian group.

Q.2  Show that the set of cube root of unity forms a group under multiplication,
also check the property of commutatively.

Note: Properties of nth root of unity

th , , . i2r
1. n™ root of unity form a GP with common ratio eT.
2. Sum of n™ root of unity is always 0.
3. Sum of n™ power of nth root of unity is zero, if p is a multiple of n.
4, Sum of p™ power of nth root of unity is zero if p is not a multiple of n.

3.7 Summary
We conclude this unit by summarizing what we have studied in it:
Group of addition modulo n.
Group of addition modulo n.
Group of units under multiplication modulo n.

Group of complex root of unity.

o M wDh e

Questions related to these special types of group.
3.8 Glossary:

. Composition Table :- A composition table is a square matrix that describes the
group operation for a finite group.

n

. n™ Roots of Unity:- The nth roots of unity refer to the solution of the equation z
= 1. In the complex number system, where n is a positive integer.

. Addition under Modulonn:- It involves performing the usual arithmetic addition
operation but then taking the remainder when divide by n.
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3.9 Answer to Self Check Exercise
Self Check Exercise - 1
Q.1 Yes
Q.2 Yes
Self Check Exercise - 2
Q.1  Solve it same as in example 3.
Q.2 Solve it same as in example 3.
Self Check Exercise - 3
Q.1  Solve it same as in example 4.
Q.2  Solve it same as in example 4.
Q.3  Solve it same as in example 4.
Q.4  Solve it same as in example 4.
Q.5 Solve it same as in example 4.
Self Check Exercise - 4
Q.1  Solve it same as in example 1
Q.2  Solve it same as in example 2
3.10 References/Suggested Reading
1. Vijak k. Khanna and S.K. Bhambiri, A course in Abstract Algebra, 5th Edition
2. Joseph A. Gallian, Contemporary Abstract Algebra, 8th Edition.
3. Frank Ayrer Jr, Modern Algebra, Schaum's Outline Series.
4, A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.
3.11 Terminal Questions

1. Let G = {1,2} and define * on G by a*b = |a-b|. Is the given set under given
binary operation is a group or not.

*kkkk
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Unit -4

Some Special Groups-Il

Structure
4.1 Introduction
4.2 Learning Objectives
4.3 Permutation Group
Self Check Exercise-1
4.4 Dihedral Group
Self Check Exercise-2
4.5 Summary
4.6 Glossary
4.7  Answers to self check exercises
4.8 References/Suggested Readings
4.9 Terminal Questions
4.1 Introduction

Dear student, in this unit we will study about some more types of groups known as

permutation group and dihedral group. We will try to write the elements of these group and will
discuss some of their properties.

4.2

4.3

Learning Objectives:

After studying this unit, students will be able to

1. define permutation group

2. prove and apply properties on permutation group
3. define dihedral group

4. prove and apply properties on dihedral group
Permutation Group

Permutation group are control to study of geometric symmetries and to Galoir theory and

to the study of finding solutions of polynomial equations. Permutation groups also gives us an
example of non abelian group. Before defining permutation group, we first read about the
symmetries of an equilateral triangle A ABC. The symmetries actually consists of permutations
of the three vertices. These three vertices have the following six permutations.
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A B C A B C A B C
A B C C A B B C A
A B C A B C A B C
A C B C B A B AC
Here a permutation of the set S = {A B,C}is a one-to-one and onto map = : S —S.

A B C
Here (B c Aj denotes the permutation that send Ato B, Bto C and C to A.

* The symmetry of a triangle also form a group
Permutation of Degree n :

Let S be a set having n elements. Then a one-one mapping of S onto itself is called a
permutation of degree n.

Degree of the Permutation:
The number of elements in the finite set S is known as the degree of the permutation.

For Example:-

Let Sy = [ (@), F(B)-vmvrrrnen f(ay)]

This can be written as

(al a, an]
b b b

Here the first line we write the element of S,, and in second line we write the image of
that element of S,. Two permutations f and g of degree n are said to be equal if we have f (a)

=g(@vaesS.
For example:

f_1234
2341
(2431J

and g=

314 2

are two permutations of degree 4. In this case, in

f replace 1 —» 2 253354 and4->1

and greplace 1—»2 253 3->4 and4->1
i.e. in both f and g replacement is same
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SO f =g
Note: If S is a finite set having n distinct elements then we have n! distinct permutations of the
elements of S.
Symmetric Set of Permutation of Degree n:

The set consisting of all permutation forms a symmetric set of permutation. If S, be the
set consisting of all permutations of degree n, then the set S, is called the symmetric set of
permutation of degree n.

Example 1: S; be the set consisting of all permutation of degree 2 and having 2! element.

(220 )

o 12 3)(1 2 3)(1 2 3
Similarly S; = ) ) )
{(1 2 3) [1 3 2) (3 2 lj

elements

1 2 3)(1 2 3)(1 2 3 .
having 6
[2 1 3)(2 3 1}(3 1 2}}

Similarly S4, Ss etc.
Identity Permutation:

If I is permutation of degree n such that | replaces each element by the element itself,
then | is called identity permutation of degree n.

1 2)(1 2 3) (12 3 4 _ _ ,
For example : , , are identity permutation of 2, 3 and 4 degree.
1 2)\12 3 \12 3 4
Product of two Permutations
1 2 3 1 2 3
If f= andg =
1 3 2 2 31
1 2 3)(1 2 3
then fg=
13 2){2 31
Sincein f,1—>1landingl—2soin f gwehavel — 2

Similarlyin f,2—>3anding3—>1soin fg2—->1

and in f 3—>2anding 2»3soin fg3—>3

[t 23
9712 1 3

. 1 2 3)(1 2 3
Similarly If =
21 3)\1 3 2
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If_123
321

So we can say that in general f g=g f .

Cycuc Permutation:

A permutation f on a set S is called a cyclic permutation of Length x. If for X, X,
............... Xn€ S such that f (x) = x; and leaves all other elements of S fixed.

1 2 3 456

324156
f(3)=4f@)=1f(@2)=2f(5)=5f(6)=6

For Example: If f = ( J be a permutation of degree 6 such that f (1) = 3,

Then f = (1 3 4)is a cyclic permutation of degree of length 3. Here the element whose
image is the element itself is called an invariant element.

123456789]

For Example: In f =
23 45167829

f(=2, f(2=3, f(3)=4 f(4)=5and f (5)=1
then f = (12 345)is a cyclic permutation of length 5.
Example: (1,2,4,5,3)ontheset(1, 2,3,4,5,6,7,8,9)

1 23 456 7 89
Means:
2 415 36 7 89

the remaining changesas 1 —+2,2>4,4—-55,5—-53,3>1

] Here the elements 6, 7, 8, 9 remains as it is and

Remarks:

1. Every permutation can be written as product of two cycles

2. A 2 - cycle permutation is called transposition

3. If a permutation can be written as product of even number of permutation then it
is called even permutation
(1 2 3)=(1 2)(1 3),S0(1 2 3)is even permutation.

4. If a permutation cannot be written as a product of even number of permutation is
called odd permutation (1 2 3 4) = (1 2)(1 3)(1 4) is odd permutation
Product of two even permutation is even permutation

6. Product of an odd and an even permutation is permutation.

Product of two odd permutation is even permutation.
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The set S; can be written as
Ss={I,(1 2),(1 3),(2 3),(1 2 3),(1 3 2

Self Check Exercises - 1

Q.1  Write all the elements of the permutation group on symmetric group S4 for
(1,2,3,4)

1 2 3 4 1 2 3 4
Q2 If f= and g =
4 1 2 3 21 4 3
Show that permutation multiplication is not commutative

1234567}

Q.3  Write the cycle of the permutation
6 3514 27

. _ 12 3 456
Write the cycle of the permutation
142 356

Example: the symmetric group of n elements S, is a group with n! elements where the binary
operation is the composition of maps.

Here binary operation is composition of mapi.e.|: R >R : 1 (x) =xisin 5.
Solution:Closur Property: Sincelet f,g e Sthen f 0 g also belongs to S. So composition of
map is closed in S.

So composition of map is a binary operation on the set S,.

Associative Property:

The binary operation is associative so, composition of map is associative on the set S,.
Existence of Identity:

Since, I, is the identity map, is the identity of S, as

folk=1L,Oo f=fVvVfesS,.
Existence of Inverse:

Also we know that if a function is one-one and onto i.e. f: X —»X then 3g : X —>X sit.
fOg=g0f =Ix So g will act as inverse of f .

Hence S, the permutation group or symmetric group on n elements forms a group under
the binary operation of composition of map.
Inverse of a Permutation:

The two row representation of inverse of a permutation in S, is obtained by
interchanging the row O of the 2 row representation of given permutation.
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31 4 2
1
2

314 2
So f'= ( J
Example: Find the inverse of f = (1 2

1 2 3 4 .
For Example: If f = then f " is obtained by interchanging the rows.
1 2 3 4 (

i - 1 2 3
Solution: Since f = (1 2 3) =( j

2 31
2 3 1) (123

So f= = =(2 31
123 (312

Self Check Exercise - 1
Q5 If fisacycle (1 3) in Ss, write f* in the 2-row format. Also cheek if

f ™ is a cycle or not

Q.6 Writeinverseof (1 2) and (2 4 5)inSs

Example: Write the composition table of S,

Solution: Since S, = {I,(1, 2)}

0 I 1, 2)

| | (1,2)

(1, 2) (1, 2) I

. 1 2\(1 2 B 1 2
2 1)\l2 1) 1 2
Self Check Exercises - 1

Q.7  Write the composition table of S; and prove that S; forms a group under
composition of map.

The Alternating Group:
The set of all even permutation of S, row, is called alternating group A, for n elements.

. The alternating group A, is a sub group of S,..
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. The number of even permutation in S, is equal to number of odd permutation,

nl
hence order of An is E

Self Check Exercise - 1
Q.8  Write the alternating group A, of S,.

4.4 Dihedral Group

A dihedral Group is a group of symmetries of regular polygon with n sides, where n is
positive integers. The dihedral group of order 2,, denoted by D, is the group of all possible
rotations and reflections of the regular polygon. The group D, consists of 2, elements, which
can be depicted as follows:

R360 360 R(n—-1)360 1360
) n rotations denoted by RO, , Rz(n ) ) eeeeeeee # where R ——
, 360i _

represents a rotations of T clockwise about the center of polygon.
. n reflections denoted by Fo, F1, Fy, ......... , F(n-1) where F; represent a reflections

across a line passing through the center of the polygon and one of the vertices.
° The group operation in D,, is the composition of symmetries
. D; and D, are only abelian dihedral groups otherwise D, s hon abelian for n > 3.
. Alternatively, the dihedral group D, is defined by

Dn = {risi;r" —gs’=esst=r1i =0,2....,n-1, ] :12}

Some Dihedral Groups:

Example 1:
1. D1 = |D1| = 2i.e. (1 rotation + 1 reflection) = {r‘s,j;rl =1, =1L9s"=r;i =i, | =12}
360i 360i .
(1) Ration (TI = TI =360i;1 = 0] (1) Reflection
1)
v\
A A B
A B
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(2)

A B
B A
Composition Table:-
* Ro h
Ro Ro h
h h Ro
Here h.h = h

| h
AL B —m A A

11y Roh = h R,

A" B—B A B
Example 2:
1. D, = |D2| = 4 = (2 rotations + 2 reflections)

D,= {r'shri=1s=1gs’=r%i=12j=12
={er,sr,s}

Alternatively D, = {R,, Riso,h,v}. Explained below:

2. Rotations (@ = @ =180i;i =0, 1]
n 2
1)
D C D C
Ro
— >
A B A B
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(2)

A

B

(2) Reflections

Production of terms :

3)

D C
A B
(4)

D C
A B

h.R180 =
D C

A B

Vh=

D C

A B

R180

F\)180
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Thus, Composition table is given by

* Ro Riso h v
Ro Ro Riso h v
Riso Raso RO v h
h h v Ro Riso
v v h Riso Ro

Example 3:
Construction of Dg: (3 rotation + 3 reflection) = {r‘sj r’=1r®=1ss'=r"i=123j=1 2}

=B{e,r,rs,rs,r’x}

(1)
B B
VANEE-SERVAN
C A C A
(2)
B A
Ri20
C A B C
(3)
B C
VANEE-"SERVAN
—_—
C A A B
(4)
B C
i i Faa ‘.
 —
C A B A
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(5)

B B
= /\
—_—
C A A C
(6)
B A
‘ Feo i i
—_—
C A C B

Alternatively thus, D; = {RO, Ro01 Rogr Faas Fao:s FCC}

Now, composition table is given by

0 Ro Ri20 Raa0 Fra Fap Fee

Ro Ro Ri20 Raa0 Fra Fap Fce
Ri20 Ri20 Ra2a0 Ro Fce Faa Fab
Raa0 Raa0 Ro Ri20 Fab Fce Faa
Faa Faa Fee Fap Ro R240 Ri20
) ) Faa Fee Ri20 Ro Raa0
Fce Fce Fap Faa Ra2a0 Ri20 Ro

It can be calculated as:
Faa Ri40 = (1) 1% apply R
(2) Then apply Faa
Ultimatimaely

SimilarlyFgp. Faa =
(1) 1% apply Raqo
B C
JANEE VAN
C A A B
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2) Then apply Fag

C B
Faa
A B A C
Ultimalimatety
B B
FAa R240
C A A C
SimilarlyFBb. FAa=
B C A
FAa R240 FBb
A C B A B C

Example 4:
D.:{r's'|r*=1" =1 ss=r"i=123j=12}={er,r’,r’sr,sr’sr’}
D4l =8 ie. 4 rotations + 4 reflections

Construction of D, :

4. Rotations {i.eifl =90i;i =0,1 2, 3}

1)
C B C B
Ro
s
D A D A
2)
C B B A
R90
S
D A C D
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(3)

C B
D A
4)
C B
D A
4 Reflections
(5)
C B
D A
(6)
C B
D A
(7) A
c 5
D A
(8) A
c B
A

Therefore D, = {RO, Ry» Reo» Rug» H.V, D, Dl}

R180

R270

Dl
—_—

D
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Product of Elements:
Here, ngo. R270

C B D C B A
R270 Riso
—_— —_—
D A A B C D
Rao . H
C B D A A B
H Riso
—_— —_
D A C B D C

H. Rgo = D Similarly, we can find product of other elements.

Composition Table:

0 Ro Roo Rigo Ra70 H V D D!
Ro Ro Roo Riso Ra70 H \Y D D!
Roo Roo Riso Ra70 Ro D! D H \Y
Rigo Rigo Ra70 Ro Roo \Y H D! D
Ra70 Ra70 Ro Roo Riso D D! \Y H

H H D Y, D Ro Riso Roo Ra70

Y \Y D H D Riso Ro R270 Roo

D D v D! H Roo Ra70 Ro R1so

D! D! H D v Ra70 Roo R1so Ro

Example 5:

(5)  Ds={r's'|r®=1"=1ss=r"i=1234[=12} = {gr,r’,r’,r'sr,s5r’sr’,r's

IDs| = 10 i.e. 5 rotations + 5 reflections
Construction of Ds :
. 3601 B60i .
5 Rotations {l.eT = T =721;1=0,12,3, 4}
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(1)

(2)

®3)

(4)

(5)

> > O O O

Ro

R144

R216

R288
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5 Reflections

(6)

(7)

(8)

(9)

(10)

o

.>
m
J;
m

to B

E

o
|
St

@]
W)
>
m

S
|

@)
o
@)
o9)

:
-

@)
)
m
o

D

C D B A

>
|

Ds = {R)! R, R Rose: R288'tA!tB’tc’tD’tE}
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Product of elements:
Here R27. R216

A
B E R216 A
° — — = Rogs
C D E A E
o t5.Rus
A
= B E Ras D B 1t -
, 2, = t,
C D E A C
o tg5. Ruogs
A B
= B E Raxgs C A g —
, e =1
C D D E D
Similarly,We can find product of other dements
Composition Table:
0 Ro R Ri44 R2i6 Ross ta ts tc to te
Ro Ro R Ri44 R2i6 Ross ta ts tc to te
R, Ry Ri44 R216 Ross Ro o te ta tc ts
R144 R144 R216 Ross Ro Rz ts tc b te ta
R216 R216 Ross Ro R Ri44 te ta ts tc to




Ross Rogs Ro R72 Risa  Ros tc o te ta tg
ta ta to tg te tc Ro Riaq Rigs Rz Ras
tg ts te tc ta to Ra16 Ro Riza  Ras Rz
tc tc ta to ts te R72 Roie Ro Risa  Ross
to To tg te tc ta Rass Rz R216 Ro Ruau
te te tc ta to ts Ruias Rass R72 Rais Ro
Similarly, we can form composition table for Dg, D7, Dg ................ by using group operation of

composition of symmetries.

Self Check Exercise - 2
Q.1  Write the composition table for Dg
Q.2  Write the composition table for D

4.5 Summary:
In this unit, we studied that

1. Symmetric group of n elements Sn is a group with n! elements.

2 The set of all even permutation of Sn is called alternating group. An.
3. Dihedral group is a group of order 2n, of n rotation and n refection.
4 Dihedral group is defined as

Dn={risi|r”=e,32=e,Sl’s‘1=r—1,i=0,]12 ______ n—1j=12}

5. D, and D, are only abelian dihedral group
4.6 Glossary:

. Permutation Group: A permutation group G on a set X is a subgroup of the
symmetric group S,, which is the group of all bijective mapping from X to itself
under function composition.

. Dihedral Group: The dihedral group D, is the group of symmetries of a regular
n-gon. It consists of all rotations and reflections that preserve the geometric
structure of n-gon.

. Permutation: A permutation of a set X is a rearrangement of its element. If X
has n elements, there are n! permutations of X.
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4.7 Answers to Self Check Exercise
Self Check Exercise - 1

Q1  S:=1[i,(12),(13),(14),(23).(24).(34.(123)(1L3,2)(124),(L42),
(1,34),(1,4,3),(2,34),(2,4,3),(12)(34)] (14, 23), (13) (24), (1, 2, 3 4),
0.2 f9=(1234j9f=[1234j
14 32 14 32
Q3 (1,6,2,3,5,4)
Q4 (2 4, 3

Q5 (1 3)inSs

1 2 3 45
then f =
321405

f_1_32145_12345_f
"1 2345 (321465
So fisacycle also

12345j

Q-6 fz(l’z):(z 1345

L, (21345
"1 23465

} (1,2)

12345
f=(249=, 4,35

1 4 2
1:( >0 ]:(254)
1 2 3 45

Q.7
0 | (12) (13) (23) | (123) | (132)

| | (12) (13) (23) | (123) | 132

12) | (12) | (32) | (123) | (23) | (13)
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4.8

4.9

@) | @3) | 123 | 132) | (12) | (23)

23) | (23) | @32) | (123) | 13) | (12)

(123) | (123) | (13) (23) (12) | (123) |

(132) | (132) | (23) (12) (13) | (123)

Q.8 1,(12) (34), (13) (24), (14) (23), (123) (132) (124) (142) (134) (143) (234) (243)
Self Check Exercise - 2

Q.1 Do same as Dg

Q.2 Do same as Dg

References/Suggested Readings:-

1. Vijak. K. Khanna and S.K. Bhambri, A course in Abstract Algebra.

2. Joseph A Gallian, Contemporary Abstract Algebra.

3. Frank Ayrer Jr. Modern Algebra, Schaum's Outline Series.

4, A.R. Vasistha, Modern Algebra, Modern Algebra, kushan Prakashan Media.
Terminal Questions

Q.1  Write the alternating group of A; of S;

Q.2  Write the dihedral group Dsg.

kkkkk
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Unit -5

Cyclic Group
Structure
5.1 Introduction
5.2 Learning Objectives
5.3 Order of an element of a group
Self Check Exercise-1
5.4 Idempotent Element
Self Check Exercise-2
5.5 Cyclic Group
Self Check Exercise - 3
5.6 Summary
5.7 Glossary
5.8  Answers to self check exercises
5.9 References/Suggested Readings
5.10 Terminal Questions
5.1 Introduction

Dear student, in this unit you will studied about the order of an element of a group,

idempotent element and about cyclic group. You will study how we can prove that a given group
is cyclic by using various examples, along with their properties.

52

5.3

Learning Objectives:

After studying this unit, student will be able to

1. Define and find the order of an element of a group
2. Prove the theorem based on order of an element.
3. Define and prove, that a given group is cyclic

4. Find the generators of a cyclic group.

Order of an Element
Definition:

Let a be an element of a group G. If there exists a positive integer n such that a" = e,

(using the binary operation), then a is said to have finite order, and the smallest such positive
integer 'n' with this property is known as the order of a and is denoted by O(a).
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. Here a" does not mean only n times multiple of a, but it means we apply the
given binary operation n times on element 'a'.

o In case of additive notation, above definition becomes, if n a = e then o(a) = n.
We apply n times the additive operation.

. If there does not exist a positive integer n such that a" = e, then a is said to have
infinite order or the order does not exist or the order of a is zero.

. In a group, order of identity element is always 1, i.e. 0(e) = 1 Let us try to clear
the concept of order of an element of a group by examples:

Example 1: Find the order of each element of group G {i, w, w?} cube root of unity under
multiplication.

Solution: Since in this given group G (1, w, w?}, 1 act as identity element under multiplication.
Now we have to find a positive integer n such that a" = 1, for all the elements of G. Also we
know w? = 1.

Since, is identity element of G so 0(1) = 1
Now for w, Sincewxwxw = w® = 1, so order of w is 3, i.e. O(w) = 3
3, i.e. O(w) = 3. [By definition]
Now taking the element w?,
Since wsxw?xw? =w® = W32 = (w?)*=1
So oW’ =3.

Example 2: find the order of each element of the group of order four of G = {1, i, -1, -i} under
multiplication.

Solution: To find the order of each element of G we have to find a positive integer k such
(element)* = identity since 1 is identity element of this group.

01)=1
Now, 0(i), Since ixixixi = i4 = (i2)? = (-1)2 = 1 = identity
i4=1
0()=4
Now 0(-1), Since -1 x -1 = 1 = identity
(-1*=1
0(-1)=2
Now, O(-i), since -ix -ixix -i = (-)4 = 1 = identity
0(i)=4
Example 3: Find the order of each element of the group {0, 1, 2, 3, 4} under addition modulo 5.
Solution: Given group is G = {0, 1, 2, 3, 4} and the binary operation is addition modulo 5 i.e.
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a +° b = Least non negative remainder when a+b is divided by 5.
Since 0 is identity element of the given group.
So 000)=1

Now, 0(1), Since 1+s1+s1+51+51 = 0 [we apply the operation addition modulo 5, five time
on 1 so that the remainder is zero that is identity element of group.

0(1) =5

Now, 0(2), Since 2+52 = 4, 2+52+52 = 1, 2+52+52+52+52 = 0 (Remainder is zero when 10
is divided by 5), we apply the operation 5 times on element 2 to get the identity element.

0(2) =5
Now, 0(3), Since 3+53 = 1, 3+53+53 = 4, 3+53+53+53 = 2

3+53+53+53+3 = 0, we apply the operation addition modulo 5 five times on element to get
0 (identity element)

0(3)=5
Now, 0(4), Since 4+54,54 = 2, 4+54+54+:4 = 1,
4+54+54+54+4 = 0

0(4)=5

Example 4: Find the order of each element of the group {1, 2, 3, 4, 5, 6} under multiplication
modulo 7.

Solution: Since we know that 1 is identity element of the group under multiplication modulo 7.
ie.

axsb = least non negative integer when ab is divided by 7.
As 1 is identity element, so 0(1) = 1
Now 0(2), Since 2x,2 = 4, 2x;2x7 = 1, which is identity element when 8 is divided by 7,
0(2)=3
Now 0(3), Since 3+;3 =2, 3+,3+;3 =6, 3+,3+,3+,3=4
3+,3+,3+,3+;3 = 5, 3+,3+,3+,3+;3+;3 = 1, (which is identity
element when 729 is divided by 7)
0(3)=6
Now, 0(4), 4+,4 = 2, 4+,4+,4 = 1, which is identity element
when 63 is divided by 7
Similarly 0(5) =6 and 0(6) = 2.
Example 5: Consider the group Z;, with addition modulo 10. what is the order of the elements.
Solution: Let since Zz10={0, 1, 2, 3,4, 5,6, 7, 8, 9}
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Here a is identity 0(0) = 1
Now taking each element
Oe)= 1= 00)=1

o 0(e)=1

110=0 (mOd 10) as 1+101+101+101+101+101+101+101+101+101 = O(mOd 10)

2 =2(mod 10)

2+2 =4 =4 (mod 10)

2+2+2 =6 =6 (mod 10)
2+2+2+2 =8 =8 (mod 10)
2+2+2+2+2 =10 =0 (mod 10)

3 =3(mod 10)
3+3=6=6 (mod 10)
3+3+3 = 9=9 (mod 10)
3+3+3+3 = 12=2 (mod 10)

2 0(2) =5

3+3+3+3+3+3 = 18 = 8 (mod 10)
3+3+3+3+3+3+3 = 21 =1 (mod 10)
3+3+3+3+3+3+3+3 = 24 = 4 (mod 10)
3+3+3+3+3+3+3+3+3 = 27 = 3 (mod 10)

3+3+3+3+3 = 15=5 (mod 10) 3+3+3+3+3+3+3+3+3+3 = 30 = 0 (mod 10)

0(3)=10
4 = 4(mod 10)
4+4 = 8 =8 (mod 10)
4+4+4 =12 = 2 (mod 10)
4+4+4+4 = 16 = 6 (mod 10)
4+4+4+4+4 = 20 = 0 (mod 10)
0(4)=5
5=5(mod 10)
5+5 = 10 = 0 (mod 10)
0(5) = 2
6 = 6(mod 10)
6+6 = 12 = 2 (mod 10)
6+6+6 =18 = 8 (mod 10)
6+6+6+6 = 24 = 4 (mod 10)

6+6+6+6+6 = 30 = 0 (mod 10)

0(6) =5
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Theorems Based On Order of Element
Theorem 1: In afinite group the order of every element exists.
Proof. Let G be a finite group of order n.

Let a € G be any element.

By closure property in G, the collection {a, a%, a3, .....} of powers of a are element
of G.

But G is finite.
the elements in the above collection cannot be all different.

Leta' = aj, i, j are +ve integers; i+ j, i> j (say) i.e. i - j is a positive integer.
Now a'e G and G is a group. .. ale G

= aal=d.al = al=a’=e

= a™®integer=e

By well ordering principle, let m be the smallest +ve integer, then
a"=e

= Order of a exists and O(a) = m.

But a is any element of G.

Thus the order of every element exists.

Theorem 2. If G is a finite group of order n then show that for any a € G, 3 some positive
integerr, 1 <r<n,suchthata’ =e.

Proof: G is finite group of order ni.e. O(G) = n
Let a € G be any element.
By closure property &% &>, ....... all belong to G.
Consider n+1 elements e, a, a° ...... ,a
[All these elements are in G]
But G contains only n elements.
= at least two of these elements are equal
If any of a, & ........ , a" equal e
thena"=efor 1 <r<nandris +ve integer.
So our result is proved.
If each of @, @ .......... , a"is not equal to e,
then a; = g;forsome i, j, 1 <i<n,1<j<n.

Without any loss of generality, take i> |
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then a'=a

= a,al=a'a’

= al=e 1<i-j<n

Put i-j=r

= a'=eforl<r<nandris +ve integer.

Theorem 3: Let G be a group and a € G be of order m. Prove that
0] a’®=e, a a2, ... , am-1 are all different.
(i) Vv n e |, an is equal to some one from the above list.
Proof: Given O(a) = m where a € G, a group.
= am = e and m is the smallest positive integer.

Let if possible a' = &, 0 <i, j <m ;i= j and say i> |

Operating by a’ (*-ae Gand Gis agroup .. ale G)
= a,al=4. a’
= al=a’=e, where0<i-j<m.

which is a contradiction as m is the smallest integer such that a™ = e.

Our supposition is wrong.

Hence all the elements e, a, a2, ....... , a™ are different.
(i) Vnellethn=mqg+rwhere0<r<m
Consider a"=a™" =a™. g

r

=@M%a=e%a (‘- O0@=m=a"=¢)
=ea' =a,0<r<m
HenceVn el a"=a", 0<r<m: which is some one from the above list.

Theorem 4: Let G be a finite group and let a € G be an element of order n. Then a™ =eiff nis a
divisor of m.

Proof: Firstly, let n be a divisor of m i.e. njm, where O(a) = n.
there exists a positive integer g such that
m =nq
o .  O(a)=n.
Now a"=a"=(@""=e=e.
. an=e

Conversely letam=¢e, where O(a) =n.

By division algorithm theorem

95



m=nqg+r, whereq,reland 0<r<n
e=a"=a"%""r=a%.a =@ .a=e'a=a
= a'=e, where0<r<n
which is not possible, because O(a) = n and n is the least positive integer such
thata" =e.
Above result holds only if r = 0.
i.e. whenm =nqg+ 0 =nq
i.e. when n is a divisor of m.

Theorem 5: Let G be a group and let a € G be order m. Then

m
0@ = ——,wherek=1,2, ...... m-1

(m,k)
k m
Proof: LetO(@") =t. Toshowthatt= ——.
(m,k)

Now a“=(a")'-e, butO(@)=m.

m/kt [By Theorem 1.3.3]
= d/m and d/k
Let m = m,d and k = 1d, where (my, k) =1

m
= E = m, SO we need to show t = m;.
Now m/kt = m,d/k,; dt = my/ky t
but (ml, k]_) =1 = m1/t

Again (a“)", = a“"; = a"'™
- a.kl m
=@"q=¢e\=e
But O =t
t/my
So, from (1) and (2), we get
t=m,
ie. o@y="-_M_
d (mKk)
Cor.1.1fO(a) =m, then O@) =m iff (mk)=1
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By above theorem,

m

o@) = ——

= i
K e M . .
o@)=miff—— =1 i.e. iff (m, k) =1
(m,k)
2. If O(a) = p, where p is a prime number, then
Oo@“)=p, forallk=1,2, ...,p-1 (" (p, k) =1)

Theorem 6: Let a, b and x be any elements of a group G. Then prove that
(i) O(a™) = O(a)
(ii) (x*ax)* = x'ak x, forall k e 1
(i) O (a)=0O(x"ax)
(iv) O(ab) = O(ba)
Proof. (i) Let O(@=m and O(@"=n
= m, n are the least +ve integers such that
a"=eand @Y"=e

Now (@)"=am=(@"*=e'=¢, butO(@")=n

nfm .. D
Again,a"=(@""=[aY)T'=et=e, butO(@) = m
mmh L (2
From (1) and (2), we get
m=n
O(a™) = O(a).

(ii) We shall prove by induction that
(x*ax) = x*a* x, for all k |
whenk=1, LH.S. = (x* ax)' =x* a' x = R.H.S.
the result is true forn = 1.
Let the result holds for k = m, where m is a positive integer.
(xtax)™ = x* a™ x is true.
Now (x'ax)™?! = (x* ax)™ (x* ax)
=x"a™ (x*!) ax

=xta™ eax
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=xta™x.

The result is true for k = m+1 also.
Hence the result is true for all positive integers.
Also when k = 0, then
LH.S. = (x'ax)’=e =x" ex
=x*a’x=R.H.S.
Now, let k = -m, where m is a positive integer.

(xrax)* = (xt ax)™ = {(x* ax)™}*

={xta"x)*
- X-l a—m (X-l)-l
[By Reversal law (ab)* = b™* a™]
= xtak x. [ (x)t=x]

The result is true for zero and negative integers also. Hence the result is proved
for all integers.

(i) Let OK'ax)=m and O(a)=n
Now (x'ax)"=x'anx=x'ex=x'x=e
But O(x*ax)=m

mm L D
Again . O(x*ax)=m
= Oxx*ax)"=e
= x'a"x=ex"'x
= x'a"x=x"ex
= a"=e [Using left and right cancellation laws]
But O(a)=n
n/m .-(2)

From (1) and (2), we get
n=n.

ie. OKx'ax)=0(a).

(iv) From (iii) we have
O(@=0(x"ax),VaxeG

Replacing a by a b and x by a, we get
O(ab) = O(a™*(ab)a) = O(a™ a b a)
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=0O(eba)=0(ba)
Aliter: Since ab = eab = (b b) ab = b™ (ba)b
O(ab) = O(b™* (ba)b)
—  0O(ab) = O(ba). [Using (iii)]

Remark: If a, b € G be elements of finite order or a group G, then O(ab) may not be finite and if
it is finite even then it need not be equal to O(a) O(b)

To prove above thing, let us take the following examples.

Example 6: Let G ={ f ; f : R >R is one-one and onto function} be a group under the operation
of composition of functions.

Let f,, f, e G be two elements such that f,(x) =-xand f,(x) =1-
Then O( f,) =2=0(f,), but ( f, f,) does not exist.
Solution: For f2(x)= f,(f,(x))= f,(:x)=(-x)=x = o(f)=2
and f2(x)=f,(f,x)= f,lx)=1-(1x) =
=  O(f,)=2
But f,f,x)=f f,(x)= f,(1-x) =-(1-x) =-1+x
Also, (f, f,)"(X)#x, VneN.

O( f, f,) does not exist.

a b
Example 7: Let G = {L d} :a,b,c,d € Rsuchthat ad —bc = 0}

i.e. G is a group of all non-singular 2 x 2 matrices under the operation of
multiplication of matrices.

1
Let A= {0 }and B= {0 } be two elements of G.

Prove that O(A) =0O(B) = but  O(AB) does not exist.

' { Hl °} F H
Solution: Here = (A)=2
-1/|0 —
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O (AB) does not exist.

Theorem 8: If a, b be any two elements of a group G such that ab = ba and (O(a), O(b)) = 1.
Then prove that

O(a b) = O(a) O(b).

Proof: Let O(a)=m and O(b) =n,where (m,n)=1
Let O(ab) = k. To show that k = m n, where ab = ba.
Now e = (ab)™=a™p™ =a"™ (b""

- a‘nk. ek — a‘nk e= a.nk

ie. a™=ebut O(@)=m
= m/n k, but (mn)=1
mk. ... 1)
Similarly, e = (ab)™ = a™p™ = (a™)*b™
=e'p™ = eb™ = p™
ie. b™=e, but  O(b)=n
= n/m k, but (mn)=1
n/k
From (1) and (2), we get ..(2)
m/k and n/k = [m, n] | k
But  [m, n].(m, n) = mn .--(3)
= [m,n].1=mn

From (3), we have

mn/k. ....(4)
Again (ab)™=a"b™ =(@")" (b")"=e"e"=ee=e
but O (ab) =k

k/imn
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from (4) and (5), weget ... (5)
k=mn
ie. O (ab) = O(a).O(b).

Self Check Exercise - 1

Q.1 Find the order of each element of the group {1, i, # +k} under
multiplication.

Q.2 find the order of each element of the group Z, under addition modulo 7
Q.3  Find the order of each element of the group Up.

Q.4 Show that the group Q-{0} i.e. non zero rational numbers under
multiplication has only two element of finite order.

5.4 Idempotent Element:

In 0 group G an element a is called an idempotent element of a*a = a, where * is a
binary operation.

Let us take following examples:-

Example 1: Show that if G is a group then a € G is an idempotent if and only if a = e, the
identity of a.

Solution: Given G is a group
Let a € G is idempotent
then by definition of idempotent

a®=a
= aa=ae
= a=-e (using cancellation law)

Conversely Leta=e

a.a=a.e
—ee.=e=-a
= a’=a,Soais idempotent element.

Example 5: Continue

7. 7 =7(mod 10)
7+7 = 14 = 4 (mod 10)
7+7+7 =21 = 1 (mod 10)
7+7+7+7 = 28 = 8 (mod 10)
7+7+7+7+7 =35 =5 (mod 10)
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T+7+7+7+7+7 = 42 = 2 (mod 10)
T+7+7+7+7+7+7 = 49 =9 (mod 10)
T+7+7+7+7+7+7+7 =56 = 6 (mod 10)
T+7+7+7+7+7+7+7+7 = 63 = 3 (mod 10)
T+7+7+7+7+7+7+7+7+7 = 70 = 0 (mod 10)
0(7)=10
8. 8 =8(mod 10)
8+8 = 16 = 6 (mod 10)
8+8+8 = 24 = 4 (mod 10)
8+8+8+8 = 36 = 6 (mod 10)
8+8+8+8+8 = 40 = 0 (mod 10)
0(8) =5
9. 9=9(mod 10)
9+9 = 18=8 (mod 10)
9+9+9 = 27=7 (mod 10)
9+9+9+9 = 36=6 (mod 10)
9+9+9+9+9 = 45= 5 (mod 10)
9+9+9+9+9+9 = 54=4 (mod 10)
9+9+9+9+9+9+9 = 63=3 (mod 10)
9+9+9+9+9+9+9+9 = 72=2 (mod 10)
9+9+9+9+9+9+9+9+9 = 81=1 (mod 10)
9+9+9+9+9+9+9+9+9+9 = 90 = 0 (mod 10)
0(9) = 10
Example 2: Let G be a group such that a’=e, for all a € G, Show that G is abelian.
Or
Show that a group in which every element is its own inverse is an abelian group.
Or

If each element of a group, except the identity element, is of order 2, show that the group
is abelian.

Solution: Let a, b € G be any two elements, wherea=e,bze =>ab=e.
a®=e and b’=e (orO(a)=2, O(b)=2)
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= al=a and b'=b (i.e. every element is its own inverse)

Also a,beG = abeG (By Closure Property)
(ab)’=e (or O(ab) = 2)

= (ab* = ab

But (ab)*=b'a®
b'a'=ab

= ba = ab [~ b'=banda™=a]

G is abelian group.
Example 3: Ifinagroup G, a*>=eandaba'=b?foralla, b € G.
Prove that if b = e, then O(b) = 31
Solution: Now, b’=aba* ... (1)
b* = (aba™)?
=ab’a? [ (X ax)* = x"a"x]
= a(aba™)a™ [Using (1)]
=a’ba”
b® = (a° ba®)?
- a2b2 a—2
= a’(aba™) a* [Using (1)
=a’ba®
b' = (@®ba®)? = a’b? a*
= a’(aba™)a® [Using (1)]
=a'ba*
Similarly, b%** = a’ ba®
b**=ebe'=b[-.- a°=¢€]
= b.b* = be
= b =e. [By left cancellation law]
O(b) must divide 31. But 31 is a prime number.
o(b) = 31
Example 4 : If G is an abelian group, then (a b)"=a" b", holds for alla, b € G and for all n e I.
Solution : Given G is an abelian group.

Let a, b € G. We shall prove the result (a b)" = a" b" by Mathematical Induction.
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If n=0,then(ab)®=e=ee=a’h’
the result is true forn =0

If n=1,then (ab)'=ab=a'b’
the result is true forn =1

Suppose that the result is true for n =k > 1.
(ab) = a* b*

Consider (ab)*** = (ab)* (ab)= (a“ b*) (ab)

= = (akb"a)) b, by associativety in G

a“** (b*b) by associativity

= a.k+1 bk+1

the result is true for n = k+1, if it is true for n = k.
But we have already proved the result forn=1

the result is true for every positive integer n.
When n is a negative integer
Let n = -m for some positive integer m.
Then (ab)"=(ab)™

m\-1

= ((a0)")

= (@™ b™)™*, since m is a positive integer

= (b™a™*, since G is abelian

=@m* (™™ =amb-m

=a"b"

Hence (ab)" =a" b", \Y nel

Example 5: If (G, +) is a group such that 2 a = 0 for all a € G, then show G is an abelian group.
Solution: Let a, b € G be any two elements
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Then 2a=0 = at+a=0 = a=-a (1)

and 2b=0= b+b=0 = b=-b we(2)
By closure property, a+b € G
2 (ath)=0

= (a+b) + (a+b) =0

= atb=-(atb=-b-a

= atb = b+a [Using (1) and (2)]
Hence G is an abelian group

Self Check Exercise - 2
Q.1  Show that a group of even order has an element of order 2

Q.2  Show that in a group of even order the number of element whose order is 2
are add.

5.5 Cyclic Group
Definition:

A group G is called a cyclic group if there exist on element a € G, such that every
element of G can be expressed as a power of a Mathematically

G ={a", n € Z}, when binary operation is multiplication
and

G ={na, n € Z} when binary operation is addition.

Such element is called generator of G and is written as G = <a>
Some Properties of a cyclic group

1. If G = <a> be a cyclic group of order n, then
G={e a a ... a"}i.e. O(G)=0(a) = n.
2. If a is a generation of a cyclic group G then a™ is also a generator of G i.e.

for ang xeG, we have x = a" also x = (a*)" where n, -n € Z.

Example 1: Consider the group Z, = {0, 1, 2, 3} under addition modulo 4 then 0(0) = 1, 0(1) = 4,
0(2), 0(3) = 4, is a cyclic group. To verify this statement, all we need to do prove that some
element of Z, is a generator, here 1 is a generator of the group, as every element of (Z +,) can
be expressed as a power of 1.

Remark: Any cyclic group can have more than one generator.
Example 2: Zg={0, 1, 2, 3, 4, 5, 6, 7} is cyclic group under addition abvious modulo 8.

Since <1> is a generator of given group. Also
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<3>= {3,3+ 3(mod8), 3+ 3+ 3(mod8), 3+ 3+ 3+ 3(mod8), 3+ 3+ 3+ 3+ 3(mod 8),

3+3+3+3+3+3(mod8),3+3+3+3+3+3+3+ 3(mod8)}

={3,6,1,4,7,2,5, 0} (mod 8}
<3>={0,1,2,3,4,5,6,7}=24
So <3> is a generator of Zg:

Similarly, if we cheek ,<2> =
{2,2+2(mod8),2+2+ 2(mod8),2+2+2+2(mod8),2+ 2+ 2+2+2(mod8)}

={2, 4, 6, 0, 4} # Zg, S0 <2> is not a generator of Zs.
So Zg is a cyclic group
Example 3: (Z1,, +12) is a cyclic group. Under addition modulo 12.
Again <1> is a obvious generator of the given group.
Here the element 5 is a generator, as

<5> = {1x5 (mod 12), 2x5 (mod 12),3x5 (mod 12), 4x5 (mod 12), (5x5) mod 12, (6x5)
mod 12, (7x5) mod 12, (8x5) mod 12, (9x5) mod 12, (10x5) mod 12, (11x5) mod 12, (12x5)
mod 12}

={5, 10, 3, 8,1, 6,11, 4,9, 2, 7, 0}
={0,1,2,3,4,5,6,7,8,9, 10, 11} = Z;,
So (Z4,, +12) is a cyclic group.
Example 4 : U;p =S {1, 3, 7, 9} is a cyclic group. Under multiplication modulo 10.
To prove Uy, is cyclic, we have to prove one of its element is its generator.
Now, <3> = {3°, 3% 3? 3*}mod 10
={1, 3,9, 7} = Uyp. <3> is generator of Uy,.
So Uy is a cyclic group.
Note : an integer K in Zn is a generator of Zn if and only if gcd (n1k) =1

Example 5: 1. Group of integers Z, under addition (Z, +) is cyclic, with generators <1>

and <-1>
2. Group of real number under addition is not a cycle group.
3. Group of rational number under addition is not cyclic.

Because, let g €Q then <g> = {nq : n € z} But this gives us atmost integer multiple of g
not every element of Q.
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Some Theorems on Cyclic Group
Theorem 1: A subgroup of a cyclic group is cyclic.
Proof : LetG=<a>andletH < G.

If H = (e), then there is nothing to prove.

Let H = (e) Members of H will be powers of a. Let m be the least +ve integer such that
am € H.

We claim that H=<a™
Let X € H be any element. Then
x = a* for some k.
By division algorithm, k =mq + rwhere 0 <r<m
= r=Kk-mq
= a’=a“.am™=x(a""% H.
But m is the least +ve integer such that a™e H.
r=0
m = mq
k = a“=(a™?i.e. any member of H is a power of a".
H is cyclic and H = <am> i.e. H is generated by am.
Theorem 2. A cyclic group is abelian

Proof : Let G =<a>. If x, y € G be any elements, then x = a", y = a™ for some integers m, n.

Now Xy =a"a"=a""
- am+n — a_m a_n
=y.X

Xy =XyVvV X,y € G.
- G is abelian.

Note. Clearly all non-abelian groups are non-cyclic.
Example : Give an example of an abelian group which is not cyclic.
Solution : Let (Q, +) be the group of rationals under addition.

This is clearly an abelian group. ["a+b=b_avVva beQ]

m
Let if possible, the group of cyclic. Let F € Q be a generator of Q. Then any element of
_ m
Q should be a multiple of P
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1 m
Now % € Q and ifF is a generator, then we should be able to write.

1 m
—=k.— for some k.
3n n

1

1
= = km, which is not possible. [*. k, m are integers. But:—% is not]

Hence no element can act as generator of Q.

Theorem 3. Order of a cyclic group is equal to order of its generator.
Proof : Let G = <a> i.e. g be a cyclic group generator by a.

Case (i) O(a) is finite say n.

Then n is the least +ve integer such that a" = e

Consider the elements

These are all elements of G and are n in number.

Suppose any two of the above elements are equal say

a' = a with i>
Then dal=ze=al=e
But O<i-j<n-1<n.

Then 3s a +ve integer i - j such that a’ = e and i - j < n.
Which is a contradiction to the fact that O(q) = n

There no two of the above n elements can be equal i.e. G contains at least n elements.
We shall show that it does not contain any other element.

Let x € G be any element. since G is cyclic generated by a, .. x will be some power of a.
x=a"
By division algorithm, we can write
m=ng+rwhere0<r<n
Now a"=aM"'=(@"". a
=ela' =a'

x=a where0<r<n
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ie. xisoneofa’=e,a,a% ..am"

.. g contains precisely n elements.
Hence O(G)=n=0(a)
Case (iii) O(a) is infinite.
In this case no two powers of a can be equal [.* if a" = a™ (a > m)]
then a™M=e
i.e. it is possible to find a +ve integer n-m such that a"™ = e
= O(a) is finite.
Hence no two power of a can be equal.
Thus G would contain infinite number of elements.

Theorem 4. A group of prime order is cyclic and every element of G other than identity can be
taken as its generator.

Proof : Let O(G) = p, a prime.
Take any aeG,aze
Let H=[a": nis an integer]
Then H is a cyclic subgroup of G. .. O(H) = O(H)
O(G) p
= OH)=1lorp [ pis prime]
But O(H) =1 [ aeH, a=xe]
O(H)=p
= H=G.

i.e. G is a cyclic group generated by a.

Since a was taken as any element (other than e) .. any element of G can act as its generator.
Cor. A group of prime order is abelian.

Sol. A group of prime order is always cyclic.

Also a cyclic group is always abelian.

Hence a group of prime order is always abelian.

Let us understand above theorems through following examples.

Example 5 : Prove that group of order 3 must be cyclic.

Solution : Using the theorem that a group of prime order is cyclic. Hence a group of order 3 is
cyclic.
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Example 6 : Prove that the set K, = {e, a, b, ab} under the binary operation. On K, given by
table.

e a b ab

e e a b ab

a a e ab b

b b ab e a

ab ab b a e

is abelian but not cyclic. K4 is known as Klein-4-group.

Solution : From the given composition table. We find that it is symmetrical about main diagonal,
So it is abelian.

Now, to prove that it is cyclic or not. To prove the given group is cycle we have to
generate K, by any of its element.

From the table, you can see, <a> ={e, a} # K,
Similarly<b> = {e, b} # K,, <ab> = {e, ab} # K,.
Therefore, K4 cannot be generated by {e} {a}, {b} {a b}.
Thus K4 is not cyclic.
Theorem 5 : An infinite cyclic group has precisely two generators.
Proof : Let G = <a> be an infinite cyclic group.
If a is a generator of G, then a™ will also be a generator of G.
[‘vIfa"=e, then(@)"=(@")*'=(e)' = €]
Let if possibleb= a, b = a™ be any other generator of G.
Since b € G and a is a generator of g.
b = a" for some integer n.
Again ' a € G and b is a generator of G.
a =b" for some integer m.
a=b"=@"\"=a"

nm-1

= a’' “=e
= O(a) is finite and< nm - 1
Since O(G) = O(a) is infinite.

.. the above result is possible only if nm -1 =0
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= nm=1

1
= m=—

n
= n==x1 [ m, n are integers]
i.e. b=aora’

Thus a and a™ are precisely the generators of G.
Hence the result
Next we shall find the number of generators for a finite cyclic group.
For this first of all we shall define a function known as Euler's Function.
For any integer n, we define.

¢(l)=1andforn>1,

¢(n) = number of +ve integers less than n.
and relatively prime to n.[e.g. ¢(6) =, ¢(10) - 4 etc.]

Following two results will be helpful to fine ¢(n).

(@ If p1, p2, ...., pn are distinct prime factor of n(>1), then
o) =n (1_ ij [1_ i} ...... [1_ij
B P, Py
(ii) If m, n are co-prime, then ¢(mn) = ¢(m).¢d(n). [m, n >1]

Theorem 6 : Number of generators of a finite cyclic group of order n is ¢(n).
Proof : Let G = <a> be a cyclic group of order n.

Then O(a) = O(b) = n.

We claim that am is a generator of G.

iff (m, n)=1i.e. m, nare relatively prime.

Let now am be a generator of G for some m.

Since aeG

a=(a") for somei=a™

= a™'=e
O
_ (@)
mi -1
n
= -
mi -1
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= mi -1 = nj for some integer

= mi-nj=1
= (m, n)
Conversely.

Let(m,n)=1
Then 3s integers x and y such that

mx+ny=1

N a™ = 5
= a™.a%=a
= a™.@"yY=a
= a™=a
= a=(@")"

Since every elt. of G is a power of a and a itself is a power of a™.
.. am generates G.

Hence the result.

To understand above theorems, Let us take following examples.
Examples of Eluer's¢ Function

Let n = 20, 4x4 = 2°x5* [Prime factors of n]

1 1
=fo-2) (1)

1 4
=20x—=x —
2 5
o(n) =8
Example 7 : Find the number of generator of (Z8+8) and list than

Solution : Heren=8

n=2x2x2 = 2° [Prime factorization]
1
Now ¢(8) =8 (1— Ej definition of Euler's ¢ function
1
=8 x—
2
o@8) =4
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.. There are 4 generators of Zg
AsZ3={0,1,2,3,4,5,6, 7}
Using the result, "an integer k in Zn is a generator of Z,iffgcd (n, k) = 1"

To find the generators of Z8 we have to find the integer from the set Zg which are co
prime to 8, and the elements are {1, 3, 5, 7}

Therefore the 4 generators of Zg are <1>, <3>, <6>, and <7>.

Note : Let G = <g> be of order n, and let d be positive divisor of n. Then the number of
elements of G of order d is ¢(d)

Example 8 : How many elements of order 2 and 5 do Zso under addition have? modulo 50.
Find the elements also.
Given O(Zs,) =50
Since 2 and 5 are positive divisor of n.

then number of elements of G of order 2 is ¢(2)=

1
=2 (i)

1
82) = 2x =1

=1
Hence in Z50 there is only 1 element of order 2.
And the element of order 2 is 25.

Similarly, the number of elements of G, of order 5 = ¢(5)

e

=4
Hence in Zsg, there are 4 element having order 5.
and these elements are 10, 20, 30 and 40.

Self Check Exercise - 3
Q.1 Show that {1, w, w?} terms a cyclic group under multiplication.

Q.2 Show that {1, -1, -i, -i}, the group of fourth root of unity terms a cyclic
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group under multiplication.
Q.3 Showthata=1{0,1, 2, 3, 4, 5, +6} is a cyclic group.
Q.4 Isthe group (6z, +) is cyclic.

Q.5 Find all the generators of Zg, Zg and Z,, under addition modulo n and list
them.

Q. 6 Find the generators of Z,5 and Zsg.

5.6

5.7

5.8

Summary:

In this unit, we have discussed the following points

1. Order of an element

2. Cyclic group

3. Cyclic Abelian group

4, Abelian group that is not cyclic

5. Number of Generators of a Cyclic group

6. Number of elements in a cyclic group having order, which is a divisor of order of
group.

Glossary:

o Order of an element : Let a € g, where G is a group. If there exist least positive
integer n s.t. an = e. The n is the orders of an element.

. Idempotent element: Let G be a group with binary operation ''. If acG and
satisfy a*a = a. Then a is idempotent element of G.

. Finite Cyclic Group: Let G be a group. If a € G, order of element a is equal to

the order of the group. Then g is finite cyclic group.
Answers to Self Check Exercise
Self Check Exercise - 1

Q1 O@)=1
O(-1) =2
o) =4
O(-i) = 4
Q.2 0()=1
o) =7
0(2)=7
0(3)=7
0@4)=7
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o(B) =7

o(6) =7
Q3 O0o@l)=1
0@3)=4
o(7) =4
0(9) = 2

Q.4  Since 1 is the identity element and O(1) = 1 also (-1)2 =1, so O(-1) =2, so 1 and
-1 are only two elements of finite orders.

Self Check Exercise - 2
Q.1 Let G be afinite group of order 2n
Lett={x eG:x*=¢}
and S ={x G : x* £ e}
ThenT#paseecT
alsoTNS=¢and TUS =G
- O(G) =0 (TUS)
=O(T) + O(S)
When G #¢, Let x €S
= x-1eS [ x* e and X% X]
O(S) is even
and when S = ¢, so G has an element of order 2
Let O(s) = 2k
L 0OM>2
~.Jatleast are elementaze e Tst. a’°=e
. 0@ =2
Q.2 As per as Question 1.
Self Check Exercise - 3

Q.1  Since 1 = w?, each element of G is an integral power of w. So {1, w, w®} is a
cyclic group.

Q.2 Sincel=i*-1=#-i=
each element of {1, -1, i, -i} is an integral power of i so {1, -1, i, -i} is a cyclic
group.

Q.3 Do same as example 1.
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5.9

5.10

Q.4 Yes
Q.5 Z¢— <1>and<5>
Zg — <1>,<3>, <5> and <7>
Zoog— <1>,<3>, <7>, <9> <11>, <13>, <17> and <19>
Z,5 the generators are all non-zero element other than 5, 10, 15, 20.
Z,s6 the generators are all odd integers.
References/Suggested Readings:-
1. Vijak. K. Khanna and S.K. Bhambiri, A course in Abstract Algebra.
2. Joseph A Gallian, Contemporary Abstract Algebra.
3. Frank Ayrer Jr. Modern Algebra, Schaum's Outline Series.
4, A.R. Vasistha, Modern Algebra, Modern Algebra, kushan Prakashan Media.

Terminal Questions

*kkkk
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Unit - 6

SUBGROUP

Structure

6.1 Introduction

6.2 Learning Objectives

6.3 Subgroups and its properties
Self Check Exercise-1

6.4 Theorems on Subgroups
Self Check Exercise-2

6.5 Set Operations on Subgroups
Self Check Exercise - 3

6.6 Summary

6.7 Glossary

6.8  Answers to self check exercises

6.9 References/Suggested Readings

6.10 Terminal Questions

6.1 Introduction

Dear student, in previous units related to groups you have studies about the algebraic
structures of integers, rational numbers, real number and complex numbers. You may have
noticed that some groups ae contained within another large group under the same binary
operation. For examples to get of integers under addition (z;+) is contained in set of real under
addition (Ry+). Here the thing to be noticed is that, it is not only the set of a group to be a subset
of the other, but also that of the group operation on the subset be the induced operation that
assigned the same element to each offered pair from that subset as is assigned by the group
operation or whole set.

In this unit, you will such subject of a set under a binary operation, known as subgroup,
along with their properties and theorems based on them. You will also study about the set
operation (union and intersection) on and product subgroups.

6.2 Learning Objectives:
After studying this unit, you will be able to :
1. define and give examples of subgroups.
2. prove theorem based on subgroups.
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3. check that the conditions for a subset of a given up to be a subgroup are satisfied
or not.

4. prove and apply results related to set operations on subgroups.
6.3 Subgroup
Definition:

A non empty subset H of a group <G, *> is said to be a subgroup of G if <H, *) is itself a
group. Here H is a group in itself under the same operation of G. If (H, *) is a subgroup of (G, *),
we denote it mathematically as (H, *) or (H < G)

Also if H is not a subgroup of G, then we write (H, *) < (G, *) or (H, G).

For Example:- (1) (Z, +) set of integers under addition is a subgroup of (Q, +), (R, +) and (C,
+) i.e. set of rational number, set of real numbers and set of complex numbers under addition.

(2) G=1{1, -1,i, -1} and H = {1, -1} where i¥ = -1 where G is a group under usual
multiplication of complex number, Since H is a subset of G, we can easily prove that H is a
subgroup of G, as it form a group under multiplication.

1 -1
1 1 -1
-1 -1 1

From composition table it can easily be verified that (H, .) is a group.
Proper Subgroup:

Let (G, *) be a group and (H, *) < (G, *), is a Subgroup of G such that H < G. Then H is
called proper subgroup of G. Mathematically, H<GorH<GorH<G, H=G. H={e}

Improper or Trivial Subgroup:

Since every group has all east two subgroups i.e. {e} and G itself. These two subgroup
are called trivial or improper subgroup.

Note: 1. If H is a subgroup of G and k is a subgroup of H then k is a subgroup of G
2. If H and k are subgroups of a group G and H < K then H is a subgroup of K.
For more understanding of subgroups, let us take following examples.

Example 1: Show that the set <Q +, .> is a subgroup of <Q - {0}, .>

Solution: The set Q - {0} is the set of all non zero rational numbers forms a group under
multiplication and Q", set of positive rational number. So Q+ < Q-{0}.

Also that set Q+ - the set of positive rational numbers.
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Since rational numbers are closed under multiplication, obeys alsociative property under

multiplication, 1 is its identity and for % e Q, % Q" act act inverse element.

So Q' forms a group under multiplication
So <Q", .> forms a subgroup of <Q - {0}, .>

Example 2: Show thatthesetnZ={....., -3n, -2 n, -n, 0, n, 2 n, 3n,......} of all integral multiplies
of n, is a subgroup of the group Z of all integers under the operation of addition.

Solution: We know that Z, the set of integers forms a group under addition.
Now nZ={nm:meZ}
Sincen,me Z = nmeZ
nzcz.
We now show that nZ forms a group under addition.
Let X,y € n Z so that x = n m; and y = nm, for some my, m,e Z.
X-y=nm;-nm,-n(m;-m,) € nZ
[Since m; - mye Z for every m1, mye Z]
The closure property holds inn Z.
The associative law holds in n Z since it holdsinZand n Z cZ.
Also 0=n0OenZ and x+0=x=0+X, VXenlZ
0 is identity element of n Z.
Now forx=nm e nZwe havey=n(-m) e nZ
Andx+y=nm+n(-m)=nm-nm=0=y +X.
y is the inverse of x in n Z.
= inverse of every element in nZ exists.
n Z forms a group under addition.
Thus n Z is a subgroup of Z.

Example 3: Verify the following statement for being true or false.

1. The additive group of even integers is a subgroup of the additive group of all
integers.
2. The set of all odd integers is not a subgroup of <Z; +>

(1) Let Z be the additive group of integers and
E be the set of all even integers of Z

Clearly0 e E .. E is non-empty subset of Z
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Let x, y € E be any two elements.
X =2n, andy = n, for some ny, ne Z
X-y=2n;-2n,=2(n;-ny) € E
E is a subgroup of Z.
(2) Let O be set of odd integers
Then if we take 3,5 € O
Then3+5¢0 (- 8€kE)
= O is not a subgroup of <Z, +>.
Example 4: Let C* denote the group of all non-zero complex numbers.
Show that the set S = {z € C*s.t. |z| = 1} is a subgroup of C”
Solution: Since |e C'and |1|] =1, . 1€ S
i.e., Sisnon-empty subset of C*
Let z;, z,e S be any two element = |zo] =and |z, =1
Now |z1Z;| ={z4] |zo] =1 =1
= 212, S
the closure property hold in S
The associative law holds in S since it holds in C*and S < C*
Sincelz=z=z1forallz e C*
In particular 1.z=z=z.1forallz e S
1 is the identity element of S
Since foreveryz € S = zeC" .. 37 e C*s.t.
zz’=1=7'z2 [ C*is agroup]
But |zZ'| = |1] = |z'z|
= lzdZ|=1=1z] |z
= 1]z)=1 = Z|=1= Z’eS
foreveryz € S,32' € Ss.t.
zz'=1=7'z2
inverse of every elements of S exists in S
= S is a group under multiplication.
Hence s is a subgroup of C*.

Example 5 : If x is any element of group G, then show that {x" | n € Z} is a subgroup of G.
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Solution : Let x be any element of group G

Take H={x"|n e Z}

Clearly H=p as (x =x'e Hyand Hc G

Now take .o, pe H. Then o = x%, B = x' for ky, ke Z

= opt = (xE)(x)?

= x“™* where k; - k,e Z
e H

= h is a subgroup of G.
Example 6 : Is Qo, the set of non-zero rational numbers, a subgroup of

G={a+ 2 b|a, b e Qand a®+ b%: 0} a group under multiplication? Justify.
Solution : Leta € Qo. Thena=a+ \/5(0) eG

= Quc G

and Qb as 1 e Qq (1=1++/2(0)

1 1 _a—«/fb
X

Now inverseof x=a+ /2 be Gis = = =
V2be a+2b a’-2p’

a -b
= * ol —
a’-2b’ \/_(az—szj
= a+ \/Ed eG

Forx,yeQO:xy'lzﬁer
y

. a . .
(a, b are rationals= b is rational)

Qo is subgroup of G.
Example 7 : for positive integers m, n show that n Z is a subgroup of m Zif m | n.
Solution : Wehave mZ ={...... ,-2m, -m, 0, m, 2, m,
TakeH=nZ=pmZ (Givenm |n=n=pmforp € 2)
={...,2pm,-pm,0,pm,2pm, ...}
where m and p are fixed integers

ClearlyHcmZforp=1
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Leta,be H=3dr,seZs. T.a=pmr,b=pms

= a-b=pmr-pms=pm(r-s)eH (asr-s e ?2)
H, is a subgroup of m Z
=nZ.

Example 8 : Let G be group of 2 x 2 non singular matrices over R under multiplication.

ab
Show W = {[O d}/ad # O} is a subgroup of G.
. a b ad=0 | .
Solution : Clearly W = is hon empty
0O d|/ abdeR
a b a,b,c,deR 10
subset of group G = as e W
c d|/ ardad-bc#0 01

LetA= {al bl}ande{ab bZ_eW
0 0

d1 d2_
1 b |
NowAB'l{al bl} % akh)(g 1 [dz _bz}
0 dfl, 1 ad,[ 0 a
d, |
a _ab b
= % 2d; d, e W '.'ﬁxizalbz;tOJ
0 i a2 d2 a2d2
d2
= W is a subgroup of G.

Example 9 : Show that SL (2, R) is a subgroup of the group GL (2, R) under the composition of
multiplication of matrices.

a b
Solution : Now SL (2, R) = {L d} wherea, b, c,d € Rs.t.ad - b C=1}
is a non-empty subset of the group

a b
GL(2,R) = {L d] wherea, b, c,d € Rs.t.ad - bc ;éO}
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ot
asl= e SL (2, R).
01

Moreover, SL (2, R) is a group under the operations of multiplication of matrices.
(Already Proved)
Hence SL (2, R) is a subgroup of GL (2, R).
Example 10 : If e is an identity element of a group G, then { e } is a subgroup of G.
Solution : Since e is the identity element of group G, therefore e € G.
LetH={e} thenHcG.
Since e e =e e H, therefore closure property holds in H.
Also (ee)e=e(ee)=e.
Associatively to holds is H
Since ee=-e=ee
e is identity element of H and
e-1=e e H.
H itself is a group
H is a subgroup of G

Remark : The subgroup G and { e } are called trivial or improper subgroups of G. Any
subgroups of group G other then G and { e } is called proper subgroup of G.

Example 11. Show that the set of cube roots of unity H = {1, w, w2} and the set of fourth roots
of unit K ={1, -1, i, -i} are subgroups of the group of twelfth roots of unity

.2k
G= {usl—zﬂ :k=0,1,2,3.., 11} under multiplication of complex numbers.

Solution : Clearly, H and K are non-empty subset of G. The composition table for H and K are
given below:

Composition table for H

1 w w2

1 1 w w2

w w w? 1
w? w? 1 w
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Composition table for K

1 -1 [ -i

1 1 -1 I -i
-1 -1 1 i [
[ [ -i -1 1

| -i [ 1 -1

From the composition table, it is easy to see that H and K from groups and hence are
subgroups of G.

Example 12 : Show that the set H {0, 3} and K = {0, 2, 4} are subgroups of the group G = {0, 1,
2, 3, 4, 5} under the operation addition modulo 6.

Solution : Clearly, H and K are non-empty subset of G. The composition table for H and K are
given below:

Composition table for H

+g 0 3

0 0 3

3 3 0

Composition table for K

+6 0 2 4
0 0 2 4
2 2 4 0
4 4 0 2

From the composition table, it is easy to see that H and K from groups and hence are
subgroups of G.

Properties of Subgroups

Just like group subgroups also have some properties which are related to their group
these are :

Property I. The identity element of a subgroup is same as the identity element of the group.
Proof . Let H be a subgroup of a group G.
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Let e and e' be the identity elements of G and H respectively
Let a € H be any element

ae'=a [-.- e'is the identity of H]
Also ‘-aeHandHcG=aeG

ae=a [+ e is the identity of G]
.wehaveae=ae'
= e=e'. [ by left cancellation law]
Hence the identity of a group and that of a subgroup is the same.

Property Il. The inverse of any element of a subgroup is the same as the inverse of the element
regarded as the element of the group.

Proof. Let e be the identity element of G and H.
Let a € H be any element.
SinceHc= G s aeG.
Let b be the inverse of ain H and c be the inverse of ain G.
ba=eandca=e
= ba=ca
= b=c. [by right cancellation law]

Hence the inverse of any element of a subgroup is same as the inverse of the same
element regarded as an element of the group.

Property lll. The order of any element in a subgroup is the same as the order of the element
regarded as the element of the group.

Proof. Let e be the identity element of G and H.
Leta € H suchthato(a) =n
= a" = e and a™# e for every m < n.
AlsoaeH=aeGandsoa"=eeG=0(@)=ninG.

Hence order of any element in a subgroup is same as the order of the element regarded
as the element of the group.

Property IV. Subgroup of an abelian group is abelian.
Proof. Let H be a subgroup of an abelian group G
HcG.
Let a, b € H be any two elements

a,beG = ab=ba [~ G is abelian]
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Va,beH we haveab= ba
Hence H is an abelien subgroup of G.
The converse of above result is false
i.e., A subgroup may be abelian even if G is not abelian.
Note : A non-abelian group may have abelian sub group.
To prove above properties let us take following examples.
Example 13 : Can an abelian group have non abelian subgroup?

Solution : No, Let G be a group which is abelian and let H be its subgroup. As commutative

property holds in G so it will hold in H. Therefore, an abelian group always has an abelian
subgroup.

Example 14 : Can a non abelian-group have an abelian subgroup?
Solution : Yes, the example for in abelian subgroup of a non abelian group is given as.

As the quaternion Group Q = {1, =i, %j, £k}, under multiplication is a non abelian group,
but if we take the subset H {1, -1, i, -1} of Q. then by composition table for H is

1 -1 [ -i
1 1 -1 [ -i
1 -1 1 -i [
[ [ -i -1 1
-i -i [ 1 -1

From the table we conclude that (H, .) is a group.

We find that the element are symmetric about the main diagonal, Also H = {1, -1, i, -1}
form an abelian group.

Hence a non abelian group can have an abelian sub group.

Self Check Exercise -1

Q.1 Prove that {1, -1} and {1, -1, i, -i} are abelian subgroups of non-abelian
Quaternion group.

Q.2 Prove that H = subset of Z consisting all multiple of n (n is any non zero)
integer is a proper subgroup of Z under addition.

6.4 Theorems on Subgroups
Theorem 1. A non-empty subset H of a group G is a sub group of Giff
(2) a,beH=a,beH
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(2) aceH=a'eH.

Proof . If H < G, then (1), (2) follows from definition [-.- His a group]
Conversely : Let (1) and (2) be satisfied.

By (2) a,beH=a'eH

By (1) acH a'eH=a.a'eH=e e Hi.e.id. elt. exists in H.

Since Ass. law holds for all elts of G. .. in particular in holds for all elts of H.
[+ His a subset of G]

.. His a group under the binary operation (product) in G.

.. His a subgroup of G.

Theorem 2 : The necessary and sufficient condition that H be a subgroup of G isthata, b € H
— ab™e H.

Proof. The condition is necessary
Let H<G. .. Hisagp.
beH=b'eH
aeH, ble H= ab’eH.
The condition is sufficient
Givena,b € H= ab™e H.
Since Ass. law holds for G. .. it holds for H [~ H<G]
Again a,ac H=a.a'e H=e e H .. Id. elt. exists in H.
Againe,ae H=e.a'e H=a'= H .. inverse exists in H.
Again a, b'e H=a (b")*e H = ab e H
.. closure property is satisfied .. His a gp. Hence H < G.
Definition . Any non-empty subset H of G is called a complex of the group G
ifaeH,beH= ab e H, then the complex H is stable.
Note : In case of additive notation, above two theorems can be stated as :
Remark 1 A non empty subset H of a group G is a sub group of GiffYv a,be H=a+b eH
andVaeH=-aeH.
Remark 2 A non empty subset H of a group is a subgroup of Giffa-b e HV a, b € H.
Theorem 3.A non-empty finite subset H of a group is a subgroup of Giffab € H, V a, b € H.
Proof :Necessary Part. Let a non-empty finite subset H of a group G be its subgroup.
H itself is a group

abeH, Va,beH. (By closure property}
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Sufficient Part. Suppose that H is a non-empty finite subset of a group G
suchthatab e H, V a, b eH.
The operation of multiplication is a binary operation on H.
Leta,bceH=a,bc e G, sinceHcG.
= (ab)c=a(bc), Since G is a group.
The associative law holds in H under multiplication.
Firstly we prove that cancellation laws hold in H.
Leta, b, c € H, suchthatab=ac.
Since a eH, soa e G.
a'e Gsuchthataa*=e=a'a
Now ab=ac
= at(ab)=a'(ac)

= (@'a)b=(ata)c

= eb=ec = b=c
ab=ac = b=c.
Similarlyba=ca = b=c.

The cancellation laws hold in H.

. H is a non-empty finite set with an associative binary operation in H and the
cancellation laws hold in H.

H itself is a group. (already proved)
Thus H is a subgroup of G.
Notice that the above theorem holds only finite subsets of a group.
Remark : In case of additive notation, the above lemma can be stated as
A non-empty finite subset H of a group G is a subgroup iff
a-beH, Va beH.
Let use try some examples of subgroups based on above theorems :
Example 1. Show that SL (2, R) is a subgroup of the group GL (2, R).

a b
Solution : Now SL (2, R):{[C }:a, b,c,d e Rst.ad - bczl}

d

b
and GL (2, R)={Z1 d] a, b c,deRstad-bc 7:0}
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To show that SL(2, R) is a subgroup of GL (2, R)
Clearly, SL (2, R) is a non-empty subset of GL (2, R)

10
for, | = e SL (2, R).

LetA,BeSL(2,R) =|Al=1,|B|=1

Now |AB| =|A||B|=11=1

= AB € SL (2, R)

Also for each A € SL (r, R), 3 B (= adj A)

s.t. AB =1=BA

where |B|=]adi-A|=|A[*=|A|=1 = B eSL(2, R).
B is the inverse of Ai.e., B=A™.

Hence SL (2, R) is a subgroup of GL (2, R).

a b
Example 2. G = {L d} 'a, b, c d e Z} under addition.

ab
LetH = { d} ra+b+c+d :O}. Prove that H is a subgroup of G.
c

What if O is replaced by 1?

00
Solution : Clearly, H is a non-empty subset of G for [O 0} e H,

[a b
Let A=

a.I 1
c d] B= { } be any two elements of H,

c' d'

wherea+b+c+d=0anda +b'+c'+d =0

a b a' b'
Now A -B = -
[c d} L' d}

_|a-a' b-b’
_[c—c' d—d}
so(a-a)+(b-b)+(c-c)+(d-d)
=(a+b+c+d)-(a'"+b' +c'+d)
=0-0=0
A-BeH, VA-BeH.
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Hence H is a subgroup of G.
Now, when O is replaced by 1, them

a b
H :{c d} :a+b+c+d:1} is not a subgroup of G.

1 3 2 3
for, A= , B= be two elements of H.
-5 2 4 -8

+1 O |
ButA-B= is not an element of H.
-9 10

as-1-9+0+10=1 L A-BegH.
H will not a subgroup of G.
Example 3. Let G. = GL (2, R)

0
and H = {B b} :aand b are non-zero integers}

Prove or disprove that H is a subgroup of G under multiplication.

a o0
Solution : His not a subgroup of G, for the inverse of the matrix A = [0 b} is
0

the matrix B = 1 ¢H ifa, b> 1.

o Wk

b
Example 4. Show that subset H = {(1, b) : b € R} of the group

G = {(a, b) : where a, b € R, s.t. a # 0} under the operation * defined by
(a, b)*(c,d)=(ac, bc+d)is asubgroup of G.
Solution : Clearly, H is a non-empty subset of G, for (1, 0) € H.

Let (1, b), (1, c) € H be any two elements, where b, c € R.
(1,b)*(1,c)=(1.1,b.1+c)=(1,b+c) e H.

Also, we know that the identity of the group G is (1, 0)

Let (X, y) be the inverse of the element (1, b)
(x,y)*(1,b)=(1,0)

= (x.1,y.1+b) (1, 0)
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= x=1,y+b=0

= x=1, y=-b i.e. (1, -b) is the inverse of (1, b)
Clearly, (1, -b) € H.

Inverse of each element of H exists in H.

Example 5 : Show that the elements of finite order in a commutative group G from a subgroup
of G.

Solution : Let G be commutative group and let
H={a G : o (a) = finite number}
Clearly, H #¢, for e € H, as o(e) = 1, a finite number
Let a, b € H be any two elements.
0 (a) and o (b) are finite number Leto (a) =m, o (b) =n
a"=e, b"=e.
Now (ab)""=am""b""=(@m)". (b""=e".e"=e.e=¢e
o (a b) is also finite = abeH.
Also o (a*) = o (a)
i.e.ifa eHthena™H.
Hence H is a subgroup of G.
Example 6. G is an abelian group having n elements g, gz, 93, -....On.
Show that (g g».....n)% = e, where e is identity of G.
Solution : Given G ={g,, 9>, ...., gn} is an abelian group.
Since e, the identity element is in G
some g; = e for fixed I. (1)
Further every element of G is invertible.
i.e. Vgie G, (j#1), 3gke G s.t.ggk=e ..(2)
Now consider
(9192 - 9n)* = (9192 .- On) (91 U2 ... On)
Since G is abelian and also associative law holds
.. using (1) and (2), we get
(0102 .... gn)° = €.
Example 7 Let H = {7 x | x € Z}. Prove H is a subgroup of (Z, +)
Solution : Clearly Hisnonemptyas0 € Z(7.0=0)
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Take a, b € H be any two elements
Thena=7xandb=7yforsomex,yez
a-b=7x-7y=7(x-y)eH (asx,yeZ=>x-ye2)
= a-beH VabeH
H is a subgroup of Z.
Example 8 . Let G be an abelian group with identity e. Show that
H={x G : x* = e} is a subgroup of G.
Solution: e*=efore € G
e eH =H is non empty subset of G
Now let X, y € H be any two elements
x¥*=eandy’=e=x'=xandy'=y (1)
Now (x y*)? = (x y!) (xy™) =x (y* ) y*
=x(yxH)y? (Using (1))
=x(xty) y* (- yxt=x"yas G is abelian)
=(xx) (yy?)
—ee=e
Xy-leHVX yeH
= H is a subgroup of G.
Example 9. Let H be a subgroup of group g and a € G.
ShowthataHa'={aha":h e H}is asubgroup of G.
Solution : Sincee=aea’=ecaHa’
aH a'is a non empty subset of G
[‘-Vaha'e aHa'wherea, h eGasHcgandGis agroup
~aha'eGie aHa'cG]
Letx, y € a H a™ be any two elements
Thenx=ah,a*andy=ah,a* for some hy, h,e H

Now x y* = (ah;a") (ah,a™)*

=(ah;a%) (ah,a® @ht=za
( ) ( ) [~ (@) ]
=ah;, (@*a)h,a”

=ah; h,'a? (-ata=e]

=ahsa* where hy = h; hy*eH
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ceaHa®
aH a'is a subgroup of G.

Example 10. Show that the elements of a group G which commute with the square of given
element 'a' form a subgroup H of G and which commute with 'a’ itself form a subgroup of G.

Solution : Let a be any element of G
andH={xe G|xa’=a’x}
1st Part
Now to show H is a subgroup of G
Letx,ye H=>xa’=a’xandya’=a’y
Hereya’=a’y
= a’y=ya’
= y=@)'ya=>y' =)'y (@) (1)
Now (x yh) a’=xey*a? (e is identity of H)
=x (&’ (@) ") y*a’)

= (xa’) (@) y" a’)

=(xa’)y! [Using (1)]
=@xy'=a*(xy?
= (xyha?=a’(xy') = xy'eH

H is a subgroup of G.
lind part
LetH; ={x eG:xa=ax}
Now to show H; is a subgroup of G

Now for x e H; we have xa=ax,x e G=>a=xax*

= x'a=(x"x)ax?
= xta=ax? (-x'x=e xeG
=N x*EH;

Furtherletx,y e H;=xa=ax,ya=ay; X,y €G
= (xy)a=x(ya)=x(ay)=(xa)y=(ax)y=a(xy)
= (xy)a=a(xy);xyeG
Xy e H;
Hence H; is a subgroup of G.
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Self Check Exercise - 2
Q.1 Check whether or not Z(\/§) —a+ b\/§, a, b € Zis a subgroup of R.

Q.2 Check whether or not Z\/g =a+ b\/g, a, b € Zis a subgroup of R.

Q.3 Check whether or not {1, w?, w*, w®} is a subgroup of 10th root of unity.

6.5 Set Operations on Subgroups

Dear students, in set operations on subgroup we will study about the operations of like
union, intersection and product on subgroups of group. To study the effect of union, intersection
and product on subgroup of group, Let us prove following theorems.

Intersection of two Subgroup
Theorem 1: Prove that the intersection of two subgroups of a group is again a subgroup of the
group.
Proof. Let H and K be two sub groups of a group G.
H and K are subset of G.
= HNKcag.
Now letx,y e HN K
X, yeHandx,y e K
= xy'e Hand x y'eK, since H, K are both subgroups of G.
= xy-1e HNK
Xxy-leHNK, V X, ye HNK
H N K is a subgroup of G.

Theorem 2. the intersection of an arbitrary collection of subgroups of a group is again a
subgroup of the group.

Solution : Let G be the group and {H, | e} be a family of subgroups of G.
Take H = ﬂ H,

Aen
Since H, is a subgroup of G, Viena
e e HVien

= eeﬂHl

= e € H=H=}

Also as H,c G, Vien
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so [1H,cG

Aen
= Hcg

Now leta,b e H
= a,ber]Hi

= a, b e H\ Vien
= able HVien

(-.-for each Aen, HA is a subgroup of G)
= ab’e(H,

Aen
= ab'e H
= His itself is a group and Hc G
So H is a subgroup of G
* The union of any two subgroups of a group is not necessarily a subgroup of the group.

For example : (i) The sets H = {0, 3} and K = {0, 2, 4} are subgroups of the group G ={0, 1, 2,
3, 4, 5} under the operation addition modulo 6. But the union H U K = {0, 2, 3, 4} is not a
subgroup of G, for2,3 e HUK, but2+3=5¢ HU K.

(ii) ThesetnzZ ={....... ,-3n,-2n,-n0,2n,3n, ... } of integral multiple of n, is a
subgroup of the group of integers under addition.
2Z={....... ,-6,-4,-2,0,2,4,6, ... }

and 3z2={..,-9,-6,3,03,6,9, ...... } are subgroups of Z, under addition.

But2zU3z={.....,-9,-6,-4,-3,-2,0,2,3,4,6,9, ....... } is not a subgroup of Z, for 4,
3€e62ZU3Zbut4+3=7¢22ZU3Z

(iii) ThesetH ={1, -1, i, -i}and K = {1, -1, j -j} are subgroups of the Quaternion group
Qs, butHUK={1,-1,i-1i,]j, -j} is not a subgroup of the Qg for, i,j e HUK, buti,j=k ¢ HU K.

Union of Subgroups

Theorem 3. The union of two subgroups of a group is a subgroup iff one is contained in the
other.

Proof.Necessary Part : Let H; and H, be two subgroups of a group G such that H; U H; is
again a subgroup of G.

We shall prove that either Hic H,  or H.c H.
If possible, suppose that H; & H, or H. & Hi.

Since H; & H,, so 3a e G suchthata € H; buta ¢ H.,.
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Again since H,¢ H;,so3b e Gsuchthatb € H, butb ¢ H;.
Since a € H; and HicH; U H; so a € Hy; U Ha.
Similarly b € H, and Ho,c H; U H,= b € Hy U H,
a,beH; UH,;
= abe H; U H,, since H; U H, is a subgroup
able Hyorab-1 e H,.

First consider the case when a be H;.

J

Since a € H; and H;, is a subgroup sateHy
at(ab?) e H,

(a'a)b™e H,

eble H,

b'e H,

(b_l)_lE Hy

b € H;, which is not true.

A

®

This case is not possible.
Now consider the case a b™e H,
Since b € H,.
(abY)beH, = a(b'b) e H,
i.e.,ae € H, =a e H,, which is again false.
This case is also not possible
So both the cases are not possible. Therefore, out suppaosition is wrong.
either Hic H, or H,c H;.
Sufficient Part : Suppose that either H;c H, or H,c Hj
= Hy UH;=H,; or Hy UH; =H,;
= H; U H, is a subgroup of G, since both H; and H, are subgroups of G.
Product of Two Subgroups
Definition :

Let H and K be two subgroups of a group G, then the set HK defined by HK = {h k : for
all h eH, k € K} is called the product of the subgroups H and K.

Remark : The product HK of two subgroups of a group G may or may not be a subgroup of G.
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For example : Let H = {lI, (12)} and K ={l, (13)} be two subgroups of the symmetric group S; on
three elements 1, 2, 3.

But HK = {1, (12), (13), (12) (13)} ={l, (12), (13), (123)}
So, HK is not a subgroup of S3, for
(123) € HK and (123) (123) = (132) ¢ HK.
In fact here KH ={l, (12), (13), (132)}
i.e. HK =KH.
Theorems on Product of Two Subgroups
Theorem 4. If H and K are two subgroups of a group G, then HK is a subgroup of g iff HK = KH.

Proof .Necessary Part. Let H and K be two subgroups of a group G such that HK is also a
subgroup of G.

We shall prove that HK = KH.
Let x € HK be arbitrary element.

x*'e HK, as HK is a subgroup of G.

= x* = h k for some h eH, k eK
= xXHt=(hK*
= x=k'h?

Since k eK and K is a subgroups of G, so ke K.
Similarly h'e H.
k*h'e KH.
= xe KH
HK cKH.
Let now x € K H be arbitrary element
x =k h for some k eK and h eH.
x'=(kkh™*=h'k'eHK
xte HK
(xH)'e HK, as HK is a subgroup of G,
X € HK.
KH c HK
Thus HK =KH.
Sufficient Part. Suppose that H and K are two subgroups of a group G such that HK = KH.

Uy Ul

We shall prove that HK is a subgroup of G.
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Let x, y € HK be arbitrary elements.

x = h; ky and y = h, k, for some hy, h,e H and ky, ke K
xy™t = (hy ky) (ha ko)™ = (hy kp) (k2" ho™) = hy (Ka(ko™ hy™))
=hy (ke k2 ™) ho?). (1)

Now (ki k™t hyte KH

=

=

Note : (i)
(ii)

(iii)

(k. ko) hy*e KH, since HK = KH

(ki ko) hy*' = hs ks for some hse H  and kse K ..(2)

Xyt =hy (hs ks) [From (1) and (2)]
=(hy hs) kse HK

xyte HK, V x,y € HK.

HK is a subgroup of G.

See another proof of the above theorem as 2.1.15.

HK = KH does not mean that each element of H commute with every element of
K. It only mean that for each h eH and k €K, h k = k; h,, for some h,e H and
kle K.

If the composition in G is addition, then we define
H+K={h+k:forh eH,k € K}.

Cor. If G is an abelian group, then HK is also a subgroup of G, for HK = KH.

Remark : If H and K are two abelian subgroups of a group G, then HK need not be a subgroup

of G.

Theorem 5. If H and K are finite subgroups of a group G, then

O (HK) =

O(H)O(K)
O(H NK)

Proof. We known that

HK={hk:heH k e K}

Let HN K = {Xy, Xa,....., Xo} and suppose O(H) =1, O (K) =s
Nowhk=hxx*k=(hx)x k) e HK, Vi=1, 2, 3, ..., n.
Since h xe H, x,* k eK

Thushk=(hx) (x'k) e HK, Vi=1,2,3, ..., n.

i.e., h k can be written in atleastn different ways. We show that these are the only n ways
that h k can be expressed as an element of HK.

If possible, let h k = h; k; be another representation
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= h*hy=kk;'e HNK

=N h h; = x; and k k;* = x; for some x;e H N K

= h,; =h x and k; = x;* k.

Thus hk = hy ky = (h x) (X K).

Which is not a new representation.

Hence each h k can be written in exactly n different ways.
Also h can be chosen in r ways, k can be chosen in s ways.

rs
h k can be choosen in — different ways.

n

Note : There is another proof for this theorem in 2.2.8.

Cor. (i) If H and K are two subgroups of a group G such that G = HK and H N K = {e}, then O
(G) = O (H) O (K).

Proof . Since G=HKandHNK={e}ie. OHNK)=1
O(H).O(K) _ O(H).0(K)
O(HNK) 1

Therefore O (G) = O (HK) =

-  0(G)=0H).O0 (K.
(i) If H and K are two subgroups of a group G such that O (H) >,/O(G) and O (K)
>,/O(G) , then O (H N K) > 1.

Proof. Since H, K are subsets of G, .. HK is also a subset of G.

0(G) > 0 (HK) = 2HO(K) _JOG)YOE) _  O(G)
B O(H nK) O(H nK) O(H NK)

= OHNK) > 1.
Inverse of a Subset of a Group
Definition :
Let H be a subset of a group G, then the inverse of H is H* and is defined as
H*={h™:forall h € H}.

Remark : In case of additive notation the above concept transformed as Let H be a
subset of a group G, then the inverse of H is H-1 and is defined as

H'={-h:forallh e H}.
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Theorem 6. If H be a subgroup of a group G, then H* = H.
Proof. Let heH™ be any element, where h eH.

Since His a subgroupof G .. h'e H

Thus h*eH'=h"e H

H'c H. (1)

Conversely,

Let h eH be any element of H

Since H is a subgroup of G .. heH

= (hH'e H' ie.,heH?

Thus h eH= he H™.. HcH? ..(2)

From (1) and (2), we getH = H*

Remark : The converse of above theorem need not be true. i.e., if H is a subset of a group G
such that H-1 = H, then H need not be a subgroup of G.

For example : (i) Let G be the group of square roots of unity, i.e., G = {-1, 1} under
multiplication, let H = {-1} be a subset of G.

Here H' = {-1} = H, for (-1)* = -1.

But H is not a subgroup of G.

(i) Let G ={(0, 1, 2, 3, 4, 5), +¢} be a group under addition modulo 6.

Let H = {1, 3, 5} be a subset of G. then H* = {1, 3, 5} = H, for

(1)*=5,13)*'=3, (5" =1, but His not a subgroup of Gas 3+s5=2 ¢ H.
Theorem 7 : A non-empty subset H of a group g is a subgroup, the HH = H.
Proof. Let H; h,e HH be any element, where hy, h,e H

Since His a subgroup of G = h; h,e H

Thus, V hq, h,e HH = h; h,e H

HH < H. (1)

Conversely :

Let h eH be any element of H.

Now h=he e HH. (" eeH)
Thus h eH = he HH
H < HH. -(2)
from (1) and (2), we get
HH=H
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Remark. : The converse of above theorem need not be true i.e., If H is a non-empty subset of a
group G such that HH = H, then H need not be a subgroup of G.

For example : (i) Let G be the additive group of integers of H be the set of all hon negative
integers, then HH = H, but H is not a subgroup of G.

(i) Let <Q - {0}, X > be the group of non-zero rational numbers under multiplication.
Let H be the set of all odd integers. Then HH = H, but H is not a subgroup of G, as H has no
multiplicative inverse of each elements.

Note. If H is a finite subset of a group g having the property that HH = H, then H is a subgroup
of G.

Proof . The result follows immediately by applying Lemma 2.1.4.

Theorem 8 : A non-empty subset H of a group G is subgroup iff HH™ = H.

Proof : The result follows immediately by applying Lemma 2.1.3 and
Theorem 2.1.11 and 2.1.12.

Theorem 9 : If H and K be any two subset of a group G, then

(HK)*=K*H™
Proof : Let (h k)™ be any element of (HK)™*, where h eH, k eK
(hk)'=k*h'e K*H*! [ h'eH!and k'e K]
Thus (h k)*e (HK)™? = (hkte K'H?
(HK)'c K*H* ..(1)
Conversely,

Let k' h'e K* H! be any element, where k €K, h eH.
k*h'=(hk)te (HK)*
Thus K*H'e K H*! = k*h'e (HK)™*
K*H'<c (HK)*! e (2)
From (1) and (2), we get
(HK)* =K*H*!
Note: we are having another proof of the theorem 2.1.8

Theorem 10: If H and K are two subgroups of a group G, then HK is a subgroup of G iff HK =
KH.

Proof, Firstly, let HK = Kh. To show that HK is a subgroup of G
It is sufficient to show that (HK) (HK)™ = Hk
we have (HK) (HK)™* = (HK) (K'H™) = H (KK™") H! = (HK)H™!
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[ Kis a subgroup of G KK™ = K]
= (KH)H™
=K (HHY
= KH [ His asubgroup of G .. HH™* = H]
= HK.
Thus HK is a subgroup of G.
Conversely:
Suppose HK is a subgroup of G. To show HK = KH.
Now (HK)*=HK [ if His a subgroup of G then H" = H]
= K'H'=HK = KH = HK
Cor. If H, K are subgroups of an abelian group G, then HK is a subgroup of G.
Proof: Since H, K are subgroups of an abelian group G. Then HK = KH
By above theorem HK is a subgroup of G.
Consider following examples for its better understanding.

Example 14. Let Z be the additive group of integers and for any positive integer n, let H,, denote
the set of all multiplie of n. Show the following:

(@ H, is a subgroup of Z.

(ii) For any two positive integers m, n, if j and k are their H.C.F and L.C.M
respectively, then

H, = Hp + Hy and H, = HpN H,
Solution: () NowH,=nZzZ=H{......... ,-3n,-2n,-n,0,n,2n,3n,........ }

Clearly H, is a non-empty subset of Z, as 0 € H,.

Let a, b eH, be any two element then
a=py,b=qg,forsomep,qeZ
a-b=py-0da=(p-0q)neH,

a-b eH,, v a,beH,.

Hence H, is subgroup of Z.

(i) Let HCF{m,n}=jand LCM{M, n}=k.

We show that H, + H,=H; and  HpNH, = Hy.

Now by part (i) Hy, Hy, H; are subgroups of Z.

Moreover, H, + H, = H, + Hy, [ Z is abelian group]
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= Gn + Hy is a subgroup of Z.

Let XxeHy+H, = X = am + by, forsome a, b € Z.

Since j=HCF{m, n} = j/m and //n = jlam + bn

= jIx = XeH,;
Hm + HocH;.

Again, lety eH; = y=tj=t(@am+bn)=tam+tbn e H, + H,.
Hic Hn + Hn.

Thus H;=Hgy + H,.
Secondly, because H,H,H; are subgroups of Z.
Also intersection of two subgroups is a subgroup.
HnNH, is a subgroup of Z.
Let X eH, = X € Hy and x eH,
= Xx=am and x=Dbxforsomea,b e ”Z.
Since k=LCM{M, n} = m/k and n/k

= am/ak and  bn/bk
= xlak and  x/bk
= x/(ak, bk)
= x/k (a, b)
= X eH.
HmNHh<Hi
Again, lety eHy = y=tk, forsomet e Z
y =t (mp) [*" mk= k = mp for some p € Z]
=m (tp)
= y € Hm.
Similarly y eH,, for y =tk and n/k
= k =nqg for some geZ
y € HnN H,.
y=t(nqg) = (tg) n €H,
Hc HinN Hi.

Thus Hy=H,N H,.

143



Example 2: Let G be an abelian group, let n be a fixed positive integer. Let G" = {g" : g € G}.
Prove that G" is a subgroup of G. Give an example showing that G" need not be a subgroup of
G when G is non-abelian.

Solution: Clearly G"=¢, for e=e"e G".
Now, let x, y eGn be any two elements such that x = g;", y=g,",, where g1, g, G.
Now xy*=g,"(9.")" =9."09." = (9: 9.")" G".
[ 01,9 G = 0:9:"e G
Hence G" is a subgroup of G.
Next, consider the group S; ={i, (12), (13), (23), (123), (132)}
Now S3° ={g*: g e S* = (£, (12)°, (13)%, (23)%, (123)3, (132)%}
={i, (12), (13), (23)}-

3
But S3* is not a subgroup of S, for (12), (13) S§ but

(12) (13) = (123) ¢ S3°
Example 3: Let H be a sub-group of a group G. Prove the following:
(i) For any x € G, x*Hx = {x*hx : for all h € H} is a subgroup of G.
(i) O (H) = O (x*Hx), if H is a finite subgroup of G.
Solution: (i) Since e =x"ex = e e xX'Hx
x* H x is a non-empty subset of G.
[V x'hxex*Hxwhere x, h eGasHc G and G is a group
5 Xthxe Gie.x'*Hx c G]
Leta, b e x* H x be any two elements.
Then a=x'h;x, b=x'h,x, for some h,, h,e H
Now ab™®=(x*hyx) (x* hyx)*
= (x* hyx) (x* hy'x)

=x" hy (xx) hyt x

=x"h; hyt x [ xxt=¢g]
=xt hg x, where hz;==h; hy*e H
e X Hx.

Thus x*H xis a subgroup of G
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(ii) Let f:H — x*H xbe amap defined by f (h)=x"hx, vV h eH.
We show that f is one-one and onto map.

Clearly, for each x*hx
f is onto.

Let  f(h)= f(hy)

Let  f(h)= f(hy)

= xthy x =xt hy x

= h; = h; [By left and right cancellation law in G]
f is one-one. Thus f is one-one onto.

= O (H) = O(x*HXx).

Example 4: Prove that if <H, *> is a sub-group of <G, *> and <K, *> is a subgroup of <H, *> is
also a subgroup of <G, *>

Solution: Given K is a subgroup of H and H is a subgroup of G.
To show that K is also a subgroup of G.

Leta b € K be any elements.

= a,beG.
Also b'eK [ KcHcG]
= able G

Thus K is a subgroup of G also.

Example 5: G be an abelian group, show that all elements of finite order in G form subgroup of
G.

Solution: Let T ={a:a e G s.t. O (a) is finite}.
Clearly T #¢, foreeT ** O (e) = 1, afinite number.
Leta,beT beanyelementst. O(a)=m and O(b)=n
ie, a'=e=b"
Now (ab)™ =a™b™ =(@")" . (b")"=e™. e"=em. e"=ee=¢e
O (ab)isalsofinite =abeT.
Also O (a') =0 (a).

faeT=> aleT.
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Hence T is a subgroup of G.
Note: The above group is known as the torsion subgroup of a group.

Example 6: Show that a group can never be expressed as the union of two of its proper sub-
groups.

Solution: Let G = H U K, where H and K are proper subgroups of G.
Clearly, HcecK and KcH.
We can choose aeH st agK and begK s.t. b ¢H.
Alsothena, b € HU K and since H U Kis agroup = abeHUK

= abeH or abeKkK
If abeHthen a'(ab)eH ie, b € H, a contradiction
and if ab eK then (ab) b'e K ie., a e K, a contradiction.

So our supposition is wrong.
Hence group cannot be expressed as union of two of its proper subgroup.
Example 7: Let G be the group of all 2 x 2 non-singular matrices over the reels.

Find the centre of G.

Solution: Here G = {{a (ﬂ;a,b,c,d e Rst.ad —bc = O}

c

Now by definition of C (G),
C(G)={g Glgx=xg, vV x € G}.

a b
Let L d} e C(G) be any element. Then it should commutate with all elements of G.

_ . 10 1112 0
In particular it commutes with , eG
1 0|1 1

IR
S T
I3
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= b=c,

=d.
b1l

Also
c d} L
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a+b b a b
j— =
c+d d a+c b+d
= atb=a, b=c=0 [using ()]

a b _ a 0
Hence e C (G) is of the form

a
a o
Hence C (G) = {0 a} ra#0e R}

Example 8: Find all the subgroups of Ss.
Solution: Since S; ={i, (12), (13), (23), (123), (132)}.

All the subgroups of S; are
Hi ={i, (12)}, H2 {i, (13)}, Hs ={i, (23)}, and H4 = {i, (123), (132}

Self Check Exercise -3

Q.1 Showthat (22)2)=6Z<Z

Q.2 LetH={l,(1,2,3),(1,3,2),(1,3, 2}and K={l, (1, 2)}
Check whether or not HK < Ss. If it is,
Find O(HK). Find O (HNK)

6.6

6.7

Summary:

In this unit you studied about

1. Subgroup, its definition and various examples

2 Elementary properties of subgroup with their explanatory exaples.

3. Theorems based on subgroups

4 Set operations like Union, intersection and product of two subgroups along with
the theorems and examples.

Glossary:

. Abelian Group:A group g is abelian of for all elements a, b € G, the following

commutative properly holds.
axb = b*a, where '+' is the binary operations associated with G.

. Subgroup:Let G be a group with operation '+'. A non-empty subset HcG is
called a subgroup of g if H itself is a group under the operation "*".

. Non-Abelian Group:A Group G with operation '+' is called non-abelian group,
there exist a, b € G. Such that a * b #b* a.
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Answers to Self Check Exercise
Self Check Exercise - 1

Q.1 Yes, {1, -1} and {1, -1, i, -1} are abelian subgroups of non abelian Quaternion
group.

Q.2 Yes, Itis a proper subgroup of Z.
Self Check Exercise - 2

Q.1 Yes, Z\/§ is a subgroup of R

Q.2 Yes, Z\/g is a subgroup of R.
Q.3 No, itis not a subgroup of 10th root of unity.

1 w2 w* we

1 1 w2 w* we
W2 W2 W4 WG Wlo
W4 W4 W6 W8 WlZ
W8 W8 WlO WlZ Wlﬁ

Also w? . w* = w®
[asw®=1
(w*)? =1 as son on
Self Check Exercise - 3
Ql1l 2Z=2m,me?Z
3Z=3n,n e Z
Now (2Z) (3Z) = (2m) (3n)
=6mm, m,neZ
Again 6Z =6z,z<Z
=(2.1) (3.2)
=27 3z
Thus (22)(3z) = 6Z
Thus product of two subgroups of Z is a subgroup of Z.
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As O(H) = 3, O(K) =2, O(HNK) = 1 as only | is common element

_ O(H)O(K) _ 3x2
T OHNK) 1

Since order is same so [HK < Sj]

O(HK) =6 = 0(Sy).

6.9 References/Suggested Readings:-

1.
2.
3.
4.

Vijak. K. Khanna and S.K. Bhambri, A course in Abstract Algebra.

Joseph A Gallian, Contemporary Abstract Algebra.

Frank Ayrer Jr. Modern Algebra, Schaum's Outline Series.

A.R. Vasistha, Modern Algebra, Modern Algebra, kushan Prakashan Media.

6.10 Terminal Questions

1.

Let G be on abelian group with identity e show that
H={xe G:x*= e} is a subgroup of G

Show that the elements of a group G which commute with the square of given
element a from a subgroup H of G and which commute with a itself form a
subgroup of G.

*kkkk
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Unit -7
Cosets and Lagrange's Theorem

Structure
7.1 Introduction
7.2 Learning Objectives
7.3 Cosets
Self Check Exercise-1
7.4  Theorems on Cosets
Self Check Exercise-2
7.5 Index of A Subgroup
Self Check Exercise-3
7.6 Lagrange's Theorem
Self Check Exercise-4
7.7 Summary
7.8 Glossary
7.9  Answers to self check exercises
7.10 References/Suggested Readings
7.11 Terminal Questions
7.1 Introduction

Dear Students in this unit you will study about the equivalence relations defined or
group, corresponding to each of its subgroups. You will also study the importance of the
partitioning of a group into the equivalence classes, called Cosets. We will use the concept of
Coset to prove a very important theorem known as Lagrange's theorem, which is named after a
French Mathematician Lagranges. You will also study about the index of a subgroup.

7.2 Learning Objectives

After studying this unit, students shall be able to

1. Define and give examples of coset both left and right.
2. State and prove Lagerange's theorem.
3. Apply Lagrange's Theorems on mathematical questions.

Introduction
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In group theory, a coset is subject of a group obtained by multiplying each element of a
subgroup by a fixed element of the group. The cosets of a subgroup partition the group into
distinct subsets or we can say the cosets are disjoint and their union is equal to the whole
group. The number of Lay cosets is equal to right cosets, and this number is known as index of
the subgroup.

Cosets Lays important role in defining other types of groups like quotient group.
7.3 COSETS

Dear students, we have already discussed about the product of two subgroups. Here we
will study the case when one of the subgroup, for the product, is a single element. Here we take
product of the subgroup of G i.e. H with an element of a group G.

Definition of Coset
Let H be a subgroup of a group G and letae G
1. Then the set Ha = {ha : he H} is called a right coset of H in G determined by a.
2. The set a H = {ah : heH} is called the left coset of H in G determined by a.

If the operation is addition, then above defining becomes. Let H be a subgroup of a
groupGandleta e G

1. H+a = {h+a; heH, is called a right coset of H in G determined by a
2. a+ H ={a+h; heH, is called left coset of H in G determined by a
Notes : 1 If H is a subgroup of a group G, Then H itself is a right as well as left coset of H

of G determined. If e is identity element of the group G, Then he and eH are right
and lay coset of Hin G

Also He={he:heH}={h;heH}=H
eH={eh:heH}={h:heH}=H

2. When G is an abelian group then there is no distinction between a left and right
cosets.

Let us take following examples to more understanding
Example 1  What are the right cosets of uZ in (Z,+)
Solution : Here the group G is Z and the subgroup H is uZ and the operation is addition.
Since the elementsof Zare ={-4,-3,-2,-1,0,1,2,3,4....}
=0, +1,+2, +£3, +4, 5, ...
andH=uz ={16,-12,-8,-4,0,4,8,12, 16, ........ }
={0,, £41, +£81, £121, £161, .......
So to find the right cosets of uz in z we have to add element of z in H, Let us start from O
- H+0 ={h+0, heH} ={0+0, +4+0, +8+0, +12+0,......}
={0, +4, £8, £12, ...... }=H
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H+1l ={0+1, +4+1, -4+1, +8+1, -8+1, +12+1, -12+1, ......
={1,5,-3,9,-7, 12, -11}

Now H-1 ={0-1, +4-1, -4-1, +8-1, -8-1, +12-1, -12-1, ...... }

H+2  ={0+2, +4+2, -442, +8+2, -8+2, +12+2, -12+2, ......

H-2  ={0-2, +4-2, -4-2, +8-2, -8-2, +12-2, -12-2, ......}

H+3  ={0+3, +4+3, -4+3, +8+3, -8+3, +12+3, -12+3, ......

Htd = {0+4, +4+4, -4+4, +8+4, -8+4, +12+4, -12+4, ...

H_4 = {0_41 +4_4! _4_4, +8_4, _8'4, +12'4, '12'4, ...... }

H+5 ={0+5, 4+5, -4+5, 8+5, -8+5, 12+5, -12+5, ......}

={,-7,-3,1,5,9,13,17,....} = H+1
H-5 ={0-5, 4-5, -4-5, 8-5, -8-5, 12-5, -12-5, ......}
={-5,-1,-9, 3,-13, 7, -17, .......}

Also from above we find that
H+0=H
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H+1={.....,-11,-7,-3,1,5, 9, 13,....} = H-3

H+2=1{.....,-13,-9,-5,-1,3,7,11,...} = H-2
H+3={.....,-9,-5,-1, 3,7,11,15,....} = H-1
H+4={....,-8,-4,0,4,8,12,16,...} =H

H+5={......,-17,-13,-9,-5,-1,3,7,....} = H-1

and so on,
Therefore, the distinct right cosets of H in G are
H, H+1, H+2, H+3

Note :- In above example O e H+x, if and only if x € H. Thus H+x is not a sub group of a unless
xeH. Here H+1, H+2 are not subgroups of G.

Example 2 Find the right cosets of the subgroup {1, -1} of the group {1, -1, i, -i} under
multiplication.

Solution : Here of set G = {1, -1, i, -i} under operation of multiplication and the subgroup
H={1, -1}

Therefore, right coset of H in G are H.1, H.(-1), H.(i) and H. (-i)
Now, H.1 ={1.1),(-1.1)}={1,-1}=H
H.(-1) ={1.-1), (-1.-1)}={-1,1}={1,-1}=H
H.() ={@.),-1.)}={i, -i}
H.(-i)  ={1.(-i), -1.(-)} = {1, i} = H(i)
the distinct cosets of H in G are H and Hi
Example 3: Find all left and right cosets for S; symmetric group on {1, 2, 3} of subgroup
H={l, (1, 2)}
Solution : Here G =S; ={l, (1 2), (1 3), (2, 3) (1 3 2)} and given H = {I; (1, 2)}
binary composition of symmetric group is composition of function

Now the left cosets of H in G = S; are

(139 E G o
cone (30 32 2 36 96 2w
ol 113010
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={13),(132)} ~(12(13)=(123)

={23),(123) (12 3)=(23)(12)

(123).H={(1 2 3)"(; : 3(; ﬂ}
azafl i)

={(123),(23)}=(23).H

(132).H={(1 2 3)'"@ 2 ij@ 3}
ez afy ]2

={123),(13)}=(13).H
Therefore the distinct left cosets of H in S5 are.
H, (13)H and (23).H
Now right cosets of H in Ssare :
H.1 ={Ll, (1.2) I}

={l,(1,2)=H
H.(12)={.(12),(122).@1a2)}

= {(1 2),& ;} ={1, 2), I}

H.(13)={l. (13), (12). (1 3)}
={(13), (123)}

H.23)={. (23), (12). (2 3)}
={(23), (123)}

H.(123)={.(123), (12).(123)}

ST
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o293

={(123), (13)} = H.(1 3)
H.(132)={.(132),(12) (132)

feaall 233 el )

={132)(23)}=H.23
Therefore distinct right cosets of H in Sz are H, H.(1 3) and H (2 3)

Example 4 : Find the left cosets of the subgroup H = {1,-1, i,-1} of the group G = {+ 1, +i+k}
under multiplication.

Solution : The left coset of H in G are
1H ={1.1,1.-1,i.i, 1.-}={1,-1,i,-i}=H
-1H ={1.1,-1.-1,-ii,-1.-}={1,1,-,i}=H

iH  ={i1,i-1,iii-}={,-i,1,-1}=H cif=-1 -i2=1
AH =, - i iy = AL 2, - = H
iH  ={.1,j-1, )0, j-i} = 4, 4, -k, K}

-H ={j.1, 4.1, A, H-iy={H, 0, k, k=) H
kH ={k1, k-1, ki, k-i} ={k, -k, -, j} =jH
-kH ={k.1,-k.-1,-k.i, -k-i} ={-k, k, j, -} =jH
So the distinct left cosets of H in G are H and i H.

Self Check Exercises -1

Q.1 Let <G, +> be additive group of integer and H be set of all integer multiple of 5. Find
all right cosets of H in G.

Q.2 Find all left and right cosets of H = {I, {1, 2, 3}} in Sa.

Q.3 Let H={1, -1} be a subgroup of G = {+1, +i, +], +k}. Find all its left and right
cosets.

Q.4 Let G be group of integers under addition and H be subgroup of G having even
integers. Find all right cosets of H in G.

Q.5 Let (G, +) be a additive group of integers and H be the set of all integral multiple of 3.
Prove that H is a subgroup of G and find all the cosets of H in G.

7.4 Theorems on cosets

In this section we will discuss some important theorems based on cosets :
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Theorem 1l () Ha=HiffaeH.

(i) o H = H iffo e H.

where H is a subgroup of G.
Proof (i) We prove that H o = H iffaeH.

Firstly, suppose that H o = H. ..(1)
Since H is a subgroup of G, soeeH, wheree is the identity element of H
seaeH a = aeHa
= aeH (From (1)
L Ha=H = a e H.

Conversely, suppose that o € H.
We shall prove that Ho=H.
Let  xe H a be an arbitrary element.

X = ho for some h eH

h, ae H
= h ae H, since H is a subgroup of G
= xeH
XeH a =xe H
= H o cH. (2
Now let xe H. Since a also belongs to H and H is a subgroup
xote H
= (xa™') ae Ha
= x(o'o) € Ha
= Xe Ha
xe H = Xe Ha
= H cHa. ..(3)

From (2) and (3), we get Ha = H.
(ii) Its proof is similar to (i).
Theorem 2 (i) Ha = H b iffab*eH.
(i) o H=b Hiffa* beH.
Proof (i) We prove that H oo = H b iffab™ e H.
Firstly, letHa=HDb
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Since H is a subgroup of G, soecH,

seoeH o i.e., aeHa

= a e Hb, sinceHa=HDb

= o € h bforsome h eH

= ab*=(hb)'=h(bb)*=he=heH
abte H.

Conversely, let a. b™e H.

We shall prove that Hoa=Hb.

Since ab*e H, so ab™ = h for some h eH
—~  ob'b)=hb

= ae=hb

= oa=hb
Haoa=H(hb)
=(Hh)b

=H b, since heH, soH h =H.
(i) Its proof is similar to that of (i).
Theorem 3 : Any two right (or left) cosets are either disjoint or identical.

Proof. Let H be a subgroup of a group G. Let H a and H b be two right cosets of H in G, so that
a, b, e G.

We shall prove that eitherHao=Hb orHaNHb=¢
If HaN H b = ¢, then we have noting to prove.
So, let H aN H b#o.
In this case we shall prove that H oo = H b.
Since HaN Hb =), soF atleastone xe HaNHb
xe Hoandxe HaNHb

= ht (hia) = hy? (hyb)

—~  (h*hy) o= (hy'hy) b

= e a. = hyb, where h; = h;th,e H.
= a=hsb

—  Ho =H(hsb)

= (H h3) b
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=H b since hze H, SoHh; =H
Hoa=HDb.
. If  HaNHbzg thenH o= H b.
So, eitherHaNHb=¢, orHa=HDb.
Theorem 4 The group G is equal to the union of all right cosets of H in G.
Proof. Lete, a, b, c, ....
.. He=H,Ha Hb,Hg, ... are all the right cosets of Hin G
We shall provethatG=HUHaUHbUHcU.........
Let xe G be any element.
. H xis aright coset of H in G.
Since H is a subgroup of G, so ec G, where e is the identity element of G.
exe H x i.e., xe Hx
= xe HUaUHbUHCcU....UHxU.......
GcHUaUHbUHCcU...... (1)
Conversely, let H a be any right coset of H in G, where a € G.
Let Xe Ha
x= ha for heH.
Since heH

he G alsoae G

= hae G
= xe G
Xe Ha =Xxe G
= Hac G
aeG Hac G
= HUaUHbUHCcU.... cG .(2)

From (1) and (2), we get
G=HUaUHbUHCcU....
Theorem 5. There is one to one correspondence between any two right cosets of H in G.
Proof. Let H a, H b be two right cosets of H in G, where a, be G.
Defineamapf: Ha— Hb by
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f (ha) = hb, Vhae H a.
f is one-one. Let X,y € H a such that f(x) = f (y)
Sincex,yeHa
x = h;a and y = h,a for some hy, h,e H.
f(x) = (y) = f(hia) = f (h,a)
= hib = h,b
= h,= h,
by the right cancellation law in the group G.
= h;a = h,a
= X=y
= f is one-one
fisonto.Let yeHbD
y = h b for some h eH
Take x=ha.

Since heH, sohaeHa

= xe Ha, wherex=haeHa
fx)=f(ha)=hb=y
f is onto.

f: Ha — H b is one-one and onto.
H a, H b are in one-one correspondence.
Cor, if H is a finite subgroup of G. Then O (H a) = O(H).

Proof. Since by property V above, there is one-one correspondence between any two right
cosets of H in G. In particular there is one-one correspondence between H and H a.

O (H a) = O(H).

Theorem 6. There is one-one correspondence between the set of left cosets of H in G and the
set of right cosets of H in G.

Proof. Let L and M be respectively the set of left cosets and right cosets of H and G.
L={aH:ae G}landM={H a: ae G}
Defineamap f: L — M by
f(aH)=Ha, Vae G.
If ac G, then a'e G and hence H ae M.

fisamap from L to M.
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We now prove that f is well defined

Leta, b € GsuchthataH=DbH.
& a’be H.

Ha'o=H

(Ha'b)b*=Hb*

H(@'b)b™ =H b™

Ha'(b*)=Hb*

Ha'e=Hb"

Ha'=Hb*

& f(@H)=f(bH).

f is well-defined.

¢ 0000 O

The reverse steps shows that f is one-one.
We finally prove that f is oneto.

Let H a € M be arbitrarily .

aeG > a'e G.
= a'HelL,suchthat fa*H)=H@"Y*=Ha.
f is onto.

the mapping f : L — M is in one-one and onto.

= The set of left cosets of H in G and the set of right cosets of H in G are in one-one
correspondence.

Theorem 7 (Ha)' =a'H, where ac G.
Proof.Let xe (H a)-1
x=y" forsomey € Ha.
Now, y € H a=y = ha for some heH.
x=y'=(ha)*=a'h*
Since heH and H is a subgroup, ..h™e H.
a'htea’H
= xea™ H
xe(H a)'=xea™H
= (Ha)'ca™H. (1)

Now, let xea™ H.
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x=a" h for some heH
=at(hh?*
= (h'a)*
Now heH=h"e H, since H is a subgroup
h'acHa
(h'a)'e (Ha)'=xe (Ha)*
xe (a™H) =xe (Ha)*
a'Hc (Ha)™ ..(2)
From (1) and (2), we get
Ha)'=a'H.
Note : For neN, the distinct right cosets of nz in z under addition are nz, nz+1, -nz+(n-1).

A

Similarly under addition distinct left cosets of nz in z are nz, H-nz, 2+nz, ...... (n-1) + nz.

Using above not we can, say that the right cosets of 4z in z (as in example 1) are H, H+1, H+2,
H+3. For Higher values of neN the cosets becomes identical with these distinct cosets for
example :

47 +57=4z+1=H+l

57 =1 (mod 4)
again4z-26=4z+2=H+2
.26 = 2 (mod 4)
also4z+96=4z+0=H+0=H
** 96 = 0 (mod 4)

Example 1:- Prove that Union of two distinct right cosets of a group is equal to a group, liking
example.

Solution : Since for H, {l, (12)} be a subgroup of a of S;, Then the distinct light cosets of H in a
are H, H(13) and H(23). then.

HUH (13) UH (23)

=H U {(13), (123)} U { (23), (132)}

={l, 12)} U {(13), (123)} U {(23), (132)}

={l, (12), (13), (23), (123), (132) } = S;
Example 2:- To prove that the distinct right cosets of of group S; for H; {I, (12)} are disjoint.
Solution : Since H; H(13) and H(23) are distinct cosets of H in S

To prove these cosets are disjoint H(23)

HNH(13)NH(23)
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= (I, 12) N {(13), (123)} N {(23), (132)}
=0
Example 3:- Let H = {11 a2} be a subgroup of group a = {a, a2, a3, a4 = 1}. Find all the left

cosets of H in a. Also show that union of all these cosets is equal to a and any two costs are
either identical or disjoint.

Solution:- Given H = {1, a} is a subgroup of G = {a, a% a° a* = 1} How Lest cosets of H in a
are

aH=af{l, a’} ={al, a.a’} = {a. a%
a®H=a’{l,a%}={a’1,a%a?} ={a% a*=1}={a% 1} =H
a®H=2a’{1,a%={a’1, a%a% ={a° a’} = {a° a*a} = {a° a} = aH
a*H2 IH=1. {¢, a’} = {1, a’} = H.

The distinct left cosets of H in a are H and aH.
To prove any two cosets are disjoint

Since H and aH are to distinct cosets, to prove they are disjoint, prove there
intersicsetions is empty i.e.

HNaH={1,a’lN{a a}=¢
To show Union of all cosets of Hin G is equal to G

As H and H are two distinct cosets of H in G so liking union i.e. HUAH = {1, a’} U { a,a%
={1,4a a° a%}=G.

Hence Proved

Example4 :- Prove that union of all distinct right cosets of 4Z in Z are gives Z and any two
cosets are either identical or disjoint.

Solution :- For example 1, we know that distinct right cosets of 4Z in Z are H1 H+1, H+2 and
H+3. To prove, two distinct cosets are disjoint, Let us take Hand H+1,toprove HNH+ 1 =¢

SinceH={0,+4,+8+12, £ 16, + ............... }

H+1={11,-7,-3,1,5,9,13........ }

HNH+1={-,-8,-4,0,4,8,-}N{....,-11,-7,-3,1,5,9 ...... 1=

Similarly we can prove it for others also.

Now to prove that Union of all distinct coset of H in G gives

GieeHUH+1UH+2UH+3=2Z
Let={8,-4,0,4,8..}U{...m-11,-7,-3,1,5,9, 13 ---}

u{---,-10, -6, -2, 2, 6, 10, 14 ----- }

u{---9,-5-1,3,7, 11, 15, ---}

={--,-8,-7,-6,-5,-4,-3,-2,-1,0,1, 2,3,4,5,6,7, 7, 8}
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={0,+1,+£2,£3,+,4,+5 £6,+7,+8---}=Z
Hence HUH+1UH+2UH + 3 =2Z (set of inegers).

Self CheckExercises - 2

Q.1  Prove that subgroup H={i, -i} of G ={ 1, +i, £ j > + k} has disjoint cosets
and their union gives the set G.

Q.2  Prove that left coset of the subgroup H = {1, -1,i, -1} of G={£ 1, +j, £ k }
are disjoint and their Union gives the set G.

7.5 Index of A Subgroup :

Let H is a subgroup of a then the number of distinct let or distinct right costs is called the
index of H in G. It is denoted by [a : H] or ia (H).

Note : The index of every subgroup of finite group is a divisor of the order of group. If k is index
of Hin G and n is order of finite group then n = mk. or k/n.

n=mk where m e Z.
order of G = order of H X index of Hin G

orderof a  0(a)
orderof H O(H)

orindexof Hin G =

0(a)
O(H

2. If the group G is an infinite group, then the quotient does not make sense. Infinite

group may have subgroup of finite of infinite india.
For, Example :- 1 [R:Z] = oo asthe group G = R is infinite also the subgroup H is infinite.

2. Let H = {1, -i, 1, -1} be a finite subgroup of C complex numbers, as c is infinite,
then [C : H] = infinite.

To have more Understanding of index of a subgroup of G, Let us take following
examples, here we take previously solved question of cosets.

Examples 1. Find |Z:4Z| i.e. index of 4Z in Z.

Solution : Here the group is Z and subgroup is 4Z Since the distinct cosets of 4Z in Z are,
H]_ H+11, H+21 H+3=4
So [Z:4Z| =a.

Example2 Findtheindexof H={11-1}inG={1,-1i,1, - i}

Solution Since the no of distinct coset of H in G are 2 therefore, index of Hin G is 2
[From Example 2.]

Example 3 Find the index of H = {l, (1,2)} in S3.
Solution Since the distinct number of cosets of H in G are 3, therefore index of Hin G is 3.
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[From example 3.]
Example 4  Find the index of H = {1, -1, i, -i} of group
G={£1i%j, Kk}

Solution Since the distinct number of cosets of H in G are H and iH, only 2. So index of H
inGis 2. [From example 4]

Self check exercise
Q1 Find |Z:5Z|5
Q.2 Find [4Z:127|=3
Q.3 Find |S;:<(12)> 3
Q4 Find |Z,:<4>=4

Q5 Find |D,:<t>|=4

7.6 Lagrange's Theorem

Lagrange's Theorem is a fundamental result in group Theory. This Theorem provides a
relationship between the order of a finite group and order of its subgroups. Lagrange's Theorem
provides a useful tool for studying to studying the structures and properties of finite group as
well as for determining certain properties of subgroups within those group. Lagrange's theoreum
has application in various are as of mathematics including number theory, ayptogrophy and
combinations.

Statement of Lagdage'sTheorem : The order of each subgroup of a finite group is divisor of
the order of group.

Proof : Let a be a group of finite order n
Let H be a subgroup of a and let O(H) = m
Let order hy, ny ----- h,, be m distinct members of H

If H - G, then there is nothing to prove.

Butif H # G,
Leta € G. Then Ha is a right coset of H in G and by the definition of coset
Ha = {h;a, hya, ......... hyna}

Ha has m distinct members,
If any two entries of W a are equal, then
hia - hj awith it |

hi = hj [using cancelation law]
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which is a contradiction, as hi, h, ....... h,, are m distinct members of H

Since, any two distinct right coosets of H in G are disjoint, i.e. they have no element in
common. Since [Theorem 3 of cosets] G is finite group, the number of distinct right cosets of H
in G will be finite, Let it be equal to k.

Using, the result of theorem, i.e. the group G is equal to the union of all right cosets of H
in G. [Theorem 4 of coset So the union os k distinct right cosets of H in G is equal to G,
Therefore as Ha;, Ha,, Has ........ Hay are ok distinct right cosets of H in G then.

G =HUHa;UHay .......... U Hay

= No of elements in G = Numbers of elements in Ha;
+ Number of element in Ha,

........... + Number of elements in Hay

As two distinct right cosets are mutually disjoint i.e. they have no common element.
[Theorem 5 of coset as O(Ha) = O(H).

No of element in G = mk {where m is order of H
=n=Kkm

O(G) =k O(H)

=) O(H)| O(G)

O(H) is a divisor of O(G)

Hence the proof of the theorem

Remarks 1. Lagrange's theorem immediately limits the possibilities of the subgroups of any
given finite group. For example let G be a group of order 25, Alon it can only have subgroup of
orders which are divisor of 25 i.e. 1, 5 & 25. It cannot have subgroup of order 2, 3, 10, 12 as non
of these are divisor of 25.

To have more understanding of Lagrange's theorem Let us take following examples.

Example 1. What are the posible order of a subgroup of a group of order 30. Also list the
corresponding no of cosets.

Solution : Since given a is a group of order 30. By using Lagrange's theorem, the possible
order of its subgroup will be a divisor of 30, i.e. 1, 2, 3, 5, 6, 1, 15 and 30.

Also in order to find the number of cosets, we will use the result of index of a group i.e.

|G'H|:0(G)
~ ' o(H)

So index of a subgroup of are.

30
Index of subgroup of order 1 - = T: 30
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30
Index of subgroup of order 2 = ?z 15

3
Index of subgroup of order 3 = ?: 10

30
Index of subgroup of order 5 = gz 6

30
Index of subgroup of order 6 = E: 5

Index of subgroup of order 10 = 3010 =3
=30/ -
Index of subgroup of order 15 = 45— 2

Index of subgroup of order 30 = 3%0: 1

Remark 2 Lagrange's Theorem cannot be generalised to infinite group since o(H)|o(G) is
meaningful only for finite group. But an infinite group can have finite subgroup and infinite group
can have a subgroup of finite index. As in example 1, (Z, +) is an infinite group but its subgroup
H = 4Z, has finite number of cosets hamly H, H+1, H+2, H+3.

Example 2: Let G be a group of order 300. H is a proper subgroup of G and K is a proper
subgroup of H. If O(k) = 30 what are possible order of H? What would be the corresponding
indices of H in G be.

Solution - Given O(G) = 300 & O(k) = 30,
H is proper subgroup of G =0(H) # O(G)
K is proper subgroup of H = O(k) # O(H)
— O(H) # 30.

Since given K < H < G, So the possible subgroups of G should be a divisor of G, but K is
subgroup of H of order 30. So order of H must be greater than 30, So the divisors of 300 which
are greater than 30 are, 60 & 150

So possible order of H is either 60 or 150

Index of subgroup of order 60 in G = %:@ =50
O(H) 60
and Index of Subgroup of order 150 in G = %:@ =2

O(H) 100

Example 3 - If H and k are subgroups of group G of order 12 and 35 respectively then find
H N k.
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Solution GivenH<Gand k<G
o(H) =12 and o(k) = 35
AlsoHNk<HandHNk<k
o (H N k) must be a factor of 12 and 35
Since 12 and 35 are co prime i.e. (12,35) =1
Henceo(HNk)=1,SoHNk=¢e.
Example 4. Find the possible order of subgroups of S4, D1g, Qg
Solution. 1. Since S, is a symmetric group of order 4!
S0 O(sy) =4!'=24

So possible order of the subgroups will be the divisor of 24, which are
=1,2,3,4,6,8,12,24

2. Since D10 is a Dihedreal group of order 10 = 20 so O(D4o) = 10 = 10
So posssible order of its subgroups will be its divisor of 10, which are
=1, 2,5, 10,

3. Since Qg is a group of order 5
O(Qs) =8

So possible order of its subgroups will be a divisor of 8, whichare =1, 2, 4, 8

In above example of we wish to find nontrivial proper subgroups then subgroup of order
1 and subgroups of order equal to order of group will be removed from the possible collection.

Converse of Lagrange's Theorem : If a is a finite group and m/ocg) then G has a subgroup of
order m. The corvese of this theorem is not always true.

For example, Let G be a group under addition modulo 6

ie.G={0,1,2,3,4,5}

o(G)=6

Then the possible order of subgroup of G will be, =1, 2, 3, 6

Let H={0, 4}, o(H) = 2

and (O(H) |O(G) i.e. 2|6

But H = {0, 4} to be a subgroup it must be a subset of G under some binary operation
taking the element 4, 4+4 =8 = 2(mod 6)

but 2 ¢ H, so H is not a subgroup of G. Although O(H)| O(G).

Examples - What is the least order of a non-abelian group Prove that all proper subgroup of a
group of order 8 must be abelian.
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Solution : As we know that a group of order lesss than or equal to 4 are abelian. Also a group
of prime order is also abelian. So the group of order 1, 2, 3, 4, 5 are all abelian So the least
order of a non abelian group is 6.

Let G be a group of order 8 i.e. 0(9) =8

Subgroup of G will have the order 1, 2, 4, 8, but proper subgroup of G will have order 2
and 4 only. The group of order 2 and 4 are abelian. Since a subgroup is also a group, So all
proper subgroup of a group of order 8 are abelian.

Theorem. 1 If Hand K are finite subgroups of a group G, then
O(H)O(K)
O(H nK)

Proof : Since H and K are finite subgroups of a group G

O(HK) =

D = H N Kis also a finite subgroup of a group G.
Also D=HNK cK.
D is a subgroup of a finite group K.
The number of distinct right cosets of D in K is also finite.

Let o, 0 covn..... a;e K such that Do, Das,.......... , Doy are the distinct and hence pairwise
disjoint and right cosets of D and K.

Here, / = The number of distinct right cosets of D in K.

=Theindexof DinK = m
O(D)
, - O(K)
O(D)
From (1), we get, HK =H (Da; Das ........ Do ()

¢ / /!
—  HK=H (_uDaij = U H(Dw)= U (HD) o

i=1
= _/QlH o, since D is subgroup of H, so HD = H.
s

HK = HoyU HaU ....... U Hoy
Now we prove that no two of Ho,U Ha, ....... Hasare equal.
Let Hoi=Hao forsome 1 <i, j</.
= oqa,—'le H

Also a,, oj € K

a0 ek
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-1
o, 0 €K

o0 e HNK
= a0 €D
= Da, =Da;
Since D a4, Hoy, ...... , Do, at are distinct
Ho, Hoo, ...... , Ho, are distinct.
= Haoy, Hao, ...... , Ho,are mutually disjoint. ... (4)

From (3) and (4), we get
O(HK) = O(Hay) + O(Hay) + ....... + O(Hay)
_ O(H)+O(H)+........ +0O(H)
rtimes

Since H is a subgroup of a finite group G, so order of each right coset of H in G is equal
to order of H.

_ _ O(K)
O(HK) = 1. O(H) = o) LO(H)  (From (2))
_ O(H)O(K)
"~ O(HNK)
o(HK) = 2HO(K)
O(H nK)

Theorem 2. Let G be afinite group and ae G. then O(a) | O(G) i.e., the order of an element
of agroup is a divisor of the order of the group.

Proof. Let G be a finite group of order n Let ae G and let O(a) = m.

To prove that m is a divisor of n.

Let H=1{..., a3 a? o, o, a', o o, ...} be the subset of G consisting of all integral

powers of a.

Then we know that H is a subgroup of G. We shall show that H contains only m distinct
elements and that they are a, a2, a3, ....... ,ap=¢=a0.
Let l<r<m,l1<s<andr>s.
Then o =0’
r-s _ 0 r-s _

= dot=ca” = o= = a=e.

Thus there exists a positive integer r- s less than m such that o™ = e. But m is the least
positive integer such that a™ = e. Therefore a'=o°. Thus a, o, o, ....., a™ = o’ = e are all distinct
elements of H.
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Now suppose at is any element of H, where t is any integer. By division algorithm, we
have t =m p + g, where p and g are some integers and 0 < g < m.

We have o' = a™" = a0 = (a™)Po® = ePa® = o’
Since 0 < g < m, therefore a“ is one of the m elements o, o7, ....., o™ = o

Hence H has only m distinct elements. Thus order of H is m. By Lagrange's Theorem m
is a divisor of n.

Cor. If G is a finite group of order nand o € G, then 0°® =ei.e. a"=e.
Proof. Let O(a) = m, then by above Theorem 2.2.9
0(@)|O(G) =m]n
Let n=mk, forsomek e I.
n=mk, forsomek e I.
"=a" = (") =e"=e. = a’@=e.

Definition :\Euler's Function 4)‘

For any positive integer n, ¢ (n) is defined as follows :

¢ (1) =1, and for n> 1 we have

¢ (n) = The number of positive integers less than n and relatively prime to n.

If n = 6, then the positive integers less than 6 and relatively prime to 6 are 5 and 1
¢ (6) = 2.

If p is a prime number, then all of 1, 2, ....., p - 1 are coprime with p.
¢ (p) = p -1, if p is a prime number

If n is any positive integer (n > 1), then we know

n=p" p2°‘2 ...... pk“k where pg, p2, ..... px are distinct primes and a;e N, then

oo

Now r*™= 1 (mod n)
[ 1neG=rP=iinG=r!-1inG=n|r@-1]
Hence o™ =1 (mod n)
so theorem is proved.
Theorem 3.  Fermat's theorem
If p is a prime integer andgis any integer, thengP= g (mod p).

Proof. Casel. (g, p)=1.
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If (o, P) = 1, then by Euler's theorem,
ad (P) =1 (mod p)

= o t=1 (mod p), since p is prime number 4p) =p - 1.
pla™-1
= a”?t - 1 =k p for some integer k.

Multiplying throughout by o, we get
atoa-a=akp

o’ —a=a=akp

p divides ap - a

o’ =g(mod p).

b 4 U

This complete the theorem in this case.

Case 2. (o, p) >1
Since p is a prime number, therefore the only divisors of p are 1 and p.
If (a, p) =d, thend | p and d> 1.

d=p.
(a, P)=Pp
= p|aalsoala®

plafalsop|a

= pld’-a
= a’=q (mode p).
= This complete the theorem in this case.

Let use try to apply these theorem on some examples.
Example : Find the remainder when 6* is divided by 55.
Heren=55and ais 6
Solution : Since prime fectasiation of 55 is 55 = 5x11 where

5 and 11 both are prime.
So ¢ (35) = ¢(5) ¢(11) Using ¢(mn) = ¢(m) ¢(n)

= 5x (l—%j 11 (1— ﬁj Using the definition of ¢ function
=4x10
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¢ (55) = 40

Theorem 4 : Theorem (Euler's)

Proof ;

If nis a positive integer and a is any integer such that (a, n)=1,n>1
Prove a*™=1(mod n)

Consider G ={r|re Z; (r,n) = 1, 1 <r<n]

G is a group under multiplication modulo n with identity element 1.
- O(G) = ¢(n) (by definition of Euler's function #(n))
Whenn=1,then g(n) = ¢ (1) =1

~a™=al'=1 (mod 1) ("1laD

When n > 1, then

a =nq, + r, for some integers q; and ry, where 0 <r;<n

If rp,=0,thena=nq;

=n divides a

= (@, n)=n

= (a,n)>1 (“"'n>1

which contradicts given

sr=0ie. 1<r<n

Let(r;, n)=m

= m|rpandm|n

= m|a-ng;and m | ng;

= m|a-ng,+ng;andmin
= m|aandm|n

= m | (a,n) =>m|l=m=1

(r, n)=1and 1<r<n
= reG
Anda=ng; +r1; = a =ry(mod n)
= a’™=r,*"(mod n)
So here nis 55

and ¢(55) =40
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Applying Euler's theorem i.e. a*™=1(mod n)
6*°= 1(mod 55)
6*°.6 = 6(mod 55)
6" = 6(mod 55)
" or dividing 6** by 55 we get remainder 6
Example 6 What is the remainder obtained on dividing 3*" by 23.

. . 1
Solution : Here n =33, a =3, as n = 33 is prime, so ¢(n) = n(—lz—j =22
n

Applying a®= 1 (mod n)

3%2= 1 (mod 23)

(3%%)?= (1)? (mod 23)

3*= 1 (mod 23)

3* .3 = 1.3 (mod 23)

= 3% = 3 (mod 23)

=3%.3= 9.3 (mod 23)

= 3% = 27 (mod 23)

but as 27 = 4 (mod 23)

= 3*= 4 (mod 23)

Hence when we divide 3*" by 23 we get remainder 4.
Example 7. Use Fermat's theorem to determine the remainder when 8% is divided by 103.
Solution. By Fermat's Theorems a’= a (mod p)

Here p = 103 which is a prime, and a = 8

So 8" =8(mod 103)

So remainder is 8 when 8'% is divided by 103.

Self Check Exercises-4

Q1l. Let G be a group. H and K be finite subgroup G such that O(H) and O(K) are
relatively prime. Show that HNK = {e}.

Q. 2. What is remainder when 1318 is divided by 19.

Q.3 What is remainder when 1332 is divided by 15.

Q.4 What is remainder when 192200002 is divided by 23.

Q.5 How many numbers from 1 to 300 can neither be divisible by 2 nor by 3 or nor by
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5.

7.7

7.8

7.9

Summary

In this unit we have studies the following :

1. The difinition and examples of cosets of a subgroup of a group

2. Two left (right) cosets of a subgroup are disjoint.

3. The group G is equal to the union of all of its cosets.

4, There is one one correspondence b/w and left(right) cosets

5. There is one one correspondence b/w the set of left and right cosets of H in G.

6. From Lagrange's theorem, we learn that order of a subgroup divides the order of
a group.

7. The index of a subgroup of a group, also index of a subgroup, divides the order
of a group.

8. Euler's and Fermat theorem.

9. Application of Euler's and Fermat's theorem.

Glossary

o] Coset : A coset is a subset of a group obtained by multiplying each element of a
subgroup by a fixed element of the group.

o] Index of a subgroup : Let H is a subgroup of G then the number of distinct left
or distinct right cosets is called the index of H in G.

o] Converse of Lagrange's Theorem : Let G is a finite group and m/O(G) the G

has a subgroup of order m.

Answer to Self Check exercises

Q.1
Q.2

Q.3
Q.4
Q.5

Q.1
Q.2

Self Check Exercise-1
The right cosets will be H, H+1, H+2, H+3, H+4.
Left cosets are H, (13) H, (23) H.
Right cosets are H, H(13), H(23).
Right cosets are
The distinct cosets are H & H+1
The distinct Cosets are H, H+1, H+2

Self Check Exercise-2
By using answer to self check exercise 3
Use the example 4 the prove this.

Self Check Exercise-3
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7.10

7.11

Q.1
Q.2
Q.3
Q.4
Q.5

Q.1

Q.2
Q.3
Q.4
Q.5

A D W W Ol

Self Check Exercise-4
As HNK<Kand HNK <H O(H) = m; O(K) =n.
O(HNK) = (m, n)
1
1
16
80

References/Suggested readings

1.
2.
3.
4.

Vijak K Khanna and S.K. Bhambiri, A course in Abstract algebra 5th edition.
Joseph A. Gallian, Contemporary Abstract Algebra.

Frank Ayrer Jr Modern Algebra, Schaum's outline series.

A.R. Vasijiha, Modern Algebra, Krishna Prakason Media.

Terminal Questions

Q.1
Q.2

Use Fermat's theorem to determine the remainder 5'* is divided by 103.

Let Z be additive group of integers and H, i.e. the subgroup of multiples of a fixed
integers n > 1. What is the index of H, in Z. Write all the cosets of H,, in Z.
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Unit - 8

Normal Subgroup

Structure

8.1 Introduction

8.2 Learning Objectives

8.3 Normal Subgroups
Self Check Exercise-1

8.4 Theorems BASDED on Normal Subgroups
Self Check Exercise-2

8.5 Properties of Normal Subgroups
Self Check Exercise-3

8.6 Summary

8.7 Glossary

8.8  Answers to self check exercises

8.9 References/Suggested Readings

8.10 Terminal Questions

8.1 Introduction

Dear students in this unit you will learn about one special type of subgroup known as
normal subgroup. These subgroups are directly related to coset of a subgrup of a group. If H is
a subgroup of a group G, then the left coset aH of H in G may not be equal to the corresponding
right coset Ha. In this unit you will study a particular class of subgroups H for which each left
coset of H in G is equal to the corresponding right coset of H in G. Such subgroup give size to
normal subgroup. You will also study properties of normal subgroup as well as & due theorem

based or normal subgroup.

8.2

Learning Objectives
After studying this unit, students will be able to

1. define normal subgroup with examples.

prove a given subgroup is normal or not using properties of normal subgroup.

2
3. state and prove thesens based on normal subgroup.
4

Apply the properties of normal subgroups.

176



8.3 Normal Subgroup

Definition : A subgroup H of a group G is called normal subgroup of G of every left
coset of H in G is equal to the corresponding right coset of Hin G i.e. aH =Ha V a € G For
additive composition, above definition becomes, if a + H = H + a Vae G then H is called normal
subgroup of G.

Normal subgroup is also known as invariant subgroups or say conjugate subgroups.

Notes : 1 If H is a normal subgroup of G, then mathematically we write itas H A G.
2. When G is a abelian group. Then every subgroup H of G is a normal subgroup.
3. The subgroups Se f and G of any group G are always normal subgroups of G.

These are called trivial normal subgroups of G.

Example 1 : Consider 4Z is a subgroup of (Z, +) then write its left and right cosets and check 4Z
is a normal subgroup of (Z, +)

Solution : Considering the example of unit 7, where we have find the right cosets of 4Z in (Z,
+). From here, we known that H, H+1, H+2, H+3 are right cosets of 4Z in (Z, +).

Let us find left cosets of 4Z in (Z, +) [in the same line as in example of unit 7]
Oth ={0, %4, 8+, +12, £16....... }=H

1+H ={.... ,-11,-7,-3,1,5,9, 13,.....}
2+H  ={....... ,-13,-9,-5,-1,3,7,11,.....}
3+tH ={...... ,-9,-5,-1,3,7,11,15,.....}
H=H
Since 1+H=H+1
2+H = H+2
3+H = H+3

Thus every left coset of 4Z is a right coset of 4Z in (Z, +).
Hence 4Z is a normal subgroup of (Z, +)
Example 2: Show that H = {-1, 1} is a normal subgroup of quaternion group
Qs={1,i,%j, £k}
Solution : Cosets of H in Qg are
H1={(1).1,1.1}={1,1}=1H
H.(-1) = { (Dx(-1), (-1).1} = {1, -1} = (-1).H
H.(+) = { (-2)x(), (-1)xi} = {-i, i} =i.H
H.(-i) = { (-1)x-i, Ix-i} = {i, -i} = -i.H
H.() ={-1x, Ixj} = {-, ]} = j.H
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H.(-) = {-1%-, I} = {+), -} = -j.H
H.(k) = { -1xk, 1xk} = {-k, k} = k.H
H.(-k) = {-1x-k, 1x-k} = {k, -k} = -k.H
Here Ha=aH ={-a,a} VaeG.
Hence H {-1, 1} is normal subgroup of Qs.

Example 3: Let G = S; the symmetric group on these numbers 1, 2, 3. Show that the
subgroup H {ll, (1 2 3), (1 3 2) is a hormal subgroup of G.

Solution : Here G=S;={1,(12),(13),(23),(123)(132)}
AlsoH {l, (123) (132)}

Now,
IH={l.,(123),1(132)}={l,(123),(132}=HI

T R ]
L6

K1@(1$(2$}

{ P e (]
NowH (12) =
2 31 32 1)\l2 1
B 12 3)(1 3 2
- 1 3 2)13 1 2
={12,(23), (13)}
(12)H=H(12)

P R
ety

={(13),(23), (1 2)}

Now
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{(1 3} (1 2 3](1 3] [1 3 2}(1 3}}
H(13)=1I , ,
3 1)l2 3 13 1)13 2 1)\3 1
(1 3)(1 2 3)(1 3 2
"3 1)l2 1 3)(1 2 3
={(13),(12), (32)}
Therefore H(13)=(13)H

mancon = {22520
e Yz

={23).(21), 31}

{( M P
Now H(23) =4I ,
2 3 1){3 2)\3 2 1\3 2
_ 1 2 3)(1 3 2
- 32 10231
=(23),(13)(12)}
Therefore H (2 3) =2 3 H.

{(1 2 3] [1 2 3}(1 2 3}(1 2 3](1 3 2

Also (123)H= l ,

2 31)'2 3 1)\2 3 1)12 3 1)\3 21
(1 2 3)y(1 2 3)1 2 3
"2 31)131 212 3
={(123),(132), 1}
={,(123)(132)}=H

1 2 3)(1 2 3)(1 2 3)(1 3 21 2 3
NowH (12 3) =41 , ,
2 3 1){2 3 1){2 3 1)(3 2 1){2 3 1

12 3)(13 2
ez afs 1053

312132
={123), (132) ()

179



=H
Therefore, H123)=(123)H
Again (132H={(132)1,(132)(123),(132)(132)}

fesaly 2IG 20

des a3 53

={(132),1,(123)}
=H
H(132) ={(132),(123)(132),(132)(132)}

eeal s a2 il

fesalt29(0)

={(132),1,(123)}
=H
H(132)=(132)H.
Hence V a € S;, Ha = aH
S H={l,(123), (1 32)}is a normal subgroup of S3
Example 4 : Show that H = {l, (1 2)} is not a normal subgroup of Ss.
Solution : Since S;={I,(12),(13),(23),(123),(132)}
H={l, (1 2)}
Now, HI = IH
(12)H={12)1,(12)(12)}

o )
foaft )

={12), 1}
=H

PN
N
TN\

w

N W

=N
~—
%r_J

=N
~_
TN
w -
N W
=N
~
%r_/
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H(12)={(12),(12)(12)
={12)1}=H
H(12)=(12)H

Now (13)H ={(13)1,(13)(12)}

feal 3
fea3 33

={(13) (132)}
Now H(13) ={(13),(12)(13)}

fe a3 727
o3 33

={(13),(123)}
Since (1 3) H #H (1 3)
So H ={l, (1 2)} is not a normal subgroup of Ss.

Self Check Exercises-1
Q.1 Check whether or not H={l, (1 2), (3 4) is a hormal subgroup of S,.
Q.2 Check whether or not H = {1, -1, i, -i} is a normal subgroup of Qs.

8.4 Theorems BASDED on Normal Subgroups
Theorem 1: A subgroup H of group G is a normal subgroup of G iff ghg™e H for every
heH, geG.

Proof : Let H be a normal subgroup of G, to prove ghg™eH. As H is a normal subgroup of G,
then by definition of normal subgroup of G.

gH =Hg vgeG
Let heH and geG be any element.
=ghe Hg
Therefore gh = h.g for some h;e H
= ghg* =h,
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=ghg'e H [..hieH]

Conversely : Let H is a subgroup of G such that ghg*e H, heHvgeG to prove H is normal
subgroup of G i.e. aH = Ha VaeG.

Let acG be any element, then aha*eH Vv h eH
Let aheaH be any element. Then
ah =aha'a=(ah") a € Ha[ aha'eH]
= ah € Ha
..aH< Ha. ..(1)
Again, Let b = a* be any element of G
Then again using given hypothesis bhb*e H
But bhb*=a'h@@h)*=a*haecH
Let ha eHa be any element Then
ha = (aa')ha = (aa*h)a = a(a’*ha) eaH.
= ha eaH
Ha <aH (2
From (1) and (2), we have
aH=HavaeG
Hence H is a normal subgroup of G.
Theorem 2 : Let H be a subgroup of a group G. Then the following statements are equivalent.

0] ghg'eH, Vv g €G. h eH.
(ii) gHg'eH, vV geG
(iii) gH=Hg vgeG.
Proof : () = (ii) Sinceghg*e H, vV g eG. h eH.

Let g h g™ = h, for some hye H
= gHg'=H, VgeG
(i) = (iii) Let g H g'= H, vV geG
=  (9Hg)g=Hg
= gH(@g)=Hg
= gHe=Hg (‘““He=H)
= gH=Hg.
(iii) = ()Let gH=Hg VvgeG
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= gh=h;gforsomeh, h;e H

=ghg'=heH

=ghg'eH, VgeG, heH
Hence (1) = (ii) = (iii) = (i)

Hence the given statements are equivalent.

Theorem 3 : A subgroup H of a group G is a normal subgroup of G iff the product of two right

cosets of H in G is again a right coset of H in G.
Or
Prove that a subgroup H of a group G is normal
iff HoHb=HabVa beG
(the composition is denoted multiplicatively)
Sol. Let H be a normal subgroup of G and
Let H a, H b be two right cosets of H in G. Then

(Ha (Hb) =H (a(H b))
= H((a H) b)
=H (H a) b, since H is a normal subgroup of G so
aH=Ha
=H(H (ab))
=(HH)ab

=H ab, since H is a subgroup of G so HH = H
(Ha)(Hb)=Hab.
abeG =abeG
H a b is a right coset of H in G.

Thus the product of two right cosets of H in G is again a right coset of H in G.

Conversely, suppose H is a subgroup of a group G such that the product of two right cosets of

Hin G is again a right coset of H in G.
To show that H is a normal subgroup of G.
Let g €G be any element.
. gte G, since G is a group.
- Hg, Hg™ be two right cosets of H in G.
- (Hg) (Hg™ is again a right cosets of H in G.

Since H is a subgroup of G, therefore e H, where e is the identity element of G.
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Since e € H.
(eg)(egheHg Hg?h
= gg'e(Hg) (Hg"
= ee(Hg)(Hg?
Also H is a right coset of Hin G and e € H.
(Hg) (H g™ and H are two right cosets of H, each containing e.
(Hg) (Hg") NH=g.
Since the two right cosets of H in G are either disjoint or identical.
= (Hg)(Hg") =H.
Let h eH be any element.
(hg)(hg") e (Hg) (Hg?)
= (hg) (hg?) e H, since (Hg) (Hg™) = H.
= h(ghg') eH.
= ghgteh®H.
h eH and H is a subgroup = h'e H = h*H=H
ghg'eH.
Thisistrue V g €G and h eH.
Hence H is a normal subgroup of G.
Theorem.4 Let H am nd K be two subgroups of a group G. Then
0] if H is a normal subgroup of G, then HK = KH is a subgroup of G.
(i) if H and K both are normal subgroups, then HK = KH is a normal subgroup of G.
Proof. (i) Given H is a normal subgroup of G. To show that HK = KH is a subgroup of G.
Letb € Kbe any element. ThenHb=bH [~ H A G]
= Hb=bHe KH, V bekK
= H K < KH.
Similarly, bH=H b € HK i.e. b H e HK, V bekK
= KHcHK. . 2)
from (1) and (2), we get HK = KH.
o By Theorem 2.1.8, HK (= KH) is a subgroup of G.
(ii) Let H and K be both normal subgroups of G.
: By (i) HK = KH is a subgroup of G. To show that H is a normal subgroup of G.
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Let g €G be any element. Then
g(HK) g =gH(@"9)Kg'=(gHg") (gKg") cHK.
[+ H, K are normal subgroup .. g Hg"cH, g K g'c K]
Hence HK is a normal subgroup of G.
Theorem 5. Every subgroup of abelian group is normal.
Proof: Let H be a subgroup of an abelian group G.
gX=Xg VX e G, V g €G [as G is abelian]
In particular gh-hg V h eH, g eG
= ghg'=hgg'=he=h
= ghg*=h eH
= ghg® e€eH VheHdgeG
Hence by definition of normal subgroup H is normal subgroup of G.

The converse of above is not true. There are nhon commutative groups whose subgroups
are normal.

Example: Since Q8 is a non commutative group but its subgroup H,{-1,1} is a normal
subgroup (as proved in example 2).

Let us consider some question to when we can use those theorems.

a b
Example 1: Show that the set H2 {(C dj:a, b,c,d,E,R, Sad —bc:l} is a normal subgroup

of the group or
1 b
G= 0 1 :a,b,c,d,E,R,Stad —bc+#0

Solution: To Prove H is a normal subgroup of G firstly we have to show that H is non
empty set and subgroup then of G. We apply the theorem 1.

10
Since | = {O J be the identity element as

=1
= leH

H is non empty subset of G.

a b

Let Az{
¢ d

:|€HS.+.a1dl‘Clb1=1:|A|
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a b,

and B =
|:CZ d2

:|EHS.+.a2d2'b2C2:1:|B|

Also |A|=1#0, so A exists.

So AA'=|

IA A =11
= Al AT =1
= A% =1
= |AY=1

as|A'=1 soA'eH.

Also |AB| = |A] |B| = 1.1

-  |AB|=1

As |AB| = 1 soAB e H

as AB e Hand A'e H so H is a subgroup of a Now to prove, H is a normal subgroup of

Let A € Havd B € G be any elements
SinceAeH=|A|=1
andBeG=|B|=#0

as |B| # 0, so B exists.

1
Now |BAB™| = |B| |A| BY| = |B|.1.ﬁ =1
= BAB!| =1
= BAB' «H VAcH BEG

Hence H is a normal subgroup of G.

Question 2. Let G denotes the group of all non-singular upper triangular 2x2 matrices with

a
real entries i.e. G = {[
o

b 1 b
dj:a,b,c,d,E, R,andad;«tO} show that H = [0 1) lbe Risa

normal subgroup of G.

b
Solution: Given G = {g d}a,b,c,d, E,R ad ;tO}
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o e[ oes

So H is a subset of G.

Now, to prove H is a subgroup of G.

1 b -1 ab
LetA, B e Hs.t A= ,BERandB=—+—,CER
01 d d

be two elements of H.

c+b

1
ThenABz(0 1 j,asb+cEeRsoABeH

Also  As|A| #0, so A exists.
So, H is a subgroup of G.
Now to prove H is a normal subgroup of G.

LetAeHandB € G
1b a b
A= beRandB = ,a, b, d e, R ad#0
01 0 a
As |B| =0 So B exists.

d —bj 1
0 a - @
0 %4

-b
Then BAB'=|" o [ Ad
0 d/\0 1

%
_(2 bji %d+%]
0 d)lg ¥

SoB*= AdB B:(
|B]

1
a
0

- —ab ba

Lo te
= al
_0 1
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_b b
1 —
= AJFaA as,a, b, c,e RSo —1+§€R
0 1 d d

BAD'e H

Hence H is a normal subgroup of G.

Self Check Exercise -2
Q.1 Show that Z (G), contra of a group is a hormal subgroup of G.

Q.2 Let H be normal subgroup of group G. If x¥’¢ H, V x € G then prove that H is
normal subgroup of G.

8.5 Properties of Normal Subgroup

Property :-  Section of two normal subgroups is a normal subgroup.
Proof :- Let M and N be two normal subgroups of G So, M and N are subgroup of G
= M N N is also a subgroup of G.

Lethe MNNandg G
= heMandheNandg eG

Since M and N are normal subgroups of G
= ghg’e M and ghg'e N [by theorem]
= ghg’e MNN VY geGandhe MNN
= M N N is a normal subgroup of G.

Property 2. A normal subgroup H of a group G and K is a subgroup of a such that H ¢ G.
Then H is also a normal subgroup of K.

Proof :Given H is a normal subgroup of G
= H is a subgroup of G

Also K is a subgroup of G and H c K.

= H is also a subgroup of K.
To prove H is a normal subgroup of K
Let X e K = xeG [V KcG

Since H is a normal subgroup of G
= Hx = xH

So Hx =xH, x e K
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so H is also a normal subgroup of K.

Property 3.
eH adgeG.

Proof :Let H is normal subgroup of G

to prove (ga) (gb)*eH.
Let H is normal subgroup of G.
Leta,be Handg G
then (ga) (gh)" =ga (b™g?)
=g (ab™) g’

Conversely: Let(ga)'(gB)eH V

A non empty subset H of a group G is normal subgroup of G (ga(gb)-1 eH & a, b

rabeH b’ eH
ab'eHasHis
subgroupof a
g(ab)gteH H
isnormal subgroupof G.

aleng eG

to prove H is normal subgroup

H is subgroup of G
Let a; b € Hiythen
ab*=eab’e

= (e a)(b’e)

= (ea) (eb) ™

eH

= abte H
So H is subgroup of G.

H is normal subgroup of G

ret=e

by given of g €G
(ga)(eb)*eH

and e € G is identity of G

Leth eH and g €G. Also e, identity element of G

= ecH

Given (gh) (ge) ‘e H
= gh(eg’) e H
= g (he)gte H
= ghg'eH

[ (ge)'=eg
andel=¢e

> he-h

189



= H is a normal subgroup of G.
Property 4. If H is the only subgroup of order n in a group G, then H is nhormal subgroup.
Proof: Let g G be any element. Then gHg™ is a subgroup of G.
Also  |H| = |ghg™|
Also |ghg™ = n, but H is only subgroup of order n
gHg™ = H|
Hence H is a normal subgroup of G.
Property 5. If His a subgroup of G of index 2 in G. Then H is normal subgroup of G.
Proof: Let H be a subgroup of G such that [G : H] = 2
The number of distinct left (or right) cosets of H in G is 2.
To prove H is normal subgroup of G.

Case | Whenx e H

Since X € H so XxH=H=HXx
= XH=HX
Case ll : When x ¢ H

XxH=Hand Hx=H
Given[G:H]=2
So HUxH=G=xHUH [Union of all coset is group itself].
= XH=HXx
Combining both of cases we find that
XH=HXx & x e G.
H is normal subgroup of G.
Using above property let us do some question
Question:-  Given an example of non-abelian group in which all subgroups are normal
Solution: The Questiongroup G ={zi,+J, = K, £+ 1}
O(G)=8
Let H be a subgroup of G. Then by Lagrange's theorem O(H) | O(G).

Subgroup of G must have order same as divisor of 8 and divisor of 8
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arel, 2,4,8
OH)=1,2,4,8
IfO(H) =1 then H={e}
IfO(H)=8, then H=G
Since {e} and G are leivial subgroup of G.
Alsolivial subgroups are livial normal subgroup of G.

0©) 8 _,

Now of O(H) = 4 then index of GinH [G : H] = =
O(H) 4

Soifindex of GinHi.e. [G : H] = 2, So by property 5, the subgroup is normal.
Again if O(H) = 2 thenH ={1, - 1}
InthiscasexH=Hx V xe G

All subgroups of this group are normal

Question 2. Show that the set 3z from a normal subgroup of the group of integer under
addition.

Solution: Give (Z, +) is a group of integer under addition.
Now 3Z={3n;n e z}
Let X,y € 3Z, then
X=3n3,y=3n; forng, n,e Z
Now x -y =3n; - 3n,
=3 (ny-ny)
e3Z [ N1, hoe ZsoNng- nye Z]
So 3Z is a subgroup of Z.
To prove 3Z is normal subgroup
LetgeZ and he 3Z-
= geZandh=3n,ne Z
theng+h+(g)=g+3n-g
=3n
- g+h-ge3z

Hence 3Z is a normal subgroup of Z.
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Self Check Exercises-3
Q.1 Prove that the intersection of any collection of normal subgroup is itself normal
subgroup.
Q.2 Show that the set 5Z forms a normal subgroup of the group of integers under
addition.
8.6 Summary

Dear students, in this unit, we studied that

8} If every left coset of H in G is equal to corresponding right coset of H in G i.e. aH
= Ha, aca, than H is normal subgroup of G.

(2) If G is abelion group. Then every subgroup's normal subgroup.

3) If neG. where H is subgroup of G then of ghg™eH then H is normal subgroup of
G

(4) H is a normal subgroup of G. H HaHb = Hab V a,be G.

(5) Intersection of two normal subgroup is a normal subgroup.

(6) If H is a subgroup of G of index 2, then H is normal subgroup of G.

8.7 Glossary

o] Normal Subgroup:- Let G be a group. A Subgroup H of G is said to be a normal
Subgroup of G if aH = Ha for all aeG.

o] Right Coset:- A night coset of a subgroup H in a group G is a set of elements
obtained by multiplying every element of H by a fixed element of from G on the
right side.

o] Intersection of Subset:- N;NN, = (xeG/neN, and neNy), where N; and N, be
the subset of Group G.

8.8 Answers to Self Check Exercise

Q.1
Q.2

Q.1
Q.2

Self Check Exercises-1
Apply definition of normal subgroup same as in question 4.
Apply definition of normal subgroup same as in question 2.
Self Check Exercises-2
Prove theorem 1 for Z(a), i.e. ghg™*eZ(a) for xeG and HeH
Prove ghg™*eH, neH and geG.
Self Check Exercises-3
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8.9

8.10

Q.1 Generaliz the result of property 1.
Q.2 Same as question 2.
References/Suggested Readings

1. Vijay k Khanna and S.K. Bhambri, A coures in Abstract Argebra

2. Joseph A. Gallian, Contemporary Abstract Argeora.
3. Fronk Ayers Is. Modern Algebra, Schaum's outline series.
4, A.R. Vasistha, Modern Argebra, KeishnaPrakaslal Media.

Terminal Questions

1. Let T denotes the group of all non- singular upper triangular 3x3 matrices with
lab
real entries. Show that H=<| 01c |,a,B,CeR}is a normal subgroup of G.
001
2. A cyclic subgroup T of a group G is normal in G then every subgroup of T is also
normal in G.

*kkkk
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Unit-9

Quotient Group

Structure

9.1 Introduction

9.2 Learning Objectives

9.3 Quotient Group
Self Check Exercise-1

9.4 Theorem ON Quotient Group
Self Check Exercise-2

9.5 Summary

9.6 Glossary

9.7  Answers to self check exercises

9.8 References/Suggested Readings

9.9 Terminal Questions

9.1 Introduction

Dear Students student in previous unit we studied about normal subgroup of a group.

Normal Subgroup have some special significance because when a Subgroup H of G is normal,
then the set of left (right) cosets of H in G is itself form a group. And from here we get another
type of group which is known as Quotient group of G by H We can information about a group by
studying one of its quotient group. So in this unit we will study about quotient group along with
some properties and theorem related to quotient group.

9.2

9.3

Learning Objectives

After studying this unit students will be able to

D define a quotient group

(2) Find quotient group of a given group.

3) Prove and apply the theorems based on quotient group.

Quotient Group

Definition : If G is a group and H is a normal subgroup of G, then the set G/H of all

cosets of H in G is a group with respect to the multiplication of cosets i.e. (Ha) (Hb) = Hab

This group is known as quotient group or factor group of G by H.

Note 1:- Under addition of coset, the composition is defined as
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H+a)+(H+b)=H+ (a+hb)
Note 2:- The identity element of quotient group G/H is H

0(G)
O(H)

Note 3:- If H is normal subgroup of tinit group G than G/H forms a group of order

Let us try to understand more about quotient group by solving some questions about this
group.

Question 1. Let Z be the additive group of integers Let H = 4Z be additive group of integer
multiple of 4. Show that H is a normal subgroup of Z. Also write the elements of Z/H. Also write
the composition table for Z/H.

Solution:- Given Z be additive group of integers and H = 4Z

To show H is a normal subgroup of Z under addition.

Letg e Z,h eH=h=4n, neZ

theng+h+(-g)=g+4n-g
=4n

= g+h+(g)=4n e H.

Hence 4z is a normal subgroup of Z.

In order to write the elements of Z/H or Z/4H, we have to write the set of all cosets of

4H in G.

Since from (question of unit 7) we know that only distinct cosets of 4z in a all.
HH+1,H+2 H+3.

So elements of Z/H = Z/4H = {H, H+1, H+2, H+3}

Composition table for Z/H or H/4H, Here H is identity for Z/H

= H H+1 H+2 H+3
H H H+1 H+2 H+3
H+1 H+1 H+2 H+3 H
H+2 H+2 H+3 I H+1
H+3 H+3 H H+1 H+2

Question 2. Let G ={-1, 1, -i, i} be a group and H = {-1, 1} subset. Show that H is normal
subgroup of G. Find the elements of G/H and prepare the composition table.

Solution: Given G={-1, 1, -i, i}
and H={-1,1}
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Since H c G and H is itself a group
So H is a subgroup of G

Since [G: H] =Index of Gin H = %
O(H)

_4

2

Since index of G in H is 2, So he Subgroup is a normal subgroup of a
[Property of normal subgroup]

So, H is a normal subgroup of G.

Now, to find all the coset of H in G.

Since we known that (From question 2 of unit 7)

all cosets of Hin G are H and Hi

So elements G/H = {H, Hi}

Composition table of element of G/H

H Hi
H H Hi
Hi Hi H
Self Check Exercises-1
Q.1 Find all the elements of Z/H, where Z is a additive group of integers and H = 3Z.
Q.2 Find all the elements of Z/H, where Z is a Symmetric group on {1,2,3} and H = {l, (1,
2)}.
9.4 Theorem on Quotient Group

Theorem 1. If His a subgroup of an abelian group G, then the group G/H of all right cosets of
H in G forms on abelian group under the composition defined by Ha.Hb = Hab.

Proof:

Given H is a subgroup of an abelian group G. Since a subgroup of an abelian group is

normal. So H is a normal subgroup.

(1)

Now to prove G/H is an ablian group under the composition Ha.Hb = Hab.
ClosursProperty :Leta, b € G, then abeG

Hab € G/H
= Ha.Hbe G/H
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Clasues property holds.
(2) Associative Property: (Ha . Hb). Hc = (Hab) . HC
= H (ab)C
= Ha (bc)
= Ha (Hbc)
= Ha (Hb) (Hc)
= Ha (Hb Hc)
= (Ha . Hb) .Hc
So, Associative property good.
(3) Existence of identity:-
Let e be the identity of G
then Hee G/H
Now (Ha).(He) = H(ae)
= Ha
= H(ea)
= (He) (Ha)
He = H is identity of G/H.

4) Existence of inverse: for H a € G/H, We have aeG

ate G

= Ha'e G/H

Now, (Ha) (Ha™) =H (aa™)
= He
=Ho
= He
= H(a'a)
= (Ha')(Ha)

(Ha)* = Hae G/H
Ha™ is the inverse of Ha in G/H
(5) Commutative Property : Let Ha, Hb € G/H, a, b € G.
Now (Ha) (HG) = Hab
= Hba
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= (Hb) (Ha)
= (Ha) (Hb) = H (b) (Ha)
= G/H is on abelian group.
Converse may not be true i.e.

An example of non abelian group G and a normal subgroup H of G such that quotient
group G/H is abelian

The group G = {+ 1, £ i, = j, £ k} is non abelian group of unit quaternion under

multiplication defined asi2 =j2=k2 = -1, jj= k= -ji, jk =i = -ki, ki = = -k
Let H={1, -1, -i, -i} be a subgroup of G.
Then [G:H]= —O (©)
O(H)
_8
4
=2

= [G:H]=2

Since H is a subgroup of G of index 2 Hence it is a normal subgroup of G.
Then the quotient group G/H gives the set of all left right coset of H in G. then
G/H ={H, iH}

O (G/H) =2

Since O(G/H) = 2, a prime number

Since a group of prime order is an abelian group

Hence G/H is aabelien quotient group of non abelian group.

Theorem 2. Let H be a normal subgroup of a group G. Show that quotient group G/H is
abelian it and only if for all x,yeG, xy x'y*eN.

Proof :Let H be a normal subgroup of G such that G/H is abelian. To prove, for all x,yeg, xyx'y’
leH

Now Hxy x'y™* = Hx Hy Hx*Hy™ [by defining of quotient Hab=HaHb group)
= HxHy (Hx)™ (Hy)™* (HX)™* = (Hx)™*
= Hx (Hx)™ (Hy) (Hy)*[" G/H is an abelian group]
=HH [ H is identity of G/H
=H
Hxyx'y* =H

= xyx'y'eH x,yeG
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Conversely: Let for all x, yeG, xyx'y*eH
To prove G/H is an abelian group
Since given xyx'y'e H

Hxyx'y!=H

xHy Hx*Hy'e H

Hx Hx*Hy Hy* = H

Hx (Hx)™* Hy) (Hy)* = H

(Hx) (Hy) (Hx)™ = H (Hy)

(Hx) Hy = Hy Hx.

Hx Hy = Hy Hx

= G/H is abelian group

L O I

Theorem 3: Every quotient group of a cyclic group is cyclic.
Proof: Let G = G = <a> be a cyclic group generated by an element a.
= G is an abelian group
= Every subgroup of G is is normal subgroup
Let H be a subgroup of G, which is normal, such that G/H is quotient group of G.
To prove G/H is a cyclic group generated by Ha.

Let Hxe G/H be an arbitrary element where x € G.

But G=<a>
So x =an for some integer n.
Hx = Han = Ha.a. ......... a, *" G/H is quotient group.
n times
=HaHa. Ha. ......... Ha
n time
= (Ha)"

= Hx = (Ha)", V Hxe G/H
= G/H is a cyclic group generated by Ha.
Hence every quotient group of a cyclic group is cyclic.

Remark : The converse of above theorem may not between, i.e. quotient group may be
cyclic even if the group may not be cyclic.

Theorem 4. If G is a group such that G/Z (a) is cyclic, where Z(a) is the contra of G. Then G is
abelian.
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Proof: Given Z(G) is the centre of G

LetH=Z(@)={g eG;x=xgV x € G}

Let G/H = <gH> be a cyclic group

Let a,be G be any two elements

= aH, bHe G/H by defining of quotient group

Therefore aH = (gH)™ and bH = (gw)", for, m, neZ [by defining of cyclic group]
= aH =g"H and bH =g"H

= a'g"eH and b'g"eH
= gMaeH andg"b e H
Letg™a=n,, g"b=h,forhy hye H
= a=g"n, and b =g"h;
Now ab = g"h;. g"h, = g™ (h;g")h,
=g" (g"hph;
=g™" h;h,

= ab =g"g"h;h, =g™"h;h,

Now ba = (g"h) (9"bs) = g"(h2g™)h;
=g"(@"h)h
=g""™ hsh,

ba=g™" h;h,

= ab = ba

Hence G is abelian

Self Check Exercises-2

Q.1 Give an example of a group G and a normal subgroup H such that G/H is cyclic
but G may not be cyclic

Q.2 Let H; and H; be two normal subgroups of a group G. Prove that G/H1 = G/H2 if
and only if H; = H,.

9.5

Summary

Dear Students in this unit we studied that

(1) The set of all cosets of H in G is known as quotient group
(2) Identity element of a quotient group G/H is H.

3) If H is a subgroup of an abelian group G then the quotient group G/H is also
abelian.
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9.6

9.7

9.8

9.9

4) If H is a normal subgroup of a group G then quotient group G/H is abelian it xyx
ly'te H.

(5) Every quotient group of a cyclic group is cyclic

Glossary

o] Quotient group :A Quotient group G/N is formed by dividing a group G by
normal subgroup N, where elements are cosets of N in G with a defined group
operation based on coset multiplication.

o] Cyclic group : A group G is cyclic if there exists an element of g in G such that

every element of G can be expressed as a power g" for some integer n.

Answers to Self Check Exercise

Q.1
Q.2

Q.1

Q.2

Self Check Exercises-1
Do same as question 1
Z/H ={H, H. (13), H. (2, 3)}

Self Check Exercises-2

Taking G = {1, #i, +j, xk} and H = {1, -1, i, -i} Here G/H is cyclic but G is not
cyclic

If N; = N, than nothing to prove.

Inversely of G/N; = G/N, to prove N; = N, we can prove this by using the concept
that two cosets in G are either disjoint or identical.

References/ Suggested Readings

1.
2.
3.
4.

Vijay K. Khanna and S.K. Bhambri, A course in Abstract algebra.
Joseph A. Gallian, Contemporary Abstract Algebra.

Frank Ayrer Jr., Modern Algebra, Schaum's Outline Series.

A. R. Vasistha, Modern Algebra, KeishnaPrakasham Media.

Terminal Questions

Q.1

Q.2

If H, K are normal subgroups of a group G and HCK, then show that K/H is a
normal subgroup of G/H.

Give an example of verify that if the quatient group G/H is abelian then G may
not be abelian.

*kkkk
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Unit - 10

Special Subgroups

Structure

10.1  Introduction

10.2 Learning Objectives

10.3 Subgroup Generated by Subset of A Group
Self Check Exercise-1

10.4 Commutator Subgroup
Self Check Exercise-2

10.5 Summary

10.6 Glossary

10.7 Answers to self check exercises

10.8 References/Suggested Readings

10.9 Terminal Questions

10.1 Introduction

Dear student in this unit we will study about some special type of subgroup on the basis

of their formulation. In this unit we will study about subgroup which is generated by a subset of a
group along with its pro property. Also, commutator subgroup will be discussed, which is an
other form of a subgroup.

10.2

10.3

Learning Objectives

After studying this unit, students will be able to

D define subgroups generated by subset of a group.

(2) solve question based on subgroup generated by subset of a group.

3) define commutator subgroup.

(4) solve question based on commutator susbgroup.

Subgroup Generated by Subset of a Group

Definition : A subgroup N of a group G is said to be generated by a non empty subset S

of G of H is the smallest subgroup of a containing S.

The smallest subgroup of G containing S is called subgroup generated by S and is

denoted by {s} = H
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Theorem 1 : If S is any subset of a group G, then smallest subgroup of G containing S exists
and is unique.

Proof : Let F B the family of all sub groups of a which contain S.
F={H: His a subgroup of G containing S}
The family F is not empty since atleast G belong to this family.
[ Gisitself a subgroup of G]
Let K be the intersection of the family F.
i.e. K= MH
HeF
Since auditory intersection of subgroups is a subgroup, so k is a subgroup of G.
Also ScH VHeF

NH

S ¢ =
HeF

K

Therefore K is a subgroup of G containing S.

Now let H be any subgroup of G containing S
HeF

- Hﬂ: g

=KcH

Therefore, K is the smallest subgroup of G containing S.

= K is a subgroup of G generated by S and is equal to intersection of all subgroups of G
containing S.

Uniqueness
Let K; and K, be two smallest subgroups of G containing S.
Then we have K;c K, and K,c K;
S K=K,

Theorem 2 : Let S is a subset of a group G. Then the set of elements of G expressible as
products of positive and negative integral powers of finite number of elements of S is the
smallest subgroup of G containing M.

Proof : Let H be the set of those elements of G which can be expressed as product of positive
and negative integral powers of finite number of elements of S. Let a, b € G then clearly
ab*e H.

so, by critical of a subgroup H is a subgroup of G. clearly S < H.
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Also of K is any subgroup of G containing S, then definitely H must contained in K.
Hence H is the smallest subgroup of G containing S.

Let us take following examples to have more understanding of subgroup generated by a
subset of a group.

Question 1: G ={l, w, w?} is a subgroup generated by s = {w}
Solution : Given G = {l, w, W’} be the group of cube root of unity.
Let S = {w} is a non empty subset of G.
Let H be a subgroup of G generated by S.
= Sc H
>weH
W = ww.eH ""H is a subgroup of G.
wP=www=1eH
Therefore, H contains all elements of G.
GcHandHcG
= G=H
G =<5>

Question 2 : Let {+1, +i, j, +k} be the group of quaternions and S = {i, j}. Then show that G is a
subgroup generated by S.

Solution : Given G = {#i, %j, £k, £1} and

S={ij}

TheSc G

Let H = <S> be subgroup of G generated by S.
ScG

= i,jeH

So,i*=ii=-1¢H,

ieH,i*=iii=-ieH

Similarlyje H=-je H
alsoK=ijeH
~ Kle H=K’K e H=-K eH
.. H contains all elements of G.
=GcH
alsoHc G
=>G=H=<S>
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Self check Exercise-1

Q.1 Inthe group (Z, +) the subgroup generated by 2 and 7 is?

10.4

Commutator Subgroup

Definition : Let G be a group consider the set
S={ab,a’bYa,beGlandK={S;, Sp...crco........ Sn Sie S}
m is arbitrary. Then k is known as the commutator subgroup of group G.

o Ifa, b e G, Gisagroup thenab a* b’ is called a commutator of a, and b in G.

. If S denotes the set of all commutors in G and G1 denotes the subgroup of G generated
by S. Then G1 is called commutator subgroup of G or devided subgroup of G.

Theorem 1 : A group G is abelian if and only of the commutator subgroup of G is the Trivial group.

Proof :

group.

Let G be an abelian group
=Vab eGab=ba
—abbta'=e

Therefore commutator subgroup whose elements will be the finite product of e's is the trivial

Conversely : Let the commutator subgroup be the trivial group. Then foranye € G,b € G

= aba'be {e}

= aba'b'=e

= ab=ba Va,beG
= G is abelian.

Theorem 2 : The commutator subgroup G' of G is a normal subgroup of G.

Proof :

Leta € G' and x € G be any element
Thenxax'=(xax"a") a

Now x ax'a'e G'and a € G' is a subgroup of G
= (xax'a')ae G'
—xax'eG'VaeG,xeG

So G' is a normal subgroup. [by dyiningof normal subgroup.]

Theorem 3 : Let G' be the commutator subgroup of G. Then G' is the smallest normal
subgroup of G such that G/G* is abelian. Also of H be any normal subgroup of G then G/H is
abelian H G'c H.

Proof

: To prove G/G' is abelian group.

Let a G*, b G* be any two element of G/G1, where a, b € G

Now abalbleG!
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(@ab)(ab)’e G*

(ab)G'=baG* [ aH=DbHiffab™ e H]
@aGh) bGH=(GY @G" [ G'isnormal subgroup)
GIG' is abelian group.

U 4l

Now, to show G* is the smallest normal subgroup of G such that G/N is abelian.
Let a, b € G be any element
Then ¥V aH, b H € G/H, since G/H is abelian

(@aH)(bH) =(bH)(aH)

= (ab)H =(baH [ His normal in G]
= ab(a)* eN
= aba'ot eN

i.e. H contains all the commutators of G.
i.,e. H>G'ie. Gi< H.
Hence G* is the smallest normal subgroup of G such that G/G" is abelian.
Also if H is normal subgroup of G such that G/H is abelian then G'c H.
Conversly, let G'c Hthenaba'b’e HVa; b e G
[by definition of commutator]
= ab(a)* e H
= abH =baH
= aHbH =bHaH
= G/H is abelian
Hence the proof.

Self check Exercise-2

Q.1 If G has not proper normal subgroup then G = G*.

10.5 Summary

In this unit we studied that the

1. The smallest subgroup of a containing non empty subset S is known as subgroup
generated by a subset of a group.

2. Subgroup generated by a smallest is equal to interaction of all subgroups of G
containing S.

3. Ifa, b € Gthen ab a-1b-1 is called a commutator of a, b in G.
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10.6

10.7

10.8

10.9

4, A group is abelian iff the commutator subgroup is the bivial group.

5. Commutator subgroup is a normal subgroup.

Glossary

o] Commutator element : Let G be a group. The commutator element [g, h] of g
and h in G is defined as [g, h] = ghg*h™.

o] Commutator subgroup : The commutator subgroup consists of all elements of

the forms ghg™*h™ for g, h € G.
Answer to self check exercise
Self Check Exercise - 1
Q1 Zz
Self Check Exercise - 2
Q.1 The only normal subgroup of group G are {e€} and G which are trivial subgroup.
Gives G* = {e} so G' = G only.
References/ Suggested Readings

1. Vijay K. Khanna and S.K. Bhambri, A course in Abstract algebra.
2. Joseph A. Gallian, Contemporary Abstract Algebra.

3. Frank Ayrer Jr., Modern Algebra, Schaum's Outline Series.

4. A. R. Vasistha, Modern Algebra, KeishnaPrakasham Media.

Terminal Questions
Q.1 Find the commutator subgroupof G={x 1, +1i, Kk, £ j}
Q.2 Find the commutator subgroup of Ss.

Q.3 Find the commutator subgroup of D,.

*kkkk
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Unit - 11
Homomorphism and Isomorphism of Group

Structure
11.1  Introduction
11.2 Learning Objectives
11.3 Homomorphism
Self Check Exercise-1
11.4 Isomorphism and Isomorphic Group
Self Check Exercise-2
11.5 Kerncl of Homomorphism
Self Check Exercise-3
11.6  Summary
11.7 Glossary
11.8 Answers to Self Check Exercises
11.9 References/Suggested Readings
11.10 Terminal Questions
11.1 Introduction

Dear students, till yet we have not discussed about functions from one group to another
group. In this unit we will discuss we will discuss various properties of function like preservation
of composion, one and onto between group. On the basis of these properties we will define
homomorphism, isomorphism and automorphism of groups.

11.2 Learning Objectives
After studying this unit, students will be able to
define homomorphism in group.
verify whether a function between groups is a homomorphism or not.
obtain the Kernal and image of any homomorphism of group.
define isomorphism in group
verify whether a function between groups is an isomorphism or not.

define automorphism in group.

N o g s~ w N PR

verify whether a function between group is an automorphism or not.
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11.3 Homomorphism

The functions between groups, which preserve the algebraic structure of their domain
group, are known as group homomorphism. The term homomorphism is first introduced by
mathematician Klein in 1893. The term homomorphism is divided term greek word ‘homo' and
'morph’, which togather means 'same shape'. A homomorphism is a mathematical tool for briefly
expressing precise structural correspondences. It is a function between groups satisfying a few
natural properties.

Domain Group : The group from which a function is originated is known as domain
group.

Co domain Group : The group into which the function maps is known as co domain
group.

Definition : Let G and G* be any two group with binary operation * and ** respectively.
Then a mapping f : G = G’ is said to be homomorphism if

vabeG, f(@*b)=/(a*f (b

Homomorphic Image : Let G and G' be two group with mapping f : G = G, then
group G* is called homomorphic image of the group G, if f is homomorphism and onto.

Let us try to save some questions to have better understanding of homomorphism.

Example 1 : Let G = {1, -1, i, -i} be a group under multiplication and | = group of all integers
under addition. Then prove that f : | — G is a homomorphism where f(n) =i"V n e I.

Solution : Here domain group is | and its binary operation is addition whereas co domain group
is G and m binary operation is multiplication.

Also given f(n) =i"V n e |
Letm, n e |, then
f(m)=i"and f(n) =i"
Now f(m+n) =i
A
= f(m) .f(n)
= f(m+n) = f(m).f(n)

Hence f: | — G is a homomorphism.

Example2: LetG ={a, a% &’ ....... d’} is a cyclic group under multiplication and its subgroup
G'={a% a* a°........ a'?} where f(@") = a®". Prove that f is homomorphism.

Solution : Here G is a group under multiplication and G' is the subgroup, so the binary
operation on G1 will be multiplication.

Now let an and am be two elements of G, such that f(@") = a*” and f(@") = a*"
Then f(an am) = f(@™™) [base is same so power can be added]
- a.2(n+m) [ f(an) — a2n
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- a2m+2m
=a”™.a™"
=f@").f(@")
= f@.a") = f@".f(@"
Example 3 : Let Z be the group of all integers under addition and E be the group of even
integers under addition.

Then show that the mapping f : Z — E defined by f(x) = 2x is a homomorphism.

Solution : Given Z and E are group of all integers and group of integers, under addition
respectively.

Let X, y € Z such that
f)  =2xand f(y) = 2y

Now f(x+y) =2 (x+y)
=2x+ 2y
= f(¥) + £(y)

=fxty) =)+ F)

Hence f is a homomorphism.

Endomorphism : A homomorphism from G to G is called an endomorphism.

Self Check Exercise - 1

Q.1 Let Z be the group of all integer under addition and G = {2n, n € Z} be a
group under multiplication then f : Z — G such that f(nN) =2nVvV ne Z

Show that f is homomorphism.

Q.2 Let Z be the group of integers under addition and G = {-1, 1} be the group
under multiplication. Show that the mapping f : Z—G defined by

1 ifniseven
f(n){ e’/

. ) N
-1 if nisodd

is @ homomorphism.

11.4 Isomorphism and Isomorphic Group

Let G and G* be two groups. Let we are intersected to map from G to G* that relate
group structure of f: G—G'. G to the group structure of G*. An isomorphism is an example of
structure relationship. If we known all about group G and known that f is isomorphism, we
immediately know all about group structure of G, as it is structurally just a copy of G.

The term isomorphism is derived from Greek word isos and morph means equal term or
shape.
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Isomorphism : Let G and G* be any two groups with binary operation * and *' respectively.
Then a mapping f : G—G" is said to be isomorphism if

1. f is homomorphism
2. f is one-one i.e. distinct elements in G have distinct f-images in G*
3. fis onto i.e. for every y, there is a x such that f(x) =y.

Isomorphic Group : Two groups G and G' are called isomorphic group if there exists a
mapping f : G —G1 such that f is homomorphism, one-one and onto.

If G is isomorphic to G1 then we write G = G*
Let us by following question on isomorphic to have more understanding of this.

Question 1 : Let be the group of all real numbers under addition and R* is the multiplicative
group of positive real numbers. Prove that the mapping f : R — R defined by f(x) = € is an
isomorphism.

Solution : In order to show that given mapping is isomorphism we have to show that mapping is
homomorphism and one to one and onto.

fis homomorphism
Let X1, X, R such that
f(x) = e and f(xp) = e

X1+x2

Now f(x;+Xxp) = e
- eX1. ex2
= f(x1) .f(x2)
= F(Xatx2) = f(X1) . f(X2)
Hence f is homomorphism
fis one-one:
Let X1, Xoe R. Then
= f(X1) = =f(X2)
= ex1= ex2

= taking log both side

= log e = log e*
= X1 log e =x, log e
= X1 = X,

f is onto

Lety € R+ i.e. yis any positive real number.

Thenlog y is real number = logy € R
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Now f(logy) = e*¥ =y
Thus ye R"=73logy € R such that f (logy) =y.
So each element of R-1 is the f-image of some element of R. Thusf is onto.

Since f(x1) = f(X2) = X; = X, means two elements in R have the same f-image in R”
only if they are equal. Consequently distinct elements in R have distinct f-image in R+.
Thereforef is one-one and onto.

Since f is homomorphism and one-one and onto. Hence f is an isomorphism.

Question 2 : The additive group of integers Z and additive group of integral multiple of 5 under
map f : Z — 5 Z defined by f(n) =5n V n €Z is an isomorphism.

Solution : Givenmap is f : Z — 5 Z defined by
f(N)=5nVvneZ
f is isomorphism.
Let n, m € Z such that
f(n) =5n and f(m) = 5m.
Then f(m+n) = 5(m+n)
=5m+5n
=f(n) + f(n)
=f(m+n) = f(m) + f(n)
= is homomorphism
fis one-one:

Let m, n € Z then

f(m)  =1(n)
= 5m =5n
= m=n

So, f is one-one
fis onto
Letye5Z
Ly=5nneZ
Sincen e Z,so f(n)=5n=y
Thus each element of 5 z is a f-image of same element of Z. Thusf is onto.

Since f is homomorphism, one-one and onto. Hence f is an isomorphism.
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Question 3 : Let G be the group of ordered pair of real number under operation (a, b) + (c, d) =
(a+c, b+d) V (a, b)(c, d) € G. Let R be the group of real number under addition let f : G —» R
defined by f(a, b) =a Vv (a, b) € G. Check that f is an isomorphism or not.

Solution : Given G is an group of order pair of real number under addition and R is group of
real number under addition.

To show f : G — G is an isomorphism we have to prove

1. f is homomorphism
2. f is one-one
3. fis onto

fis homomorphism
Let (a, b) (c, d) € G then
f(a,b)=aand f(c,d) =c
Now f [(a,b) + (Gd)]=f(a+c,b+d) [by defining of G
za+c [by dying f (a, b) = a
=f(ab)+f(Gd)
=  fla,b)+(,d)=f(a b)+ f(c, d)
So f is homomorphism.
f is one-one:-
Let (a, b), (c,d) € G Then
= f(a,b)=f(c d)
= a = c, but a and c are distinct
S0 a #C
Let x=(1,2)andy (1, 3)
f(1,2)=1(1,3)
1=1
But (1, 2)= (1, 3)
Since different element has same image. So f is not one-one. So f is not isomorphism.
Epimorphism:- A homomorphism which is onto is called epimorphism.

Example 4:-Let C and R be the group of complex number and real number under addition.
Then the map f : ¢ = R defined by = (x + iy) = xVxfiyeC. Prove that f is epimorphism, not
isomorphism.

Solution:-Since C and R be the group of complex and real number under addition respectively.
Given f: C = R such that + (x + iy) = x.
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To prove f is epimorphism, we have to prove f is homomorphism and f is onto.
f is homomorphism :- Let 3, 3,e C
f@)=f(a+ib)=aand f(3;)=f(c+id)=C
Now 3;+3,=(a+ib)+(c+id)
=(a+c)+i(b+d)
f@Bi+3z)=flla+c)+i(b+d)
za+c
= f(a+ib) + f (c +id)
=f @)+ f(32)
= FBi+32)=1(31) +(32)
f is homomorphism.
fis not one - one
Let 31=1+2i
3,=13i
31, 3eCC
then f (31)=f (HJ) =1
f@B2)=f(1+3i)=1
= FB1)=71(3)
but 31#3;
So, fisnotone - one.
fisonto :-
Letr eR
Thenr=r+ioe C
sof(r+io)=r [by defining of f]
So every element of co domain is animage of same element of domain. So f is onto.

Since f is homomorphism, and onto but not one-one Question So f is epimorphism but
not isomorphism

Question 5:-Let Z and E be group of integers and even integers under addition respectively.
The mapping f : Z = E defined by f (x) = 2x V xe Z isomorphism or not.

Solution : f is homomorphism [Check question 3]
To prove fis onto

Let y € E be any element
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Then y=2x,x e Zbydefining f:Z — E f(x) = 2x
fx)=2x=y
Since every element of codomain is an image of some element of domain. So f is onto.
Hence f is epimorphism.
Hence f is epimorphism.
To prove fis one-one
Let X1 Y € Zsuch that f(x) =2x and f (y) = 2y

F=71(y)
= 2X =2y
= X=y

fis one - one
So f is isomorphism.

Question 6:- Show that additive group of complex number a + ib, a, b € z is isomorphic to
multiplicative group of rational numbers, {22 3°, a, b € Z}

Solution:- Let G={a+ib;a, b e Z} be the additive group of complex numbers.

and G!'={2°3" a, b e Z} be the multiplicative group of rational number.

Let f:G—>G—> by is defined by
f(@a+ib)=223"va+ibeG,abel

To prove G is isomorphic to G* we have to show

(2) f is homomorphism

(2) f is one one

3) fisonto

(2) fis homomorphism:- Let X, y € G be any two elementthen x =a +ib,y=c +1id, a, b,
c,deZ

Then f (a + ib) = 2a 3a = f ()
and f (c+id)=2c 3d = £ (y)

Now f(x+y)

= fl(atib) + (c +id)] = f [(a+c) + i (b+d)]
— 2a+c 3b+d
— 2a 2c 3b 3d

= (2% 3 (2°. 39
=f(a+ib)f(c+id)
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=f () f(y)
=fx+y)=f(Xx)f(y)
So f is homomorphism.
2. fisone-one:-
Let x, y € G such that
fFx)=1(y)
= f(@+ib)=f (b+id)
223 =2° 3¢
a nb
Z 1

U

J

27¢3™@=1=293" [ anything raise to power 0 is 1]
a-c=0andb-d=0
a=candb=d

a+ib=c+id

A

X=Yy
So f is one - one.
3. fis onto:-
Lety € G* be any element, then f a, b € Zsuch that
y=223"
Thus corresponding to every y € G*, f a + ibe G such
that f (a + ib) = 22 3°
fis onto
Since f is homomorphism, one-one and onto
So f is isomorphism
and G is isomorphic to G*.

Automorphism: A homomorphism from G — G which is one-one and onto is known as
automorphism. How note that domain and codomain groups are same.

Question 7. Let R" be the multiplicative group of stoutly position real numbers. Prove that the
mapping f R*— R defined by f(x) = x*V x € R" is automorphism.

Solution: Given f + R"—> R"
defined as f((x) = x*V x € R*

To show f is automorphism, we have to show
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1. f is homomaorphism or endomorphism
2. fis one = one
3. fisonto
fis homornorphism/endomorphism
Let x, y € R such that £((X) = X%, f(y) = y?
Now, f(xy) = (xy)?
- X2 y2
= f(x). f(y)
= fxy) = f(x). f(y)
So f is homomorphism.
fis one-one:-
Let x, y e R" then £(x) = x? and f(y) = y?
such that F(X) = f(y)

=  X=y

= X=y

= f is one-one
fisonto :-

Let forany x e R+ 4 \/; e R+ such that
= () = (=
= f(\&) =X

So f is onto.

Since f : R"— R, is homomorphism, one-one and onto So, f is auto morphism i.e.
isomorphism of R* onto itself.

Question 8:- Show that the mapping ¢ : <> ¢ given by (X + iy) = x = iy, is an automorphism.
Here c is the additive group of complex number.

Solution:- Given f : <> c defined by ¢ (x +iy) =x - iy
f is homomorphism = Let 3, 3,ec here
3i=a+iyand3,=c+id
then f(3;))=a=iband f(3;)=c-id

Now [ (3:+3;) = f[(a+ib)+ f (c+id)]
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= f[(a+c)+i(b+d)]
=(a+c)-i(b+d

=(a-ib) + (c-id)

=1 (B)+/1(3)
= FBit32)=1(31)+ [ (3)
= f is homomorphism

f is one-one:-
Let 34, 35, € ¢ such that
f(B)=7(3)

a-ib=c-id

Using equality of complex numbers
a=c,b=d

= a=ib=c+id

= 3:1=3;

So f is one - one
fisonto:
Let3 ec = a+ibec,thena-ibec
suchthat f (a+ib)=a-ib
= fis onto

So f is automorphism.

Self Check Exercise - 2

Q.1 Let R" be multiplicative group of all positive real numbers and R be additive
group of all real numbers. Then show that the mapping f : R*— R defined

by f(X) = logxV x € R" is an isomorphism.

a b

Q.2 Prove that multiplicative group of all matrices { } a, b, c, d are real
-b a

number not both equal to zero, is isomorphic to group of non zero complex
number a + ib, a, b € R, a® + b?%« 0 under multiplication.

Q.3  Prove that a group is abelian the mapping f : G — G defined by f(x) = x-1
is an automorphism.

Q.4 Prove that if for a group f : G —G is given by f(x) = x}, x € G is an
isomorphism, then G is abelian.
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11.5 Kernel of Homomorphism :

Let G and G1 be two groups and f : G — G' be a homomorphism. Then kernel of f is
defined as

Kernel to f = {x G :f (x) = e'} where el is identity element of G*
Kernal of f is denoted by Kerf

Image of Homomorphism:- A group G1 is called homomorphic image of a group G is there
exists a mapping f : G — G1 such that f is homomorphism and onto.

Let us try to find kerpel of homomorphism for some functions as given below:

Question 1: Find Kernel of f, for f: 2 — G defined by f(n) = 2", n € Z, where is the group of
integer under addition and G = 2", n € Z, is a group under multiplication.

Solution:- First to show that f : Z — G is f is homomorphism

Letm,neZ
Such that f (m)=2"and f (n) = 2"
Now f(m+n)=2™"

=2" 2"

= f(m). f(n)
= f(m+n)=f(m). f(n)
So f is homomorphism.
Sincef:Z > G
Since G = n, is a group under multiplication, n € Z
Since 2° = | € G will act as identity element of group G
Now using the defining of karnel of homomorphism
Ker f={nezZ:f(n)=1}

={heZ f(nN=2"=1=2%

={nez;n=0}
={0}
Ker f ={0}

Question 2. Given f : Z — e defied by f(x) = 2x V x € Z is homomorphism. Find kernal of f.
Here Z is set of integers and E is set of even integer under addition.

Solution:- Given f : Z — E is a homomorphism.

To find kernel of f. By definition of kernel of homomorphism, the identity element of E i.e.
set of even integer under addition is O.

SoKerf={xeZ:f (x)=0}
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={xezZ:2x=0}
={xezZ:x=0}

Ker f = {x}

Q.1

Self Check Exercise - 3

Find Kernel of f for all the questions done in the section of homomorphism
and isomorphism.

11.6

11.7

Summary

Dear Students in this unit, we studied that

1.

If f: G = G', and this mapping preserver the Compositions in G and G1 then f
is homomorphism.

If f: G = G, then the homomorphism from G to G is known as endomorphism

If f: G — G' then the homomorphism which is one-one then it is known as
monomorphism

If f: G — G', then the homomorphism which is onto is known as opimorphism.

If f: G — G, then the homomorphism which is one-one and onto is known as
isomorphism.

If f: G — G, then the homomorphism which is one-one and onto is known as
automorphism.

If f: G — G, is the homomorphism then Ker f = {x € G : f (x) = e'} where e’ is
identity element of group G*.

Answers to Self Check Exercises

Q.1

Q.2

Q.1
Q.2

Self Check Exercise -1
f:Z—->G
then for nq, n,<— Z
f(ne+ng) = f(ny). f(n2)
Prove f (n; + ny) = f (n1) f(n2), Ny, Nze Z

for there different cases

1. when n4, n, are even
2. when ny, n, are odd
3. when one of ny, n, is even and other is add.

Self Check Exercise - 2
Show that f is homomorphism, one-one and onto

Cheek the properties of homomorphism, one-one and onto.
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11.8

11.9

11.10

Q.3 To prove f is automorphism how that f is homomorphism, one-one and onto
from G to G i.e. fro in same group G.

Q.4  Show that f is homomorphism, one-one and onto.

Self Check Exercise 3

Q.1 Kerf={4}

Q.3 Kerf={0}

Q.4 Ker f{0}

Q.2 Ker f{0}

Q.3 Kerf={(o,b):(beR}

Glossary

o] Domain Group: The group from which a function is originated is known as
domain group.

o] Epimorplism: A homomorphism which is onto is called epimorplism.

o] Kernal of homomorplism: Let f : G - G' be a homomorplism. The Kernal of f =

{x G : F(n) = e’} where e’ is identity of G*.

References/Suggested Reading

1.
2.
3.
4.

Vijay K. Khanna and S.K. Bhambari, A course in Abstract Algebra
Joseph A Gallian, Contemporary Abstract Algebra

Flank Ayers Jr. Modern Algebra, Schaunis outline Series

A.R. Varistha, Modern Algebra, Krishna Perkashan Media.

Terminal Questions

Q.1

Q.2

If G is the multiplicative group of nxnnon singular real matrices and R* be the
multiplicative group of non zero real numbers, then show that the mapping f : G
— R" defined by f(A) = |A|, Ve G is a homomorphism, onto. Also find kerf.

Prove that every cyclic group of order n is isomorphic to the group of n"root of
unity under multiplication.

*kkk
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Unit - 12

Theorems On Homomorphism

Structure

12.1 Introduction

12.2 Learning Objectives

12.3 Theorems on Homomorphism
Self Check Exercise - 1

12.4  Summary

12.5 Answers to Self Check Exercise

12.6 Glossary

12.7 References/Suggested Readings

12.8 Terminal Questions

12.1 Introduction

Dear Students, though on isomorphism is a special case of homomorphism. Yet oath the
concepts have totally different roles. Homomorphism act as investigative tool in group theory.
We may understand the cocept homomorphism by wing this analogy between homomorphism
and photography. A photograph of a person cannot tell us about the person's exact height,
weight or age. But from photograph we are able to decide that a person is tall or short, heavy or
thin, old or young, male or female. In the same way homomorphic image of a group gives us
some information about the group. By several homomorphic images of a group we can know
more about the group. So dear student in this unit we shall prove some results about relation
between homomorphism and different types group in the form of some theorem.

12.2 Learning Objectives
After studying this unit student will be able to
(2) Prove some basic theorems on homomorphism
(2) State and prove first theorem on homomorphism
3) Apply theorems of homomorphism in group

12.3 Theorems on Homomorphism

Theorem 1:- Let f is homomorphism of G into G*. f: G > Glis a homomorphism then

f (e) = e* when e and e are identity elements of G and G* respectively. Or, then f caries the
identity of G into identity of G*

Given f G ™ G*
Proof:- Letg eG
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then f (g) € G*

As e' is identity element of group G'i e e'e G' Since G' is a group, so closed under
multiplication.

So  f(9).e'=f(9)
= f(ge) [as e is identity of group G]

= f(9).e"=/(ge)

Since f is a homomorphism

f(@).c=1(ge)=7(9) f(e)

Since G' is a group, So Cancellation law holds

= et =71 (e)

= f(e)=¢e'
Theorem 2 : If f is a homomorphism of G into G*i.e. f: G — Glten F(gY) = [f (Q)]'V g G
Proof :Given f : G = G'is a homomorphism

Let g €G, Since G is a group, So every element has a inverse. Let inverse of of is
sg-1.

So G,g'eG
Since f is a homomorphism

f@.f@H=f@ag?h

=f(e)

= el [Using theorem 1]
Also  f(g7) f(9)=/(g"9)

=f(e)

= el

= f@.f@H=e'=f(@".f(@

ab=e
= U@r=s@) thenbat

Hence proved

Theorem 3:- Let f is a homomorphism of G into G'i.e. f: G > G! with Kernel K, then Kernel
f is normal subgroup of G.

Proof : Given f: G = G'is a homomorphism with key = Kunelf = {x € G ; f (x) = e'}

Since G and G1 are group; Let e and e* be identity elements of G and G*.
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We have to show that Ker f = k is normal subgroup of G. We first prove that k is a
subgroup of G and then will prove k is a hormal subgroup of G.

K is a subgroup of G:-
Since e is identity of G and by theorem 1,
fe)=¢e' e eG.
So k #d.
Let X, ¥ € k be any two elements.
So by definition of k, f f (x) = e'

fly)=¢e

Sincey € k

Now /(") =01 MI"
- (el)-l

= fyH=e

= yle k

fxyYH=fxfyh [+ f is homomorphism]
=f0)If 1™ [Using theorem 2]
= el (el)-l
= ele!
= el

fxyh)=e

— xy-1 eKV X,y ek
Hence k is a normal subgroup of G.
K is normal subgroup of G
Letg €G and, x € k be any element

fsincex e k=f (x)=e'

So  f(axgh)=/@) /)@ [*  fis homomorphism]
=f(@e'lf@I" AR E ()
=@ f @1I"
= el
=  flgxghH=e
= gxglek
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They g xg'e kwheng eG and x € k

Hence k = kerf is normal subgroup of G.
Theorem 4:The homomorphism f : G — G is an isomorphism if and only if kerf = {e} i.e. kerf
consist only identity element of G.

Proof:-Given f : G = G1 is a homomorphism of G to G*. Let e and el be identity element of G

and G! respectively. Also let kernel f is given by k. Let f IS @n isomorphism to prove kerf = {e}
Since f is an isomorphism, so f is one-one, onto homomorphism.

Let a ekerf

then by definition of kerf, f (a) = e*

= f@=e'=7(e) [ Theorem 2 f (e) = e']
= a=e

Thus a ekerf=>a=¢e
So e is the only element of G which belongs to kerf.
Thus kerf ={e}

Conversely:-If kerf = {e} then to show f is isomorphism of G to G' it is sufficient to prove f is
one-one.

Let a,beG,thenf(a)=/f(b)

= [ O

= f@fbH=¢ [ [f (0] = [f(b)"]and 1 (b). [f(b)]* =&
= f@abh=e¢' [*. f is homomorphism]

= ab*ekerf [by defining of kerf]

= ab’=e “kerf = {e}

= ab*b=eb

= a=b

= fisone-one

Hence f is isomorphism of G into G*.

Theorem 5:  Let H be a normal subgroup of a group G. Also let / : G = G/H be a map
defined by f (X) = HxV x € G. Then f is a homorphism of G onto G/H with H as kernel of f.

Proof: Given the mapping f: G = G/H is defined by f (x) = H x ¥xe G.
= H x is any element of G/H, for x € G.
So the mapping is onto.
fis Homomorphism G — g/H
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Leta, b € G Then, f(a) = Ha and f(b) = Hb
f (ab) = Hab [by defining f (x) = Hx
= (Ha) (Ha) [~ His normal]
=f (@) f (b)
=  f(ab)=f(a)f(b)
f is homomorphism of G onto G/H.
So every quotient group of a group is a homomorphic image of that group.
Now to prove kerf = H

Let kerf be the kernel of homomorphism f. Also we know that identy element of quotient
group G/H is the coset of H

Sokerf={y €G;f (y) = H}
={yeG;Hy=H}
={ye G,y e H}
=H [ His subgroup of G.]
So Ker f=H
Hence proved
Theorem 6 : Every homomorphic image of a group is isomorphic to some quotient group of G.

This is also known as fundamental theorem on Homomorphism.

Let G and G* be two group and f : G = G! js homomorphism G onto G If H is the
kernel of f. Then G/H =G

Proof :Since H is kernel of f, and kernal of f is a normal subgroup. So H is a normal subgroup
of a group G.

So, G/H = {Ha ; a € G} is a quotient group under the composition, (Ha) (Hb) = Hab V Ha,
Hb € G/H [by defining composition, (Ha) (Hb) = Hab v Ha, Hb ¢ G/H [by defining]

Let us define amap f: G G/H by
f(@=Ha;aeG
To prove f is homomorphism and onto
fis homomorphism :
Leta, b € G such that f (a) = Ha, f(b) = H (b)
— ab e G [ Gisagroup]
Now f (ab) = Hab
=(Ha) (Hb) [ His normal Subgroup of G]
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=f (@) f(b)
= f(@ab)=7 () f(b)
So, f is homomorphism
fisonto:
Let X € G/H be any element
X =Ha ; for some a € G such that
f(@=Ha=X
f is onto.
SO, f G = G/H is homomorphism and onto.
= G/H is homomorphic image of G.

Conversely: Let group G is the homomorphic image of G. So, there existamap f: G —> G*
such that f is homomorphism and onto.

Let H = kerf
= H is normal subgroup of G.
G/H forms a quotient group.
Let f:G/H — Glpy
¢ (Ha) = f (a), vV Ha € G/H
If Ha € G/H then a € G [by defining of Quotient group]
f(a) e G*
=  f(Ha) e G [f:G = GY
To show ¢ is well defined homomorphism, one one and onto.
¢ is well defined :
Let Ha, Hb € G/H and onto.
Ha = Hb
ab™e H, here H is the Kernel of F.
fan) = et {e! is identity element of G'}
f(@) f(bhy =e [ f is homomorphism]
f@ )] =e [ f(a") = [f(@)]™ [by theorem 2]
f@ [f(b)]*f(b) =e* f(b) [multiplying both side by f(b)
f@ =7(b) [ /(b™)] £(b) = e and e'f(b) = (b)]
¢(Ha) =¢(Hb)

L O O I e
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So ¢ is well defined
¢ is homomorphism
Let Ha, Hb € G/H,a,b € G

Now ¢ (Ha.Hb) =¢ (H ab)
= f (ab)
= f(a) f (b) [ f is homomorphism]
= ¢ (Ha) .¢ (Hb)

= d(Ha.Hb) =¢ (Ha) . ¢ (Hb)

¢ is homomorphism of G/H into G*
¢ is one-one
Let Ha, Hb € G/H such that

¢ (Ha) = ¢ (Hb)
= CY) =/ (b)
= f@U®I" = f0) )] [multiplying both side by [f(b)]*
= f@ " =e [ [F(B)]/(b™) and f(b) (F(b)]™ = €]
= f(ab™) =€ [ f is homomorphism]
=  ab'eKerf [by defining of Ker f]
= ab’e H [ H = Ker f]
= Ha = Hb [*-"H is normal subgroup of G]
= ¢ is one - one.

Some Results Related to Homomorphism
If f G —»G* be a homomorphism. Then
1. For any subgroup H of G, f(H) is a subgroup of G*.

2. For any subgroup K' of G*; f* (K" is a subgroup of G containing Ker f and
(K" is normal in G whenever K is normal in G*.

3. If f is onto, then for any normal subgroup K of G, f(K) is normal subgroup of G*.
Let us do some questions related to these theorems for their application part.
Question 1: Let f and g be homomorphism from G to G™.
Show that H = {x € G; f(x) = g(x)} is a subgroup of G.
Solution : Given f. g are homomorphism from G to G*

Let e and e* be the identity element of G and G* respectively, then
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fe)=g(e)=¢e' [“f:g—G'andg:G — G']

= eeH by using defining of H.

= H=¢

H is non empty set.

To show, H is a subgroup of G, we have to prove xy™*e H for x, y € H.
So let x, y € H be any two elements.

So by defining of H, f(x) = g(x) and f(y) = g(y)

Now  f(xy™%) = f(x) fiyhH [ f is homomorphism]
= f(X) [Fy)I™ [ f(y") = [f(y)]" as f is homomorphism]
=g(¥) [oy1* [ g is homomorphism so g(y™) = [g(y)]"]
= g(xy-1) [ g is homomorphism]

= Sy =gy

sofor, X,y € H, f(xy™") = g(xy™")

= xyte H

Hence H is a subgroup of G.
Question 2 : Find all subgroups of Z/21Z
Solution : Let K be a subgroup of Z/21Z

Then K = H/21Z, for some subgroup H of Z

satisfying 21Z < H.

As H is a subgroup of Z, such that 21Z < H, then

H/21Z is a subgroup of Z/21Z.

In order to find all subgroup of Z that contain 21Z, we have to find positive divisor of 21

Since, 1, 3, 7, 21 are only positive divisor of 21

So Z, 3Z, 7Z and 21Z are only subgroup of Z that contain 21Z

Hence Z/217, 3/217, 7Z2/21Z and 217/21Z {e} are the only subgroup of Z/21Z.
Question 3 : Show that the group 62/30Z = Zs where

Zs ={[0], [1], [2]. [3]. [4], +s} bea additive group of residue classes module 5.
Solution : Let f : 6Z — Zs be a mapping defined as f(6Z) =[n]Vne Z

To show f is homomorphism and onto
f is homomorphism

Let m, n « Z, then 6m, 6n € 6Z
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So, f(6m + 6n) = f (6(m+n))
=[m+n]
=[m] +[n
= f(6m) + f(6n)
= f is homomorphism
fis onto
For[nNeZs,neZ
= 6n € 6Z such that f(6n) = [n]
= fis onto
Using fundamental theorem of homomorphism
6Z/Ker f= Zs.
Now, to show Ker f = 30Z
Since [0] is identity element of Zs
Since Ker f ={6n € 6Z, f(6Z) = [0]}
={6n € 6Z, [n] = [0]}
={6n € 6Z; n is a multiple of 5}
={6n € 6Z, n=SK, K € Z}
={6.5K € 627}
={30 z}
Ker f = 30Z
Hence 67/30Z = Zs.

Self Check Exercise-1
Q.1 Find all the subgroups of Z2/24Z.
Q.2 Show that the group 4Z2/127 = Z,.
Q.3 Show that GL(2;R) /SL(2;R)=R.

12.4 Summary

Dear Students in this unit, we studied that

1. If f: G — G'is homomorphism, then f carries the identity of G into identity of
G1.
If f: G — G', is homomorphism, then f(g™) = [f(g)]™".

3. If f: G = G', is homomorphism, then Ker f is normal subgroup of G.
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12.5

12.6

12.7

12.8

4, If f: G — G', is homomorphism is isomorphism iffker f = {e}'
5. Every homomorphic image of a group is isomorphic to same quotient group of G.
Answers to Self Check Exercises
Self Check Exercise -1
Q.1 Z/24Z,27]24Z, 3Z2/24Z, 4Z]24Z, 6Z/24Z, 8Z/24Z, 12Z/24Z, 24Z/24Z
Q.2  Same as Question 3.
Q.3 Same as Question 3.
Glossary

o] Homomorphism : Let G and G* be the two group with binary operation * and **
respectively. Then a mapping f : G — G' is said to be homomorphismis V a, b €

G, f(a*b) = f(@)*'f(b).

o] Isomorphism : A mapping f : G - G' is said to be isomorphism, is f is
homomorphism and f is one-one and onto also.

References/Suggested Reading

1. Vijay K. Khanna and S.K. Bhambari, A course in Abstract Algebra
2. Joseph A Gallian, Contemporary Abstract Algebra

3. Flank Ayers Jr. Modern Algebra, Schaunis outline Series

4, A.R. Varistha, Modern Algebra, Krishna Perkashan Media.
Terminal Questions

Q.1  Prove that every group is isomorphic to a permutation group.

Q.2 Any infinite cyclic group is isomorphic to additive group of integers.

*kkk
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Unit - 13

Ring
Structure
13.1 Introduction
13.2 Learning Objectives
13.3 Ring (Definition and Examples)
Self Check Exercise-1
13.4 Properties of Ring
Self Check Exercise-2
13.5 Summary
13.6 Glossary
13.7 Answers to Self Check Exercises
13.8 References/Suggested Readings
13.9 Terminal Questions
13.1 Introduction

13.2

13.3

Dear student, in previous unit we studies about group which is an algebraic structure
equipped with one binary operation. Here in this unit we shall study ring, which is again an
algebraic structure equipped with two binary operations. In this unit we will study the definition of
ring along with same examples and will prove some theorems base on ring.

Learning Objectives

After studying this unit, students will be able to

3. can prove a given algebraic structure with defined binary operation is a ring

1. define ring
2. give examples of ring.
4. prove the theorem base on ring.

Definition of Ring

Let R be a non-empty set in which there are defined two binary operations called
addition and multiplication, denoted by '+' and ".' respectively, then the algebraic structure (R1 +

.) is called a ring if the following axioms are satisfied :

Axioms of additions

1. Closure property :Va,be R,a+b eR.
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2. Associative property :V a, b, ¢ € R, a +(b+c) = (a+b)+c

3. Existence of additive identity :V a € R, 3 and element OcR such thata+0=a
= O+a.

4, Existence of additive inverse :V a € R, 3 - aeR such that a+(-a) + a.

5. Commutative under addition :V a,b e R, a+ b = b+a.

Axioms of Multiplication

6. Closure Property :V a,b € R, a.be R
7. Associative Property :V a, b, ¢ € R, a(bc) = (ab) ¢

Axiom of distributivity

Multiplication is distributive with respect to additioni.e. V a,b,c e R

a.(b+c) =a.b +a.c Left distributive law
and
(b+c).a=bh.a+c.a Right distributive law
_ So any algebraic structure with two binary operation satisfies above properties is known
as a ring.
Note

1. From the definition, it is clear that a ring is cumulative or abelian group under
addition and semi group under multiplication which satisfies distributive property.

2. The element O € R is the additive identity. It is known as zero element of ¢ the ring.
As identity element is unique, So every ring has a unique zero element.

Ring with Unity : If a ring possesses multiplicative identity. They it is known as ring with unity.
Mathematically, if in a ring R; there exists an element denoted by 1 such that VatR, a.1 = 1.a =
a, then R is called a ring with unity. The element IgR, is called the unit element of the ring.

Commutative Ring : If in a ring R, the multiplication composition is also commutative i.e. V a, b
e Ra.b=Dh. athen R is called a commutative ring.

To have more understand of ring let us take following examples:

Example: The set | of all intergers is a ring with respect to addition and multiplication of
integers. This ring is known as ring of integers.

Solution: Axions of addition

(1) Closure Property:-
v a,bel a+b el assum of two integers is an integer.
(2) Associative Property:-

Associative property holds in integers, soif Va,cela+(b+c)=(a+b) +c.
233



(3)

(4)

(5)

(6)

(7)

(8)

and

Existence of additive identity:-

Since 0 € |, so Vae |

a+0=0+a=a. So, 0is additive identity

Existence of additive inverse:-

Ve |, there exist — a € I, such that

at(-a=0=(-a)+a

So, -a is additive inverse of a.

Commutative property:-

Commutative property holds in integers. SovVa,bela+b=b+a.
So | is an abelian group.

Axioms of multiplication

Closure Property under multiplication:-

Since product of two integer is again an integer so Va, b € |, ab e |
So, set of integer is closed under multiplication.

Associative property:-

Associative law holds in integer under multiplication so V a, b, ¢ «l, a(bc) = (ab)
C.

Axioms of distributivity

Since multiplication of interger is distributive with respect to addition of integers,
sovVabh,cel

a(b+c)=ab+ac

(b +c)a=ba+ca.

So the set of integer | is a ring under addition and multiplication.

Remark: The set | is a commutative ring with Unity.

Since 1 € |, so Yae | a.1 = a, so 1 act as multiplicative identity. So the set | is ring with

Unity.

Again multiplication is commutative in integersi.e. V a, b € |

Example 2:

a.b=Db.a.
So, the set | is a commutative ring with unity.

Let the set ] [i], set of all complex nhumber a + ib, where a and b are integer. Then

show that the set ] [i] is a ring under addition and multiplication of complex number.
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This ring is known as ring of Gaussian integers.
Solution:Give J[ij={a+ib;a.be I}

Since element of ][i] are complex number, so all properties of complex numbers are two
for the set ][i].

Axioms Under Addition
8} Closure Property:-
Let x, y e ][i], such that
x=a+ib
y=c+id,a, b,cdel
Thenx +y=(a+ib) + (c +id)
=(a+c)+i(b+d)
elli] [.a+cel,b+del
Hence ][i] is closed under addition.
(2) Associative Property:-

Let X, y, z € ][i] such that

x=a+ib
y=c+id
z=c+if, a, b,cdefel

Then (x+y)+z=[(a+ib)+(c+id)|+(e+if)
= [(a+c)+(b+d)]+(e+if)

=(a+c+e)+l(b+d+f).

as addition is associative for integers, so
:[a+(c+e)]+i[b+(d +s)]
=(a+ib)+[(c+e)+i(d+f)]
=(a+ib)+[ (c+id)+(e+if )]
=X+(y+2)

Hence (x+y)+z=x+(y + 2)

So Associativity holds in ][i]
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(3) Existence of additive identity:-

Let x=a+ibe]li],a b el

we know that 0 € I, so 0 +i0 e ][i] such that

x+0=(a+ib)+ (0 +i0)=(a+0)+1(b+0)
=a+ib
=X
=0+X

Hence 0 + i0 is the additive identity of ][i].

(4) Existence of additive inverse:

Let x = a + ibe ][i], a, b € I, then -a, -b e | such that xa + ib + [—a+i(—b)] =

[a+(-a)]+i[b+(-b)]
=0+i0
=0
= [-a+i(-b)]+[a+ib]
(5) Commutative under addition
Let X, y € li] such that
x=a+ib
y=c+id,a, b,c,del
Thenx +y=(a+ib) + (c +id)
=(a+c)+I(b+d)
=(0+a)+I1(d+b) [.. additioniscommutative for integers]
=(c+id) + (a + ib)
=y +X
Sox+y=y+X
Hence ][i] is commutative under addition
Hence -a + | (-b) is the additive inverse of a + ib = x.
Axioms under multiplication
(6) Closure Property:-
Let X, y € [i] such that
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(7)

then

x=a+ib
y=c+ib, a,b,cdel
Then x.\y=(a+ib)(c+id)
= ac + ibc + iad + i°bd
=ac—bd + | (bc + ad) [ P=-1]
= (ac — bd) + | (bc + ad)
as a, b, c, d are integers so ac — bd <l and bc + ad el
sox.y = (ac —bd) + | (bc + ad) < ][i]
So 1[i] us kissed under multiplication.
Associative Property:-
Let X, Y, Z € ][i] such that
x=a+ib
y=c+id
z=e+if
x.(y-3) = (a+ib). [(c+id).(e+if )]
= (a + ib). [ce + ide + ief + i*df]

= (a+ib). [(ce—df )+i(de+cf)] [~ " =1]

= a(ce — df) + | a(de + cf) + ib (ce — df)
+ib. I (de + cf)
= (ace — adf) + | (ade + acf) + | (bce — bdf)
- bde — bcf
X. (y.z) = (ace — adf — bde — bcf) + | (ade + acf + bce — bdf)

Now (x.y)z = [ (a+ib).(c+id) |(e+if )

= [ac + ibc + iad + i*bd] (e + if)
=[ac—bd + | (bc + ad)] (e + if)
= ace — bde + | (bce + ade) + | (acf — baf) +i? (bcf + adf)
= (x.y).z = (ace — bde — bcf -adf) + | (bce + ade + acf — bdf)
So X.(y.z) = (x.y).z
So associativity holds in ][i]
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(8) Distributive Property:-
Let X, Y, Z € such that
x=a+ib
y=c+id
z=e+if , a, b,cdef el
Then x.(y+2) = (a+ib).|[ (c+e)+i(e+if)]
=(a+ib)- [(c+e)+i(d+f)]
—a(c+te)+la(d+f)+ib(c+e)+i’b(d+f)
=ac+ac—bd-bf+1(ad + af + bc + be)
x.(y +2) = [ (ac—bd)+(ae—bf ) |+i[ (ad +bc)+(af +bc)]
Now Xx.y+x.z=(a+ib)(c+id)+ (a+ib)(e+if)
= ac + iad + ibc + i’bd + ac + iaf + ibe + i?bf
= (ac — bd) +I (ad + bc) + (ae — bf) + | (af + bc)
x.y+x.z = [ (ac—bd)+(ac—bf ) |+i[ (ad +bc)+(af +be) ]
Hence x(y + z) = x.y + X.z
Hence ][i] is a ring.

Example 3: Prove that the set G = a++/2b, a, b € Q where Q is the set of rational number, is a
ring.

Solution: Properties | axioms under addition.
D Closure Property: Let X, y € G such that
x = a+bv2, y= c+d+/2, where a, b, ¢, d e Q.

Now X +y = (a+b\/§) + (c+d«/§)
=(a+c)+(b+d)2

as set of rational number is closed under addition
sox+y=@+c)+(b+d)V2cGVxyecG.
Hence G is closed under addition.
(2) Associative Property:

Since the set of rational number is associative under addition and G is a subset of Q,
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So G = {a+ byv2,a,be Q} is associative under addition.

3) Existence of identity:
SinB 0 e G, as
0= 0+02
thenforx e G, x+0= a+b\/§+0 = a+b\/§ =X.
Similarly 0 + x = x
So, 0 is additive identity of G

(4) Existence of inverse:
Let x=a+by2,ab eQ
then-a,-b e Q.
How — x = -a + (-b)\/2 G
Such that x + (-x) = a+ b2+ (-a) + (-b)/2
=(a+(-a)+ (b +(-b)v/2)
=0+ 02

=0
Similarly (-x) + x =0
So -X is inverse of x.

(5) Commutative Property:
Let x = a+bx/§,y= c+d\/§e G
thenx +y = (a+b\/§) + (c+d\/§)

=@+c)+(b+d)v2
=(c+a)+(d+ b)\/i [as rational number holds commutative property

=+ <c+d\/§)+(a+b\/§)

= y + X
Thus commutative property holds in G.

Axioms under multiplication
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(6) Closure Property
Let x,yeG

X=a+by2 andy=c+d\/§,a,b,c,deQ

then x.y = ( a+ b\/§) ( C+ d«/§)

:ac+bc\/§ +adJ§ + 2bd

xy = (ac + 2bd) + (bc + ad)~/2
asa,b,c,deQthenac+2bd e Qandbc +ad € Q
Hence xy € G
Hence G is closed under multiplication.
) Associative Property:
Let  X,Yy,z e G, such that

x=a+bv2,y=c+dy2,z=e+ 2

where a, b, c,d, e, feQ

Since set of rational number is associative under multiplication so that G as

(xy) z= {(a+ b\/i)(c+ d\/i)} (e+ f«/ﬁ)
= {(ac+2bd)+(bc+ad)\/§} (e+ f\/i)

= ace + 2bde + (bce + ade)\/i
+2 (bcf + adf)

= (ace + 2bde + 2bcf + 2adf) +\/§(bce + ade + acf + 2bdf)

Now, x(y2) = (a+bv2) {(c+ dv2)(e+ fx/i)}

( a+ b\/_){ce + de2 + cf/2 +2df}
( a+ bJ_) {ce + de~/2 +cf /2 +2df)
= (@a+bv2) {(ce+2df ) +(d+cf )v2|

= ace + 2dfa + (ade + acf)\/2 + (ceb + 2dfb)\/2
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+2(deb + cbf)
= (ace + 2dfa + 2deb + Zcbf)\/i (ade + acf + ceb + 2dfb)

= (ace + 2bde + 2bcf + 2adf)J§ (bce + ade + acf + 2hdf)
Hence (xy)z = x(yz)
Hence multiplication is associative in G.
(8) Distributive Property
Let x y.ze Gsuchthatx=x= a+by2,y=c+dv2,z= e+ 2

where a, b,c,d, e, feQ

Then x. (y+2)= (a+bJ§). [(c+d\/§)+(e+ f\/i)}
= (a+b«/§) [(c+e)+(d+ f)ﬁ]

= (ac + ae) + (ad + af) /2 + (bc + be) /2
+2 (bd + bf)
= (ac + ae) + (ad + af)\/2 + (bc + be)/2
+2 (bd + bf)

= (ac + ac + 2bd + 2bf) + (ad + af + bc + be) /2

Now, Xy + xz = (a+b«/§) ( c+d\/§) + (a+b«/§) (e+ f\/§)

=ac+ad/2+ 2bd + bc/2 +ac + af/2 + bc/2 + 2bf
= (ac + ac + 2bd + 2bf) + (ad + bc + af + be) /2

Hence X.(y + z) = xy + Xxz.
Similarly we can prove (y + z) . X = yX + zX.
Hence G Hidds distributive property.
So, Gis aring.
Example 7: Show that set of rational number Q is a ring under the composition defined as
a®b=a+b-1landa®Ob=a+b-abVvabeQ
Solution: Axions under addition
(2) Closure Property
Leta,be Qthena®b=a+b-1¢cQ.
Hence a @ b is closed under addition.
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(2) Associative Property:
Leta,b,ceQ
then(a®@b)®c=(@a+b-1)®dc
za+b-1+c-1
=at+b+c-2
anda®(b@®c)=ad®(b+c-1)
zat+b+c-1-1
=at+b+c-2
@®b@dc=a®(b®c)
So Associative property holds under addition.
3) Existence of identity:
Let a € Q then we to find on element e
such that a®e = a = cda
Since a®e=a+e-1
ifwetakee=1,thena+e—-1=a,sothata®e=a
Hence, here 1 = e will act as identity elementas 1 € Q.
(4) Existence of inverse:
Let a € Q than we have to find on elementb € Q
suchthata®b=e=1b®a

zat+tb-1=1
=b=1+1-a
b=2-aeQ

Hence V a € Q 3 b = 2-a which act as identity element for a such that
a®b=be®a.
(5) Commutative Property:
Va,beQad®db=a+b-1
and b®a=b+a-1
—a+b-1
Hencea®b=b®a

Hence commutative property holds.
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Axions of multiplication
(6) Closure Property:
Va,beQ,aOb=a+b-ab
asa,beQ,a+b,abeQanda+b-abeQ
So Q is closed under multiplication.
(7) Associative Property:
VabhceQ
aObOc)=ab(b+c-bc)
=at+b+c—-bc—a(b+c-hc)
—a+b+c-bc—ab—-ac+abc
aObOc)=a+b+c—-bc—ab-ac+abc.
How (@Ob)Oc=(a+b-ab)Oc
—a+b-ab+c-(a+b-ab)c
=a+b-ab+c-ac—-bc+abc
(@a®Ob)Oc=a+b+c—-—ab-ac-hbc+abc.
Hence a® (bOc)=(a@ b)O c
So associative property holds
(8) Distributive property
Foralla, b, eQ
a0 (b ®c)=a0l (b + c - 1) by using the definingof a® b
=za+b+c—-1-a(b+c-1)using the defining of a © b
—atb+c-1-ab-ac+a
aO(b®c)=2a+b+c—-ab-ac-1
Now, (aOb)y®(a®c)=(a+b-ab)® (a+c-ac)
—a+b-ab+a+c-ac-1
(@aOb)+(@a0bc)=2a+b+c—-ab-ac-1
Sowegeta® (b®c)=(@aOb)® (alc)
Similarly(@a®c)0a=(b0a)®(cOa)

Hence the given set of ration number under given defined operation forms a ring.
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Self Check Exercise =1

Q.1  Prove that set Q, set of rational numbers is a commutative ring under
addition and multiplication, with unit element.

Q.2  Prove that the set R; set of real number is a comitative ring with unity.

Q.3  The set c, of complex numbers is a commutative ring with Unity, prove
this statement.

Q.4  The set 2z, of even integers is a commutative ring without unity.

13.4 Properties of Ring
Theorem 1. Rules of multiplication
Let a, b, and c belongs to a ring R then

1. ao=0a=0

2. (-a) (-b)=ab

3. (-a) (-b)=ab

4, a(b—c)=ab-ac
5. (b-c)a=ba-ca

If R has a unity element 1 then
6. (()a=-a
7. 1)1 =1

Proof: 1. Since R is a ring, so distributive property holds, also R is a group under addition with o
as additive identity. So we can write

ao+ao=a(o+o)=ao0+=a.0+0
= ao+ao=ao=a0+o0
using Cancellation Law we get
a.o=0
Similarly we can geto.a=0
2. Taking a(-b) + ab = a(-b + b) [using distributive properly]
= a.o
a(-b)+ab=0
= a(-b) = -(ab)
Similarly we can prove (-a)b = -(ab)
3. Taking (-a) (-b) =- (-a)b [using 2]
= - (-ab) [using 2]
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=ab [minus times mitrus equation plus]
So (-a) (-b) = ab
4, Takinga(b—-c)=al[b + (- ¢)]
=ab + a(-c) [using distributive property]
=ab-ac [using 2]
Hence a(b—c) =ab —ac
5. Taking (b —c)a=[b + (-c)] a
=ba+(-c)a [using distributive property)
=ba-ca [using 2)
So(b-c)a=ba-ca
If R is a ring with unity i.e. 1 is multiplicative identity of R then 1.x = x = x.1
6. (-1)a=1(1a) [using 2

=-a [.. 1is multiplicative identity of R]
(-l)a=-a
7. ())-1)=-(-11 [using 2 and using is unity of R]
=-(-1)
=1

So =1
Theorem 2: If the ring R has a multiplicative identity then it is unique.
Theorem 3: If a ring has a multiplicative obverse then it is also unique.
Let try some more examples of ring.
Example 1: Let R be a ring such that x* = x Vxe R then prove that

1. X+x=0 vVxeR

2. X+y=0=x=y

3. Xy =yxv xy e R
Solution: 1. GivenV x € R, x* = x

Since R is aring, So R is closed under addition

So VXeR,x+xeR

Now (x+x)?=x+x[.. given x* = X]

= (X+Xx) (X+x)=x+x

= X+X)x+(X+X)x=xX+X
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= O+ X) + (X +x) =x+X

= X+X)+(X+X)=(X+X)

Since R is aring so it has o as additive identity

So

X + 0 = X, using this, we get

X+x)+(x+x)=(x+x)+0

using left Cancellation Law,

So

X+x=0

vVxeR x+y=0
Given Vx e R Xx+y=0
= X+y=Xx+x [using 1]

using by Cancellation Law, we get
= y =X
= X=y
Soif Risaringwithx?=xthenx+y=0=x=y

LetxyeR,asRisaringsox+y e R

Now (X+y)’=x+y [.. x* = x given]
= X2+Xy+yx+y2=Xx+y
= (x2 +y2) + (xy + yx) = x +y [using commutative property]

= Xty +txy+tyx)=x+y

Since R is aring so having as additive identity.
=  x+y)+txy+yx)=(x+y)+0

using left cancellation law

Xy +yx=0

Xy = yX. [using2ie.x+y=0=x=Y]

Hence R is a commutative ring.

Self Check Exercise -2
Q1

Let R be aring and a, b, ¢, d € R then prove that
1. (a+b)(c+d)=ac+bc+ad+hbd
2. (a-b)(c—d)=ac—-bc—ad + bd
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3. (a+b)’=a’+ab+ba+b?
4. (a—b)>=a’—ab—ba + b?
5. (a+b)(a—b)=a’—ab+ba-b?

Q.2 If R is a system satisfying all the conditions for a ring with unit element with the
possible exception X +y =y + X VX; y € R. Then prove that the axiom x +y =y + X
also holds in R.
13.5 Summary
In this unit we studied about
1. ring and its properties, along with some examples.
2. a ring is an abelian group and a semi group which satisfies distributive law.
3. mu_ItipIicative identity i.e. unity element and multiplicative inverse of group is
unique.
13.5 Glossary
. Ring with Unity: If a ring possesses multiplicative identity. Then it is ring with
unity.
° Commutative Ring: In a RingR, the multiplication composition is also
commutative, i.e.vab € R =a.b=b.a
13.7 Answer to Self Check Exercises
Self Check Exercise — 1
Q.1 Do the same as in example 1
Q.2 Do the same as in example 1
Q.3 Do the same as in example 1
Q.4 Do the same as in example 1.
Self Check Exercise — 2
Q.1  Use distributive properties to prove there.
Q.2  Using the fact that 1 is unity of ling i.e. multiplicative identity and using distributive
law.
13.8 Suggested Readings/References
1. Vijay K. Khanna and S.k. Bhambri, A course in Abstract Algebra. 5™Edition.
2. Jaseph A. Gallian, contemporary Abstract Algebra, 8" Edition.
3. Frank Ayres Jr, Modern Algebra, Schqum's outline series.
4, A.R. Vasistha, Madren Algebra, Krishna Prakashan Media.
13.9 Terminal Questions
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Prove that the set R = {(ab)|abe R}is a comitative ring under addition and
multiplication of ordered pairs defined as

(a1b) + (c1d)) = (a + ¢, b+ d)

(a1b) (c1d)= (ac, bd) V (a; b), (cid) € R.

Prove that the set R = {(ab)|abeR}is a ring under the addition and
multiplication of orders paris defined as

(a;b) + (cud) = (a+c, b +d)

(a1b) — (c1d) = (a€ - bd, bc + ad) V(a;b) (c,d) eR

Prove that the set G of all real valued functions of x defined on [0,1] is a ring
under the addition and multiplication defined as below:

(f+9) () =f(x) +9(x) Vv x € [0,1]
(fg) (x) = f(x) +g(x) V x € [0,1], where f; g €G.

Prove that <R, + ,.> is a commutative ring, under usual addition and multiplication
definedbyaxb=a.b+b.a

Show that the set of real number R is a ring under the composition & and O
definedbya®b=a+b+landa®b=a+b+abVabeR
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14.10 Terminal Questions
14.1 Introduction
Dear student, in this unit we will study about some special types of ring, like ring of
matrices where the element of ring is matrix and ring of integer modulo n. In this unit we
will try prove that set of matrix and set of integer modulo n forms a ring and solve same
examples related to ring of mortices and ring of integer modulo n.
14.2 Learning Objectives:
After studying this unit, students will be able to
1. define ring of matrices
2. Solve question related to ring of matrices
3. define ring of integer modulo n.
4. Solve numerical related to ring of integer modulo n.
14.3 Ring of Matrices:

Unit - 14

Some Special Rings

Definition: The set M of all hxn matrices over real/ratind/complex/integer is a non
commutative ring with unity under addition and multiplication of matrices. This ring is known as

ring of matrices.
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Examples: Prove that the set M of all nxn matrices over real is or non-commutative ring with
unity under addition and multiplication of matrices.

Solution: Let M be the set of nxn matrices. Let A, B, C be any element of M. So A, B, C be
square matrices of order n over reals, such that

A= I:aij:|n><n; B= [qj]nxn1 c= [C'j]nxn'

aij, bij, cije R, <1 < n, <j<n.
Properties under addition
1. Closuer Property:

Let ABeM, then A+B=[a,| + [b ]

= a;+b; [ +h |
as a;, bjeR, so a; + bje R

A+BeM.
Hence addition is closed for the set M.

nxn

2. Associative Properties

For ABeM, we have

A+(B+C)=[a] +[b] *[q]
=la ]+ [bi+a ],

= |:aii +(by +g, )Ln
= [ (aij +hij)+(cij) ] [. Associativepropertyhol dinreals]

1
nxn

=(A+B)+C
A+(B+C)=(A+B)+C
3. Existence of identity:-
For AeM, 3 OeM,
O = [0]nxnSUcCh that
A + O = [ai]]nxn + [Onxn
= [aij + Olnxn
=A
Similarly O + A=A
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(4)

(5)

Hence A+ O=A=0 + A,
So O = [QJ;is the additive identity of the set M.
Existance of inverse:-
Let A =[aij]nn,aijeR then
-A = [-aij]n.n, -aijeR such that
A+ (-A) = [ai]]nant [-alj]axn
= [ail+(-ai)],,,
=[Ol
=0
A+(-A)=0
Similarly (-A) + A=0
Hence A+ (-A)=(-A)+A=0
So, (-A) is the additive inverse of AeM.
Commutative Property:-
Let A BeM such that A = [aij]y.n, B = [bij]nxn ,aij, bijeR
Then A+ B = [aijlnxn + [Dif]ncn
= [alj + Dij]nen
= [bij + aij]nxn [ additionofrealn umberiscommutative]
= [bijlaxn + [@i]]nxn
= A+B=B+A
Hence Commutative Property hold in the set M.

Axioms under Multiplication

(6)

Closure property:-
Let A B €M such that
A= [aij]nxm B= [b”k]nxn
Then AB = [aij]nn [Afi]nxn
= [ciK]nun
- Zaij bke R
j=1

Hence ABeM
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So the set of all nxnmatri as is closed under multiplication.
(7) Associative Property:-
Let A, B, C € M where A = [aij]nxn
B = [BjK]nxn, C = [ckp]n«n, aiJ, bjjk, ckpeR, be three elements of M.
Let  AB = [aij]hxn [DjK]nxn
n
= » aijbk
j=1
= [dik]nxn
and BC = [bjk]nxn [Ckp]nxn

=2 by&e
k=1

= [ejp]nxn
Now, to prove (AB)C = A (BC)

We will prove this by taking an arbitrary element of both side, as we know that two
matrias are equal if the order of matrices is same and Corresponding element is also equal or
same.

i.e. (I,p)" element of (AB)C = (I,p)" element of A(BC)
Taking (I,p)™ element of (AB)C = (ith row of AB) (p" column of C).

N

=2 2 &b, G,

k=1 j=1

Now, (I,p)" element of A(BC) = (i" row of a) (p"column of BC)

S0 )
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n
=)
8’
=

=
=

= a;b, G,
=1

k=1 j
Hence A (BC) = (AB) C

So Associative property holds in M.

Hence the set of matrices of order n xn form a ring under usual matrix multiplication and

(8) Distributive Property:-
LetA= [aij]nxna B= [Bjk]nxn
and ¢ = [Cj)n«n be three elements of M then.
To prove A— (B+C)=AB + AC
Taking B + C = [Bjlnxn + [Cik)nen
B + C = [bk + Cilnxn
Therefore (1, k) element of A(B + C) = > 3, (bjkcjk)
k=1
= > (&b +ac;)
k=1
= 2.ab + > a,c
k=1 k=1
= (I, k)™ element of AB + (ik)™ element of AC
= (1, k)"element of (AB + AC)
Hence AB+ C) = AB + AC
Hence distributive property holds in M.
addition.

Non-Commutative ring:-

Now, to prove set of matrices is a non-commutative ring since we know that matrix
multiplication is not commutative in general. So ring of matrices is non commutative ring.

Ring with Unity

Since we know that in the set of matrices we have identity matrix I,., such that YAeM,

leM, Al=1A=A

So identity matrix | act as multiplicative identity or unity for this ring.
So ring of matrices is a non commutative ring with unity.
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Let us try to solve some examples related to ring of matrices.

0 X
Example 2: Prove that the set of all matrices of the form { }; x,yeR, with matrix addition
oy

and multiplication is a ring. Also check about the commutative property for this ring.

0 X
Solution: Given R = { ]x, ye R}
oYy

Axioms under addition
(2) Closure Property:

(0]
Let A= [ X
oYy

seosle 3 le
oy 0 Y,
_10 XTX
o ui
AS Xy, Xo, Y1 Y2 are real so x; + X, +y; +y, are also real.
Hence A+B e R

o]
} ,B= [0 ?} , X1, X2, Y1 Y2€R be any two elements of R then
2

So R is closed under addition
(2) Associative Property:-

0] o] 0]
LetA= [ Xl] B = [ Xz} C= { XS} be any three elements of R
O Y 0 Y, 0 Y,

where X1, X2, Y1, Yo, X2, Y2€ R, then
(A+B)+Ce [ le Xz} { Xﬂ
oV oY, 0 Y
_Jo &+&}{O>ﬂ
O YitYy, 0 Y

_[o &+&+&}
Vit Yo+ Ys
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Since X3, Xz, X3, Y1, Y2, Y3€ R and additions set of real numbers is associative under
addition so

wrecao 3]
o V+(Y,+Ys)

_lo x],lo X2+><3}

10 Y] [0 Y>tY;

LR

[0 Vi [LO Y] [O Vs
=A+(B+C)

Hence A+B)+C=A+ (B +C)
So Associativity hold in given set.
3. Existence of identity

0 X
Let AeR such that A = o ‘ we know that in matrix
y

0O O
we have O = ‘ eR such that
(o)

0 X [0 O
A+0O= +
0O VY [0 O
o X
=1y y
=A
Similarly O + A=A
0 e :
So o= o act as additive identity for AeR.
4. Existence of inverse:-

0
For each A = ‘
0

X
, X, Y eR
Y

0]
we have B = ‘0 ‘ -X,-yeR such that
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So,

0 X |0 =X
A+B= +
oy [0 Y
_ X+ (—X)
y+(=y)

o o :
= = identity element
00

o —
B =
0 -y

Commutative Property:-

(o} 0
Let A= % %
o yl o y2

‘ will act as inverse element for A.

y B = y X1, yll X1, YZER

0 X
0O %

0 %
0 Y,

then A+B-= +

X+ X
ity
X +X

0
= [..addition is dosed in real numbers]
YotV

X
Y,

0 X
oY

+

So A+B=B+A
Commutative property holds under addition.
Axioms under multiplication

Closure Property:

0 X o
Let A= and B = , X1, X2, Y1, Y2€R then
Yi 0 Y,
0} 0
A.B= X %
O Yil|0 Y,
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_ [0+0 O+ xlyz}

10+0 O0+vyy,
_o &w}
0 WY,
as X1, X2, Y1, Y26R SO Xy, Y2, Y1, ¥2€R
So AB R
= R is closed under multiplication.
7. Associative Property:
o o] o]
Let A= % ,B= % , C= % be any three elements of R,
oy oY, O VY,

where X4, V1, X, Y2, X%, Y’ eR then

0 0 0
o worc=g ¥0 H o )
0 YJ|O % )0 vV,
_[o &w”? &}
0 VY, |[0 Vs
0 &%%}
ERAAA

as Xi, Xz, X3, Y1, Y2, YyseR and y; y, y;€R

0 x(Y,Ys)
So (AB) C = eR
°(AB) {0 m(nmi

a0 M [ ]
1 2 3
_[0 &H? &m}
10 YiJ[0 ¥2¥s
| &h%}

0 YiYoYs
So, we get (AB)C = A(BC)

o
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Hence matrix multiplication is associative in R.

8. Distributive Property:-
0] o] 0]
Let A= & ,B= & , C= % where Xi, X, X3, Y1, Y2, Y3
oy 0 Y, 0 ¥

are any three element of R.

A (B+C) = 0 % 1O X2+0 %
O v\ J\|O V.| [0 v,
_[o xlﬂo X2+y3}
0 V][0 Y, +Vs
(

0
0

xlw+wq
Yi(Yo+Ys)

AEsC) = |0 MY TNTYs
O Y, + ¥tV

Now AB+AC=[O X {0 X2}+{0 Xl}{o )(3}
O vi||0 ¥,| |0 ¥%||O0 vV,

0 &»"+F &m}
0 yiv,] [0 s

_|o &w+&+w}
0 YiYo+¥i+Ys

So A(B+C)=AB+AC

Hence distributive property holds in R.
0 x _ _
So, the setR = 0 X, Ye R} is aring.
y

To check the commutative property:

0 0
Let A= { X1:| and B = [ XZ]XL X2, Y1, Y2€R
0 v 0 v,
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thenAB:{0 Xl} {O XZ}
0 v]|0 V¥,

:[0 lez}

0 vy,
NowBA:[O XzHO Xl}
0O v, /|0 Vv

:[0 xzyl}

0 vy

0 x
Since AB = BA, Sothe set R = {[O ]X, ye R} form a non commutative ring.
y

Self Check Exercise-1

Q.1 Let M be a set of all 2x2 matrices with their element as integers, then
show that M is a ring under usual matrix addition and multiplication.
Check the unity element of ring.

Q.2 Let M be the set of all 2x2 matrices over rational then show that M is a
ring with unity.

14.4 Ring of Integers Modulo n.
Definition:

The set 2, = {0, 1, 2, ....... n-1} under addition modulo n and multiplication modula n
form a ring which is commutative. This ring is known as ring of integedmodula. This is a finite
ring.

Examples: Show that the set Z, = {0, 1, 2, ....... n-1} form finite a commutative ring under
addition modulo n and multiplication modulo n.

Solution: Given setis Z,={0,1, 2, ....... n-1}, n > 1 for addition modulo n composition we have,
forall a, b €Z,

a +, b = Least non- negative remainder 't when a + b is divided by n. i.e. a + b = r (mod
n) and for multiplication modulo n,

a x, b = least non-negative remainder 'r when a x b is divided by n. i.e. ab = r (mod n)
Now, to prove Z, form a ring;

Axioms under Addition
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Closure Property:-
Leta, b eZnthen Va, b €Z,, a<a, b<n,then
a +, b = Least non-negative remainder 'r when a + b is divided dy n
Since forr,0<r<n
=reZ,
So, a+t,b ez,
So Z, is closed under addition.
Associative Property:-
Let a, b, c, € Z, then
(a +, b) +, c = least non negative remainder when (a + b)+c is divided by n
= Least non negative remainder when a + (b + ¢) is divided by n.
Hence (a +,b) +,c=a+, (b +,C)
So associative property hold in Z,.
Existence of identity:-
Va eZ, 0<a<n,whenwe add 0 i.e. a + 0 or o + a have the remainder a
when divided by n. So
a+t,0=a=o0+,a
So Oe Z, act as identity element of Z,.
Existence of inverse:-
Oe Zjthen o is the inverse of itself. Also for all Oe Z, a # 0, we have n — ae Z,such that
a+,(n—a)=0
and (h—a)+,a=o0
Hence (n — a) is the inverse element of ae Z,
Commutative property:

Since the least non negative remain remains the same if we divide a + b by n or b + a by

n. So commutativity holds in Z,. Mathematically.

a+,b=b+,a.

Axioms Under Multiplication

Here composition is a x, b = least non-ve remainder when ab is divided by n

Closure Property
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Fora,beZni<r,b<n
a xp b = least non-ve remainder when ab is divided by n
=r,o<r<n
ax,b e Z.
So Z, is closed under multiplication.
7. Associative Property:
VY a, b, ¢ € Z,, the least non negative remainder remains the same
if (ab)c or a(bc) is divided by n.
(axpb)xnc=ax,(bx,c)
So associativity holds in Z,,.
8. Distributive Property:-
vYabcelZ,
a xp(b x,¢) =ax, (b +¢) [.. bx,c=b+ c (modn)
= least non negative remainder when a (b + ¢)
= ab + ac is divided by n.
=ab x, ac
= (ax, b) x, (@ xpC) [.. ab=a x, b (mod n) ac = a x, b (mod n)
Similarly (b x, €) x, a = (b x, &) xn (C %, &)
Hence distributive property holds.
So, Z,is aring.
To prove Z, is a commutative ring.
Leta, b € Zn
then a x, b =least non negative remainder when a.b is divided by n.
= Least non-negative remainder when b.a is divided by n
Hence ax,b=b x, a
So Z, is a commutative ring.

Example 2: Show that the set Z, = {1, 1, 2, 3, 4, 5} is a commutative ring with respect to
addition modulo 6 and multiplication modulo 6..

Solution: Given Zg={1, 1, 2, 3, 4, 5}

then addition modulo 6 is defined as if a, b € Zg.
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then a xg b = least non negative remainder when a + b is divided by 6

In order to prove Zs is a ring, firstly to prove Zs is an abelian group under addition
modulo 6. Hence the composition table is

+6 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4
From composition table, we can say that (using the concept of unit)
1. Zs is closed under addition
2 Zs holds associative property
3. 0 is additive identity of Zg
4 every element of Zg has a inverse.
inverse of 0 is O
inverse of 1is 5
inverse of 2 is 4
inverse of 3is 3
inverse of 4 is 2
inverse of 5is 1
5. As the composition is symmetrical about the main diagonal. Hence it is
commutative.
So Zg is an abelian group.
Now to prove Zg is a semi group under multiplication
+6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
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4 0 4 2 0 4 2
5 0 5 4 3 2 1
7. Since the element of composition table are element of Zg, so Zg is closed under

multiplication modulo 6.

8. Since elements of Zz; are real number and real numbers are associative under
multiplication. So the least non negative remainder when (a x b) x ¢ is divided by n

= the least non negative remainder when ax (b x c) is divided by n
Hence associative property hold in Z.
(8) Let us prove it by taking any three element of Zs.
Since 1, 2, 3 € Zs.
then 1 x5 (2+63)=1x%g5

=5
Also (1 x62) +6 (1 x¢3) =2+ 3
=5

+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

From composition table, it is clear that
1. All the element of composition table are element of Zs
So Zs is closed under addition modulo 6.

2. The element of Zs are real numbers and associative property holds in real numbers. So
the least non negative remainder when a + (b + c) is divided by 5

= the least non negative remainder when (a + b) +c is divided by 5
So associative property hold in Zs
Here 0O is the additive identity of Zs

Every element of Zs has its inverse as
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inverse of 0 is O
inverse of 1is 4
inverse of 2 is 3
inverse of 3is 2
inverse of 4is 1

5. Since elements of composition table are symmetrical about the main diagonal. So Zs is
commutative.

So 1 x6(2 +63) = (1 x 2) +5 (1 x6 3)
Similarly we can prove it for every element of Zg
Hence Zg holds distributive property

So Zs={0,1, 2, 3,4,5}is aring.

Now to prove Zg is a commutative ring.

Since from the composition table of Zg under multiplication modulo 6, it is clear that
elements are symmetric about the main diagonal. Hence it is commutative under multiplication
modulo 6.

Therefore Zg is a commutative ring under addition modulo 6 and multiplication modulo 6.

Example 3: Show that Zs = {0, 1, 2, 3, 4} is a commutative ring under addition and multiplication
modulo 5.

Solution: Since given Z5 ={0, 1, 2, 3, 4} and +5 and xs is defined for a, b € Zs as
a +5 b = least non negative remainder when a + b is divided by 5.
a x5 b = least non negative remainder when a x b is divided by 5

To prove Zs is a ring, firstly to prove Zs is a commutative or abelian group. We will prove
this by using composition table as.

Hence Zs is on abelian group.

Now to prove Zs is semi group under multiplication modulo 5. The composition table is

+5 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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0. Since all the element of composition table are the element of Zs, so Zs is closed under
multiplication modulo 5.

7. Since the element of Zs are real numbers and real numbers are associative under
multiplication. So

The least non negative remainer 't when (a.b)c is divided by n for a, b, ¢c € Zs
= The least non negative remainder 'r' when a. (b.c) is divided by n.
So (ax,b) x,c=ax,(bx,c)
Hence Zs is associative under multiplication.
8. Distributive Property:-
Let us prove it by taking any three element of Zs
Since 2, 3,4 € Zs
then 2 x5 (3+55) =2 x5 3
=1
Now, 2Xx3+2x55=1+0
So 2X5(3+55)=2%x3+2x%x55=1
Similarly we can prove this for other elements
Hence Zs is a ring under addition and multiplication modulo 5.
Now to prove Zs is commutative.

Since the elements of Zs are real numbers and real numbers are commutative under
multiplication. So

The least non negative remainder when a x b is divided by n.
= the least non negative remainder when b x a is divided by n.
Hence Zs is a commutative ring.

Self Check Exercise — 2
Q.1  Prove that Z; is a commutative ring under addition and multiplication modulo 7.

Q.2  Prove that Zg is a commutative ring under addition and multiplication modulo 9.

14.5 Ring with or Without Zero Divisor

In the above section-2 we studied that set of all 2x2 matrices over real forms a ring. Let

10 00
us consider two elements of such ring, M. i.e. A= {O O} and B= [1 O}

Here Ax0and B0
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1 0(|0 O
But AB=
o o)Lz o

{ 4

We, see that product of two non zero elements of the set of 2x2 matias, M is a zero
element of M. i.e. additive identity of M.

AB=0,A#0,B=0
So, a new term comes here i.e. zero Divisor
Zero Divisor

A non-zero element of the ring R is called a zero divisor or divisor of zero if there exists
an element = 0 €R such that either ab = 0 or ba = 0.

So, from above example AB=0,A=0,B=0

10
A= [0 0} is a zero divisor of ring M, which is itself non zero.

0O 0|1 O 0 0] 110
Also BA= = #
1 0{/0 O 1 0](00
So, inaring R it is also possible that AB = 0 but BA = 0 for A= 0, B=0.

Ring With Zero Divisor

If in a ring R there exist non-zero elements a and b such that ab = 0, then R is said to be
a ring with zero divisor.

Ring Without Zero Divisor

If in a ring R, the product of two non zero elements of R is zero then either 0 =0 or b = 0.
In this unit, we only discuss ring with zero divisor.
Let us take following examples to have more understanding of ring with zero divisor.

Example 16:- Set of 2x2 matrices with their elements are integers, under usual addition and
multiplication of matrices, is a ring with zero divisor.

Solution: We can easily prove that set of 2x0 merrier, M is a ring (Ring of matrices).

, 4 0 00
Let us take matrix A = and B = be any two elements of
O 0 2x2 0 5 2x<2

set of 2x2 matriar, M
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4 0
Since A = {O O} # 0, non zero element of M

0

Now, AB =

Since AB =

4
0
0
0
0

0

00
B= [ 5}& 0 non zero element of M

ollo o

=0,butA20andB =0

So using the definition of ring with zero divisor, i.e. product of two non zero element is
zero, the set of all 2x2 matrices is a ring with zero divisors.

Example 2: The set Zg = {0,1,2,3,4,5} is ring with zero divisor under addition modulo 6 and

multiplication modulo 6.

Solution: Since Z6 is a Commutative ring (Proved in ring of integer modulo n)

Since, 2, 3 € Zg, are non zero elements of Zg. Also O is the zero element or additive

identity of Zg

Taking 2 x¢ 3 = Least non negative remainder when 2x3 is devided by 6

=0

So 2x%x3=0

i.e. product of two non zero elements is equal to zero element of ring.

Again taking 3, 4 € Zg

3 xg 4 = Least non negative remainder when 3x4 is divided by 6

=0

—  3x4=6

i.e. product of two non zero elements is equal to zero element of ring.

So, Zs is a ring with zero divisor

Self Check Exercise - 3
Q.1  Check Whether or not Z8 is a ring with zero divisor.

Q.2  Give an example of ring with zero divisor.
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14.6 Summary

In this unit we studied about :

1.
2.
3.

ring of matrias with examples
ring of integer modulo n with examples

ring with zero divisor with examples.

14.7 Glossary

Non-Commutative Ring:- In a Ring R, it is said to be hon-commutative ring, if the
multiplication is not commutative. i.e. 3a, b € R s.t a.b=b.a.

Zero divisor :- A non-zero element of the Ring R is called zero divisor if there
exist an element b # 0 € R such that eitherab =0 or ba=0.

Ring without zero divisor - If in a ring R, the product of two non-zero elements of
R is zero, i.e. ab = 0, there eithera=0o0r b =0.

14.8 Answer to Self Check Exercises
Self Check Exercise - 1

Q.1
Q.2

Can be solved on the same line as of example 2.
Can be solved on the same line as of example 2

Self Check Exercise - 2

Q.1
Q.2

Can be solved on the same line as of example 4

Can be solved on the same line as of example 5

Self Check Exercise - 3

Q.1

Q.2

as 2, 4, e Zg and 2 xg 4 = Least non negative remainder when 2x4 is divided by 8
=0, Hence Zg is a ring with zero divisor.

Zq is a ring with zero divisor.

14.9 References/Suggested Readings

1.
2.
3.
4.

Vijay K. Khanna, and S.K. Bhambri, A course in Abstract Algebra.
Joseph A. gallian, Contemporary Absteract Argebro.
Frank Ayres. Jr, Modern Argebra, Schaum's Outline Series.

A.R. Vasistha, Modern Algebra, Keishna Prakashan Media.

14.10 Terminal Questions

1.
2.
3.

Give an example of a Commutative ring with unity.
Give an example of a non Commutative ring with unity.

Give an example of ring with zero divisor.

*kkkk
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Unit - 15

Integral Domains

Structure
15.1 Introduction
15.2 Learning Objectives
15.3 Ring Without Zero Divisor
Self Check Exercise-1
15.4 Can Cellation Laws In Ring
15.5 Integral Domains
Self Check Exercise-2
15.6 Summary
15.7 Glossary
15.8 Answers to Self Check Exercises
15.9 References/Suggested Readings
15.10 Terminal Questions
15.1 Introduction

Dear student, in this unit we will study about some ring having certain charactersties like
ring without zero divisor and integral domain. We will use some examples to have proper

knowledge of these special types of ring.

15.2

15.3

Learning Objectives:-
After studying this unit, students will be able to

1. define ring without zero divisor

2. give examples and prove questions related to ring with zero divisor.
3. define integral domain

4. give example and prove questions related to ring with zero divisor.

Ring Without Zero Divisor

As in previous unit we have discussed about ring with zero divisor, here we will study

about ring without zero divisor

As a ring without zero divisor is a ring when the product of ro two non zero element of R

is zero. Mathematically, ifab=0=a=0o0rb =0.
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Let us try following example to have more cleanly of ring without zero divisor.
Example 1:- The ring of integers is a ring without zero divisors.

Solution: As we know that set of integers from a ring also product of two non zero integers
cannot be equal to zero integer. Hence ring of integers is a ring without zero divisor.

Example 2: The set of real number R is a ring without zero divisor

Solution: As again product of two non zero real numbers cannot be equal to zero
Example 3: Show that ring Zs = {O,IL 2, 3,4} is a ring without zero divisor.
Solution: Since Zs is a ring.

As Zs= {01,234}

In order to prove Zs is a ring without zero divisor
we have to checkthatab=0=a=0o0rb=0.
So, taking the non zero elements of Zs
1 x5 2 = Least non negative remainder when 1x2 is divided by 5 = 2
1 x5 3 = Least non negative remainder when 1x3 is divided by 5 = 3
1 x5 4 = Least non negative remainder when 1x4 is divided by 5 = 4
2 x5 3 = Least non negative remainder when 2x3 is divided by 5 =1
2 x5 4 = Least non negative remainder when 2x4 is divided by 5 = 3
3 x5 4 = Least non negative remainder when 1x4 is divided by 5 = 2
So there are no such non zero element in Zs such that There product is zero element of Zs.
Hence Zs is a ring without zero divisor
Example 4: Show that the ring Z, is a ring without zero divisor

Solution: Since Z; = {O,l, 2,3,4,5, 6} , how we have to check that is there any non zero element
in Z; such that there product is zero. So

1x,2=2
1x,3=3
1x,4=4
1x,5=5
1x,6=6
2x,3=6
2x;4=1
2x;5=3
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2X76:5

3x;4=5
3x;5=1
3x;6=4
4x;5=6
4%x;,6=3
Ex;6=2

So there are no such non zero elements in Z; such that there product is zero

Hence Z; is a ring without zero divisor

Self Check Exercise - 1

Q.1  Show that Z11 is a ring without zero divisor

Q.2  Show that Z13 is a ring without zero divisor

Q.3  Show that ring of rational and complex number are ring without zero divisor.

15.4 Cancellation Laws in Ring

If R is a ring, then R is an abelian group under addition and semi group under
multiplication, with which obeys distributive property. As R is an abelian group under addition,
so by the properties of group, Cencellation Law holds in ring also for addition. For multiplication
Composition, Cencellation Law for ring holds only if.

A #0, ab = ac = b = c, left Cencellation Law
and a=0,ba=ca= b=c,right Cencellation Law.
Theorem 1 - Aring R is without zero divisor if and only if the cencellation laws holds in R, or
R is without zero divisor <> Cencellation Laws holds in R.
Proof:- Let R is without zero divisor to prove Cencellation Law holds in R.
Since R is without zero divisor. Let a, b, ¢ be any three elements of
R such thata =0, ab = ac
—ab-ac=0
=a(b-c)=0
as R is without zero divisoranda=0=b-c=0
=>b=c
Hence we have proved if a= 0, ab = ac = b=c

So left Cencellation Law holds.
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Similarly we can prove right Cencellation Law,
Conversely:- If cencelletion Laws holds in ring then ring is without zero divisor.
Suppose that Cencellation Laws holds in ring R. If possible
Let ab=0,a=#0,b=0inR,i.e. Risaring with zero divisor
As Cencellation Law holds so, a# 0, ab =a.0 = b=0
Which is a contradiction,
Hence R is a ring without zero divisor
15.5 Intergral Domain (ID):-

A ring is known as integral domain if it is

1. commutative ring
2. has unit element
3. is without zero divisor

Example: The ring of integers is an integral domain

Solution: Since set of integers form a ring, which is Commutative.
Also lel, act as unit element. So ring of interger has unity.
Also if a, b are two integers such that ab = 0, then eithera=0o0r b = 0.
So ring of integers is an intgeal domain.

Example 2: The algebraic structure (C, +, .), set of complex number under addition and
multiplication of Complex number is an integral domain

Example 3: Set of rational number and set of real number under usual addition and
multiplication are integral domain.

Example 4: Show that Zs is an integral domain.
Solution:- Since we have earlier proved that Zs = {O,:L 2,3,4} is a ring, which is commutative.
Also we have proved that Zs is a ring without zero divisor (Example 3). Also Zs = {0,1,2,3,4}
Since 1 € Zssuchthat vV a, € Zs, 1 xsa=a=a x5 1, Hence 1 is unity of Zs.
Since Zs is a Commutative ring, having unity element and is a ring without zero divisor

Hence Zs is an integral domain.

Example 5: Show that Zg is not an integral domain.

Solution: As Zs = {0,1,2,3,4,5} is a Commutative ring (proved)

Also V a, € Zg, 1 € Zg, such that

axgl=1xga=a
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So 1leZg act as unity element of Zg

So Zs is a Commutative ring with unity.

Again, 2, 3 € Zg, and =#and are non zero elements of Z6

So 2 xg 3 = Least non negative remainder when 2x3 is divided by 6
=0

= 2x3=0

Similarly, 3, 4 € Z6 and are non zero element of Zg

So, 3 xg 4 = Least non negative remainder when 3x4 is divided by 6
=0

So=3x%x;4=0

So, in Zg, product of two non zero elements is zero. Hence Zg is a ring with zero divisor

Since Zg is a commutative sing with unity but is a ling with zero divisor

So Z; is not an integral domain

Example 6: Let R; and R, be integral domains. Is R;xR; is an integral domain?

Solution: Since we know that

Rix R,{(ab):aeR,beR,}

Since R; and R, are integral domains

= R; and R, are rings

So Rix R, is aring.

Since (a,0), (0,b) e RixR,foraz0 e Riandb =0 e R,
Also (a, 0). (0, b)=(0,0)

i.e. Product of two non zero element is zero. So R;x R, is a ring with zero divisor. S0 Rix R, is
not an integral domain.

Self Check Exercise - 2

Q.1  Prove that ring of Gaussian integers Z;;; = {a+ib, a,be Z} is an integral
domain.
Q.2  Thering Zy of polynomials with integer coefficients is an integral domain

Q.3 Thering z\/_z {a+ b\/E, a,be Z} is an integral domain.

Q.4  thering Zp of integrals modulo a prime p is an integral domain.

Q.5 Thering Zg of integers modulo B is not an integral domain,
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15.6

15.7

15.8

Summary:
Dear students in this unit, we studied about

1. The ring without zero divisor with their examples.

2. R is a ring without zero divisor iff Cancellation Law holds in R.

3. A commutative ring with unity, without zero divisor is known as integral domain.
Glossary:-

. Integral domain:- A commutative ring with unity is said to be integral domain if it

has no zero divisor.

. Ring with zero divisor:-Inaring R, 3
non-zero element a and b such that ab = 0
left Cancellation law + If. a, b, ¢ € R, then
az0,ab=ac=>b=c

Answers to Self Check Exercises

Self Check Exercise - 1

Q.1 Since in Z11 there is no any non zero elements such that their product is zero
(As in example 4)

Q.2 In Z5 there is no non zero elements such that their product is zero (As in
example 4)

Q.3  Since product of two non zero rational/Complex number cannot be equal zero.
So ring of rational and Complex numbers are ring without zero divisor

Self Check Exercise - 2
Q.1  Since product of two Complex number cannot be equal to zero.

Q.2  Product of two non zero polynomial cannot be equal to zero polynomial

Q.3 Letxiye z\/§ be any two non zero elements and such that x = a;+ blﬁ, ai, a,,
bi, b, are integral. Which are non zero.

Since product of two non zerointegeu cannot be equal to zero.
Q4 Z3={0123456,7}

2,4 e Zg, are non zero elements of Zg

Also 2 xg 4 = best non negative remainder when 2x4 is divided by 8
Product of two non zero element is zero

So Zg is have zero divisor

S0 Zg is not an integral domain.

274



15.9 Reference/Suggested Readings

1.
2,
3.
4.

Vijay K. Khanna and S.K. Bhambri, A course in Abstract Algebra,
Joseph A Gallian, Contemporary Abstract Algebra.

Frank Ayres Jr. Modern Algebra, Schaum's Outline Series.

A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.

15.10 Terminal Questions

1.

Let R; and R, be two rings. Show that Ryx R, is an integral domain iff one of R
or R; is an integral domain and the other contains only a zero elements

*kkkk
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Unit - 16
Division Ring And Field

Structure

16.1 Introduction
16.2 Learning Objectives
16.3  Unit Element of A Ring
Self Check Exercise-1
16.4 Division Ring
Self Check Exercise-2
16.5 Field
Self Check Exercise-3
16.6 Summary
16.7 Glossary
16.8 Answers to Self Check Exercises
16.9 References/Suggested Readings
16.10 Terminal Questions
16.1 Introduction

Dear student, in this unit we will study about one other characteristic of ring, i.e. inverse
of an element or unit element. One the basis of unit or inverse of an element we can defined a
division ring and fields. So division rings and fields are again some special types of ring.

16.2 Learning Objectives:

After studying this unit student will be able to
define unit element of a ring
find the unit or inverse of an element of ring.
Define division ring
solve question related to division ring.
define field
solve questions related to field.
16.3 Unit Element

Since a ring is a abelian group, so inverse of each element exist under addition. But,
under multiplication we have to check either verse of element exists or not. So for inverse of
element under multiplication the term unit is defined.
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Definition
Let R be a ring with unity. Then an element acR is said to be unit or inversibly if there
exists beR such that ab = 1 - ba. In this case we can also write b = a™.
Let us try following examples to have understanding of unit element.
Example 1: Find the unit elements or inversible element of the ring of all integers.
Solution: The elements of ring of integers are { ....... -3-2,-1,0,123....... } we can easily check

that 1 is unity or multiplicative identity of ring of integers. Also, in the ring of integers only two
elements are there which are inversible or having unit. These elements are 1 and -1

as 1x1=1
lx-1=1
Let 3 € Zthen 3-1 = % ¢ Zis not an integer
So 1 and -1 are only unit elements of ring of all integers.
Example 2: Find the units of Z;, which is commutative ring with unity.

Solution: Since Z; = {O,ZL 2,3,4,5,6}. We will find the inversible element of units of Z; using
composition table.

Since composition table of Z; is as

X1 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Since 1 is multiplicative identity. Using cermposition table, we can write
1x,1=1
2 x7 4 = Least non negative remainder when 2x4 is divided by 7 = 0

4 is inverse of 2
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2 is a unit or inversible element.

Similarly we can write

3x;5=1
4x,2=1
5x;3=1
6x;6=1

Hence 1, 2, 3, 4, 5, 6 are units of Z; or we can say inverse of there element exists.
Example 3: Write the units of ring of all nxn matrices with elements as real numbers.

Solution: Since the inverse of a matrix exist if it is non singular i.e. its determinant is non zero.
Hence all nxn matrices with element as real number, which are non singular are inversible
elements or unit of ring of all nxnmatricer.

Example 4: Find unit elements of Commutative ring with unity Zs.
Solution: Since Zs = {0,1,2,3,4,5,6,7}

The composition table of Zg under multiplication is

Xs 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

Since 1 is identity element under multiplication. So from the table we find that
Ixgl=1
3 xg 3 = Least non negative integer when 3x3 = 9 is divided by 8 = 1
5 xg 5 = Least non negative integer when 5x5 = 25 is divided by 8 = 1

7 xg 7 = Least non negative integer when 7x7 = 49 is divided by 8 = 1
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Soin Zg, 1, 3, 5, 7 are unit or inversible element.
as, 2, 4, 6 does not multiplicative inverse so 2, 4, 6 are not units in Zg.
Example 5: Find units of Ze.

Solution: Zs = {0,1,2,3,4,5}

The composition table of Zg is.

Xs 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 0 2
3 0 3 0 3 0
4 0 4 2 0 4
5 0 5 4 3 2

From composition table we can say that only 1 and 5
are inversible elementsas 1 xg1=1and5xs5=1
So only units of Z6 are 1 and 5
Example 6: Find units of Z[1].
Solution: Let atibe Z[i].,a,b € Z
Let a+ib is a unit. Then
1
a+ib
1 a-ib
~atib a-ib

(a+ib)=

a—ib
(a+ib)(a—ib)

= aaz_T'bbz -+ (a+b)(a-b) = &% - b?

. a i -b
T a?+b? a’+b?
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a
Now, (a + ib)-1 € Z [i] iff and
( ylezll a’+b? a’+b

> are integers
ie. a’+b’=1
Puttingb=0,a°=1=a+1

Now putting values of aand b in a +ib
Whenb=0,a=+1sounitis+1+0=+1
Whena=0,b=+1,sounitis 0 +i=+i
So units of Z[i] are +11 -11 i, -i

Example 7: Check that -7 + 4\/§ is a unit in Z\/§
Solution: Since Z\/_ = {a+ b\/§,a,be z}
Let-7 + 43 is aunitin Z/3

Using definition, i.e. a € Ris a unit. If 3 b € R such that
a.b = 1 then a* exists.

Since -7 + 4\/§ iS a unit so (—7+ 4\/5)71exists.

So. (<7+4/3) = —+

el

_ 1 X—7—4J§
—7+43 -7-43

(<7) ~(43)

1-4V3

49-48

—7-43

1
—7-4J3 73

So —7+4\/§ is a unit in Z\/ﬁ.

Example 8: find the units of Z«-2 = {a+ix/§b;a,be Z} under usual addition and

multiplication.
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Solution: Let a+i\/§b;a,be Z is a unit element of Z(\/—Z)

Now,

Then (a+ i\/Eb)fl = !

a+iv2b
1 a—i\2b
= X on
a+iv2b a—iv2o
:‘3‘;\@’2 - (@a+b)(a-b)=a’-b?
a?-(iﬁb)
a-iv2b N
= - NE v i2=-1
az—(—ZbZ)
_a-iv2b
a? +-2b?
__a i3(b)
Cai+2? ai+2p?
- (-b)
= + 2
a’ + 2b? I\/_£a2+2b2

(a+i\/§b)71 € Z\/ZiffL and _—bzare integers.

i.e.

So,

a’+2b° a’+2b

a2+2b2=1
This is possible only ifb = 0 and a® = 1

a=+1

1 and -1 are the only units of Z+/-2

Self Check Exercise -1

Q.1
Q.2

Q.3

Q.4

Find the unitin Z12

Find the units of ring R = {a+ bv-3,a,be Z.}

Check that —7+4\/§, 2—\/5, 5+3\/§, —3+2\/§ is a unit in Z\/§ or
not.

Check that 1+\/§ is a unit of Z«/E or not.
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16.4 Division Ring or Skew Field

Definition:- A ring R with atleast two elements is called a division ring or a skew field if it
1. has unity
2. is such that each non zero element possesses multiplicative inverse.

Here it is interstingti note that a ring is an abelian group under addition holding
distributive property along with semi group under multiplication. So a ring under multiplication is

D Closed under multiplication
2) Associatively holds

For division ring 3 has unity i.e. multiplicative identity exists
4) non zero element has inverse.

So looking on above condition we can say, if R is a division ring, then the set of all hon
zero elements of R from a group under multiplication.

Example 1: The ring Q, ring of rational number is a division ring.

Solution: Since 1 €Q will act as unity of the ring i.e. multiplicative in identity and V x = % €Q.

Jy= q D such that xy = 1 = yx i.e. every non zero element has its inverse. So the ring Q is a
division ring.
Example 2: The ring R, ring of real number is a division ring.

1 1 1
Solution: Ring of real number has unity. Also V a € R, 35 € R such that a.g = 5 a=1

So every non zero element has its inverse. So ring of real number is a division ring.
Example 3: The ring C, ring of complex number is a division ring.

Solution: Ring of complex number has 1+0 ie C, which act as multiplicative identity i.e. unity of
the ring.

Also,ifa+ib e C,a, b eR,then —c C
a+ib
. 1 1 .
Such that (a +ib). —— =1= — . (a+ib)
a+ib (a+ib)

Elence ring of complex number is a division ring.

Self Check Exercise - 2

Q.1  Check that (z, + i) is a division ring or not.
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16.5 Field
Definition:- A ring R with at least two element is called a field if,
QD has unity
2) every non zero element has its multiplicative inverse.
3) it commutative.
We can see that division ring has (1) and (2) property.

So we can say that commutative division ring is a field. Let us try following examples
based on division ring.

Example 1: The set of real numbers is a field.

Solution:- As we have proved in example 10, that the set of real number is a division ring. Also
real number are commutative under multiplication. So the set of real number form a field.

Example 2: The set of rational number is a field.

Solution: Since set of rational number is a division ring (Example 9) Also rational numbers are
commutative under multiplication. So the set of rational numbers form a field.

Example 3: The set of complex number is a field.

Solution: As set of complex number is a division ring (Example 11) Also complex number are
commutative under multiplication. So the set of complex number form a field.

Note:- (1) Set of natural number is not a field as N = {l, 2 } so it does not has
additive identity.
(2)  Setof integers is not a field. As Z = {-3,-4-1,0,1,2,3.......}

Leta=2 € Z, we can not find an elementb € Zsuchthata.b=b-a=1
i.e. all non zero elements has no multiplicative inverse so set of integer is not a field.
Theorem 1: Every field is an integral domain.

Proof:- Let F is a field. Then F is a commutative ring with unity and all non zero element have
inverse. To prove every field is an integral domain, we have to prove that field has no zero
divisors or field is without zero divisor.

Let a, b be any two element of field F, with a = 0 such that ab = 0
Since a = 0 so a™ exist as F is a field.

Also we have ab =0

= a' (ab) = a™ (0)

= (@'a)b=0

= 1.b=0 [ ata=1]
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= b=0 [1.b=Db]
Similarly if b = 0, such that ab = 0
as ab=0
= (ab) b*=0Db"
= a(bb™) =0
= a.1=0
= a=0
Thus if F is a field, thenfora,b e F,ab=0=a=0o0rb=0.
Hence F has no zero divisor or F is without zero divisor. So F is an integral domain.

The converse of this theorem is not true. i.e. every integral domain is not a field. We will
prove this statement in next example.

Example 4: Show that Ring of integers is an integral domain but it is not a field.

Solution: Since ring of integer is an integral domain as product of two non zero integer cannot
be equal to zero. So ring of integer is an integral domain.

But, ring of integer has unity and is commutative under multiplication but every integer
other than 1 and -1 does not have multiplication inverse. So ring of integers is not a field

Note:- (1) For a field F, unity and zero are distinct elements 1 = 0

(2) A field has no zero divisor. Therefore in a field the product of two non zero
element will again be a non zero element.

A division ring has no zero divisor.
Finite/Infinite Ring

The number of elements in a ring is called order of ring. If number of element on order of
ring is finite then it is known as finite ring otherwise it is called an infinite ring.

Theorem 2: Every finite integral domain is a field.
OR
A finite Commutative ring without zero divisor is a field.
Proof:- Let R be a finite integral domain
Then by definition of integral domain, R is a finite commutative ring without zero divisors.

First two show that R has unit element.

LetR = {&,8,,.......8, } be distinct elements of R.

Let a € R be any non zero element.

Then by using closures property under multiplication, the elements aa;, aay, ........ aa,
are in R.
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Now to prove that these elements are distinct,
Letaai=aaj wherel<i,j<n

= aa-aa =0

= a(a-a)=0

Since R is an integral domain, so product of two elements is equal to zero even when elements
are non zero i.e.

a=0(given), (ai-a)=0

= a-a=0

= a=a

= =
Hence the elements aa,, aa,, ........... aa, are all distinct and are n in number.
Since we initially taken R = {ai,az, ........ an} and R has also n elements of the form

R={aa,aa,,...... aa,}, where a € R so Ja (1 <k < n) such that

a = aay, (1) as R has only n distinct element.

Let ai € R {1 <i< n} be any element.

ai = aaj forsamej,i<j<n 2
Now a.ai = ax(aa)) using 2
= (ax@)a; (using associative property)
= (aaW)a; (using commutative property)
= aa using (1) i.e. aax = a
=g using (2)
as R is commutative so, aya = aa¢ = & Vae R

Hence a, is the unit element of R
Since the unit element of ring is unique and we denoted it by 1.

Now 1€ R={aa,aa,,.....aa,}therefore 3 a, 1 <I<n such

that 1=aa=aa,
Which shows that a is invertible with respect to multiplication.

Thus every non zero element of R is invertible with respect to multiplication. Hence R is
a filed.

Theorem 3: the ring Zj, of integers modulo a prime p is a field iff p is a prime.
Proof: Let Z, be a field, to show p is a prime.
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Let p is not a prime.

Then 3 a, b such that p = ab where 1 < a, < b < p. By definition of composting of
multiplication modulo p a x, b = least non negative remainder when axb is divided by p

=0 asab=p
= axpb=0
asa=0,b=0, soZ,as zero divisor
= Zp is not an integral domain

Which leads to a contradiction because we suppose Z, is a field So Z, is an integral
domain.

Hence our supposition is wrong that p is a not a prime
Hence p is a prime.

Coveristy :- Let p is a prime, to prove Z,, is a field.
Let a, b €Z, such that

axpb=0
= ab is a multiple of p
= p/a or p/b - pis a prime.
= a=0 or pb=0
Soax,b=0ifa=00rb=0
ie. Z, ring without zero divisor
So Z, is integral domain.
AlsoZ, = {0,1 2, 0 —]} has finite number of element and finite integral domain is
field.

Hence Z,, is a field.
To have more understanding of field let us take following examples.

Example 4: Show that the set G = {O,l, 2,3,4} Forms a field with respect to addition and
multiplication modulo 5.

Solution: Since G = {0,1,2,3 4}

Here Composition of addition and multiplication are defined as a +s b = Least non
negative remainder when a+b is divided by 5.

and
a xs b = Least non negative remainder when axb is divided by 5.
Now, Composition table under +5 is
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Xs 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Axioms under addition:-

1.

Closure properties:- Since all entries (in each column) are the element of G. So
G is closed under addition.

Associative property:- Since the element of G are integers, so the least non
negative remainder remains the same if (x+y)+z or x+(y+z) is divided by 5

So Associative property holds.

Existence of identity:- Here O is the identity element of G asV x € G X +5 0
=x=0+5X.

Existence of inverse:- Here 0 is inverse of itself.

Inverse of 1 is 4, inverse of 2 is 3, inverse of 3 is 2 Hence every element has its
additive inverse.

Commutative Property:- Since element of composition table are symmetrical
about main diagonal. Hence G is commutative.

Hence G is an abelian group under addition.

Axioms under multiplication

Composition table for Xs

Xs 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
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Closure Property

As the element of composition table are element G. Hence G is closed under
multiplication

Associative Property:
As integers are associative under multiplication.
So the least non-negative remainder when a(bxc) is divided by 5
= the least non-negative remainder when (axb)xc is divided by 5
Hence associative property holds in G.
Existence of identity:-
SinceleGandVvaeG
axs1=a=1x a. Hence 1 will act as identity element of G.
Existence of inverse:-
From composition table it is easily seen that inverse of 1is 1, is
inverse of 2 is 3
inverse of 3 is 2
inverse of 4is 4
Here we have to check the inverse of only non zeroelernt.
Commutative Property
Since integers are commutative under multiplication. So
The least non negative remainder when axb is divided by 5
= The least non negative remainder when bxa is divided by 5
Hence commutative property holds in G.
Distributive Law
Since 'Xs' is distributive in R with respect to '+5'. If a, b, ¢ are any elements of R then
axs (b +sc)=(axg6)+s(axsC)
as the least non-negative remainder when ax(b+c) is divided by 5

= the least non negative remainder when (axb)+(bxc) is divided by 5.
Hence G {0,1,2,3,4} is a field.

Example 5: Find the root of x>+ 3x - 41in Z; Zg and Z,.

Solution: Let f (x) =x*+3x- 4

=X+ 4x-x-4
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=xX(x+4)-1(x+4)
= f(x)=(x+4)(x-1)
(1) Tofindrootof f (x)=x>+3x-4=(x+4)(x-1)inZ
(x+4)(x-1)=0
= Xx=-4,1inZ
2) The roots of x, + 3x - 4 in Zg
Since Zs = {0,1,2,3,4,5,6}

So f (x) =0in Ziff (x + 4) (x-1) =01in Zg

taking values of x from Zs, we get

x=0,(0+4)(0-1)=-4

when, x=1,(1+4)(1-1)=0 = 0 (mod 6)

Xx=2,2+4)(2-1)=6 = 0 (mod 6)

x=3,(3+4)(3-1)=4 =2 (mod 6)

X=4,(4+4)(4-1)=12 = 0 (mod 6)

x=5(B+4)(5-1)=36 = 0 (mod 6)

Soonlyx =1, 2, 4, 5 satisfies the condition (x + 4) (x- 1) = o (mod 6)
SorootsinZgare 1,2,4and 5

(3)  Theroots of X* + 3x - 4in Z,

Since Z, = {O,:L 2, 3}

So f(X)=0inZiff (x+4) (x-1)=0inZ,

Considering the same as above, x = 1, 2 are the roots of x* + 3x - 4 in Z,.
Example 6: Solve the equation f (x) = x*-5x + 6 = 0 in the ring Z».
Solution: Since Z;, = {0,1,2,3,4,5,6,7,8,9,10,11}

Given, f (x)=x*-5x+6

=x°-3X-2x+6

=X(x-3)-2(x-3)

=(x-3)(x-2)

So the roots of f (x are given by (x-3) (x-2)=0

Taking the value of x from Z12, we get
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Whenx=1,(1-3)(1-2)=2 =0 (mod 12)
Whenx=2,(2-3)(2-2)=0 = 0 (mod 12)
Whenx=3,(3-3)(3-2)=0 = 0 (mod 12)
Whenx=4,(4-3)(4-2)=2 =2 (mod 12)
Whenx=5,(5-3)(5-2)=6 = 6 (mod 12)
When x =6, (6-3) (6-2) =12 = (0 mod 12)
Whenx=7,(7-3)(7-2)=20 = 8 (mod 12)
Whenx =8, (8-3)(8-2)=30 =6 (mod 12)
Whenx=9,(9-3)(9-2)=42 = 6 (mod 12)
When x =10, (10 - 3) (10 - 2) =56 = 8 (mod 12)
When x =11, (11-3) (11-2)=72 = 0 (mod 12)
Soonly, x = 2, 3, 6 and 11 satisfies the condition (x - 3) (x-2) =0in Z;,
So the root of T (x) = x?-5x+6=0are?2, 3,6and 11.

Self Check Exercise - 3
Q.1  Prove that Z7 is a field
Q.2  Prove that Z8 is not a field.

16.6 Summary:
In this unit we studied about
1. the unit element of ring which is also known as inversible element of ring.

2. the division ring which is a ring having multiplicative identity and all non zero
elements have their inverse under multiplication.

3. the field which is a commutative division ring.
To Summarized all
Under addition
1. Closures property
Associative property
Existence of Identity
Existence of inverse
Commutative under addition under multiplication
Closure property

N o g~ w DN

Associative property
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Distributive property

Existence of identity
10. Existence of inverse of all non zero element
11. Commutative under multiplication

16.7 Glossary:-

o Unit element:- Let R be the ring with unity. Then an element a € R is said to be
unit if 3 beR such that ab = 1 = ba.
o Division Ring:- A rring R with unity is said to be division ring such that each non

zero element possesses multiplicative inverse.
16.8 Answers to Self Check Exercises
Self Check Exercise - 1

Q.1 {15711} are units of Z12

Q2 1land-1
Q3 -7+ 43, 2—/3 are units only
Q4 Yes

Self Check Exercise-3
Q.1 As Z7 s afinite integral domain, so is a field.
Q.2 As every all non zero element does not have inverse. So not a field.

16.9 References/Suggested Readings

1. Vijay k. Khanna, and S.K. Bhambri, A course in Abstract Algebra
2. Joseph A. Gallian, Contemporary Abstract Algebra.

3. Frank Ayrer Jr, Modern Algebra, Schaumn's Outline Series

4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.

16.10 Terminal Questions

1. Give an example of a division ring which is not a field

2. Prove that av/2= {a+ J2b,a,be Q} where Q is set of rational, is a field under
usual addition and multiplication

3. Show that the set of rational Q is a field under the compositions @ and (.) defined
as

a®db=a+b-landa()b=a+b-abVvabeQ.

*kkkk
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Unit - 17

Properties of Ring Element

Structure

17.1  Introduction
17.2 Learning Objectives
17.3 Idempotent Element
Self Check Exercise-1
17.4 Nilpotent Element
Self Check Exercise-2
17.5 Characteristic of Ring
Self Check Exercise-3
17.6 Boolean Ring
Self Check Exercise-4
17.7 Summary
17.8 Glossary
17.9 Answers to Self Check Exercises
17.10 References/Suggested Readings
17.11 Terminal Questions
17.1 Introduction

Dear student, in this unit we will study about some properties of ring element such as
idempotent element and nilpotent element, on the basis of which we will define a special type of
ring i.e. Boolean ring. We will also study about the characteristic of ring and do some examples
to find characteristic of ring.

17.2 Learning Objectives:-

After studying this unit student will be able to

1. define idempotent and nilpotent element of ring
2 define Boolean ring with its properties

3. do prove a given ring is Boolean or not.

4 define and find the characteristic of ring.
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17.3 ldempotent Element of a Ring

Definition:- An element x in a ring R is said to be idempotent if x* = x.
1 00

Example 1: Prove that A= |0 1 O] is an idempotent element of M3(R), the ring of real
0 0O

matrices of order 3x3.

Solution: Since we know that an element is said to be idempotent element if x> = x for x € R.

So we have to prove that A> = A for A € M; (R).

1 00
Given A=|0 1 O
0 0O

how, A’=

o O -

00
10
00

o O -

00
10
00

[1+0+0 0+0+0 0+0+0
=|0+0+0 0O+1+0 0+0+0
_O+O+0 0+0+0 0+0+0

I
o O
o +— O
o O O

=A
Hence A is an idempotent element of M3(R)

Self Check Exercise-1

2 -2 -4
Q.1 Provethat A=|-1 -3 4 | isonidempotent dement of M3R.
1 -2 -3

17.4 Nilpotent Element

An element x in a ring R is called nilpotent element if x" = 0, for some positive integer n.
The smallest positive integer satisfying x" = 0 is called degree of nilpotency of the element x.
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1 1 3

Example 1 : Prove that A=| 5 2 6 | is a nilpotent element of m3(R), the right of real
-2 -1 -3

matrices of order 3x3.

Solution : since we know that an element of a ring is nilpotent of x" = 0. So we have to find that
power of A for which A" =0

1 1 3
GivenA=|5 2 6
-2 -1 -3

1 1 3||]1 1 3
5 2 6|5 2 6
-2 -1 3||-2 -1 -3

AZ

1+5-6 1+2-3 3+6-9
= |5+10-12 5+4-6 15+12-18
-2-5+6 -2-2+3 1-6-1+9

0O 0 O
A=|3 3 9
-1 -1 -3

O O O 1 1 3
NowA*=|{3 3 9|5 2 6
-1 -1 -3||-2 -1 -3

0 0 0
=(3+16-18 3+6-9 9+18-27
_—1—5+6 -1-2+3 -3-6+9

000
=10 0 0
000

Since A*=0

So, A is nilpotent element of M3(R) and the degree of nilpotency is 3.
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Theorem 1 : The sum of two nilpotent element of a commutative ring is also nilpotent.

Proof : Let R be a commutative ring and a, b € R be two nilpotent elements of ring such that
a™ =0 and b" = 0 for some positive integers m and n.

m+n m+n m+n
Now (a+b)™" =a™"+ ¢ a™™ b+ ... + ca™b".... c a™t ™t + ————+p™"
1 n n+1

using Binomial expensin

m+n 1 m+n
= a™a"+ ca" " b+———c bbb} +
1 r

m+n
b" {a”+ c a”1b+———b”}
n+1

asa"=0andb" =0, so
(a+tb)™=0+0
=0
Hence sum two nilpotent element of a commutative ring is also nilpotent.
Theorem 2 : Show that in a ring R, a hon zero idempotent cannot be nilpotent.
Solution : Let xe R be a non zero idempotent element then by definition of idempotent x* = x.

If X is also nilpotent element then there exists an integer n >1 such that

xX"=0 1)
But since X? =X, SO
X3 = x.x°
= X.X
= X2
= x* = x
X = XX
= XX
= X2
= x* = x
similarlyx" = x 2

So from (1) and (2) x = 0, which is a contradiction that x is a non zero element of ring R.
Hence, a non zero idempotent cannot be nilpotent.
Theorem 3 : Prove that a ring R has no zero nilpotent elements if and only if the solution of the
equation x> =0 in R.
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Solution : Let R has non zero nilpotent element then by definition
X"=0
So the equation x* = 0 has only one solution i.e. x =0in R
Conversely :
LetxX*=0=x=0inR
If possible, let a be a nilpotent element in R.
.. Ja least positive integer n such thata" =0
Ifn<2thena=0

Let n > 2, then n must be odd, for otherwise by hypotheses a"? = 0, which contradict the
condition that n is minimal.

Let n =2m+1. Then m > 0 and m+1<n

m+1 2m+2

Now (a™%)? = a

— 52m+l
=a™™.

a
=a".a
=a.a -a'=0
=0
= a™* =0, which again contradict the condition that n is minimal.
Hence x" = 0, for n the least position integer which completes the proof.

Example 2 : Show that in an integral domain R with unit y the only idemponents are zero and
unity.

Solution : Let a € R be an idempotent element of R
Then by definition a* = a
= a’*-a =0
= a(@-1)=0
= a=0ora=1

Because R is an integral domain i.e. a ring without zero divisor. So product of two
element is zero only if one of them is zero.

Example 3 : If ais a nilpotent element of the competative ring R, then prove that

1. ar is nilpotent vV r eR
2. a is either zero or a zero divisor
3. 1+aisunitin P
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4. u+ais a unitin R where ue R is a unit.
Solution : (1) Given a is nilpotent element in a computative ring R. so
a™ =0, where m is least positive integer > 1

To prove ar is nilpotent, r eR.

(@)"=a"r"
=0.r"
=0

= (an™=0

Hence ar is nilpotent.
(2) Ifm=1,a'=0=a=0, ais zero itself.
ifm>1thena™=0
=aa™=0
= ais a zero divisor. asa = 0so a™'# 0
(3) Letb=1-a+a®-—+(-1)"ta™
then (1+a)b = (1+a) [1-a+a® ----- +(-1)™ta™!
=l-a+a’-——+C-)"a" +a-a’+a’ - +(-1)"'a"
=1-(-1)™a"
=1-(-1)™o0 [-a"=0
=1-0
=1
(1+a)b=1
So 1+a is unit.
4) Letu € Ris a unit,

then u™e Rand uu™ =1 u™u [by definition of unit

. U™ais nilpotent in R [using (1)
= (1+u™a) is a unitin R [using (3)
= u(1+u'a) is a unit R. [using 3

=u+aisaunitinR

Hence proved.
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Self Check Exercise - 2

0 01
Q.1 ShowthatA=|0 O O |isa nilpotent element of m;(R).
0O 01

17.5 Characteristic of A Ring
Definition
If in aring R, 3 a positive integer m such that ma =0 V a € R, then R is called a ring of

finite characteristic and if n is the least positive integer for whichna =0 V a € R, then n is called
characteristic of a ring R.

Here na= a+a+ ----—--- +0
n times

Note : If no such positive integer exists then the ring R is said to be a ring of characteristic zero.
the characteristic of a ring is denoted by char R.

Example 1 : Set of integer has Characteristic zero

Solution : There is no positive integer, which when multiplied by each element of set of integer
becomes zero. So characteristic of Z set of integer is zero.

Example 2 : Set of rational Q, set of real R and set of complex numbers C all have
characteristic zero.

Example 3 : Show that characteristic of Z, is 2
Solution : Since Z, = {0, 1}
Since Z, is aring, so (Z, +2) is a group under addition, Then for any a € Z, if we have
na=a+a+a----—-- a=0
n times
Then n is characteristic of Z,
Since 0eZ, and0+,0=0mod 2
leZ,and1+,1=0mod 2
So, Z, has characteristic 2
Example 4 : Find the Characteristic of Z,4
Solution : Since Z,={0, 1, 2, 3,}

Since 0 e Zs, O+40+4Q+4 0450(m0d 4)
le?z,, 1+4l+4l+4150(m0d4)
2624, 2+42+42+42 EO(mOd4)
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3624, 3+43+43+43 EO(mOd4)
Hence Char (Z;) =4

Remark

Char Z,=n.

Theorem : The characteristic of an integral domain is either zero or a prime number.

Proof : Let R be an integral domain.

Now

Theorem 2 : Let R be ring with identity 1. If is an element of finite order in the group (R; +) then
the order of 1 is the characteristic of R. If 1 is infinite order then characteristic of ring is zero.

If characteristic of R is zero, then there is nothing to prove.
Suppose R has a finite characteristic

Then there exists a positive integer m such that

ma= 0V aeR.

Let p be such least positive integer, then char (R) = p.
To prove p is a prime.

Let p is not a prime, then p = p1p,, p1= 1, po= 1

and p1< p, p2< p.

pa=0VvVaeR

= (ppr)a=0vVaeR

= (p1p2)ab =0 Va,be R

= ab+ab + ---------- +ab =0VabeR

= pa.pb =0

= eitherpja=0orp,b =0 *» Ris anintegral
domain i.e. ring without zero divisor

Also p;< p and p,< p, and p is least positive integer such that pa=0
Hence this a contradisticion.

Hence p must be a prime

Proof :Suppose the order of 1 is n. Then n is least positive integer such that n.1 =0

n.l=1+1+ ------- +1 (ntimes) =0

Now Let ae R, then
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na —a+at--—-- + a (n times)
=la+la+--—--- +l.a
= (1+1+1 - +1)a
=0.a > nl=0
na =0
Thusna=0VvVaeR
Hence the characteristic of the ring is n.
If 1 is of infinite order then there, is no positive integer n such that n.1 = 0.
Hence Characteristic of the ring is zero.

Example 5 : If r is a ring in which x2 = x V¥xe R, Prove that R is commutative ring of
characteristic 2

Solution : R is aring so (R1+) is an abelian group.
Letx e Rthen-x e R
Now given x* = x
s0 x% = (-x)? = -x
= X =-X
=Xx+x=0
2x=0 VxeR
Therefore, char (R) =2 D [by definite of characteristic of R
Now VX, ye R, x+yeR - (R+) is ring so closed under addition
X +y = (x+y)? ‘> given x € R x> =X
= (x+y)(x+y)
= X2 + Xy +yX +y°
Xty =X+ Xy+yx+y X=Xy =y

using cancellation Law under addition, we get

Xy +yx=0 (2)
Since X,y € R=xye R [ Ris aring, so closed under multiplication]
Since char (R) =2 [using (1)]
So 2(xy) =0

Xy +xy=0 3

From (2) and (3) we get
Xy + yX =Xy + Xy
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using left cancellation law
yX = Xy VX VYeR
Hence R is a commutative ring.

Example 6: Let a, b be elements of commutative ring R of characteristic two, show that (a+b), =
a; + b, = (a-b);

Solution: Let R be a commutative ring of characteristic 2 leta, b € R
then (a+b)? = (a*+b) (a+b)
za(a+b)+b(a+h)
=aa+ab+ba+bb

=a’+ab+ba+b?

=a%+ 2ab + b? -+ ab = ba, R is commutative
s o o va,be R,abe Rand Charcr)=2
= (ath) =a“+b
s02(ab) =0

Again, (a-b)? = (a-b) (a-b)

= a(a-b) -b (a-b)

=aa-ab-ba+bb

=a’-ab-ab+b® [. CharR=2s02(ab)=2]
= (a-b)> =a’+b?
Hence (a+b)® = a + b® = (a-b)?

Example 7: Let R be a ring of characterstic n. Let M be a ring of all 2x2 matrices over R, then
show that char (M) = n

Solution: Since R be aring of char (R) =n

then by definition, if x eRthennx =0V x e R

a b
Let A= L d} be any matrix in M, where a, b, c,d € R

Since a, b, ¢, d € R and R be ring of characteristic n

sona=nb=nc=nd=0

N Az a b .\ a b .\ .\ a b i
ow, nA= c d o | T c d [n times]
_|na nb
“|nc nd
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00
= ‘na=nb=nc=nd=0
00

= nA=0 VAeM
So Char (M) =n.

Example 8: Let R be an integral domain. Let ac R - {0} be such that na = 0 for some positive
integer n. Show that R is of a finite characteristic

Solution: Let a € R - {0} be such that na = 0 (given)
Letx € R, then

(na)x=0
= (@a+a+........ +a)x=0
....... n times
=(ax +ax + .......... ax) ntimes =0
Ta(X+ X+ e +x)=0 ¥xeR

SX+EXF i +x=0
n times
=nx=0 VxeR

Characteristic of R is finite = n

Self Check Exercise - 3
Q.1  Find the char (Zs)

Q.2 Let R be a commutative ring with characteristic p, pe P then
show that (a+b)’ =aP + b, a, b € R.

17.6 Boolean Ring:-
Definition:
Aring R is called a Boolean ring if every element of R is idempotent
i.e.forall x e R, X2 =x.
Examples 1: The ring (Z,, +,, x,) is a Boolean ring.
Solution: Since Z, = {0, 1}
Z, has only two element, we can easily prove that Z; is a ring.
Now to prove x* = x for 0 and 1
as0’=0,and 1°=1
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Since both the elements of Z, are idempotent, So (Z,, +,, x,) is a Boolean ring.
Example 2: Show that (Zs, +3, x3) is not a Boolean ring
Solution: Since Z; ={0, 1, 2}

we can easily prove that Z; is a ring.

Now to check V X e Zs, X2 = X

as 02=0,1°=1 but 2 =4

Since 2 is not an idempotent element of Z;.

So Z; is not a Boolean ring.

Example 3: Show that characteristic of a Boolean ring is 2.
Solution: Let R be a Boolean ring.

then by definition vx e R x2 =X
Ifx eRthen-x e R

Also  x=x*=(-x)? =X

X = -X.

X+x=0

2x=0

char (R)=0,asx € R.

Theorem 1: Let R be a Boolean ring. Then

Uil

1. 2x=0 vVxeR

2. Xy = yX VX VyeR
Proof: (1) Letx e R,asRisaring, -x e R
Now x=x° R is Boolean ring

= (-x)°

= -X
= Xx+x=0

=2x=0 v X e R.

(2) Let X, y € R then

X+y=(x+y)

=(X+y) (x+y)
=X(x+y)+y(x+y)

= X2 + Xy + yX + V2 [ RisBooleanringx,ye R= x> =x,y* = YJ
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= X+y =X+Xy+yx+y

using cancellation law under addition

Xy +yx=0 1)
asx,yeR = Xy € R then using (1)
2(xy)=0
= Xy +xy=0 2)

From (1) and (2)
Xy + yX =Xy + Xy
using cancellation law, we have
= YX=XY, VX VY eR
Hence Booleans ring is commutative
The converse of this is not true.

Self Check Exercise - 4

Q.1  Give an example of commutative ring which is not Boolean.

17.7 Summary:-
In this unit, we studied that

1. an element of a ring is called idempotent if x* = x

2. an element of a ring is called nilpotent if x" = 0 for some least positive integer n
3. If for x € R, Ris aring and nx = 0 then char (R) =n

4, In Boolean ring, V x € R, X* = x i.e. each element of Boolean ring is idempotent.

17.8 Glossary

. Nilpotent element:- An element x € R is called nilpotent if X" = 0 for some
positive integer n.

o Idempotent element:- An element xR is called idempotent, if x* = x.

. Boolean ring:- A Ring R is called Boolean ring if every element

17.9 Answers to Self Check Exercises
Self Check Exercise -1

2 -2 -4
Q.1 A=|-1 3 4|=A
1 -2 -3
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Self Check Exercise - 2
0 0O
Q.1 A*=|0 0 0|=0
0 0O
Self Check Exercise - 3
Q.1 Char(Zs) =6
Q.2 defining of characteristic of ring to prove this.
Self Check Exercise - 4

Q.1 Ring of integers is a commutative ring. But all elements of ring of integers not
satisfies the property x? = x. So it is not a Boolean ring.

17.10 References/Suggested Reading

1. Vijak. . Khanna, and S.K. Bhambri, A course in Abstract Algebra.

2. Joseph A Gallian, Contemporary Abstract Algebra.

3. Frank Ayres Jr. Modren Algebra, Schaum's Outline Series

4. A.R. Vasistha, Modern Algebra, Krishna Prakashna Media.
17.11 Terminal Questions

1. Show that the characteristic of M2 (Z3) is 3.

2. Give an example of infinite ring of non zero characteristic

*kkkk
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Unit - 18

Subring
Structure
18.1 Introduction
18.2 Learning Objectives
18.3 Subrings And Criteria For A Subring
Self Check Exercise-1
18.4 Set Opertions on Subrings
Self Check Exercise-2
18.5 Centre of Ring
Self Check Exercise-3
18.6 Summary
18.7 Glossary
18.8  Answers to Self Check Exercises
18.9 References/Suggested Readings
18.10 Terminal Questions
18.1 Introduction

Dear student, in this unit we will study about the subring. We will prove certain sets to be
a subring. We will study about the intersection and union operation applied on subring and their
results. We will also discuss about the subring generated by a subset of a ring.

18.2 Learning Objectives:
After studying this unit, students will be able to
1. define and give examples of subrings
2. prove a given set a subring
3. apply set operations on subring
4. solve theorem based on subring.

18.3 Subring:-

Definition:

Let R be a ring. A non empty subset of S of the set R is said to be a subring of R if S is
closed with respect to the operation of addition and multiplication in R and S itself is a ring for
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these operation. or a non empty subset S of ring (R +,.) is called a subring of R if (S,+,.) is a
ring itself.
Trivial Subrings:

If R is a ring then {0} and R alway subring of R. These are called trivial subrings of R.
Over Ring

If S is subring of R, then R is called an over ring of S.

Let us taken following examples to understand more about subring.
Example 1: 2Z is a subring of Z

Solution: Since Z = { .......... -4,-3-7,-1,01,2,34....... } is the set of integers. In the unit of ring
we had already prove that Z is a ring
Now 2Z = {......... -8,-6,-4,-2,0,2,4,6,8......}

Axioms under addition
1. Closure property:

Since Z si closed under addition. So 2Z is also closed under addition
2. Associative property:

Since Z is associative under addition so that 2z.
3. Existence of identity:-

Since 0 € 2Z, So 0 is identity element under addition for the subset 2Z of Z.
4. Existence of Inverse:-

Since for all x € 2Z 3 -xe2Z such that x + (-x) = 0 = (-X) +x.

So -x act as inverse element of each x € 2Z
5. Commutative Property:-

Since integers are commutative under addition. So 2Z is also commutative under
additioni.e. X,y € 2Z xty =y + Xx.

6. Closure property:-
Since Z is closed under multiplication so as 2Z.
7. Associative property:
Since Z is associative under multiplication so as 2Z.
8. Distributive Property:
Since Z, set of integers holds distributive property so as 2z, will hold this property too.
Example 2: Z is a subring of Q
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Example 3: Q is a subring of R

Example 4: R is a subring of C.

Criteria For a Subset of a Ring to Be a Subring

Theorem 1: Let R be aring and S be a non empty subset of R. Then necessary and sufficient
condition that S is a subring of R is

Va,beS=a-b,abeS.

Proof: Let S be a subring of R. Then (S,+) is on abelian sub group under addition of (R,+).

Since (S,+) is a sub group

So, leta,b e S
= a-b esVab e S (by definition of sub group)
< Also as s is a subring of R. So S is closed under multiplication. Soifa, b € Sthenab e
Hence if sisasubringof Rthena-b,abeS VvabeS
Conversely:
Leta,b e Sthena-b,abe S
To prove S is subring of R.
= (S,+) forms a subgroup of (R,+)
also,a,b € R,a+b=Db+ a, this also holds in S
So (S,+) is abelian subgroup of (R,+)
Since multiplicative associativity and distributive holds automatically in S.
So Sis aring itsey
= S is a subring of R.

X
Example 5: Show that the set of matrices {O y] X, Y, Z €Z is a subring of ring of 2x2
z

matrices over integers.

Solution: Given R is a ring of 2x2 matrices over integers.

0

Now Let A:{)é 2:|')(1’y1’zlez}

X
Let S= {{ ﬂx Y,Ze Z} be a subset of R.
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and
Now A-b=
= A-B=

as Xi, Xz, Y1, Y2, Z1, Zp€ Z S0 X1 - X2, Y1 - Yo, Z1-Z2€Z

So

Now AB=

AB =

A-BeS

X Yi[% Y.
0 720 37

%%, &ﬁ+%%}
L0 z-2

AS X1,X2,Y1,Y2,Z1,Z2€ Z SO X1Xp, X1Y2 + Y122, Z1Z5€ Z
So that ABeS

then

X
S= {O y} XY, Z€ z} is a subring of 2x2 matrices over integers.
z

Example 6: Let R be a ring of 3x3 matrices over real. Show that

X X X
S=<|X X X|:XeR} isasubring of R.
X X X
i X
Solution: Given S=<| X X X|:XxeR
i X
[0 0 O
Since0eRso|0 O 0|eS
_O OO0

So

S is non empty sub set of R.
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Let

then

Now

X y yy
A= B=|y y y| beanytwoelementsofS,x,y € R

y ' yy

X y vy

A-B= X -1y vy vy

i X y vy

(X—y X-y X-Yy
A-B=|X-y X-y X-Y

 X—y X-y X-Yy

Asx,ye Rsothatx-y e R.
Hence A-B € S.

AB =

X X X
X X X
X X X

y'yy
y'yy
y'yy

XY+Xy+xXy Xy+Xy+Xxy Xy+Xy+Xxy
XY+Xy+Xy Xy+Xy+Xy Xy+Xy+Xy
XY+Xy+Xy Xy+Xy+Xy Xy+Xy+Xxy

3xy 3xy 3xy
AB=|3xy 3xy 3xy

3xy 3xy 3xy
As X,yeR = Xy eR So 3xyeR
Hence AB e S

Therefore S is a sub ring of ring of 3x3 matricere

a a+b _ _
Example 7: Check T = , &, b € Ris a subring of M,(R)
a+tb b
_ _ a a+b
Solution : Given T = ,a,beR
a+b b

11
Let A= fora=1,b=0eT

10
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01
and B= fora=0,b=1eT
i
11 01
Then A-B = -
10 11
1-0 1-1
1-1 0-1
1 O
0 -

Since0;1;-1 R
So A-B € My(R)

1 1(|0 1
Now AB =
ol a

_ [0+1 1+1
0 1+0

1 2]
= &
0 1

ABgT

a a+b| . :
SoT= is not a subring of My(R)
a+b b

Example 8 : If S is a subring of a ring R then S is commutative of R is commutative ring.
Solution : Given S is subring of commutative ring R.

To prove S is commutative

Leta,beS

AsS eR

soa, beR

as R is commutative

ab=bavabeR

So, a,b e Sab=Dba

Hence S is commutative subring of R which is itself commutative.
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Theorem 2 : The subring < is without zero divisor if R is without zero divisor.
A subring of on integral domain is an integral domain
Solution : Let S is a subring of R and R is an integral domaini.e.a,b e R a=0,ab=0
To prove S is an integral domain
Leta,b e S and S<R
soa,beR
as R is an integral domain
soab=0
= eithera=00rb=0
sincea=0,s0b=0
so S is a subring without zero divisor.
Hence a subring of integral domain is an integral domain.
Note :
Ring and subring may have same or different multiplicative identities. For example.
Example 1 : The subring Z of Q.
Solution : Here the identity element is same that is 1.
Example 2 :nZ, n #1, -1, is a subring of Z.
Solution : Here the ring Z has identity 1 but subring has no identity.

00 _ _ ab
Example 3: R; = ,ae R} isasubring of R, = ,beR
00 00

10
Solution : Here the ring has no identity whereas subring has identity {O O}'

Example 4 :Zx{0} ={(a, 0:a € Z}isa subring of ZxZ ={(a, b) : a, b € z}

Solution : The ring has identity (1, 1) whereas subring has identity (1, 0). So both ring and
subring has different identity element.

Self Check Exercises

a b
Q.1 CheckS= { b a},a,be R} is a subring or not of My(R)

a
_ _}, is a subring of M,(c), all 2x2 makices over complex.
X

Q.2 ProvethatS = {[
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Q. 3 Find the identity element of M3(R) and its subring S =

xX X X

X X X

X[, XeR

18.4

Theorem 1 :

Set operations of Subrings

Proof : Let R be aring
Let S;, S, ------- Sy be subring of R then

n
( Sic R obviously.

i=1

Since, O € each S;

n
:>OeﬂSi
i=p

n
So ) S;is non empty subset of R.

i=1

n
Now to prove () S;is a subring
i=1

Letx,y e S
i=1

= X,y € each S
Since each S; is a subring, So

X -y, Xye each si

=Xx-y,xye(l S
i=1

n
Hence (] S;is a subring R.
i=1

Example 1 : Show by example that union of two subring need not be a ring.

Solution : Let 2z and 3z be the two subring of z

then

and

z={..-3,-2,-1,0,1,2,3...}

2z = {...-6,-4,-2,0,2,4,6, ...}
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Now 2z U 3z ={..... -9, -6, -4, -3,-2,0,2,3,4,6,9 .....}
Since213e€2zU3z
But2+3=5¢2zU3z
So not closed under addition
Hence union of two subring is not a ring.
Example 2 : Give an example to show that sum of two subring need not be a subring of R.
Solution : Let My(Z) be a ring of all 2x2 matrices.

0 a
LetR; = ,an

00
R, = {[b O},be Z} be two subring of M,(Z)

Now R,+R 0a+00
ow =
2700 ol |b o

0 a
R1+R2: b 0 1

01 0 3
LetA= 1B=
2 0 4 0
4 0
AB = [0 6} ZR1+R;

So R;+R; is not closed under multiplication
Hence sum of two subring needs not be a subring.

Example 3 : Let R; and R, be two rings and S; and S, be two subrings of R; and R,
respectively. Then S; x S, is a subring of R; x R.

Solution :Leta e S;andb € S,
Then S; xS, ={(a, b); ac S;, b € Sy}
As S; and S; are subrings
soaeS;andacesS,
=aeS; XS,

= S; X S, is non empty subset.
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Let x = (a1, b;) and y = (a,, by) be two elements of S; X S,

where aj, a,e Sy, by, b,e S,

Then x -y = (a3, by) - (a2, by)
X-y=(ar-az, b;i-by)

Since S; and S; are ring so

a; - a;e S;and by - bye S,

X-yeSixS;

Now xy = (as, b1) (a2, bo)

=Xy = (a; az, by by)

as a;, ape S;= ay, e S

and by, b,e S, So by, b,e S,

So xye S;1 X S,

Hence S; x S,is a set ring of ring Ry X R,

Self Check Exercise - 2

Q.1 Intersection of two subrings of a ring R is a subring.

18.5 Centre of aRing
Definition :
Let R be aring. Then
C(R) ={aeR, xa=ax vV x € R} then C(R) is called the centre of the ring R.
Theorem 1 : The centre of aring R is a subring of R.
Proof : Since 0 € C(R)
So C(R) #4 , is non empty set.
Now to prove a - b e C(R) and ab € C(R)
Leta, b € C(R)
Then for all x € R, xa = ax and xb = bx [by definition of centre of ring]
Now xa - xb = ax = bx
=X(a-b) = (a-b)x
= (a-b) e C(R)
Again xab =axb S X eR,and
= abx
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— x(ab) = (ab)x

= ab € C(R)

Since a-b, ab € C(R) so, ¢(R), centre of ring is a subring.
Note :

1. R is a commutative ring if and only if C(R) = R

2. C(R) is a commutative subring of R.

Theorem 2 : Let R be a division ring, then the centre C(R) of R is a field
Proof :Since a commutative division ring is a field.

We know C(r) is a commutative subring of R.

Now to prove C(R) is a divison ring

Given R is a division ring

= R is a ring with unity

=1eR

= all non zero elements have inverse.

Also 1.x=x=x.1 Forallx e R

Since C(R) is a subring of R

Let x € C(R), x # 0 be any element

Sox e Ras C(R) <R.

Since R is a division ring, so x'e R.

Lety € R be any non zero element then y*e R

Now X'y =(ytx)*
= (xyH? + X e C(R)
= yX'l

= X'y =y

= x* commute of with non zero element of R

Alsox!.0=0=0.x*
= x'e C(R)

Thus C(R) is a division ring also C(R) is commutative ring So C(R) is a field.

Self check Exercise - 3
Q.1 Find centre of S, for E2.

18.6 Summary :
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In this unit we studied that
1. A non empty subset S of set R is a subring if itself is a ring.

2. The necessary and sufficient condition that a non empty subset is a subring of R
is Va,beS=a-babeS

3. Subring of a integral domain is an integral domain.
4, Ring and subring may have same or different identities.
5. Intersection of two subring is again a subring.
6. Union of two subring may or may not be a ring
7. Centre of ring is a commutative subring.
8. Centre of ring is a field.
18.7 Glossary :
o Subring : A non-empty subset S of Ring R is called subring if S is itself a Ring.
. Over Ring : If S is subring of R; then R is called an over ring of S.
. Centre of Ring : Let R be aring, then

C(R)={ae Rlxa=zaxVx e R}
18.8 Answers to Self Check Exercises

Self Check exercise-1

Q.1 Yes

Q.2 Prove A-B, and AB S where A, B are two elements of S.
1 00

Q.3 IdenttyofR=|{0 1 O
0 01

VL
and identity of S = }é }é }é
VL

Self Check Exercise - 2

Q.1 Can be prove easily on the basis of theorem i.e. intersection of a family of
subring of a ring is always a subring.

Self CheckExercise -3
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18.9

18.10

C(S) = X E);VXEC
0 X

References/Suggested Readings
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4. A.R. Vasistha, Modern Algebra, Krishna Prakashan Media.
Terminal Questions

x 0
1. Show that the set of matrices L] ,

} where X, y z € | is a subring of the ring of

2x2 matrices over integers.

2. Let S. {[0], [2], [4], [6], [8]} where [n] denotes equivalence classes of n module 10.
Prove that S is a subring of Z;, with the usual operations of Z;o. Also show that S
has an identity which is different from Z,,.
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19.6 Summary
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19.10 Terminal Questions
19.1 Introduction

Dear students in this unit we will study about another property related to ring which
finally gives us an idea of ideal. We will discuss about proper and improper ideal along with
algebra of ideals i.e. addition, multiplication, union and intersection of ideal.

19.2 Learning Objectives:

After studying this unit students will be able to

1. define ideal of a ring, left and right ideal or two sided ideal of a ring.
2. define distinguish and find proper and improper ideal of a ring.
3. prove theorem based on algebra of ideal and able to do question related to

algebra of ideal.
19.3 Left and Right Ideal
Definition:
Left Ideal : A non empty subset | of a ring R is called a left ideal of R if

(2) Foralla,bel=a-bel
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(2) Forallael,r eR=racel
Right Ideal
Similarly, A non empty subset | of a ring R is called a right ideal of R if
QD Foralla,bel=a-bel
2) Forallael,reR= ar el
Two sided ideal or Ideal

An Ideal | is called a two sided ideal or simply an ideal of ring R if | is both left sided and
right sided i.e.

(2) Foralla,bel=a-bel

(2) For allae I, r eR=ar =rae |
Note

When a ring is commutative then there is no difference between left and right ideal.
Theorem 1: Anideal | of aring R is a subring of R, but converse is not true.
Proof : Let | be ideal of ring R, to prove | is a subring of R.

Since | is ideal of ring R, then by definition of ideal

D Foralla,bel,a-b el

(2) Forallael, r eR ,are |

We can easily say that | is a subring of R (using the criterion of a subring)
Converse:

Converse of this theorem need not be true.

i.e. a subring may not be an ideal, to prove this we shall take example

The set of rational Q is a ring and the set of integers is a subring of Q i.e Z c Q

But Z is not an ideal because,

1
Let 3 € Z and EeQ

1 3
then3.— = —¢Z
2 2

Hence Z is not an ideal of Q.

To have more understanding of ideal let us take following examples of ideal.
Example : Show that nZ is an ideal of the right Z.
Solution : Since Z ={........ -4,-3,-2,-1,0,1, 2, 3,4, ...... }

Since Zis aring

320



AlsonZ ={........ -4n, -3n, -2n, -n, 0, n, 2n, 3n, 4n, ...... }
To prove nZ is an ideal of Z.
Leta, b enZ,thea-b enZ
Leta=nx, b=ny
Thena-b =nx-ny

= n(x-y)
a-b enz
Againa enZ,z eZ
Then nx.z = n(xz) enZ
nZ is aright ideal of Z
Since Z is a commutative ring
nZ is also a left ideal of Z
Hence nZ is an ideal of Z.

Proper and improper Ideal

For any ring R, {0} and R are ideal of R. These ideals are called improper ideal. Any
ideal other that {0} and R of ring R is known as proper ideal.

Example 2 : Show that set of even integers is an ideal of ring Z.
Solution : Since Z=1{........ -4,-3,-2,-1,0,1,2,3,4, ... }
Now 2Z = set of even integers
={on. -8,-6,-4,-2,0,2,4,6,8, ...... }
Since Z is a commutative ring, so we just prove 2Z is an right ideal.
To prove 2Z is an ideal
Letx=-4,y=2¢e2Z
Thenx-y=-4-2
=-6e2Z
SovXx,ye2Z,x-ye2Z
AgainlLetx=-4e2Zandr=-3eZ
then x.r = -4x-3
= +12
=26
= even integer
SovVxe2Z R e Zthen xre 2Z
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Hence 2Z is an ideal of the ring Z.
Example 3 : Consider the ring M,(z). Let

a o0
I= {b O};a,be Z} then prove that | is a left ideal of M»(Z) but not a right ideal.

Solution : Since we known that M2(Z) is a ring.

a o0
To prove | = {b O}a,be Z}is an left ideal.

a o0
Let x = el

_cO_I
YZld ol°

X Y]
and r= € My(Z). Then
zZ w)

r=ls o) la o

o o)ls

Xr =

b 0]z w

EMQ(Z)

ga x ylla 0
anrx =

g z w|lb 0

_|xa+yb O
" |za+wb 0

= rxe |
Since rxe |, but xre I, xre My(2)

So, | is left ideal out not right ideal.
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a
Example 4 : Consider the ring M,(Z) and Let | = {b q

that | is an ideal of M,(Z).
Solution : Since we know that M,(Z) is a ring.

a c
Given | = {[b d};a, b, c, d areeven integres}
2 4 6 8
Let x= VY =
6 8 4 10
2 4 6 8
Thenx-y= -
6 8 4 10
2-6 4-8
6-4 8-10
-4 -8
2 2
= X -Yy € | where -4, -8, 2, -2 are even integers
2 4 1 2
Now Xx= andr = e M, (2)
6 8 3 4

1 2|2 4
Thenrx=
5ol e

{2+12 4+16}

6+24 12+32
14 20
30 44
e |l,as 14, 20, 30, 44 are all even integer.

2 4111 2
Now Xxr=
e ells s

2+12 4416
6+24 12+32
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_ 14 20

|30 44

el

SincevVx,yel, x-yel

and vV x e landr e My(Z2) =xr =rxe |
Hence | is an ideal of M; (Z).

a o0
Example 5: Let My(Z) isaringand | = {0 };a € Z} be a subset of M,(Z) then show that |
a

is a subring of M,(Z) but not an ideal.
Solution : Since we know that M,(Z) is a ring.

= {[5 JJacg]

To prove | is an ideal or not.

10 2 0
Letx = VY = , 1,2, eZ
00 00
1 0|12 O
Now X -y = -
0 0|0 O

-5

= x-y el
1 0][2 O
Now xy =
10 0|0 O
B (2 0
oo
= x-y el

Since VX, yel, x-y, xyel

So, | is a subring.

11
Now, Let r = 10 e Myx(2)
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1 1|1 O
and rx =

2 ollo o

_10 |

“|1 0l*

So | is not a ideal of M, (2).

Self Check Exercise-1

ab
Q.1 Let My(2) be a ring then prove that | = {O O} abe Z} is a right ideal

of M»(Z) but not a left ideal.

Q.2 If Ris a commutative ring and a € R then show that aR = {ar.; r € R} is a
two sided ideal.

Q.3 Give an example to show that if the ring is not commutative then the ideal is
not two sided ideal.

19.4 Left and Right Annihilator
Left Annihilator
Let R be aring and S be a non empty subset of the ring R then

ann, (S) ={x € R; xS = 0} is known as left annihilator of ring R.
Right Annihilator

Let R be aring and S be a non empty subset of the ring R then
ann, (S) = {x € R; Sx = 0} is known as right annihilator of ring R.
Let us try following examples to have more understanding of these terms:

Example 1 : Show that left and right annihilators of R and left and right ideal of ring R.
Solution : Since Risaring. Soa € R
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Also we know that if S be a non-empty subset of a ring R such that ann, (S) = {x €R :Sx
=0} and ann; (S) = {Xx € R : xS = 0} are known as right and left annihilators of R.

Since 0 € Rs.t.S.0 =0 €ann,(S)
ann(S) = 0, is a non emptyset :
Let X1, X,eann(S) be any two elements.
- Sxy=0and Sx, =0
= SX;1-SX, =0
=S(X1 - %) =0
= X1 - Xo€ann, (S)

Again, if r eR, be any element and x eann,(S).

Then Sx =0

Now S(xr)r = (Sx)r
=0ur
=0

= xreann,(S)

Hence ann,(S) is a right ideal of R.
Similarly we can prove that ann,(S) is left ideal of R.

Example 2: If Ris aring and a € R be any fixed element of R. Let X = {x eR : ax = 0}. Then
prove that x is a right ideal of R or Left annihilator of a in R.

Solution : Since 0 € R
=0=a.0
=0ex
= X is a hon empty set
Let x; and x, be any two elements of x then

ax; =0 andax, =0

= ax;-ax, =0
= a(xy-%) =0
= X1 - Xe X

Also, Let x ex and y € R be any element, then ax =0
Now a(xy) = (ax) y
=0y
=0
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=xye X, Vxexandy € R
x is right ideal of R
Using the definition of left annihilator we can easily say that x is right annihilator of R.

Self Check Exercise - 2

Q.1 LetRisaring and a € R be any fixed element of R. Let x' = {x eR : xa = 0}.
Then prove that x' is a left ideal of R, then it is also a right annihilator of a in R.

19.5 Algebra of Ideals
Theorem 1 : Intersection of two left (or right) ideals of a ring is a left (or right) ideal.
Proof : Let | and J be any two left ideal of a ring R.
Since0 eland0 e J
=0elNJ
So INJ is a non empty set.
Letx,y € I N J be two elements, toprove x-y eI NJ
Thenx e land x € J
alsoyelandy eJ
Therefore taking x € I, y € | and | is a left ideal of R
=>Xx-yel
Similarly x e Jandy € Jand J is left ideal of R
=>Xx-yel
Sincex-yelandx-yeJ
=x-yelnd
Again, Letr eR be any elementand letx € I N J
to prove rxie I N J
Sincex el NJ
=>Xxelandx e J
Taking, r eR and x € | and | is left ideal of R
=rxe |
Similarly taking r eR and x € J and J is left ideal of R
=rxe J

As rxe | and rxe J
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=>rxelNJd VreRandxelNJ.

Hence | N Jis a left ideal of R
* Similarly we can prove the same for right ideal.
Theorem 2 : the intersection of a family of left (or right) ideals is also a left (or right) ideal.
Proof : Let {ly; x € N} be collection of left ideals of R. Also each I, is a subring of R.

Also, since we known that intersection of a family of subring of a ring R is a subring of R.

Letl= () Ixis a subring of R

Xen
Letx e landr eR
Then x € Iy, and hence rxe I, for eachr eA
Since Ix is a left ideal of R.
Thusrx e |
= lis left ideal of R.
Example 1 : Is union of ideals is an ideal or not? Prove using example.

Solution : Union of ideals is not an ideal. Let us show this by taking this examples. Since we
known that nZ are ideals of Z. Specifically let 2Z and 3Z are ideals of Z.

To prove 2Z U 3 Z is an ideal or not.
Since Z ={........ -4,-3,-2,-1,0,1,2,3,4, ... }

2Z={o.. -6,-4,-2,0,2,4,6, ...}
3Z={.. -9,-6,-3,0,3,6,9, ...}
S02ZU3Z={... -9,-6,-4,-2,0,2,3,4,6,9 ...}

Since 2,3 e€2ZU 3Z
To prove 2Z U 3Z is an ideal, we have to prove for x,y € 2ZU 3Z,x-y € 22U 3Z
As2,3e€2Z2U3Z
=2-3=-1¢2Z2U3Z
Hence 2Z U 3Z is not an ideal.
Theorem 3 : Let | and J be two ideals of ring R, then IUJ is an ideal of R iff either Jc I.
Proof : Let | and J be two ideals of ring R such that either IcJ or J c I, to prove Ic J is not ideal.
Sincel < J
=1UJ =JandJis anideal of ring R
Therefore | U J is an ideal of R.

Again J c |

328



= I1UJ=1andlis an ideal of ring R.
So U Jis an ideal of R.
Conversely
Let I U Jis anideal r, then to prove eitherl c JorJ cl.
Since | U J is an ideal of R.
LetaelandbeJ
Thena,b e UJ.
Since | U J is an ideal of R.
Thena-belUJ.
Soeithera-belora-beld
Ifa-belandaelandlisanideal of R
Thena-(a-b) el
=>bel
So, hence, J c | [By property of subset]
Againifa-b e Jandb € Jand Jis an ideal of R
Thena+(a-b_eJ
=ael
Asael=aed
Solcd [using the property of subset]
Hence proved.
Sum of two ideals
Let R be aring and I and J be two ideal of R then sum of two ideals is defines as
I+J={a+bjacl,bej}
Product of two ideals

Let R be aring and | and J be two ideals of R, then product of two ideals is defined as

IJ={Zai bi;a € l,bi € J ne N}
i1

Theorem 4 : If | and J be any two ideals of a ring R then | + J is an ideal of R. Also prove that |
+J ={l U J}is the smallest ideal of R containing | U J.

Proof : Since | and J be any two ideals of a ring R
SoO0eland0eJ
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=0=0+0el+J

Therefore, | + J is a hom empty set.

Let x; y € I + J be any two elements of | + J such that

X=a; +byandy=a, + b, where a;a,e | and by, bye J

Now X - y = (a; + by) - (a2 + by)

= (a1 - az) + (b1 - by)

=>X-yel+] [Because ai, a,e | and | is an ideal so a; - ae |,

similarly by, b,eJ ]

Now, let r eR be any element, then

rx=r(a; +by)

=ra; +rb; ['re Ria;e landlis anideal, sora, € |
andr € Ry b;e J, Jis anideal so rbie J]

Both the properties are satisfied

Hence | + J is an ideal of R.

Now, to prove | + J ={I U J} is the smallest ideal of R containing |1 U J.

Let x € | + J be an element

thenx=a+b;aclandb e J

Alsoaelandb e J

soa,belUJ

=ael,bel =>a,belUJ

thena + b e {l U J} is the smallest ideal of R containing 1UJ

= X e {IUJ}

Thusx e | +J

=xe{l+J}

Sol+Jc{lUJ}.

Further, vV a € |, and 0 € J we can have

a=a+0el+J

=lcl+J

Similarly, Vb e Jand 0 e |

b=0+bel+J

Jcl+J
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Sincelcl+JandJcl+J
=>1UJcl+J
=>{IUJ}cI+J
Hence 1+J={IU J}
Theorem 5 : If | and J be any two ideals of a ring R, then IJ is an ideal of R.
Moreover I3 c 1 N J.
Proof : Given | and J are ideals of R. So
Oceland0 e J
=0=00eld
Hence 1J is non empty set.

Let X, y € 1J be any two elements, then
x=Ya b andy=>c d ,a,celandb, deJ
i=1 i=1
and m and n are positive integers, the

X-y =Zn:ai b,— Zn:Ci d
i-1 i-1

= a.lb]_ + agbz + ... anbn - (C]_ dl + d2d2 + ... 'Cndm)

m+n

= Zxkyk
k-1

Where, xx=acxand yy = b fork=1,2,....n

and X+t = -ckand y, = difort=1, 2, 3, ...m
m+n

SOX-Y= D XY,
k=1

eld

Now let r be any element of R, then

Since | is an ideal of R so rai € | and b;e J
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n

Sorx= Y (ra) b,

i-1
eld

Similarly x r = (Zn:a bijr

i=1

=>a (br)
i=1
Since J is an ideal of R so bi.re J and a;e |
Soxr=>Ya (br)
i=1
eld
Hence 1J is an ideal of R.

Now, to prove IJ 1N J

n

Letx 0= Zaibi , be any element of 1J., where a;e | and bi € J, n is a positive integer.
i=1

Since bie J and J is an ideal of R
=b,eR

Also | is ideal of R and a;e |, bie R
So abie |

Similarly Ji € 1 and | is an ideal of R
= aec R

Also Jis an ideal of R, bie J, ae R
=abie J

Since ab,e | and a; bie J
=abelNJ fori=1,2,...n.

= X = Zn:abielﬂJ

i=1
Hencex e 1J
=xelNJ
Therefore |l J <=1 NJ
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Hence the proof.
Theorem 6 :Modular Law : If A, B, C are ideal of a ring R such that B ¢ A. Prove that
ANB+C)=B+(ANC)=(ANB)+(ANC)
Solution : Letx € AN (B + C) be any element
Then x € Aand x € B+C
when x € B+C
thenx=b+cforb eBandc C
GivenBc A
=beB thebe A
Now, x e Aand b € A and A is an ideal then
=>X-beA
= (b+tc)-b=c » X=b+c
=ceA

But initially ¢ ec

=cealc.

Therefore x= b+c € B+ (ANC)

=>ANB+C) cB+(A+C) (2)
Conversely

Lety € B+ (AN C) be any element, then
y=b+K,wherebeBandk e ANC=ke Aandk e C
Now b €B, andk € C
=>b+keB+C
=>yeB+C
Again, Sinceb eBand B c A
=beAandalsok € A
=>b+keA
=>yeA
Sincey e B+candy € A also
yeAN(B+C)
B + (ANC) c AN (B+C) 2
From (1) and (2)
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AN (B+C) = B+ (ANC). (3)
Also since Bc A=ANB=B

using this in (3), we get

AN (B+C) =B + (AN C) = (ANB) + (ANC)
Hence proved.

Example 2 : Let Z is a ring of integer. 4 Z and 6Z are two if its ideal. Then find 4ZN6Z, 4Z + 6Z
and 4Z.6Z

Since we know that if x e INJ thenx e land x € J
So 4Z N 6Z contain only those elements which are in 4Z and in 6Z also.
Therefore4ZN6Z ={... -24,-12, 0,12, 24....}
= set of integer which are multiple of 12
=127
Hence 4Z N 6Z = 12Z.
(2)  4z+6Z,
Since we know that if I and J are two ideals of R
thenl+J={a+b;aclandb e J}
4Z + 6Z ={0, +(4+6), +(8+12), + (12+18), + (16+24), + (20+30), + (24+36), ....}
= {0, +10, +20, + 30, + 40, + 50, + 60, + ....}
= set of integer which are multiple of 10
=10z
A4z +6Z =10Z.

n

3) If | and J are two ideals of R then 1J is also an ideal of R such that IJ = {z a; b;,

i=1
ai el,bied, So
4Z ={0,+4,+8,+12,+16,+ 20, + 24, + 28,....}
6Z={0,+6,+12,+18, + 24, + 30, + 36, + 28,....}
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4Z.6Z ={0, +24, +96, +216, +384, +600, +864, + ....}

= Set of integer which are multiple of 24.

47.6Z = 24Z.

We can generalised above result as.

Note : If n, m € Z and nZ and mZ are ideals of Z then nZ N mZ = kZ, where k is common multiple of n, m

n=1cm (n, m)

nZ + mZ = dZ, where d is common division of m, n

=gcd (m, n)

Self Check Exercise - 3
Q.1 Find6ZN6Z 6Z+6Z 62.6Z, where 6Z is an ideals of Z.
Q.2 Find8zN5z, 8Z+5Z,82.5Z, where 82 and 5Z are ideals of Z.
Q.3 Find 3Z N 5Z, 3Z + 5Z and 3Z.5Z, where 3Z and 5Z are ideals of Z.

19.6 Summary :

In this unit we studied about

1.

© ©® N o O

11.

In a non empty subset of aringifa,b elandr eRthena-b elandra=are |
then | is known as ideal of ring R

An ideal of a ring is a subring but converse is not thru.

{0} and R are improper ideal of ring R, whereas any other ideal is known as
proper ideal.

In a non empty subset S of a ring, for x € R if {xS = Sx = 0}, then this is known as
annihilator of ring R.

Left and (right) annihilators of ring R are Left (or right) ideal of ring.
Intersection of two ideal is again an ideal.
Union of two ideals is need not be an ideal.
Union of two ideals will be an ideal iff eitherl cJorJ c .
Sum and product of two ideals is an ideal.
Modular law hold in ideal i.e. if A, B, C are ideals of ring R and Bc A then
ANB+C)=B+(ANC)=(ANB)+(ANC)
If nZ and mZ are ideals of Z then
nZ + mZ = dz, d =gcd (m, n)
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nZNmZ = kz, k=lcm (m, n)
19.7 Glossary :

. Ideal : An ideal is said to be ideal of Ring R if | is both left sided and right sided.
o Improper Ideal : {0} and R is ideal of R. These ideal's called improper ideal.
. Left Annihilator : Let S be the non-empty subset of Ring R then

ann(S) = {xe R; xS = 0}.
19.8 Answers to Self Check Exercises
Self Check exercise-1
Q.1 Use definition of left and right ideal to prove this.
Q.2 Given R is a commutative ring, Sor eR.

Xr =rxV Xe a R.

a b
Q. 3 Consider the ring M,(Z) = L d}’ a,b,c,dez

a o0
and let A = ,ae”Z

then AR = {Ar, r ¢ R}
1 O0j|la b

0 Of|jlc d
ab

00

_ 1 2 1 2
Taking r = and e AR
3 4

00

1 2|1 2 1 2|1 2
Prove that #*
2 allo oo olls 4

Self Check Exercise - 2

Q.1 Do same as example 2.
Self CheckExercise -3

Q.1 626762

Q.2 407,137,407

Q.3 157,827,157
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19.10 Terminal Questions

1.

Let | = (a), J = (b) be two ideals of ring Z of integers, where a and b are positive
integers. Determine

[+J,1NJ, 1.

a o0
Prove that the set S of all matrices of the form [0 b} with a, b € Z, forms a

subring of ring M,(Z) Further prove that S is neither a left nor a right ideal of
M2(2)
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20.6  Summary
20.7 Glossary
20.8 Answers to Self Check Exercises
20.9 References/Suggested Readings
20.10 Terminal Questions
20.1 Introduction

Dear students in this unit, we will study about the type of ideal, mainly about Principal
ideal, Maximal ideal and Prime ideal. Also we will study the property and example related to

these ideal.

20.2

20.3

Learning Objectives:

After studying this unit, students will be able to

1. define principal, maximal and prime ideal.
2. can prove property of types of ideals.
3. can solve questions related to types of ideals.

Principal Ideal

In group, we studied about the group generated by an element, similarly here we will
study about ideal generated by a non empty subset and an the basis of this we will define

principal ideal.
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Ideal Generated by a Subset

Let Risaring and | is an ideal of R. Let S be any subset of ring R. An ideal | of R is said
to be generated by subset S if

1) Scl
(2) for any otherideal Jof R, ScJ=1cJ

In other words we can say that | is an ideal generated by a subset S of R if | is the
smallest ideal among all the ideals of R which contain S. or | is the intersection of all ideals of R
which contains S.

Mathematically, we writ an ideal | generated by S as

I =<S>={S}=N{J; Jisideals of Rs.t. J o S}

Using this definition we will define principal ideal.
Definition of Principal Ideal

An ideal of a ring which is generated by a single element of ring is called principal ideal
of the ring. If | is principal ideal of the ring R generated by a. Then we write.

| = <a>
Let us take following examples

Example 1 : Let Z be the ring show that nZ is a principal ideal.

Solution : Since Z ={ .......... -4,-3,-2,-1,0,1, 2, 3,4, ... } be the set of integers and we
know. that Z form O ring under usual addition and multiplication.

ThenzZ={.......... -4n, -3n, -2n, -n, 0, n, 2n, 3n, 4n, ....... }

wheren e Z

..nZ = <n> = generated by a single element of Z. Hence nZ is a principal ideal.
Example 2 : If R be a commutative ring with unit and a € R be any element then
OR=Ra=[Or=ra;r e R} =<a>is a principal ideal.
Example 3 : Forring of integers Z = {0, +1, +2, +3, .....}

2Z ={0, +2, +4, +5, 48, .....} Since every element of 2Z is generated by a single element
Z. Hence 2Z is principal ideal generated by 2 or <2>.

Now 3Z = {0, +3, +6, +9, .....}

Again, every element of 3Z is genered by a single element 3. Hence 3Z is principal ideal
generated by 3 or <3>
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Self Check Exercises-1
Q.1 Provethat5Z, 7Z are principal ideal of ring of integers Z.

20.4 Maximal Ideal
Definition

If Ris aring and S is a non zero ideal of R such that S # R then S is called a maximal
ideal of R, if there exists no proper ideal of R containing S.

Example 1 : Show that 2Z = <2> is a maximal ideal of ring of integers Z.
Solution: Since Z=2Z={0, +1, +2, +3, ..... }
and 2Z ={0, +2, +4, +5, 8, ..... } is a non zero ideal of Z.
Since2Z#Z
Also there is no proper ideal of R which contains 2Z
Theorem 1 :pZ = <p> where p is a prime is a maximal ideal of ring of integer Z.
In the ring of integers Z, the ideal <p> is a maximal ideal iff p is prime number.

Proof : Let S be an ideal of ring of inters Z generated by a prime integer to prove <p> is a
maximal ideal.

Since S = <p> = pZ given
Now Let T be an ideal of Z containing S and generated by some positive integer g then
SinceScTandpeS
=>peT
So, there exists some a € z such that
p=qa
since p is a prime
= eitherg=1lorq =p.
Whenq=1,thenT=1Z2=Z
Whenqg=p,thenT=pZ=S
Thus the ideal of Z generated by prime p is a maximal ideal.
Conversely :
Let S be a maximal ideal of Z generated by a positive integer p i.e. S = pZ.
To prove p is a prime.
Let, p is not a prime, then
p=mnwherem=1,n=1.

Let T be an ideal of Z generated by m. the we have
340




ScTcZ

But S is a maximal ideal
SoeitherS=TorT=Z

Now if T =Z = T is an ideal gerated byl

= m = 1, which is acontracition.

AgainifT=S
=>pZ=mZ
m = pa for same a € Z.
= mn = pan
p =pan
= an =1 = n =1 which is again a contraction.

Hence p must be a prime number.
Example 2: Show that in a division ring R <0> is a maximal ideal.
Solution : Since <0>%¢ Ras Risaring, soie Ralso1=0
Let J be any non zero ideal of R, then J xz non zero element x in J.
Also R is a division ring, so inverse of each element exists.
Therefore x*e R. Such that xx* = 1
Since JisidealRsoxx'=1 e J
Hence J is an ideal of R which contain the unity element of R
L J=R
Hence <0> is a maximal ideal of R.
Example 3 : Let E = 2Z is the ring of even integer then show that <4> = 4Z is a maximal in E.
Solution : Since we known that
Z={0, +1, +2, +3, +4, .....}
then 2Z ={0, +2, +4, +6, +8, + 10, ..... } is the ring of even integer.
47 ={0, +4, +8, +12, +16, .....}
clearly 2 ¢ 4Z
Hence 2Z = 4Z or <4> =E
Also now to prove there exists no other ideal of R containing <4>
Let J be any ideal of E such that <4> C J.

Let x € J such that x ¢<4> i.e. x is not a multiple of 4
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Thenx=um +rwherer =1or 2 or3.
But if r = 1 or 3, then x will be an add integer but
X € J which is an ideal of E i.e. having even integer so only possibility is r = 2.
LoX=um+ 2
=>2=Xx-4m e
so every integral multiple of 2 belongs to J
=J=E
So, there is no other ideal of R containing <4>
Hence <4> is a maximal ideal.
Example 4 : Find maximal ideal of Zg

Solution : In order to find maximal ideal of Zg we first have to find all ideals of Z5. We will use
following theorem. Also ideal of Z,, at the first place, are additive sub group of Z,. Also, for each
positive divisor d of an the set <n/d> is the unique subgroup of Z, of order d, these are only
subgroups of Z,. Therefore, to find all ideals of Zg we just have to find all the divisor of 8.

Since (Zs, +1 X) ={0, 1, 2, 3, 4,5, 6, 7}

Since 1, 2, 4, 8 are only divisor of 8. Using xg we get
s01/8=<1>={0,1,2,3,4,5,6, 7} = Zg

Now 2/8 =<2>={0, 2,4, 6,0, 2, 4, 6}

={0, 2, 4, 6}

Now 4/8 = <4>={0, 4,0, 4,0, 4, 0, 4}
={0, 4}

Now 8/8 =<8>={0, 0, 0, 0, 0, 0, 0}
= {0}

Now, <8>c<4>c<2>c<1> =74
Hence <2> is the only maximal ideal of Zs.
Example 5 : Find maximal ideal of Z;
Solution : First of find all ideal of Z4,.
Since Z,0={0,1,2,3,4,5,6,7, 8, 9}
Now to find the divisor of 10
Since, 1, 2, 5, 10 are only divisors of 10
So01/10=<1>27,,={0,1,2,3,4,5,6,7,8,9} =210
2/10=<2>={0,2,4,6,8,0, 2, 4,6, 8}
={0, 2, 4, 6, 8}
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5/10=<5>={0,5,0,5,0,5,0, 5, 0, 5}
{0, 5}
and  10/10 = <10> = {0}
Since <10>c<5>c<1>
and <2>c<1>
Hence <2> and <5> are maximal ideal of Z,.
Example 6: Find the maximal ideal of Z;,
Solution: Since Z,,={0, 1, 2, 3,4,5,6, 7,8, 9, 10, 11}
the divisor of Zare, 1, 2, 3, 4, 6, 12
So, 1/12=<1>={0,1,2,3,4,5,6,7,8,9, 10,11} =2Z,,
2/12=<2>={0, 2,4, 6, 8, 10,0, 0, 4, 6, 8, 10}
={0, 2, 4, 6, 8, 10}
3/12=<3>={0,3,6,9,0,3,6,9,0, 3, 6, 9}
={0, 3, 6, 9}
4/12 =<4>={0,4,8,0,4,8,0,4,8,0, 4, 8}
={0, 4, 8}
6/12=<6>={0,6,0,6,0,6,0,6,0,6, 0, 6}
={0, 6}
12/12 = <12> = {0}
Since <12>c<6>c<3>c<1> =712
<12>c<4>c<2>c<1> =712

Hence <2< and <3> are maximal ideal of Z12.

Self Check Exercise - 2
Q.1 Find the maximal ideal of Zsg

Q.2 Find the maximal ideal of Zs,

20.5 Prime Ideal
Definition:-

Let R be a commutative ring. An ideal P of R is called g prime ideal if for every a, b € R,
a b e p then either aep or bep.

Example 1: Show that in an integral domain R, <0> is a prime ideal.
Solution: Let R be an integral domain.
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LetvVa beRsetab e<0> [definition of prime ideal]
= ab=0
Since R is an integral domain so
ab=0=eithera=00rb=0
= either a e<0> or b e<0>
Hence <0> is a prime ideal, in ab integral domain R.
Example 2: Show that in the ring of integral Z the ideal
<3>=3Z={3n; nez}is a prime ideal.
Solution: Using definition of a prime ideal, if <3> is as prime ideal,
VabeZ abe<3>
= ab=3n,n e Z
= 3/ab
Since 3 is a prime number, so
= either 3/9 or 3/b
= either a =3 m; or b = 3 m, for some m; m,e Z.
= either a e<3>orb €<3>
Hence V a,b € Z, ab €<3>= either a €<3> or b €<3>
Hence <3> is a prime ideal of Z.
Example 3: Show that <4> = 4Z is not a prime ideal of 2Z.
Solution: Since 2Z = {0, +2, +4, +6, 48, ............. }
47 ={0, +4, 48, +12, +12, ............. }
Since 4Z < 2Z and 4Z # 2Z, so 4Z is maximal ideal.
For prime ideal, V a, b € 2Z, ab € 4Z eithera € 4Z or be 4Z
Since, 2,2€ 2Z,2.2 € 4Z
= but neither 2e€4Z nor 2e4Z
Hence 4Z is not a prime ideal of 2Z.
Example 4: Let R = Z15, | = {0} is an ideal of Z15.
Check | = {0} is a prime ideal of Z15 or not.
Solution: Since (Z;s, +, .) is aring
Z15={0,1,2,3, ccccerrnnnn, 14}
As 3 € Z15,5 € Z;5
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Now 3;5.5=0 € |
But3 ¢ land5 ¢ |,
As | {0} contains only single element i.e. O.
So | = {0} is not a prime ideal in Z;s.
Note:- No of prime ideal in Z, - No of prime divisors of n.
Example 5: Find all prime ideal in Z.
Solution: Since 26 ={0, 1, 2, 3, 4, 5}
Since (Zs, +) is a ring. Also no of prime ideal in Zs.
= no of prime divisors of 6
=2 [as 2, 3 are only prime divisor of 6]
Since divisorsof 6 are 1, 2, 3, 6
So L =1/6 =<1>={0, 1, 2, 3, 4, 5} = Zs.
l,=2/6=<2>=/{0,2,4,0, 2, 4
={0, 2, 4}
I3=3/6=<3>={0, 3,0, 3,0, 3} ={0, 3}
I, = 6/6 = <6> = {0}
Out of there four ideals two will be prime ideals of Zg.
Now to find these prime ideal
Since |; = Zg so by definition |; = <1> is not a prime ideal of Zs.
I, =<2>=/{0, 2, 4}

The remaining elements of Zg are, 1 3, 5 and their composition table under multiplication is

X 1 3 5
1 1 3 5
3 3 3 3
5 5 3 1

Since non of element of composition table belongs to I,
Hence I, is for prime ideal.
I3 =<3>={0, 3}

The elements of Zs other than 0, 3 are 1, 2, 4, 5 and their composition table under
multiplication is
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Xe 1 2 4 5
1 1 2 4 5
2 2 4 2 4
4 4 2 4 2
5 5 4 2 1

Since non of element of composition table belongs to |5
Hence I3 is a prime ideal.
Now, Is=<6>={0}
using definition, Let 2, 3 € Zg
2x63=0¢ly0r3el,
So |4 is not a prime ideal.
Example 6: How many prime ideal in Z;5.?

Solution: No of prime ideal in Z;5 = No of prime divisor of 15
No of prime ideal in Z;5 =2

Since 3 and 5 are only prime divisor of 15. Hence <3> and <5> are prime ideal of Z;s
Since Z;5={0,1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15}
Now |, =<3>
={0,3,6,9,12,0,3,6,9,12,0, 3,6, 9, 12}
={0, 3,6, 9, 12}
I, = <5>
={0, 5, 10}
Example 7: Find prime ideal of Z;,

Solution: Since prime divisor of 1, are 2, and 3, so there are two prime ideal of Z;, and they are
<2> and <3>

Letl, =<2>={0, 4, 6, 8, 10}
l,=<3>={0, 3, 6, 9}
Example 8: Is intersection of two prime ideal is a prime ideal? Prove by example.

Solution: Let Z=0, +1, +2, +3, ............. }
2Z ={0,+2, +4, +6, + ............ }
3Z2={0, +3, +6, 19, ..ceee...... }



2Z N 3Z2={0, +6, +12, +18, ............ }
2Z N 3Z=6Z=<6>
Also 6Z is not a prime ideal as, 2,3 € Z
2x3=6¢€6Z
but2 ¢ 6Z and 3 ¢ 6Z
Hence by definition of prime ideal, 6Z is not a prime ideal in Z.
As 6Z is not a prime ideal. So intersection of two prime ideal may not be a prime ideal.
Now, Let us prove following theorems for prime ideals.

Theorem 1: In the ring of integers Z; the ideal <m> = mZ = {mn, neZ} is a prime ideal iff m is
prime number.

Proof:- Let <m> be a prime ideal, to show that m is prime
Let a, b € Z such that ab e<m>

Since <m> is a prime ideal

= either a e<m> or b <<m>
= eithera=morb =mn
= either m/a or m/b

when na/ab, we have m/a or m/b
SO m is a prime ideal.
Conversely:
Let m be a prime number to show <m> is a prime ideal.
Let a,b e Zsuchthatab e<m>
ab = mn for some neZ
m/ab, but m is a prime number
either m/a or m/b

either a = mn, or b=mn, where ny, nye Z.
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either ae<m> or b e<m>
Hence <m> is a prime ideal.
Theorem 2: An ideal P of a commutative ring is prime if and only if R/P is an integral domain.

Proof: Let P be a prime ideal of R. To show R/P is on integral domain.
Let 5 = a+p and B = b+p where a, b €R, be two elements of R/P such that
ab=0
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- ab=0

= ab+P=P

= abeP

Since P is a prime ideal

Soeitherae Porb e P

Soeither a = 0 or b = 0

Hence for ab = 0 either a =0 or b = 0

So R/P has no zero divisor

Also R is a commutative ring with unity.

= R/P is a commutative ring with unity T.

Hence R/P is an integral domain
Conversely:

Let R/P is an integral domain, o prove P is a prime ideal.

Let a,beRsuchthatabeP

= ab+P=P

= ab=0

= ab=0

As R/P is an integral domain

= eithera=0orb = 0

= eitherae Porb e P

P is a prime ideal.

Hence Proved.

Theorems 3: Let R be a commutative ring with unity. Then every maximal ideal of R is a prime
ideal.

Proof: Let R be commutative ring with unity.
Let M be a maximal ideal of R
Then R/M is a field
= R/M is an integral domain
Hence M is a prime ideal

Converse of this theorem is not true.
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Example 9 : Give an example to show that maximal ideal need not be prime ideal for ring
without unit.

Solution : Since 2Z is set of even integer is a ring, without unit.

and 4Z is a maximal ideal of 2Z. Put 4Z is not a prime ideal.
To prove this let 2, 6 € 2Z, so

2x6=12=6

43 €47

but2 ¢ 4Zand 6 ¢ 4Z

Hence by definition of prime ideal 4Z is not a prime ideal still it is a maximal ideal of 2Z.

Self Check Exercise-3

Q.1 How many prime ideal Z = pq where p and q are distinct prime.
Q.2 How many prime ideal in Z.
Q.3 Show that 6Z is not prime ideal in Z.

20.6

20.7

Summary

In this unit we studied

1. An ideal of a ring which is generated by a single element of ring is called principal
ideal of that ring.

2. pZ = <p>where p is a prime, is a maximal ideal of ring.

3. A non zero ideal of R is known as maximal ideal if S #R and if there exists no

proper ideal of R containing S.

4. An ideal P of R is known as prime ideal if for every a, b € R, ab € P then either
aePorbeP.

Intersection of two prime ideal may or may not be prime ideal.
No of prime ideal in a ring Z, is equal to number of prime divisor of n.
In ring of integer Z the ideal <m> is a prime ideal iff m is prime.

An ideal P of commutative ring is prime iff R/P is an integral domain.

© © N o o

Let R is a commutative ring with unity then every maximal ideal of R is a prime
ideal.

10. A prime ideal may not be a maximal ideal.

Glossary :

. Principal Ideal : An ideal of Ring, which is generated by a single element of Ring
is called principle Ideal of Ring.
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Maximal Ideal : If S is non-zero ideal of Ring R such that S # R then S is called
maximal ideal, if J no proper ideal of R containing S.

Prime Ideal : A ring R with commutative. An ideal P of R is called a prime ideal if
foreverya, b € R, ab € P, then either Ae Porb e P.

20.8 Answers to Self Check Exercises

Self Check exercise-1

Q.1

Same as example 3.

Self Check Exercise - 2

Q.1
Q.2

<2> and <3> are maximal ideal of Z.

<2> ,<13> are maximal ideal of Zs,.

Self CheckExercise -3

Q.1
Q.2
Q.3

Only two prime ideal<p> and <g>

Infinite prime ideal in Z that are <p> where p is a prime number
Since2,3eZ

2x3=6 € 6Z

but2 ¢ 6Z and 3 ¢ 6Z

So 6Z is not a prime ideal in 2
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20.10 Terminal Questions

1.
2.
3.

Give an example of a ring in which a prime ideal is not a maximal ideal.
Prove that in a Boolean ring with identity every prime ideal is a maximal ideal.

Find all maximal and prime ideal of Z,;.
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