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1.1 Introduction

Dear students,you are already aware of the concept of a set. From your previous
knowledge you must be aware of the fact that infinite set has infinite number of elements. Now,
the question arises that is there any connection between the sets of natural numbers N, the set
of integer z, the set of real numbers etc.? In this direction the concept of equivalent sets is being
introduced and consequently the concept of countable set and uncountable set comes into
picture.

1.2 Learning Objectives:

The main objective of this unit are

0] to study the concept of equivalent sets.

(i) to study finite and infinite sets

(iii) to study countable and uncountable sets

(iv) to learn the concept of algebraic and transcendental numbers.
1.3 Equivalent Sets.

Let A and B be two sets. Then a set A is said to be equivalent to a set B, written as A ~
B, if there exists a mapping (function)



f:A—>B

Which is one-one and onto (Bijective). Let us understand the above concept with the
help of some examples.

Example1: IfA={2n:n e z}
andB={2n-1:n¢z}
then A~ B
Solution: GivenA={2n:nez}, B={2n-1:n¢e z}
Let us define a function
f : A — B such that
f(X)=x-1VxeA
Claim :f is one-one and onto i.e. bijective
For one-one - Let X1, X2e A s.t.
[ (X2) = f (x2)
= Xx1-1 Xx2-1
= X1 = X2
(X)) =f (%) = X=X
Thus f is one-one.
fisonto - sety € B be any element
3 some n € z such that
y=2n-1
Thus3x=2n e As.t.
f)=f@n)=2n-1=y
= fisonto
Hence f is one-one and onto.
Thus A ~ B.
Example 2 : Consider A={x:x e Rs.t. 0 <x<1}
B={x:xeRst.3<x<7}
then show that A ~ B.
Solution :Let us define a function
f:A—Bas
fX)=4x+3VxeA



Claim :f is bijective
f is one-one - Let x1, xoe As.t.

f(xa) = f (x2)

= 4X1+3=4x,+ 3
= X1 = X2

fis one- one
f is onto-

Lety € B be any element

3<y=<7
= O0<y-3<4
= Ogy_sgl
4
Let x=2"cAst
4
y-3 y-3
X)=f|——|=4 +3=
=1(252) 4[5y
ThusVyeB3ixe Astf(X)=y
f is onto
= f is one-one and onto i.e. bijective
Hence A ~ B.

Example 3 : Show that any open interval is equivalent to (0, 1).
Solution : Let A= (0, 1) and B = (a, b), a < b are reals.
Consider the function f A — B as
fx)=a+(b-a)xVvxe A
Claim :f is bijective
fis one-one. - Let X1, x2 € A s.t.
f(x1)=f(x2)
= at(b-1)xl=a+(b-a)x2
= x1=x2
f is one-one.

fisonto - Lety € B be any element



a<y<b
= 0<y-1<b-a

= 0<Y=%1
b-a
Letxzm,then0<x<1i.e.XGA
b-a
Now f (x) = f(y;aj
b-a
—-a
=a+|——|(b-a
(b—a( )
fx)=y
= f is onto
= f is bijective
Hence A~B.

Remark : Example 3 can be restated as :
Show that (0, 1) ~ (a, b) for every real number a and b, a < b.
Some More illustrated Examples
Example 4 : Show that the equivalent relation ~ is an equivalent relation
Solution : (i) Consider the identity function
| : A — A defined by
I (X) =x Vxe A
clearly A~ AV setA
~ is reflexive
(ii) A is symmetric -
Let A~ B =3 a function
f : A — B, such that
f is one-one and onto
= 3 inverse function f* : B — A which is also one-one and onto
B~A

Hence ~ is symmetric



(iii) A is transitive -

LetA~BandB~C

Claim:A~C

NowA~B,B~C

= 3 functions f:A—>Bandg:B—C

Which are both one-one and onto
the composite function h =go f : A — C is also one-one and onto
A~C

Hence ~ is transitive

Thus the equivalent relation ~ is an equivalence relation.

Example 5 : Show that (%%j~ R

Solution : Let A = i,z and B=R
2 2

Consider a function

f : A — B defined by
T

f (x) =tan x Vxe (%Ej

Claim :f is bijective
f is one-one - set x1, X2€ A be s.t.

f(x)=f(x2)

= tan X1 = tan xz
= Xi1=Xe+Nm,NezZz
= X1=Xe=Nm,Nez
—T T
But (X1, X2) €| —,
2 2
xa-xe | <2
1-X2 | <—
2

xl-x2:nn:>n:Oi.e.x1:x2
f is one-one

fisontolLety € R then



Ix=tanty e(i,zj
2 2

S.t.
)=y
. f is onto

.. f is bijective

Hence A~Bi.e. (;;%j ~R
Example 6 : A, B are two sets, then show that A x B is equivalent B x A.
Solution : Let us consider a function

f:AxB — B x Adefined by

f((@b)=((M,a)Vv(ab)eAxB

Claim :f is bijective
f is one-one -

Let (a1 bi1), (a2 b2) € AxBs.t.

f (a1 b1)) = f ((az2 b2))

= (bl, al) = (bz , az)

U

bi=b,as=a
= (a1 by) = (a2 b2)
f is one-one
fis onto -

Lety € B x A be any element
Jb eBanda eAs.t.
y=(b, a)

Now, we fine x = (a, b) € Ax B s.t.
fX=f@b)=(ba)=y
fisonto

f is bijective. Hence A x B ~ B x A

14 Finite and Infinite Set
A set A is said to be finite set iff either A = ¢ or there exists a positive integer n such that
A~{1,2,3,..n}



Otherwise A is said to be infinite set
In other words, A is said to be infinite if 3 a function
f:A—-Ast
f(A)=A.
Remark: (i) IfasetA~{1, 2,3, ...., n}, then we say that A is a finite set having n elements.

(i) In case of finite sets, two sets are equivalent iff they have the same number of
elements.

(i) If B is infinite and B < A, then A is infinite i.e. superset of infinite set is infinite.
15 Countable and Uncountable sets

(@ Countable infinite set (or Denumerable or Enumerable set) : An infinite set A
is said to be countably infinite set or denumerable or enumerable set iff A ~ N.

(i) Countable set : A set A is said to be countable if A is either finite set or a
countably infinite set.

(iii) Almost Countable : A set A is said to be almost countable if A is either a finite
set or a countable set.

(iv) Uncountable set : A infinite set, which is not countably infinite (or denumerable)
set is said to be uncountable set.

Art-1. A set A is countably infinite or denumerable iff its elements can be put in the form of an
infinite sequence of distinct elements.

Proof : Let A be a countable infinite set. Then by definition A ~ [J .
Therefore, 3 a function f :[J — A which is bijective
i.,e.vnell ,3s.ase Asuchthat f (n) =a,and
f(n1) = f (n2) = nz [or na# no=f (na) =f (n2)]
Thus A ={ay, az, ..... , @n, ....} Where ai, az, ........ ,an ... are distinct of A.
Conversely, let every elements of A can be put in the form of an elements of A.
Let A={ai, ay, ..... , @n, ....} Where ay, az, ........ , an .. are distinct elements of A.
Define a functiong:l! — Aasg(n)=anVvnell

Then we claim g is a bijective function.

For one-one Let ni= nze [l =&, #a, =f (n1) #f (n2)

N1# n2:>f (nl) ;tf (nz)
So, f is one-one
For onto Lety € A be any element

3 ane Asuchthaty = a,



Thus3n ell suchthatg(n)=a,=y
g is onto.

Thus g is bijective function
Hence A ~ [] i.e., Ais countably infinite set.
Remark : Every infinite set contains a denumerable set.
Art 2. Prove that the set of rational numbers is denumerable.
Or

Find a bijection between the set of rational numbers and the set of all positive integers.

Proof : Firstly, we will take positive rational humbers only and write them all in the order of
magnitude i.e. all numbers whose denominator is 1, then all fraction with denominator is 2, then
all fraction with denominator 3 and so on as shown below by the arrow.
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[Here arrow follows the addition of numerator and denominator in each fraction as 2, 3,

If we write down numbers in the order of succession indicated by arrow after leaving out
those numbers, which have already appeared, then every positive rational number can be

. 121134321 )
written as the sequence <=, —, =, =, ==, =1 =) —serrrrm and if we denote the sequence by {si,
112311234
S2, S2,.....} then

Q = {0 - Slv Sla '32, 52, '53, ........ }

Thus, the set of rational numbers can be written as an infinite sequence with distinct
elements.



Then we can define a bijection map f:N—>Qas f (1) =0and

S, ;if niseven

2
—s, , ;if nisodd

n

fn)=

N~ Q.
Hence Q is denumerable.

Example: Prove that the set of all sequences whose elements are either zero or one is not
countable.

Solution: Let A be the set of all sequences with elements 0 and 1 only.
For example the sequence <0,1,0,1,0, 1, ....... >c A

Suppose that A is countable. Then A can be written Pf1, f2, f3,....... } where each fi, ie N
is a sequence such that fi(n)=0or 1; Vv neN,ie N.

Consider the sequence f such that

) {1if f (n)=0

~oif f (n)=1 - @)

Since all the elements of the sequence f are either O or 1, therefore fe A.
But f#fn, V n eN (v.r of ()
So, we arrive at a contradiction.
Hence our supposition is wrong. Therefore A is uncountable.
Some More Examples

Example 7: If a function f : A — B is one-one and B is countable, there prove that A is atmost
countable.

Solution: Let A be any set
Case (i) When A is a finite set, then A is almost countable
Case (ii) When A is infinite set.
Since f : A — Bis one-one. Then A ~f (A)
f (A) is also infinite set.
= B is infinite set [-.- super set of infinite set is infinite f (A) < B]
As B is countable set.
B is countably infinite set.
Let B = {by, by, b, ...... }



Let n; be the first positive integer such that bnl ef (A

Let n2> n1 be the next positive integer such that bnz ef (A

Continuing in this way.
We choose ny, ng, ..... , Nk.1, Nke N such that N> Nk.1> Nk2> ...

Such that b, f (A). We get

fA={b, b, ..}

In other word the element of f (A) can be arranged in the form of a sequence
f(A)~Nalso A ~f (A)

= A~N [..~ is transitive relation]

ie. A is countable set

Thereforecombinding the two cases, we find that either A is a finite set or a countable
set.

Hence A is atmost countable.
Example 8: Prove that every infinite set is equivalent to a proper subset of itself.
Solution: Let A be infinite set
by previous theorem A has a countable set (say) B.
LetC=A-B=>A=BuCandBnC=¢

Since B is countable set .. its elements can be arranged in the form of an infinite
sequence with distinct elements.

Let B = {by, by, bs, ....... } be countable set
We take another set B1 = {b, bs, ba......}

B: is a proper subset of B.
Define a function ¢ : B — B1 by ¢ (b1) = bis1.
Clearly ¢ is one-one and onto .. B ~ B
Let Ai=BuC
Since B, is a proper subset of B .. B1u C is a proper subset of B U C.
= A; is a proper subset of A.
ButB~B;and BN C=¢
AlsoC~Cand BiInC=¢
ImpliesthatBu C~B;u C i.e. A~ A

10



Where A; is a proper subset of A
Hence every infinite set is equivalent to a proper subset of itself.
Example 9: Prove that the set of rational numbers is denumerable.

Solution: We know that the set of integers is a denumerable set as 3 a bijection f : N — Z
defined by

n .. .
— :if niseven
fn)=
_N=1 5 nis odd
2
i.e. N~Z

Let for each n eN, Define the set

An{m: mEZ}
n

Then An~ Z for 3 a bijection g : Z — An by
m
n

A= Q{%:meZ}zQ

Since each An is denumerable set and countable union of denumerable sets is

gm=—;VmeZ

denumerable set implies that U A, is denumerable set.

n=1
Example 10: Prove that Cartesians product of two countable sets is a countable set.
Solution: Let A and B be two countable sets
3's bijection f:N—->Aandg:N—B
Let us definedamap h: N xN — A x B by
h (m, n) = (f (m), g (n))
For one-one Let h (m1, n1) = h (M, n2)
= (f(my), g (n) = (f (M), g (n2))
= f(m1)=f(mz)and g (ni) =g (n2)
= mi = mz and ny = n2 (.- both f and g are one-one)
(M1, 1) = (M2, N2)
So h is one-one
11



For onto. Let (a, b) € A x B be any element where a €A and b €B.
As fand g areonto maps .am e Nandn eNsuchthat f(m)=aandg(n)=Db
Thus 3 (m, n) € N xN such that
h (m, n) = (f (m), g(n)) = (a, b)
h is onto
Hence h is a bijection between N xN to A x B
N xN~ A x B
As N xN is countable set .. A x B is also countable set
Thus the product of two countable sets is a countable set.
1.6  Algebraic and Transcendental Numbers

Algebraic Number - The roots of a polynomial equation with integral coefficients are
called algebraic numbers.

Ifp(X)=ao+arXx+azx2+ ... + anx" = 0 a polynomial equation, where each of ai € z.
Then the roots of p(x) are algebraic numbers

Transcendental Numbers - A number which is not an algebraic number is said to be
transcendental number. In other words a number which is not a root of a polynomial equation
with integral coefficient is called a transcendental number

For Instance, e, &, log 2 etc. are transcendental numbers.
Art. 3 Show that the set of algebraic numbers is countable set.
Proof: Consider a polynomial equation
p = (p (X) = p (X) is a polynomial with integral coefficient}
Where
pb(X)=as+aix+.... + amX™5 : aitz we first prove that p is countable.
For each ordered pair of natural number (m, n), let
Pmn ={p(X) : p (X) € P s.t. |ao| + |a1] + ..... + |am| = n}
= Pmn is a finite set

= Pmn is countable (.- degree m of a polynomial is fixed and sum of finite number if
terms is finite)

Now
P=U{Pmn:(m,n)eNxN}
= countable union of countable set
= countable set

Further, Let

12



E ={pi (x) =0, ie A}, Ais contable set.
For each ic A Let

Ai = {x: xis aroot of pi (X) =0, pi (x) =0, pic E}

Then A = UA = set of all algebraic number.

Since each pi (x) = 0 is of finite degree m has atmost m roots,
Each A; is finite and so countable
A = U A is the countable union of countable icAi

set is also countable set

Hence set of all algebraic numbers is a countable set
Remark: If a finite number of elements are added in a countable set, then remitting set is also

countable.
Art. 4: Show that set of transcendental numbers is uncountable set

Proof: Let T = set of all transcendental numbers
A = set of all algebraic numbers
If possible, let T is countable, Then T U A is countable

Since R < AUT, R set of real numbers

= R is countable (-.- subset of countable set is countable)

our supposition is wrong
Hence the set of all transcendental number is uncountable.

Let us understand the concept with the keep of some examples.

Example 11: Prove that the set of rational number is denumerable.
Solution: We know that the set of integers is a denumerable as 3 a bijection f : N — Z defined

as

n
— , neven

fn)=
_n__l, n odd
2

i.e. N ~ z.

For each n eN, define
m
An = {—: mez}
n

13



m
Then An~zfordabijectiong:z—Abyg(m)=—Vmez
n

00 o0 m
UA= U{—:meZ}z Q
n=1 n=1 n
Since each An is denumerable set and countable union of there sets is denumerable let

implies that | J A, is denumerable set.
n=1

Example 12: Show that Cartesian product of two countable sets is a countable set
Solution: Let A, B be two countable sets
3 a bijection
fN>A g:N—>B
Define a map
h:nxN— AxB by
h (m, n) = (f(m), g(n)
Claim : h is one-one
Let h (my, n1) = h/mz, ny)
= (f (M), g (n) = (f (M2), g (n2))
= f(m1) = f (mz) and g (n1) =g (n2)
= m1 =m and Ny = Ny (. f, g are one-one)
(M1, n1) = (M2, N2)
h is one-one
h is onto:
Let (a,b) e AxB,aeA beB
Since f, g are onto,
3 m € N, n eNs.t.
f(m)=a,g(n)=b
= 3 (m, n) € N xNs.t.
h(m, n)=(f (m), g (n) =(a, b)
h is onto
Hence h is a bijection between N x N to A x B further, N xN is countable

= A x B is also countable

14



Thus product of two countable set is a countable set.
1.7 Self Check Exercise

Q.1 Prove that set of all sequences whose elements are either zero or one is not
countable

Q.2  Prove that the set [0, 1] defined as
[0, 1] ={x eR: 0 < x < 1}is uncountable

Q.3  Prove that every subset of countable set is atmost countable.
1.8 Summary

In this unit we have learnt

(1) equivalent set and equivalence relation

(i) finite and infinite sets

(iii) countable and uncountable set

(iv) algebraic and transcendental numbers
1.9 Glossary:

1. Atmost Countable - A set A is called atmost countable if A is either finite set or
a countable set

2. Denumerable or Enumerable set - An infinile set is called countable infinite or
denumerable or enumerable set iff A ~ N.

1.10 Answer to Self Check Exercise
Ans.1 Consider the set<0, 1,0, 1,0, 1, ..... > and then proceed.
Ans.2 Suppose A = [0, 1] be denumerable and prove it to be wrong.
Ans.3 Consider a set A be a subset of countable set B and then proceed.
1.11 References/Suggested Readings
1. T.M. Apostal, Calculus (Vol 1), John Wiley and Sons (Asia) p. Ltd., 2002

2. E. Fischer, Intermediate Real thalysis, springer Verlag, 1983.
1.12 Terminal Questions
1. Prove that the set of complex number is uncountable
2 Show that union of two denumerable sets is denumerable
3. If Ais a countable set and A ~ B, then prove that B is also countable
4 Prove that union of binite number of countable sets is a countable set.

15
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2.1 Introduction

Dear students, you are already familiar with the concept of a set defined as the collection
of well defined distinct objects of our perception of thought. Set are usually denoted by capital
letters A, B, C etc and the elements of the set by small letters a, b, c etc. 1, 2, 3, ..... are called
natural numbers and their set is denoted by N.

The set of natural numbers is closed under the operations of addition and multiplication
but is not closed under the operation of subtraction. So the operation of subtraction intended the
set of natural numbers by the introduction of numbers 0, -1, -2, ....0, 1, 2, 3, .... to it. This
extended set is called the set of integers, denoted by Z or I.

Zorl={3,-2,-1,0,1,2,3, ..... }

The set of inligers is not closed under the operation of division. So here comes the
existence of rational numbers. The set of real numbers is denoted by R, which include the

4
rational numbers such as. The integer-5 and the fraction § . The rest of real numbers are called

irrational numbers. Some irrational numbers (as well as rational) are the root of a polynomial

16



with integer coefficients, such as square root of \/§= 1.414 ...... , there are called algebraic
number. There are also real numbers which are not, such as = = 3.1415.....; these are called
transcendental numbers. Real number can be thought of as all points on a line called the
number line or real line, where the points corresponding to integers (....2, -1, 0, 1, 2,.....) are
equally spaced.

2.2 Learning Objectives
The main objectives of this unit are
0] to study the concept of rational number
(i) to study real numbers and real line
(iii) to learn about the concept of field of real numbers
(iv) to study order relation in R
(V) to learn the concept of 'between'.
2.3 Rational Number :

Any number of the form BWhere p,gel,g=0and (p, g = 1is called a rational

number.
The set of rational numbers is denoted by Q.

Q= {5 p,qel,q;tO,(p,q):l}

The set of rational numbers consists of integers and fractions.
Any number which is not rational, is called an irrational number, «/E \/§ etc. are
irrational numbers.

Here is should be noted properly that every rational number can be expressed as a
terminating or recurring decimal whereas every irrational number can be expressed as a non-
terminating infinite decimal.

Inadequacy of the Rational Number System

Every rational number can be represented as a point on the number line but every point
on the number line cannot always correspond to a rational number.

17



For a given rational number x, we can find a point on the number line | such that the
difference of P from O is |x|. But for each point P on | we cannot always find a rational number x.
For example, consider a unit length on the number line | such that |OA| = 1. Complete the
square OABC.

o) B
&/
o1 A Jp ’

Then OB2 =2 or OB = /2

Draw a circle of radius \/Ewith centre O which meets the number line at P so that |OP|
= /2. This point P on | corresponds to the no. \/E which is not a rational number.
2.4 Real Number :

A number which is either rational or irrational is called a real humber. The set of real
numbers is denoted by R. The set R consists of all rational and irrational numbers.

Prime Number : A positive integer, greater than 1, which has only two factors 1 and
itself is called a prime number.

It should be noted that if p is a prime number and p divides a b then either p divides a or
p divides b where a, b € I.

Note : 1 is not a prime number and 2 is the only even number which is prime.
25 Field of Real Numbers

Let R be the set of real numbers. Then R together with binary operations + and called
respectively the addition and multiplication of real numbers, satisfies the following properties:

. Properties of addition operation (+)
(1) Closure Property
at+tbeR v a,beR
(2) Commutative Law
atb=b+a Vv a,beR
3) Associative Law
(@+b)+c=a+(b+c) v a,b,ceR
4) Additive Identity

18



There exists 0 € R, called zero-element of R, such that a + 0 = aVae R '0' is called
additive identity.

(5) Additive Inverse

For each ae R, there exists -ae R such that o + (-a) = 0 = (-a)) + a -a' is called additive
inverse (or negative) of a.

Il. Properties of multiplication operation (.)
QD Closure Property
abeR \ abeR
2) Commutative Law
ab=Dba v a,bR
3) Associative Law
(a.b).c = a.(b.c) v a,b,ceR
(4) Multiplicative identity
There exists 1 € R, called unity of R, such that
al=a=1la V ae R
'1' is called multiplicative identity.
(5) Multiplicative Inverse

1 1 1 1
For each a (# 0) € R, there exists — e Rsuchthata.—=1= —.a'—"is called
a a a a

multiplicative inverse (or reciprocal) of a.

M. Distributive Property

ab+c)=ab+ac (Left distributive law)
(b+c)la=ba+ca (Right distributive law)
VabceR

R, the set of reals satisfying the above properties, is called a field.
Important Properties of field of Real Numbers
Some important properties of field R are

() The additive identity element O is unique.

(i) The multiplicative identity element 1 is unique.

(iii) The additive inverse of a real number is unique.

(iv) The multiplicative inverse of a non-zero real number is unique.

(v) Ifa,b,ce Randa+c=b+cthena=>b
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i.e. cancellation law holds for addition
(vi) Ifa,b,c(#0) e Randa.c=b.cthena=>b

i.e. cancellation law holds for multiplication
(vi) Ifa,b e Randa.b=0theneithera=00rb=0
(vii) Ifae R,thena.0=0.a

1
(ix) -(-a)=av ae Rand TzaVa(;tO)eR

a
(x) (@)t =a, a(#0) € R where a-1 is multiplicative inverse of a.
(xi)y (a+(¢-b)y=-(a+b)vabeR
(xii)  (-a).(-b)=a.bva,beR
(xii) (-a).(b)=-a.bva beR
(xiv) (a).(-b)=-abva,beR
xv) (()a=a=(@(1)vaeR

Proof: (v) Herea,b,c e RAlso-c e R

Now a+b=b+c

= (@a+c)+(-c)=(b+c)+(-c)
= at{c+(c)}=b+{c+(c)}
= a+0=b+0

= a=b

Positive and Negative Real Numbers

We know that a real number 'a’ is either positive or negative or zero. If a is positive then
we write a > 0 and if a is negative then we write a < 0.

Following results may be kept in mind :

(2) a>0 = a<o
(20 a<o = a>0
3) a>0 = -a<0
4) a<o0 e -a>0
(5) a>0,b>0 = a+b>0
(6) a>0,b>0 = a.b>0
(7) a<0,b<0 = a+b<0
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(8) a<0,b<0 = a.b>0
9) a>0,b<0 = a.b<0
(10) a<0,b>0 = a.b<0
VabeR
2.6 Order Relation in R

Let a and b be any two real numbers. We say that a is greater then b if a - b > 0. Then
we write a > b if real point representing a is to the right of the point representing b.

Properties of Order Relation in R
D) Trichotomy Law

If a and b are any two real numbers, then one and only one of the following possibilities
holds :

0) a>b (i) a=b (iii) a<b
(2) Order relation is transitive in R

Ifa,b,c e R,thena<bandb>c = a<c
(3) Order relation is preserved under addition

Ifa,b,c e R, thena>b = atc>b+c
(4) Order relation is preserved under multiplication

Ifa,b,ce R, thena>bandc>0 = a.c>b.c
Note:
D Ifa,b,ce R, thena<b = at+tc<b+c
2) Ifa,b,ce R, thena<bandc>0 = a.c<b.c
3) Ifa,b,ce R, thena>bandb>c = a>c
(4) a>bandb>c = a>cVvab,ceR
(5) a<bandb<c = a<cVahb,ceR
Art.7. Prove that
0] a>b = -a<-bvabeR
(i) a>0 = 1>OVaeR
a
(iii) a<o = 1<OVaeR
a
(iv) a>b,c<0 = a.c<b.cvVa,b,ceR
(V) a<bandc>0 = ac<b.cvab,ceR
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Proof: Leta>b

a-b>o . (1)
Now (-b)-(-a)=-b+a=a-b>0 [-.- of (1)]
-b>-a = -a<-b

eithera>0ora<o0

Incasea>0,thena,b<0

=~ L ab<io [-:5>0}
a a a

= (l,aj,b<0
a

= 1,b<0O

= b<O

Incasea<0,thena,b<0

=~ L ab>Io [-.-5<0}
a a a
1

= (—,a],b>0
a

= 1,b>0

= b>0

eithera>0andb<Qora<0Oandb>0

b

(i) If a and b be positive real numbers, then a < b iff a?< b?

1 1
Art. () Ifa,beR,thena>b>O<:>g<—

oo

a
(iii) If a, b, c and d are all positive real numbers and a < b, ¢ < d, then EZ

Proof : (i) We havea>0,b>0

1
a.b>0 = — >0
ab

Now a>b

- (ija(i}b

22



VRS
O
m|"‘
N—
o))
VvV
VRS
o
AT
N—
O

1 (1 j 1 (1 )
= Z. | =al>=.1=b
b \a a b
= 1.1>1.1
b a
b a
a b
(i) a>0,b>0
= b+a>0
= ! >0
+a
Now a2<b2

iff  b2-a2>0
ie, iff (b+a)(b-a)>0

ie., iff bTla.(b+a) (b—a)>bia
ie., iff b-a>0

e, iff a<b

which is true.

Hence the result.

(iii) a>b,c<d

1 1

= aEb, -2
c—d

= a. 1zb.l
c d

U
oo
v
oo




2.7 Between

Let a, b and ¢ be any three real numbers. If a <c <b or b < ¢ < a then c is said to lie
between a and b.

Art. (b) Prove that the arithmetic average of two (distinct) real numbers is a real number and it
lies between them.

Proof. Let a and b be any two distinct real numbers. Without any loss of generality, we take
a<bh.

The arithmetic mean of aand b is a%b
Nowa+beR A abeR
Also l e R
2
a+b . .
e Ri.e.,, AM. of aand b is a real number.
Further a<b
= a+ta<b+a
= 2a<a+b
a+b
= < (1
> 1)
Again a<b
= a+b<b+b
= a+b<2b
a+b
= <b ..(2)

From (1) and (2), we get
a+b

a> >b

and

. : - . a+b
the arithmetic average of two distinct real numbers a and b is a real number

lies between a and b.

Cor. Between two distinct real numbers, there lie infinitely many real numbers.

a+b
Proof. We know that if a, b € R then e R.
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. a+b . -
there lies a real number between two given distinct real numbers a and b.

g4 ath
2 i.e., 3a:b lies between a and a%b

Again the real number

3a+b
real number

lies between two real numbers a and b.

any number which lies between aand aLzb

lies between aand b as a%b <b

Proceeding is this way, we can show that there lies any infinity of real numbers between
two distinct real numbers a and b.

Note. This property of real numbers is called denseness property of reals.
Some lllustrated Examples

a+C_a
> —

Example1:Ifb>a>0andc >0, then
+c b

Solution : Hereb>a>0andc>0

a+c a
Now —— - —

b+c b

_ b(a+c)—a(b+c)
- b(b+c)

_ ba+bc-ab+ac
b(b+c)

_ bc-ac
b(b+c)

C
—{m} (b-a)>0

{ b-a>0,

>0asb>a>0,c>0
b(b+c)

a+c a
b+c b
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a+c a
_ >
b+c b

Example 2 : If a> b > 0, then prove that \/% lies between a and b.

Solution : Herea>b >

Now a>b

= a.a>a.b

= a>> ab

= a >\/% (1)
Againa>Db

= a.b>b.b

= ab > b?

N Jab>b (2

From (1) and (2).
a>vab>b

= \/% lies between a and b.

a+b
i 3@, with equality holding iff a = b.

Example 3: Ifa> 0, b > 0, then prove that

Solution : Herea>0,b>0

Now a+b @ _ a+b—22\/£

2
a+b—2\/5\/6

2

(-]
=0
a%b -Jab>o0

a%bz\/%
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Then equality a%b = \/% holds

i.e.,

Example 4 : If x, y are rationals such that x <y, then prove that x < x +

iff

iff

iff

iff

a+b=2\/a\/6

a+b-2+a+b=0

o =
Ja-+b=0

it  va=+b

iff a=b

natural number > 1.

Solution : x <y =y>X

= y-x>0
= y—x>0
n
= Y=X 4t x>0+x
n
—  x<x+ 17X
n
Againy-x>0
= (n-1)(y-x)>0
=  nly-x-(y-x>0
= nly-x)>y-x
= y-x>y_x
= y>X+ y_
n
y—X<y
= x+ N

From (1) and (2), we have
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X< X<

—X
y <y,neN,n>1
n

Example 5: Ifp is a prime number, then \/B is not a rational number.

Solution : Let us suppose that \/Bis rational number.

\/B:E,a,bel,b;tO(a,b):l e (1)

a2

= D=F
- a2 =p b2 .. (2)

Now pis a factor of p b?
b is factor of a?
S
a a
Let p=pkkel
From (2) p? k? = p b?
=  b2=pK? E)
Now ) is factor of pk?

= b is factor of b?
b? b

o b is a common factor of a and b which contradicts the fact that (a, b) =1 as p is
prime number.

our supposition is wrong

\/6 is not a rational number
Example 6: Prove that \/§ - «/5 is not a rational number.
Solution: We shall first show that «/3 is not a rational number.

Let if possible \/§ is a rational number.

\/_:E,q;tO(p,q):l,p,qel e (D)
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From (1) we have

p

3=

=

q

2

2

p? = 302 ... (@)

Clearly R.H.s. of (2) has a factor 3

2.8

Let

Now

3 is a factor of L.H.S. of (2)

3 3
- =
P p
p=3k kel
from (2) 9k? = 30°
92 = 3K? o (3)

3 is a factor of R.H.S. of (3)
3 is factor of L.H.S. of (3)
3 3

_2:> J—

P P
3 is a common factor of p and g, which contradicts the fact that (p, q) = 1

our supposition is wrong

\/§ is not a rational number.

Now, if possible, Let \/§ - \/5 is a rational number and let \/§ - \/§= r (say)

=

=

Now

2=

2=3+r2-2«/§r
r2+1

V3= 2r

r2

> is a rational number as r is rational
r

\/§ is rational, which is contrary to the fact that \/§ is not a rational number

our supposition is wrong

Hence \/§ - \/E is not a rational numbers.

Self Check Exercise
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2.9

2.10

211

2.12

2.13

Q.1  Show that +/5 is not a rational number.

Q.2 Prove that \/E - \/g is an irrational number

Q.3 Ifa>b>0and0<c<d,then show that %>%, a,b,c,deR

Q.4 Ifx, y are positive reals and n is a positive integer, then prove that x"<y"iff x <.
Summary

In this unit we have learnt the following:

0] rational numbers

(i) concept of real numbers and real line

(iii) field of real numbers

(iv) order relation in R

(V) the concept of 'between'.

Glossary:

1. The set of all real number is denoted by R or R. As it is naturally endwed with the
structure of field, the expression field of real numbers is frequently used when its
algebraic properties are under consideration.

2. The sets of positive real numbers and negative real numbers are often noted R*
and R- respectively.

3. The notation R" refers to the set of the n-triples of elements of R.

Answer to Self Check Exercise

Ans.1 Use the concept of contradiction

Ans.2 Proceed similar to Example 6

Ans.3 Easy to prove

Ans.4 Assume x <y and then proceed. Also assume x"<y"V n N and then proceed.

References/Suggested Readings

1.

K.A. Ross, Elementary Analysis- The theory of calculus series - undergraduate
Texts in Mathematics, Springer Verlag, 2003

R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and
Sons (Asia) P. Ltd., 2000.

Terminal Questions

1.
2.

Show that \/E is not a rational number

If a, b, c € R then
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() a>bh,c>0 = a.c>b.c

(i) a<b,c<0 = a.c>b.c

If x € R, show that

x?>0

If a, b, c d are distinct reals such that
(@2+b?2+c?)p?-2(@b+bc+cd)p+(b?>+c?+d? <0thena,b,c,darein G.P.

If () a>0,b>0thena<biﬁ1<1
a b

(i) a<0,b>0thena<bifL>2

a b

i) a<0,b>0thena<bifL<l
a b
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Unit - 3
Intervals

Structure

3.1 Introduction

3.2 Learning Objectives

3.3 Intervals

3.4  Absolute Value or Numerical Value or Modulus of A Real Number
3.5 Self Check Exercise

3.6 Summary

3.7 Glossary

3.8 Answers to self check exercises
3.9 References/Suggested Readings
3.10 Terminal Questions

3.1 Introduction

Dear students, we shall study the concept of intervals in this unit. A interval (real) is the
set of all numbers lying between two fixed end points with no gaps. Each end point is either a
real number or positive or negative infinity, indicating the interval extends with out a bound. An
interval contains neither end point, either end point, or both end points. For instance, the set of
real numbers consisting of 0, 1, and all numbers in between is an interval, denoted by [0, 1] and
is called unit interval ; the set of all positive real number is an interval, denoted by (0, «); the set
all real numbers is an interval denoted by (- «, «); and any single real number a is an interval,
denoted by [a, a].

3.2 Learning Objectives

The main objectives of this unit are to

(@ study interval

(i) study open and closed intervals

(iii) study semi-closed (or semi open) intervals

(iv) learn about infinite interval

(v) study absolute value or Numerical value or modulus of a real number.
3.3 Intervals

An interval is a subset of the real number that contains all real numbers lying between
any two numbers of the subset.
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The end point of an interval are its supremum, and its infimum, if they exist « real
number. If the infimum does not exist, one say often that the corresponding end point is - o.
Similarly if the supremum does not exist, we say that the corresponding end point is + oo.

Intervals are completely determined by their end point belong to the interval. This is a
consequence if the least upper bound property of real numbers. This characterization is used to
specify intervals by mean of interval notation, which is described below.

Let a and b be two distinct real numbers with a < b (say) then,

() Open Interval : The set of all real numbers between a and b is said to form an
open interval from a to b denoted by (a, b). In symbols

(a,b)={x:a<x<bandx e R}

Geometrically the open interval (a, b) is represented on the real line as

I’ '7

- — > L
A(a) B(b)

(i) Closed Interval : The set of all real numbers between a and b including the end
points a and b is said to form a closed interval and is denoted by [a, b]

In symbols [a, b] = {x:a<x<bandx e R}

Geometrically, the closed interval [a, b] is represented on the real line as

[ ] > L
C J
A(a) B(b)

(iii) Semi-closed (or Semi-open) intervals: An interval in which one end point is
included and the other end point is excluded is called semi-closed interval.

In symbols, [a, b] ={x:a<x<band x € R}

Geometrically, [a, b] is represented on the real line as

[ ]

8 5 » L
A(a) B(b)

Similarly (a, b] ={x:a<x<bandx € R}

Geometrically, (a, b] is represented on the real line as

[ ]

r 5 » L
A(a) B(b)

The intervals defined above are called finite intervals. Now we defined infinite intervals.

Infinite Interval. The set of all the real numbers x such that x > a forms an infinite set
and is denoted by (a, «).
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Symbolically (a, ©) ={x : x > a and x € R}. Geometrically

r »
C > L

Aa)

Some examples of infinite intervals are :

0] (a, ©)={x:x>aand x € R}
(i) (-0,8)={x:x<aandx € R}
(iii) (-0,a)={x:x<aandx € R}
(iv) (-0, 0) =R ={Xx:x € R}
Some lllustrated Examples
Example 1. Find the solution set of the following :
(@) 3x-2>0and5x-1<0

b)  -0.03<X*H3

<0.03

(© 3+X<Bbx-2<7+x
Solution: (@) 3x-2>0and5x-1<0
3x>2and5x<1

2
X>—and x <=
3 5

5xandx<1
5

win wiN

<X <% , Which is impossible

solution set is ¢

b)  -003<2XH3

<0.03

Multiplying by 5,
-0.15<2x+3<0.15

Subtracting 3 from each,
-3.15<2x<2.85

Dividing by 2,
-1.575<x<1.425
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X € [-1.575, -1.425]

solution set is [-1.575, -1.425]
(© - 3+X<5x-2<7+x

Subtracting x from each,

3<4x-2<7

Adding 5 to each,

5<4x<9

Dividing by 4,

5 9

— S X<—
. . [5 9)
solution setis | —,—
4 4

x+3<5
2

Example 2: Solve

. X
Solution: Here

+3<5
2

Clearly x-2+#0ie.,x#2
Two cases arise :
Caselx-2>0ie.x>2.Then

x+3<5
X—2
= X+ 3<5x-10
= 4x<-13
13
= X >—=
4

@)
= Xe|—,©
4

Casellx-2<0i.e.x<2.Then

XL3<5
X—2

= X+3>5x-10



= -4x>-13

13
= X<—
4
But X<2
X € (-0, 2)

solution set is (-, 2)

13
Hence the solution set of the given inequality is (-, 2) U(Z'wj

2 X+ 2
<

X—2 X-2

Example 3: Solve for x : <2

2 X+ 2
< <

X—2 X-2

Solution: Here 2

Clearly x-2#0ie.,x#2
Two cases arise :
Casel.x-2>0ie.,x>2

2 X+ 2
<

X—2 X-2

Then <2

2<X+2<2x-4

2<x+2andx+2<2x-4

=
=

= O<xand6<x
= x>0andx>6

= X>6

= X € (6, «©)
Casell.x-2<0i.e,x<?2

2 X+ 2
<

X—2 X-2

Then <2

2>X+22x-4
2>x+2andx+2>2x-4
O0>xand 6 >Xx

x<0andx<6
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= x<0

= X € (-0, 0)

Combining the results of two cases, solution set is (-, 0) U (6, «©)
X—-2 _2x-3

Example 4: Find real values of x, which satisfy the inequality >
X+2 4x-1

X—2 2X-3

Solution: The given inequality is >
4x-1

Clearly x +2#0,4x-1=0i.e. x # -2, x;t%
Following cases arise:

Case |. When x < -2 and x <%

x+2<0andx—%<0

x+2<0and4x-1<0
(x+2)(4x-1)>0
x—2>2x—3

X+2 4x-1
x-2)(4x-1)>(2x-3) (x +2)
AX?-9X +2<2x>+X%x-6
2x?-10x+8>0

x2-5x+4>0

x-1)(x-4)>0
x+2)(x+1)(Bx+2)(2x+1)<0

2 1
X e (-2, -1) U(—g,—aj

b 44 4l

. . 2 1
required setis (-2, -1) V| ——=,——
3 2
3.4 Art. Absolute Value or Numerical Value or Modulus of a Real Number

Definition : Let x be any real number. The absolute value of x denoted by |x| (read as
modulus of x or numerical value of x is defined as
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~ xif x>0
] —xif x<0

Therefore, the absolute value of a +ve real number or zero is the number itself whereas
the absolute value of a negative real number is the negative of the number itself e.qg.

I3 =3,]-3]=-(-3)=3.]0[=0
Alternatively, we may define,

IX] = max.(x, -X) or |x| = +y/ X
Geometrical meaning of |X|

If P be the point on the real line L corresponding to real number x, then the distance
between the origin O and the point P is |x|

J'_<—x—>]__

O(0) P(x)

x| = |OP|
Important results of |[x| where x € R, are
0] x>0V xeR
(i) x| =0iffx=0
(i) x| =|-x]
(iv) [X| = max.(x, -x) or - |X| = min.(x, -X)
V) -Xl<x<[x]
(vi) [x| = xiffx >0
(vii) x| >xiffx<0
(viiiy x| >xiffxe R

(ix) x| =-xiffx<O0
0 K2=x2 o =VR
Art.  Prove that |ab| = |a||b| where a, b € R

Proof. |ab| = (ab)2 [ | X|= \/X_ZJ

— aZbZ

7 7
= |al[b]
38



Art. E=Ewherea,beRandb;«tO
b b
a a 2

Proof. |—| = (—j
b b

PR

&

a

,b=0
b

Art.  Provethat|a+b|<|a] +|b]wherea,b e R
Further show that equality holds when a and b have same signs.
Proof: |a + b|? = (a + b)? [~ x> = %7
=a?+b?+2ab
= |aJ® + |b|? + 2ab
la + b[’< [a]* + |b? + 2/a]|b] [~ ab <|ab]]
la +bl>< [af? + |b]* + 2|al|b| (v |ab] = [al|b])
la + b|>< (la] + [bl)?
la+b| < [a] +[b]
Hence the result
Now equality holds when
la+b| = |a] +[b]
la +bJ? = (|a] + |b])®
(@ +b)?=lal* + |bf? + 2a||b]
a?+ b? + 2ab = a2 + b? + 2|ab|
ab = |ab|
ab>0 [ |X] =x when x > 0]
a and b have same signs.
Hence equality holds when a and b have same signs.
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Cor. I. If X1, X2, ... , Xn€e Rthen |xg + X2 + ... + Xn [S]Xa] + [X2o] +....... +|Xn|
Proof: We shall prove it by Induction
Whenn=2
X1 + Xa| < [xa| + [Xe|
result is true forn =2
Let us assume that the result is true for n = m (an integer greater than 2)
[X1+ X2+ ...... + Xm| < [Xa] + |X2] +
Nowwhenn=m+ 1
[X1 + X2 +....... + Xm + Xmea| = |[(X2 + X2 Foveet Xm) + xmea
< X1+ X2+ A Xm| F[Xmea] [-.- |a+ blla]+|b|]
< [xaf + Xl + [Xm| + [Xmea]
the result is provedforn=m+ 1
Hence the result is proved by induction
Cor. Il - la + b| <|a| + |b|
Changing b to -b
la - b| <laf +|-b]
|a-b]<]|al] +[b] (v [b] = 1-bl)
Cor.lll.]a-b|>]al - |b]and |a- b| > |la] - |b||
Proof: Leta-b=c
a=b+c
la] = [b +c| < b + [c|
lal < o] + |a - b
|al - [b] < a-b]
|a-b|>]|al - |b]
Interchanging a and b in (1), we get,
Ib-al > o] - |al
|a-b|>-(|a] - [b)
{~ x| =[x}
From (1) and (2),
|a - b > max {|a| - |b], - (|a] - [b[)}
|a-b| > |laf - [bl|
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Hence the result

Another Method

|a-bl?=(a-b)?>=a?+b?-2ab
>|al? + |bJ? - 2|ab] [~ -ab > |ab] and |x|? = x?]
= |al2 + [b]2 - 2|a|b]
= llal - [bll2
|a-b| > |lal - [bl|

Art. Some Useful results
) X| =l =>x=+/

Proof: .. |x| =/

= ¢

= X2 = ¢?
s X=+/
mn x=1] =  x=x/
Proof: [X| = /|
X2 =1L
X2 = (?
X =+l

(my  If|x| <2 (where £>0),then-{<x</ orxe (-/,/)

Proof: -.- [x] </ e (1)
Two possibilities arise :
0] x>0 .. x| =x
o (1) becomes x </ e (2)
(ii) x<0 .. [x]=-x

(1) becomes -x </
or X>-/
or l<x L 3
From (2) and (3), we have,

-l<x</

Note:Similarly if |x] </ then -/ < x </
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(V)

if x| >/ thenx>/ orx<-/

Proof: Given [x| >/

Two possibilities arise:

(i)

(ii)

x>0 .. x| =x

(1) becomes x</ ... 2
X<0 .. |xX|=-x

(1) becomes -x </

x>0 3)

From (2) and (3), we conclude,

[X| >/ = x>/ orx<-/

Hence {x : |X| >/} = (-0, - L) U (£, )

Note: (1)
(2)
3)
(4)

modulus.

Similarly |x| >/ = either x< -/ orx >/

|x-a] </ (£>0) = xe(@-/,,a+ /)

|x-al >/ = Xe(wa-L)yu@+ l,ox)

It is clear from above article that an interval can be represented by the use of

Art. If a, b are real numbers, then

(i)

(ii)
(iif)
(iv)

Proof: .-

=

=

a’< b?iff |a| < |b|
a’< bliff |a| < |b]
a’< b?iff |a| < |b|
a’< bliff |a| < |b]
abeR

la| >0, [b]>0
|al +[b[ >0

either |a] + |b| =0or |a] + |b| >0

0] To prove a’< b?iff |a] < |b| =0
When |a] + |[b] =0, then |a] =0 and |b| =0

a=b=0

the result holds in this case.

When |a] + [b] >0

a’< b?
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iff  b2-a20
ie. iff  |b?-]a>>0
ie. iff (Ib| +[al) (o] - |a) >0

ie. iff  |b|-|a]>0 [+ |b| +[a] > O]
ie. iff  |b|>]al
ie. iff  Ja<|b|

(i) To prove a%< b?iff |a < |b|
When |a| + |b] =0, then |a| =0 and |b| =0
a=b=0
= a?=Db?

Which contradicts the given hypothesis that a?< b? and hence rejected.

|a] +[b] >0
Now a’< b?
iff b?-a*>0
i.e. iff [b|? - ]a]>0
i.e. iff (Ib] +]al) (bl - [a]) > 0
ie. iff |b] - |a] >0 [-.- |b] +]a] > 0]
i.e. iff |b] > |a]
ie. iff la] < |b]

(i)  to prove a*> b?iff |a| > |b|
When |a] + |[b] =0, then |a] =0 and |b| =0
a=b=0
the result holds in this case.
When |a] + [b]| >0

azZ b2
iff a2-b>0
ie. iff lal? - |b|2> 0
e iff (lal + [b]) (la] - [b[) > 0
ie. iff lal - [b] >0 [~ |a] + |b| > O]
ie. iff la| > |b|

(iv)  To prove a?> bZiff |a| > |b|
When |a] + |[b] =0, then |a] =0 and |b| =0
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a=b=0
= a?=Db?

Which contradicts the given hypothesis that a?> b? and hence rejected.

|al +|b] >0
Now a®> b?
iff a’-b%>0
ie. iff  |a?-|b>0
ie. iff  (al+1|b]) (Jal - b)) >0
ie. iff  |a|-|b|>0 [+ |a] + |b| > O]
ie. iff  |a|>|b|

1
Example 5 : Show that > (a + b + |a - b|) is the larger of the two real numbers a and b, and
1 .
5 (a+b-Ja-b|)is the smaller.

Solution : Hear a and b are two real numbers

Now max. {a, b} is either a or b.

Let max. {a, b} =a (1)
= a>b
= a-b>0
= la-bl=a-b

= %(a+b+|a-b|)

1
—(a+b+a-b
2( )

- @)

1

—(a+b+lja-b))=a (2
2

1

E(a+b+|a-b|)=max. {a, b} (D

[ of (1) and (2)]
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Letmin. {a, b}=b ..(3)
= a>b
a-b>0

= la-bj=a-b

U

N %(a+b-|a-b|)
=%(a+b-@-M)
= %(a+b-a+b)

- @)

i(a+b—|a—b|)=b ..(4)

2
From (3) and (4), we get

%(a+b-|a-b|)=min.{a, b} ()
From (I) and (Il), we see that

1
P (a+b-|a-Db|) is larger of the two real numbers a and b.

1
and 5 (a+b-la-Db|) isthe smaller.

Example 6 : For a, b € R, show that
ja+b| _ la| , [b]
+|a+b|"1+]|a] 1+|b]

Solution : We have

1+la+bl<1+]al+[b|

1 1
= >
1+|a+b|™ 1+ |a|+|b|
1 1
=

<
1+|a+b| "1+ |a|+|b]|
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1- <1 L
1+|a+b| 1+|al|+|b|

lat+b| __lal+[b]

(1)
1+|a+b| 1+|al+|b|
Also 1+ |a]+|b|>1+|a] [~ |b] > 0]
1 1
<
1+|a|+|b|™ 1+|a]|
lal _ la
+|al+|b|” 1+ |a]
[~ la[ > 0]
Similarly, [b] < bl ..(3)

+|a|+|b| ™ 1+ |b]

Adding (2) and (3), we have
jal . Ibl _ la] _ Ib]
1+|a|+|b| 1+|a|+|b|”1+|a| 21+]|b|

laj+[bl _ _[a] , [b]
+|a|+|b|" 1+ |a| 21+|b|

(4)

From (1) and (4), we get

ja+b| _ |al , I|b|
+|a+b|"1+]|a] 1+|b]

Example 7 : Prove thata < x<b = |x| < |a| + |b]
Solution:a<x<b = X<b

and x>a=x<Db<|b|<|a]+|b]
and -x<-a<|a|<|al+|b]=  x<]a]+[b]
and -x<|a|+|b|
= max {Xx, -x} < |a| + |b|
= l<lal+|b|
Example 8 : (a) Convert a < x < b into single inequality by making use of absolute values.
(b) Write the inequality -2 < x < 4 in the form |x - a| < |.
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Solution: (a) We havea<x<b

+
Subtracting aTb (i.e. A.M. of a and b) from each, we get

a+b a+b a+b
- < X - <b-
2 2 2
2a—-a-b a+b 2a-a-b
or <X- <
2 2 2
a-b a+b -a+b
or <X- <
2 2 2
b-a a+b b-a
or - <X- <
2 2 2
a+b| b-a
X———|<——
2 2

(b) We have -2 <x<4

-2+4 2
Subtracting 1 (i.e. AM. of -2and 4 i.e., > = > = 1) from each, we get

2-1<x-1<4-1

or -3<x-1<3
or x-1]<3
or [x - a] <, wherea=1,1=3

Example 9. Solve 2x? + |5x| +2=0
Solution : The given equation is
2x2+ [5x|+2=0

or 2x2+5|x|+2=0 [~ |ab] = ]a]|b]]
or 2|x|>+5|x|+2=0 [ x%2=|x7
x| = —5+4/25-16
4
_ —5%3
4
1
= _2, - —
2
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Both these values are impossible as |x| can not be negative.

3.5

3.6

3.7

3.8

3.9

Solution set is ¢.
Self Check Exercise
Q.1 Forwhatvalues of xisx®+ 1> x?+x ?

2X 1
5 >
2X°+5x+2 x+1

Q.3 Solve |2x - 1| = |4x + 3|
Q.4 Solve|x-1|-|x+3|<6

Q.2 Solve

Summary

In this unit we have learnt:

0] intervals

(i) open, closed and infinite intervals
(iii) Absolute value of a real number etc.
Glossary:

1. A set of real numbers is an interval, if and only if it is an open interval, closed
interval or a half open interval.

2. Degenerate interval - Any set consisting of a single real number (interval of the
form [a, a] is called degenerate interval.

Note : A real interval that is neither empty not degenerate is said to be proper,
and has infinite may elements.

Answer to Self Check Exercise
Ans.1 (-1,1) U (1, «)
-2 -1

Ans.2 (-2, -1) U[?,?)

Ans.3 (—2, _—:Lj
3

Ans.4 Set of all real numbers.
References/Suggested Readings
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3.10 Terminal Questions

X+ 2
<
X—2 X-2

1. Solve for x ; <1

2. Solve VX° +1 =x
For what X is 4x2 + 9x < 9.
Find the solution set of the equation
[x3- 5x + 6] = |x - 3|| x - 2]

5. Prove that <1 iff1 <X <1 )
6 4

1s
X
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Unit - 4
Bounds

Structure

4.1 Introduction

4.2 Learning Objectives

4.3 Bounds

4.4 Least Upper Bound Property of Reals or Order Completeness Property of Reals
4.5 Archmedian Property of Real Numbers
4.6 Neighourhood of a Point

4.7 Cluster Point and Limit Point of a Set
4.8 Bolzano - Weierstrass Property

4.9 Self Check Exercise

410  Summary

4.11 Glossary

4.12 Answers to self check exercises

4.13 References/Suggested Readings

4.14 Terminal Questions

4.1 Introduction

Dear students, in this unit we shall study the concept of bounded set. In mathematical
analysis and related areas of mathematics, a set is called bounded if all its points are within a
certain distance of each other. Conversely, a set which is not bounded is called unbounded. The
word bounded makes no sense in a general topological space without a corresponding metric.
We not here that boundary is a distinct concept, for example, a circle in isolation is a
boundaryless bounded set, while the half plane is unbounded yet has a boundary. Further it
may also be noted that a bounded set is not necessarily a closed set and vice-versa. For
example, a subset S of two-dimensional real space R? constrained by two parabolic curves x2+1
and x?-1 defined in a cartesion coordinate system is closed by the curves but not bounded (so
unbounded)

4.2 Learning Objectives

The main objectives of this unit are

@ to study the concept of bounded sets, least upper bound and greatest lower
bound (l.u.b. and g.l.b.)
(i) l.u.b. property of reals or order completeness property of reals.
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(iii) to learn about Archemedian property of real numbers
(iv) to know the concept of nhd. of a point
(v) to study cluster point and limit point of a set
(vi) to study Bolzano-Weirstrass property.
4.3  Art. Bounds
Let S be a non-empty sub-set of real numbers.

0] If there exists a real number K such that x < K ¥ x € S then K is said to be an
upper bound of S. The set S is said to be bounded above or bounded to the right
if it has an upper bound.

(i) If there exists a real number | such that | < x ¥xe S then | is said to be lower
bound of S. The set S is said to be bounded below or bounded to the left if it has
a lower bound.

(iii) The set S is said to be bounded if it is both bounded below and above.

Geometrically, K is an upper bound of S if the point K is to the right of each point x of S
when plotted and | is a lower bound of S if the point | is to the left of each point x of S.

Note : Every finite set is bounded.

Remark : Let S be a non-empty sub-set of R which is bounded above. If K is an upper bound of
S then clearly every real number greater than K is also an upper bound of S. There may exist
real numbers less than K which may also be upper bounds of S. We are interested in a 'leftmost'
real number which is an upper bound of S and that such a left most real humber exists,
is suggested by geometrical intuition and we shall accept it as an axiom. Similarly, if S is
bounded below then there exists a 'right most' real number which is less than or equal to the
elements of S.

Least upper bound

Let S be a non-empty subset of R which is bounded above. Then there exists a real
number u which is the smallest of all the upper bounds of S i.e., for any other upper bound u' of
Swe have u <u'.

This number u is called the least upper bound of S or Supremum of S and is written as
l.u.b. of S=Sup. S=u.

Least upper bound of a set S bounded above is unique. For if u and u' are two least
upper bounds of S, then by definition u < u' and u' < u which implies that u = u'.

Greatest lower bound

Let S be a non-empty subset of R which is bounded below. Then there exists a real
number | which is the greatest of all the lower bounds of S i.e., for any other lower bound I' of S
we have I' <.

The number | is called the greatest lower bound of S or infimum of S and is written as
glb.ofS=Inf.S=1.
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Examples : Let A; = (-3, 10), A2 = (-3, 10], As = [-3, 10), A4 = [-3, 10]
We have for all x € A, wherei=1,2,3, 4
-3<x<10
A''s are bounded
g.l.b. of Ai = -3, l.u.b. of aj =10
It is worth nothing that g.l.b. of a set may many not belong to the set.
(i) LetS={x:x e Qand x< 0}
The set S is unbounded because it is not bounded below. However, l.u.b. of S = 0.

(iii) The set N of natural numbers is bounded below but it is not bounded from above.
Its g.l.b. = 1.

(iv) The set Z of integers is neither bounded below not above.

(v) SZ{E:XE N} ={1,E,}, ..... } has g.l.b. =0 and l.u.b. = 1.
X 23

Art. Prove that a non-empty subset of a bounded set is bounded.

Proof : Let A be any non-empty subset of a bounded set S.
S is a bounded set
there exist real numbers | and u such thatl<x<uV x e S
AcS = VXeA = XeS
VxeAwehavel<x<u
A is a bounded set.

4.4 Art. Least upper bound property of Reals or Order Completeness Property of
Reals

Every non-empty set S of real numbers which is bounded above has a least upper
bound in R.

This property is called the order completeness property of reals. Due to this property, the
set R of real humbers is said to be a complete order field. By an example, we will show that set
Q of rationals is not a complete ordered field, though it is a field.

Art. Given an example to show that the set Q of rationals does not possess the least upper
bound property.

Or

Give an example of a field which is not complete. Justify your answer.
Proof : Let S {x: x € Q and x%< 3}

Clearly1 e S = PIEN)
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Also if u is any positive number such that u?> 3, then u is an upper bound of S. Thus S is
a non-empty set of rational numbers which is bounded above. We want to show that S has no
least upper bound in Q.

If possible, let a.e Q be the least upper bound of S. Clearly a is positive. then one and
only one of

() a’< 3 (ii) a?=3 (iii) a?> 3 holds.
200 +3 . . . . . .
Letp = > Here B is a positive rational number as o, is positive rational number.
a+
Case l.a*< 3
2
Now B2 - 3 = (Z“J“Q’j -3
a+2
4a” +12a+9—3(a2 +4a+4)
(a+2)2
- 2
(a +2)
3-a°
= 5 <0
(a+2)
200 +3
Also B-a= -a
a+2

a+2

2
_ 3—-« >0
a+2

= B>a
Thus Be S and B>a, which contradicts the result that o is an upper bound.

our supposition is wrong.

Case II. When o? = 3, then o = \/§ is not a rational number. Thus this case is not
possible.

Case lll. a®> 3
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2
Now p?-3= (ZOH?’j -3
a+2

a’-3
- >
(a+2)
B> 3 = B is an upper bound of S.
_ 200+3
a+2
a’-3

a+2

Also B-a

o

<0

= B<a
Thus we get an upper bound B of S such that <a, which is again a contradiction.
Hence in all the cases, it follows that S has no least upper bound in Q.

the set of rational numbers is not a complete ordered field.

Note: Let S be a non-empty subset of real numbers bounded below. Then by using the least
upper bound property of real numbers, it can be proved that S has a greatest lower bound in R.
This is called the greatest lower bound property of reals. Again this property is not satisfied by
the set of rational numbers.

Art.  (a) Let S be a non-empty sub set of R, which is bounded above. Then a real number
u is the least upper bound of S iff

0] u is an upper bound of S
(i) Given ¢ > 0, there exists a real number X € S such that u— ¢ <x.
Proof: The condition is necessary
Given u is l.u.b. of S and we want to show that conditions (i) and (ii) are satisfied.
uis the l.u.b. of S.
u is an upper bound of S.
Also V ¢ > 0, however small, u - ¢ <u.
= u - g is not an upper bound of S
= there exists a real number x € S such thatx >u - ¢
Thus both the conditions (i) and (ii) are satisfied.
The condition is sufficient

Here it is given that a real number u satisfies both the conditions (i) and (ii). We are to
show that u is the l.u.b. of S.
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Art.

If possible, let a real number u' <u be any other upper bound of S.
Takee=u-u>0
by conditions (ii), there exists a real number x € S such that
u-eg<xie,u-(u-u)<xie.,u<x
u' is not upper bound of S, which is a contradiction.
Hence u is the l.u.b. of S.

(b) Let S be a non-empty subset of R, which is bounded below. Then a real number

is the g.l.b. of S iff.

4.5
Art.

Proof:

Art.

0] | is a lower bound of S.
(i) Given ¢ > 0, there exists a real number x e Ss.t. x>1+¢
Proof: Please try yourself.
Archmedian Property of Real Numbers
For given a> 0 and b € R, there exists a natural number n such that na> b.
Hereb € R
eitherb<Oorb>0
If b <0, then na> b holds for alln eN [-.- nais positive]
we discuss the case when b > 0.
If b > 0, suppose the theorem is false
i.,e, na<bVvneN
the set A={na:n eN, na < b}is bounded above by b.
A has l.u.b., say u (By order Completeness Property).
na<su vneN
(n+1)a<u VneN
ie., nas<u-a v neN
u - ais an upper bound of A which is less than l.u.b u
we arrive at a contradiction
3 n eN such that na> b.
(1) Given any x € R, there exists a unique integer m such thatm <x<m + 1.

(i) Between any two distinct real numbers, there is always a rational humber and
therefore, infinitely many rational numbers.

(iii) Between any two distinct real numbers, there is always an irrational number and,
therefore, infinitely many irrationals.
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Proof: (i)Consider the set S = (n: n € Z, n < x}. Here S is a non-empty set of reals which is
bounded above. Therefore, by the least upper bound property, S has a unique least upper
bound, say, m. Clearly m is an integer and is the largest element of S.

meS
= m+1gS
= m <X

and m+1>x

= m<x<m+1 wheremeZ

Since l.u.b. of a set is unique.
m is unigue

Here for any real number X, there exists a unique integer m such that
m<x<m+1

(i) Let x and y be two distinct real numbers such thatx<yi.e.,y-x>0

by Archimedian Property of R, 3 a natrual number n such that

Takea=y=X
ny-x)>1 b=1
then na>b
ie., ny>nx + 1
ie., nx+1l<ny e (1)

As nxe R, there exists a unique integer m such that

m <nx<m + 1 [ of (1)]

= m<nxand nx<xm + 1 .. (2)

Now m <nx

= m+1l<nx+1

Also nx+1<ny [+ of (1)]
wehavem+1<ny ... 3)

From (2) and (3), we get,
nx<m + 1 <ny

m+1

= X< <y [*- n>(Q]
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m+1. ) , . .
Now ——is a rational number and this shows that a rational number lies between two
n

given distinct real numbers.

Continuing in this way, an infinite number of rational numbers can be found between two
given distinct real numbers.

(iii) Let x and y be two distinct real numbers withy - x>0
Then by Archimedian property of R there exists a hatural number n such that

Takea=y-x

n(y-x)>\/§ b=+2
then na>b
J2

y-x>—
n

Bz 2

= y>X+—>X+—>X

2 2

Now, out of the number x + — and x + 2— at least one must be irrational because
n n

2. L
their difference = 2— is an irrational number.
n

Therefore, there lies an irrational number and hence infinite irrational numbers between
xandy.

Example 1: Find g.l.b. and l.u.b. (if they exist) of the set

sz{zX Lix- 5|<2}

X+4
Solution: S = {2X_1:|x—5|< 2}
X+4
2x-1 9
Now =2-
X+4 X+4

Again |x-5]<2

= -2<x-5<2
= 3<x<7
= 3+4<x+4<7+4
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= 7<x+4<11

1 1 1
= s >
7 x+4 11
9 9 9
= -—<- ——< - —
7 X+4 11
9
= 2-97<2- <2-—
- X+ 11
5 2x-1 13
= —< <—
7 x+4 11
S is bounded and l.u.b. = E g.l.b. = §
11 7

Example 2: Find the l.u.b. and g.l.b. in each case :

0 {n—”:ne N}
n

(i) {2X+1z|x—4|< 2}

X+5

1
ili ——:—6<x<4
(i) {2+x2 }

(iv) {—\/1—7:|x|£ g}

Solution: (i) LetS= {nTH':ne N}

Now n eN

= n>0andn>1

1 1
= —>0and —<1
n n

1 1
= 1+ —>0and1+ —<2
n n

1
= 1<1+ =<2
n
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n+1
=  1<—=<2
n

S is a bounded set, where l.u.b. =2 and g.l.b. =1
OR LetS= n_+l:n€ N¢= 2EEE ......
n 234
Clearly, no member of S is less then 1 and no member of S is greater than 2
lub.=2,glb.=1

(i) Lets= {2X+1:|x—4|< 2}
X+5

2x+l_2 9

Now

X+5 X+5
Again |x-4|<2

= -2<X-4<2
= 2<x<6
= 2+5<x+5<6+5
= 7<x+5<11
1 1 1
= =>——>—
7 x+5 11
9 9 9
= -=<- <-—
7 X+5 11
= 2—g<2-i<2—g
7 X+5 11
5 2x+1 13
= =< <—
7 x+5 11
S is bounded and l.u.b = E g.l.b. = >
11 7
1
(iii) LetS:{ 2;—6£X£4}
2+X
Now -6<x<4
= -6<x<4<6
= -6<Xx<6
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= x| <6

= 0<x<36

= 2<x?+2<38
1 1 1
= > —
2 x*+2 738
1 1 1
= —< <—
387 x+272

: 1 1

S is bounded where l.u.b. = —, g.l.b. = —

2 38

(iv) LetS= {—\/1— X o x|< g}
Let y=-v1-%

3
|><I<£,0<IXIS£
2
, 3
= 0<x<—
|
= Oz-xzz-E
4
= 1>1-x3>1-—
= 1>1-x>=
4
= —<1-xx<1
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> -lsys-

[

1
S is bounded where l.u.b. = o g.lb.=-1

Example 3: Find l.u.b. and g.l.b. (if they exist) of the set S = {3 sin x + 4 cos x} where x € R.
Solution:S={3sinx+4cosx:x e R}
Let y=3sinx+4cosx
Put 3=rcose L. (D)
And 4=rsine .. 2
Squaring and (1) and (2), we get
9 + 16 = r? (cos®a + sin?a)
or 25=r°
= r=5
Y =1 COS a Sin X + 1 sin a cos X
=rsin (X + )
=5sin (X + )
Now -l<sin(x+a)<1l VxeR
= 5<h5sin(x+a)<5 vVxeR
= -5<y<5 vVxeR
S ={-5, 5} is bounded and g.l.b. =-5, L.u.b. =5
Example 4: Show that the following sets are bounded. Also find their l.u.b. and g.l.b. :
(i) {(sin x + cos x)?: 0 < x <n}
(ii) {2 sinx - 3 cos x}
Solution: (i) LetS ={(sin x + cos x)?: 0 < x <n}
Now (sin X + cos x)2 = sin? X + cos? x + 2 sin X cos X
=1+ sin 2x

Also 0<x<mn

=  0<2x<2n

= -1<sin2x<1

= 0<1l+sin2x<2

= 0 < (sin x + cos x)°< 2
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. Sis bounded and its lLu.b. =2, g.l.b. =0
(i) Let S = (2 sin x - 3 cos x}
Let y=2sinx-3cosX
Put 2=rcosa ... 1)
and 3=rsinae ... 2
Squaring and adding (1) and (2), we get

4 + 9 =r2 (cos?a + sin?a)

= r’=13

= r=413

Y = COS o Sin X - r sin o, CoS X

= (sin X COS o - COS X Sin o)
= /13 sin (x - @)
Now -l<sin(x-a)<1
=  -\13<13 sin (x- ) <13
=  -y13<y<+13
Sis bounded and its l.u.b. = V13, g.Lb. = -\/13
Example 5: Find g.l.b. and l.u.b. of the following sets
0) {sin? x + cos*x : x € R}
(i) {asinx+bcosx+c:xeR}
Solution: (i) LetS={sin2x+cos4 x:x e R}
Now sin? X + cos* x = sin? x + cos? x (1 - sin? x)
= sin? X + c0s? X - sin? x cos? X

=1 - sin? x cos? x
1 .
=1- = sin?2x
4
Also 0<sin?2x<1

= 03l sin? 2x3-l
4 4
= 131-15in22x31-1
4 4
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1 3
= 1-= sin?2x>—
4 4
3 :
= ZSl-SIn22X§1‘v’XeR

S = [%1} is bounded and l.u.b =1, g.lL.b. = %

(i) LetS={asinx+bcosx+c:xeR}
Let y=asinx+bcosx+c
Put a=rcosa ... (2)
b=rsina . (2)
Squaring (1) and (2), we get
a?+ b?=r2(cos? a + sin? a)

= a’+b?=r?

y=rcosasinx+rsinacosXx=r(sin x cos a+ cos X sin a)

=rsin (x +a)

= vJa'+b” gy (X + a)

Now -l<sin(x+a)<lVxeR

N Ja2+1? <yJa2 +b? sin (x + a) <vJa2+b? Vv x e R

= c-Jal+bP<c+Jai+bPsin(x+a)<c+ Jai+b*vxeR
= c-Ja*+b’<y<c+Jal+b® vxeR

= S= [C—\/a2+b2,c+\/a2+b2]is bounded

and glb=c-+a’+b’*, Lub.=c+ yJa’+b’
4.6 Art. Neighbourhood of a point

Let c € R and 3 >0. Then the - neighbourhood (& - nhd.) of c written as
Ns(c)or N (c, d) is the set

Ns () = {xeR:|x-c|<d}
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={xeR:c-d<x<c+ 8}
=(c-d,c+ )
Remark :
0] The deleted d - neighbourhood of c is the set
Ns (c)-{c}=(c-d,c+d)-{c}=(c-d,c)u(c,c+ d)

(i) (c - 9, c¢) is the left heighbourhood of ¢ denoted by N (c) and (c, c + d) is the
right neighbourhood of ¢ and is denoted by N d = (c).

(iii) Neighbourhood of a point ¢ are open intervals around ¢ or one sided open
intervals from c.

Another definition of neghbourhood of a point

A set G c R is said to be neighbourhood of a point c in R if 38 > 0 such that ¢ eNs (C) <
Gie.,if(c- 3,c+g)cG.

A deleted neighbourhoodG of c is the set G - {c}

Example. (i) Since for each c € R, 38> 0 such that (c- &, c + 8) <R, therefore the set R of
real numbers is the neighbourhood of each of its points.

(i) The set of rational numbers is not a neighbourhood of each of its points for if ¢
Q,then(c- d,c+ d), (9> 0) contains infinite many irrational numbers and thus (c- d,c+ d)

cQ.

Art. Every open interval is a neighbourhood of each of its points.

Proof : Let | be any open interval in R, then we have the following cases
(i) I'=(a,b) (i)  1=(a )
(i) 1=(-0, b) (iv) 1= (-0, )

Case (i) When | = (a, b) where a, b e Rwith a <b. Let c € | be any pointi.e., a < c < b. Choose
d=min{c-a, b-c}then 8>0.WeshowthatN; (c)={c- d,c+ d}cl.

a c b
Let x € N (c) be arbitrary point. Then
Xxe(c-9d,c+ d)
or C-d<Xx<c+ d
or -d<x-c<?d
Since 8<c-a
-(c-a)<-03<x-c<d<b - ¢
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= - (c-a)<x-c<b-c¢

= a<x<borxe(a b)=1
vV X € Ns (C)
= X el

N d (c) < lis neighbourhood of ¢ € |
Since c is any arbitrary point of I, therefore | is heighbourhood of each of its point.
Case (ii) When | = (a, ).
Let ce lany point,thenc<a
Let d =c-a>0.
NowNs; (c) =(c-9d,c+ )
=(a,2c-a)c(a, o) =I
= | is neighbourbood of ¢ and hence | is the heighbourhood of each of its point.
Case (iii) When | = (-0, b)
Let c € | be any point, thenc<b
Choose & =b-c>0.
NowN:(c) =(c-9d,c+ d)
=(2c-b,b) c (-0, b) =1
= I is neighbourbood of ¢ and hence | is the heighbourhood of each of its point.
Case (iv) When | = (-0, o)
Letc € land let & > 0, then

N: (c) =(c- d,c+ &) < (-0, ©) =1 and hence | is the heighbourhood of each of its
point.

Remark :
0] As shown above, the open interval (a, b) is a heighbourhood of each of its points.

(i) The intervals [a, b) is a neighbourhood of each point of (a, b), but is not a
neighbourhood of a, as the interval (a- &,a+ d) & [a, b) for any d > 0. Similarly, the interval
(a, b] is a heighbourhood of each point (a, b) but not a heighbourhood of b.

(iii) The set N, Z and Q are not neighbourhood of any real number, because for any x
e R,N; (X) =(x- &, x+ d)is a neighbourhood of x, >0 but N5 (X) N or Ns:(X) Z and N»
(X) ¢ Q. Therefore N, Z and Q are not neighbourhood of any point of R.

Art. If G and H are two neighbourhood of a point ¢, then G H is also a neighbourhood of c.
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Proof : Since G and H are neighbourhood of a point ¢, therefore these exists 81, 92> 0 such
that N; (c) c G and N; (c) c H.

Choose d=min {31, 82}, then
N:(c) =(c-8,c+d8)c(c-d,c+ d:)cN,(c)cGand

N:(c) =(c-8,c+8)c(c-d,Cc+8)cN; ()G

i.e., Ns (¢) € GandN; (c)cH

= N: (c) € G H.

Hence GNH is a neighbourhood of c.
Art. If G is a neighbourhood ¢ and G < H, then his also a neighbourhood of c.
Proof : Since G is a neighbourhood of c =38 > 0 such that N: (¢) < G

As G < H ..N; (c) < Hand there H is heighbourhood of c.

Remark : If G and H are two neighbourhood of a point ¢, then GUH is also a neighbourhood of
C.

4.7 Art. Cluster Point and Limit Point of a Set
Cluster Point or adherent point of a set

A real number c is called a cluster point (or adherent point) of the set A. in R if and only if
every 0 -neighbourhood of ¢ contains atleast one point of A. In other words the real number c is
a cluster point of the set A if and only if for every 8 >0, Nd (c) N A #¢.

The set of all cluster points of A is called the closure of the set A and it is denoted A or
CI (A).

Remark :
0] A cluster point of a set A need not belong to the set A.
(ii) Every point of A is a cluster point of the set A.

Limit point of a set

A real number c is called a limit point of the set A in R if and only if every &-
Neighbourhood of ¢ contains atleast one point of A other then c. In other words, the real number
c is a limit point of the set A if and only if for every & > 0,

(Ns (€)-{ch n A= (or (N5 (c)nA=d,{c}

The set of all limit points of A is called derived set of A and it is denoted by A" or D (A).
Isolated point of a set

A cluster point of a set which is not a limit point of A is called an isolated point of A.
Note :
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0] Every limit point of a set A is a cluster point of the set A.

(i) c is not limit point of A if there exsits a & -neighbourhood of ¢ such that N: (c) N
A =0, {c}.

Art. If c is a limit point of A < R, then each neighbourhood or ¢ contains infinite many distinct
points of A.

Proof : Since c is a limit point of A, therefore, each neighbourhood of ¢ contains atleast on point
of A other than c.

Let N be a neighbourhood of ¢, than N contains atleast one print (say) Xo of A such that
Xo# C.

Choose & ;>0 suchthat (c- 81, ¢+01)=lic Nsuch that xo¢ I;.

Now by definition of limit point, the neighbourhood |1 of ¢ contain atleastone point (say)
X1 of A such that X1 . AlSO Xa# Xo (" Xog 11).

Let d2=min{|c - x4, 31}, then (c- &2, c+ d,) =l |1, is a neighbourhood I, of ¢ such
that x1¢ .. Again by definition of limit point, the neighbourhood I, of ¢ contains atleast one point
(say) x> of A where X»# C. AlSO Xo# X1 [*.* X1& 12].

Clearly N o l1, b= Xo, X1, X2 are distinct point of A and they belong to N, the
neighbourhood of c.

Again letd 3 = min {|c - x|, 82}, then (c - 33, Cc+ d3) = Isc I, is @ neighbourhood of ¢
and as discussed above, the neighbourhood I3 of ¢ contains atleast one point (say) xs3 of A
where x3# ¢ and Xz is distinct from each of Xo, X1, Xo.

Corollary. A finite subset of R has no limit point.

Proof : Let A be a finite subset of R. if c € R is a limit point of A, then by the above theorem,
every neighbourhood of ¢ contains infinitely many distinct points of A, which is not possible, A
has finite many distinct points. Hence a finite subset of R has not limit point.

Remark : Since ¢ is an empty set and hence it has not limit pointi.e. ¢' = ¢.
4.8 Art Bolzano-Weierstrass property
Every infinite and bounded set of real numbers has atleast one limit point.

Remark : The above theorem gurantees the existence of a limit point of set which is both
bounded and infinite. The converse of above theorem need not be true i.e., an infinite set having
a limit point need not be bounded.

e.g. the set Q of a rational numbers has limit points but it is not bounded.
Example 5 : Show that every non-empty finite set is not a neighbourhood of any point of R.

Solution : Since neighbourhood of a point is an interval containing the point and every open
interval contains infinite many real numbers, therefore it is not contained in a finite set.

Hence every non-empty finite set is not a neighbourhood of any print of R.

Example 6 : Show that intersection of all arbitrary neighbourhood of a point x € R is {x}.
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Solution : Let y (# x) be any real number.

Let 81 =|x-y|>0. ThenN; (x) = (x - 81, x + & 1) is aneighbourhood of x and it does
not contain y

yeX-8,x+ 8))=>ye()(x-8,x+ d)for >85>0

5>0

But {x} =[] (x- &,x+38),V8>0

5>0

Thus the intersection of arbitrary neighbourhood of x does not contain any real number
other than x.

Hence the intersection of all arbitrary neighbourhood of x is {x}.
Example 7: Show that the set of natural numbers N has no limit point.
Solution : Let X € R be any real number. Then eitherx e Norx € R- N.
Case (i) When x € N, then 3 a neighbourhood Ni(x) of x such that

NiX) "N=(x-1,x+1)N=0¢, {x}

= the neighbourhood N;(x) contains no point of N other than x.

So, x is not a limit point of N.

Case (ii) When x € R - N, then

Subcase (i) When x > 0, then 3 a positive integer n such that n <x < n +1.

Choose & =min {x-n, n+ 1 -x}. Then dneighbourhood

Ne(X)=(x-3,x+d)c(n,n+1)and Ns (X) "N = ¢.

So, x is not a limit point of N.

Subcase (ii) When x < 0. Take & = -x > 0, then IneighbourhoodN:(x) of x such that
Ns(X) "N = (2%, 0) n N = ¢.

So, x is not a limit point of N.
Hence the set of natural number has no limit points.
Example 8 : Show that the set of integers Z has no limit point.

Solution : Let n € Z be any integer. Choose 0 <& < 1. Then 3 a & -neighbourhoodNs (n) = (n -
d,n+ d)of nsuchthat Ns(n) N Z = {n}

n e Zis not a limit point of Z.

Let x € R be any real number such that x ¢ Z. Then 3 a unique integer m such that m <
Xx<m+1.

So that neighbourhood (m, m +1) of x contains no integer i.e., (m, m+ 1) " Z = ¢.
Thus x is not a limit point of Z.
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Hence no real number is a limit point of Z.

1
Example 9 : Show that 0 is the only limit point of set {— ‘ne N}.
n

Solution : Let A= 1:neN = EEE ..... be given set.
n 234

Clearly A is an infinite bounded subset of R. Because 0 < x <1V X € A.
Let &> 0. By the Archimedian property of real numbers, 3 a positive integerm such that

1
md>1lie., —<9d
m

1
the & -neighbourhoodN: (0) = (-3, &) of O contains a point - of A other than 0.

Since & > 0 is any arbitrary positive real number.
the d -neighbourhoodN: (0) of 0 contains atleast one point of A other than 0.
Hence 0 is a limit point of A.
Further, we show that A has no other limit point.
Let x = 0 € R be any real number

Case (i) When x < 0 than take 8= -x > 0 so that d -neighbourhood of x i.e.N: (X) = (2%, 0)
contains no point of A.

x < 0 cannot be a limit point of A.
Case (ii) When x > 1, then take & = x - 1 so that & -neighbouthood of x
i.e., Ns (x) = (1, 2x - 1) contains no point of A.

x > 1 cannot be a limit point of A.

1
Case (iii) When x = 1, then take d = E so that the d -neighbourhood of x =1

i.e.N, = (1—i,1+ ijz [31_1) contains no point of A other than 1.
0 10 10 10 10

x =1 cannot be a limit point of A

1
Case (iv) When 0 < x <1, then 3 a positive integer m suchthatm<—<m+1
X

1 1
Subcase (i) if x ¢ A, then x iﬁ (m eN) = m =—, then we have
X
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1 1
m<—<m+1l= <x<— andx ¢ A.
X m+1 m

Hence x is not a limit point of A.

1
Subcase (ii) if x €A then o (meN)and m = 1. (e x=1)

1
Nowm<—<m+1
X

1
= m-1<—<m+1
X
< X<
m+1 m-1

1 1 1
3 a neighbourhood| ——, —— | of x | =— | contains no point of A other than x
m+1 m-1 m

1
(: —j hence x is not a limit point of A.
m

Thus for 0 < x < 1. x is not a limit point of A.
From (i) to (iv) we notice that x = 0 is not a limit point of A.
Hence 0 is the only limit point of A.
Example 10: Show that (A U B)' = A" U B'.
i.e., the set of limit points of A U B is equal to the union of limit points of A and B.
Solution: Let x be a limit point of A U B
= 3 a positive real number & such that
Ns(X) N (A U B) 20, {x}
(N:(xX) N A) U (Ns(x) N B) #0, {x}
Ns(X) N A =d, {x} or Nd (X) N B =¢, {x}
XxeAorxebB
xeA'"UB'
Hence AU B) =A"UB

Example 11: (i) If u is the supermum of an infinite set A in R and u ¢ A, then u is a limit point of
A.

¢ ¢ ¢ 9

(i) If | is the infimum of an infinite set Ain Rand | ¢ A, then | is a limit point of A.
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Solution: (i) Since sup A = u, where A ¢ R and is infinite set

4.9

4.10

4.11

by completeness property of R, u € R
AlsosupA=u¢ A (given)

for any & > 0 however small 3's atleast one point x € Asuchthatu- d<x<u
= each neighbourhood of u contains atleast one point x of A different from u.

Hence u is a limit point of A.
(i) Since Inf A = |, where A < R and is an infinite set

by completeness property of R, | e R

AlsoinfA=1g¢A (given)

for any & > 0 however small 3's atleast one point x € Asuchthatl<x<|+1
= each neighbourhood of | contains atleastoen point x of A different from I.
Hence | is a limit point of A.
Self Check Exercise
Q.1  Find l.u.b. and g.l.b. (if exist) of the set

S={3sinx+4cosx},xeR

1
Q.2 IfO< a<ﬁv n €N, then show that a = 0.

Q.3  Prove that the set

{n_—l Ne N}is bounded.
n+1

Find l.u.b. and g.l.b.

Summary

In this unit we have learnt the following

0] definition of a bounded set, l.u.b and g.l.b

(ii) how to find l.u.b and g.l.b of a set ?

(iii) l.u.b. property of real numbers

(iv) Archemedian Property of reals

(v) nhd. of a point, duster point and limit point of a set
(vi) Bolzano-Weirstrass property

Glossary:

71



412

4.13

4.14

Complete order field - Due to the property of order completeness of reals, the set
R of real-numbers is called complete order field.

g.l.b. property of real numbers-

Let S be a set bounded below (S is non-empty subset of reals). Then by using
l.u.b. property of reals it can be shown that S has g.l.b. on R. This is called g.l.b.
property of reals.

Answer to Self Check Exercise
Ans.1 S=[-5,5],9.lb.=-5lLub.=5
Ans.2 Prove it

Ans.3 lLub.=1,9g.lb.=0

References/Suggested Readings

1.
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T.M. Apostal, Calculus (Vol I), John Wiley and Sons (Asia) P. Ltd., 2002.
E. Fischer, Intermediate Real Analysis Springer Verlag, 1983

K.A. Ross, Elementary Analysis- The Theory of Calculus Series - Undergraduate
Texts in Mathematics, Springer Verlag, 2003

Terminal Questions

1.

Prove that the union of two bounded set is bounded subset of R. Is the converse
true? Justify.

Find l.u.b and g.l.b. (if exist) of the set

{ 1 5 -5< x£1}

1+ X

Prove that the set

{(—1) 'n,neN}
n+1

is bounded Find l.u.b. and g.l.b.
State whether the set

{ ) 37[}
XSnX:ﬂSXSE

is bounded or not. Find l.u.b. and g.l.b. (if they exist)
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Unit-5
Real, Bounded And Convergent

Sequences
Structure
51 Introduction
5.2 Learning Objectives
5.3 Sequences
5.4 Real Sequence
5.5 Bounded And Unbounded Sequences
5.6 Convergent, Divergent And Oscillatory Sequence
5.7 Sandwich Theorem Or Squeeze Principle
5.8 Self Check Exercise
5.9 Summary
5.10 Glossary
5.11 Answers to self check exercises
5.12 References/Suggested Readings
5.13 Terminal Questions
5.1 Introduction

Dear students,you are already familiar with the notion of a set as the collection of a well

defined distinct objects of our perception or thought. IN mathematics, a sequence is an
enumerated collection of objects in which repetitions are allowed and order matters. Like a set,
it contains members (also called elements of terms). The number of elements (possibly infinite)
is called the length of the sequence. Unlike a set, the same elements can appear multiple times
at different positions in a sequence and unlike a set, the order matters. Sequences are useful in
a number of mathematical disciplines for studying functions, spaces and other mathematical
structures using the convergent property of a sequence. Sequences are also of interest in their
own right, and can be studied as patterns or puzzles, such as in the study of prime numbers.

5.2

Learning Objectives

The main objectives of this unit are to

(1) define a sequence

(ii) to study bounded and unbounded sequence

(iii) study convergent, divergent and oscillatory sequences
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(iv) to study null sequence, equal sequence etc.
5.3 Sequences

Definition: If N is a set of natural numbers and X any set, then function f : N — X is
called a sequence.

5.4 Real Sequence

If X =R or a subset of R, then f is called a real sequence and if X = C or a subset of C,
then f is called a complex sequence.

In the remaining part of this unit, we will be concerned with real sequences only. Hence
by a sequence, we will mean real sequence.

Thus, a sequence is a function whose domain is the set N of natural numbers and range
is any set X.

Let a: N — R be a sequence. The image of n €N, instead of being denoted by a (n) is
generally denoted by a,. Thus ai, az, as, ..... are the real numbers associated to 1, 2, 3, ..... by
this mapping. a. is called the general term or the nth term of the sequence.

If the nth term a, of a sequence is give, we can find the first second, third,...... terms of
the sequence by puttingn =1, 2, 3, .....

Thus a sequence whose nth term is an is written as {an} or {an} or (an) or < a,> where
neN

Sometimes, it is denoted by writing all its terms within the brackets
i.e. {ai, az, as, ....... s Aneeeeennn. }
Another definition

A set of numbers ai, az, as, ....... - PR such that to very positive integer n, there
corresponds a number an of the set, is called a sequence.

ai, az, Az, ....... are called the elements of the sequence.
Range of a sequence

The range of a sequence {an} is the set of values {a,, n € N} consisting of distinct terms,
without repetition and irrespective of their position.

In other words, the set of all distinct terms of sequence {an} is called its range.
Some Examples of sequences

1. The sequence {an}, where an = nis{l, 2, 3,....... ,n, ...}
1 11 1
2. The sequence {an}, where an = o is { ey e }
n

The sequence {a.}, where a, = (-1)"is {-1, 1,-1, 1, -1, 1,....... }. Itsrange is {-1, 1}

The sequence {an}, where a, =c VvV n eNis{c, ¢, c,....... }. Its range of {c}. This sequence
is a constant sequence.
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n
5. The sequence {an}, where a, = (-1)“n—1, is
+

Note 1 : The mth and nth terms am and asfor m= n are treated as distinct even if an = an i.e., the
terms occurring at different positions are treated as distinct terms even if they have the same
value.

So, in a sequence {an}, the order of elements cannot be changed.

Note 2 :The number of terms in a sequence is always infinite where as the range of a sequence
may have a finite number of elements.

Note 3 : Sometimes a sequence has the zero-th term. In this case, its domain is NU{0} so that
the sequence is {ao, ai, az,.......... y@nyeeeeenee. }

or {an}n=0

Similarly, we can start a sequence from any positive integer m and in this case, the
sequence is written as {an}n>m.

Note 4 :Equal Sequences.
Two sequences {an} and {b,} are said to be equal if a, = b, for every n.
If ranges of two sequences are equal, even then the sequences may not be equal.
Let an = (-1)", by = (-1)™*
ranges of {a,} and {b,} are equal.
But a1 by asa; =-1, by =1
two sequences are not equal
5.5 Bounded and unbounded Sequences

0] A sequence {an} is said to be bounded above if there exists a real number k such
that a.< k vV n eN.

k is called an upper bound of the sequence {an}.

(i) A sequence {an} is said to be bounded below if there exists a real number h such
that h < a,v n eN. his called a lower bound of the sequence {an}.

(iii) A sequence {an} is said to be bounded if it is bounded above as well as bounded
below i.e., if there exist two real numbers h and k such that

h<an<k VneN

(iv) S sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be unbounded if given A> 0, however large, 3 m € N such that
|an| >AV n>m.
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Note 1 : A sequence is bounded above, bounded below or bounded according as its range is
bounded above, bounded below or bounded.

Note 2 : If a sequence {an} is bounded, then its range is bounded. The l.u.b. and g.l.b. of range
of sequence {an} are called the l.u.b. and g.l.b. of the sequence. They are also called the
supremum and infimum of the sequence.

Properties of l.u.b. u of {an}

() an<u v neN

(i) Given ¢> 0, however small, 3 at least one positive integer m such that an> u - &.
Properties of g.l.b. | of {an}

0] an> | v neN

(i) Given ¢> 0, however small, 3 at least one positive integer m such that am< | + ¢.
Note 3 : Assume that sequence {an} is bounded

3 two real numbers h and k such that

h<an<k v neN (1)
Let M =Max. (|h], |K[)
lhl <M, k| <M
= -M<h<M,-M<k<M ..(2)
From (1) and (2), - M<a<M V neN
lan] <M v neN
Now assume that |[a,| <M V¥V neN

M<asM vV neN
= Sequence {an} is bounded
Sequence {an} is bounded iff3 M > 0 such that
lan] <M v neN
Sequence {an} is bounded iff3 real number M such that |a,| <M ¥V n eN.
Note 4 : (i) If each an> 0 and sequence {an} is unbounded, then it is unbounded above.
(i) If each an< 0 and sequence {an} is unbounded, then it is unbounded below.
Examples : (i) Consider the sequence {an} defined by
an = 1 neN
n

Now n>1

76



5.6

= 1< 1 ..(2)

n
1
Also —>0 VneN .-(2)
n
From (1) and (2),

1
0<—=<1 \vd neN

n
= {an} is bounded.
(i) Consider the sequence {an} defined by

an=n?
Sequence is {12, 22, 32,......, n?,.....}
Here a>1 V n N, but 3 no real number k such that a,< k

the sequence {an} is not bounded above.
(iii) consider the sequence {an} defined by a, = -n
It is bounded above and 0 is an upper bound. But it is not bounded below.
(iv) the sequence {an} where a, = (-2)" is neither bounded above not bounded below.
Convergent, Divergent and Oscillatory Sequences.

A sequence {an} is said tbe converge to a limit I, if given &> 0. however small, there

exists a positive integer m (depending upon ¢€) such that

lan - 1] <¢ A n>m
| is called a limit of the sequence {an} and we write it as

LtanzlorLtanzl

N—o0

or an—lasn—w
or simply an — |
Examples

(1) Consider the sequence {l}
n

Given ¢> 0, however small, we choose a natural humber m such that m

>— = —<g

&

m
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Sequence {an} converges to 0.

(i) Consider the sequence {L}
n+1

Given &> 0, however small, we choose a natural number m such that m

Vv n>m, we have

_no_
n+1

n—n—ﬂ

n+1

[
A
I
IN
|
A
m

Lt =1

nN—oo n+1 B
= Sequence n convergesto 1.
n+1

Note 1: We know that |a, - || <e= ane (I - &, | + ). Now a neighbourhood V of | always contains
(I- &, I +€). Thus we give another definition of convergent sequence.

A sequence {an} is said to converge to a limit |, if given a neighbourhood V of i, there
exists an integer m such that a,e V.V n>m.

Note 2 : A sequence {an} is said to be convergent if an converges to some limit, otherwise {an}
is said to be non-convergent.

Divergent Sequence
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0] A sequence {an} is said to be diverge to « if given k > 0, however large, there
exists a positive integer m (depending upon k) such that

an> k A n>m

We write it as an — o or |_t an =

n—o0

(i) A sequence {an} is said to be diverge to -« if given k > 0, however large, there
exists a positive integer m (depending upon k) such that

an< -k A n>m

Note. A sequence {an} is said to be divergentif | t a»is not finite

n—oo

i.e. if |_t an = +o or -

nN—oo
0] Consider the sequence {an} where a, = 2 - n2.
Let k be any positive real number, however large

Now a, = 2 -n%< -k iff n >k +2
= an< -k Vv n>mwherem>+vk+1, meN

o sequence {an} diverges to -c.
(i) Consider the sequence {a,} where a, = n? + 3n.

Let k be any positive real number, however large

Now an> k
if n%+ 3n>Kk
ie.if n®>k

ie.if n>vk

If m is a positive integer such that m >\/E, thena,>k Vv n>m
sequence {an} diverges to +w
Note : A divergent sequence is always unbounded.
Oscillatory Sequence
A sequence which is neither convergent not divergent is said to be oscillatory.
Note. (i) A bounded sequence {an} which is not convergent is said to be oscillate finitely.

(ii) An unbounded sequence {an} which diverges neither to +o not to -« is said to
oscillate infinitely.

Examples :
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0] The sequence {(-1)"} oscillates finitely.
(i) The sequence {(-1)" n} oscillates infinitely.
Unigueness of Limit of a Convergent Sequence
If a sequence is convergent, then it converges to a unique limit.
Proof : If possible, suppose that the sequence {a»} converges to two different limits | and I'.

Then given &> 0, however small, there exist natural numbers m; and m; such that

£
|an—l|<5 forn>m;

g
and |an-I] <§ forn>m;

Let m = max. (mz, my)

|an—l|<% forn>m e
&
and |an-l‘|<§ forn>m ..(2)
Now [I-F| =|(I-an)+ (@n-1)

< |l an| +[an - 1
= lan- 1| + (an - I

E &
<—+— =¢

2 2
|l - I'| <¢ for every e>0and V n>m
= [-1'=0 [.. the only non-negative real number which is less than all
Positive numbers is zero.
= =1
our supposition is wrong.
If a sequence is convergent, then it converges to a unique limit.
Art. Prove that a convergent sequence is bounded. Is its converse true?
Proof : Let the sequence {an} converge to I.
given &> 0, however small, there exists a natural number m such that

lan - 1| <¢ v n>m
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[-e<an<l+¢ V n>m
Let h=min(l - g, a1, az, ...... ,am-1)
and k=max.(l +¢, ai, a, ...... ,am-1)
h<an<k A neN
sequence {an} is bounded.
The converse is not true i.e. a bounded sequence may not be convergent.
Consider the sequence {an} where a, = (-1)"

o Sequence is {-1, 1, -1, 1, -1, 1,...... } which is bounded as 1 and -1 are its l.u.b.
and g.l.b. respectively.

Now we will prove that {a,} is not convergent.
If possible, suppose that {a,} converges to I.

given ¢> 0, however small, there exists a natural number m such that

lan - 1] <e v n>m

lam - 1] <t (1)
and  |ams« -l| <e .(2)
Now |am - am+| =|am- 1| - (@ms1 - 1)

<lam- 1| + [am+1- 1|
<¢e t¢g [ of (1), (2)]
= 2¢
or2<2¢ [ |am - ams| = |(-2)™ - (-1)™2 = |-1)™ (1 + 1)| = 2]
which is not true of e < 1
our supposition is wrong.
{an} is not convergent.
Note. If a sequence is unbounded, then it is non-convergent.

For example, {a,} where an = n? is not convergent as it is not bounded.

() Prove that a sequence which diverges to +« is bounded below but unbounded
above.
(ii) Prove that a sequence which diverges to -« is bounded above but unbounded
below.
Proof: (i) Assume that sequence {an} diverges to +w
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given k > 0, however, large, there exists a positive integer m such that
an> Kk A n>m
there are infinitely many terms of {a.} which are greater than k
sequence {an} is not bounded above.

Let a=min. (a1, az, ..... , @m-1, K)

Thenan>a V neN

. {an} is bounded below.

(i) Assume that sequence {an} diverges to -«
given k > 0, however, large, there exists a positive integer much that
an> -k V n>m
there are infinitely many terms of {an} which are less than -k

Let B = max. (-k, a, a, ..... , Qm-1)

Then an>p v neN
{an} is bounded above.

Note.1l: The converse of (i) is not true.

Consider the sequence {an} where

n, nisodd
an=491 .
~,niseven
n

This sequence is bounded below as a,> 0 ¥ n eN and is not bounded above. but it does
not diverge to +owo

Note 2: The converse of (ii) is not true.
Consider the sequence {an} where

-2n, nis odd

an = 1 .
——.,niseven
2n

This sequence is bounded below as a,< 0 V n eN and is not bounded above, but it does
not diverge to -c.

Note 3: The three behaviours of a sequence namely convergence, divergence to +oo and
divergence to -0 are mutually exclusive i.e., only one of them is true at a time.

Null Sequence
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A sequence {an} is said to be null sequence if a, —» 0 as n — .

1]. 1. 1
e.g., the sequence {— is a null sequence as —is a null sequence as — — 0 as n — o.
n n n

Another Def. A sequence {a.} is said to be null sequence if for every &> 0, however
small, there exists a positive integer m such that

lan| <e v n>m
Result: If by, — 0 and |ay| < |bn| ¥ n, then a, — 0.
Proof: Since b, — 0
given £> 0, however small, there exists a positive integer m such that
|bn - 0} <e vYn>m
or |bn| <e vV n>m e (1)
Now |an| < |bn|
= lan| <e vYyn>m [-. of (1)]
= a,—0
Note. The above result is not true when b, — | (= 0)
Example: Take b, = 1 and a, = (-1)"Vn. Now {bn} converges but {a} does not converge.
Proof: (i) Assume that {a,} is a null sequence
given &> 0, however small, there exists a positive integer m such that
an| <e vyn>m . Q)
Now |an| - O] = |an| <e vYn>m (- of (1)}
{|an|} converges to 0.
= {|an|} is a null sequence.
(i) Assume that {|an|} is a null sequence

given &> 0, however small, there exists a positive integer m such that

[|an]-0] <e vn>m
or [lan]] <eV n>m
or lan| <e Vn>m

{an} converges to 0.
{an} is a null sequence.

Another Statement. for any sequence {an}, show that
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Lt a,=0iff Lt |as| =0
nN—oo n—oo
1.
Example: The sequence {an} where a, = (—1)”'1H is a null sequence as the sequence ||an|} =

1].
{— is a null sequence.
n

Prove that a sequence {an} converges to the limit | iff the sequence {a, - I} is a null
sequence.

Proof: (i) Assume that sequence {a,} converges to the limit |
given £> 0, however small, there exists a positive integer m such that
lan - 1| <¢ vYn>m
[@n-1)-0]<e Y n>m
= (@an-1)—>0 asn—-ow
= (an - 1) is a null sequence
(i) Assume that
(an - 1) is a null sequence
(@n-1)—>0asn—w
[an-1) -0 <e n>m
= |an -1 <eV n>m, me N
= sequence {an} converges to the limit I.
If {an} and {bn} be two sequences such that
|an| < |an|, then {an} is a null sequence of {bn} is a null sequence.
Proof: Let us assume that {bn} is a null sequence
given > 0, however small, 3 a positive integer m s.t.
|bn] <e VN>m
Now |an-0|=]as| <|bn]<eV Nn>m
an—0asn—w
= {an} is a null sequence.
5.7 Sandwich Theorem or Squeeze Principle
Theorem: If bn< an<cnV N eN and b, — |, ch — |, then an, — |
Proof: Here bn<an<ec, ... Q)

bn—>|,Cn—)|
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given &< 0, 3 my, moe N s.t.
|bn - 1] <e v n>m;
and |cn- | <e vYn>m;

Let m = max. (my, my)

|bn - 1) <e vYn>m
ie., Il-e<by<l+eVn>m ... (2
and |cn- | <e vyn>m
ie., l-eg<c<l+e VYn>m ... 3

From (1), (2) and (3), we get
|-e<bp<an<e<l+e VnN>m

or [-e<an<l+c¢ vyn>m

or lan - 1] <e vYn>m

an—)l

Art. If Lt CE =1, where |l| <1, then Lt a,=0.

N—oo ah n—oo

Proof: Since |l| < 1, therefore we can choose ¢> 0 such that |I| + e< 1

Lt h =
Nn—oo 6\1
there exists a positive integer m such that
e <gvVn>m
a,
g -IHSﬁ—l‘ [~ |al - [b] < |a- bl]
a, a,
<g Y n>m
‘h <1 +e vn>m
a,
= lan+1] < |an] (JI| + €) Yyn>m
= |an+1| <k |an| Y n>m
where k= || +e<1
Puttingn=m,m+1 m+2, ... ,nh-1, we get



|ams1] < K |am|
|am+2| < k |am+1|

|am+3| < k |am+2|

|an| <k |an-]
Multiplying these, we get

|an| <k™™ |am|
kn
or |an] <F |am|
= lanl > 0asn— o [Since 0<k<l, .. k"—0asn— o]

an—0asn— o

Lt an=0

N—o

Art. If a,>0and Lt G =|>1,then Lt a,=+wx

N—o0 a.n Nn—aoo

Proof: Since | > 1, therefore we can choose ¢> 0 such that | - &> 1

Lt St o
n—oo an
there exists a positive integer m such that
G <€V n>m
a,
Or I-e<h<l+svnzm
a,
= h>I-<c,=k(say)wherek>1,vnzm
Puttingn=m,m+1 m+2, ... , -1 we get,
aerl > k
an,
h> k
am+1
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LS k
8
Multiplying these inequations, we get,
n n
a_m >Kmm or an>-— am
a
apn— twasn— o [+ k>1=k"= +0as n— o]

Lt a,=+w

N—o0

Art.  Prove that
(i) Lt Yn=1

N—ao

(ii) Lt Ya=1 va>0

Proof: (i) Leta, = ¥n
an>1forn>2
Put an=1+b,whereb,>0forn>2
Now n=(an)"
=(1+by)"

=1+n.by+ n(n-1)

B2 +...+0

n

n(n-1)

n> b forn>2

2
= b?<—— forn>2

= O<bn,/i forn>2
n-1

= by Sandwich Theorem

Lt b0 { ¥ i:o}

n—o n-o \l n=1
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=

(ii)
Casel.a>1,

Put

=

Case ll.

Case lll.

N—o0

Lt Yn=1

N—o0

Three cases arise :
~Ya>1
Ya=1+hh>0
a=(1+h)

=1+nh+

a> 1+ nh>nh

nh< a

0<h<E
n

by Sandwich Theorem

Lt h=0

N—o0

Lt 0=1+0=1

N—o0

Lt Ya =1

N—o0

a=1,
Ya=1vn
Lt Ya =1

nN—oo
O<acxl,

b=1>l
a

Lt Yb=1

N—oo

Lt -4

n—oo Q/g
Lt %: 1

N—o0

n(n—1) h
2

Lt a,= Lt 1+by)=1+0=1

uézﬂ

n—-wo N
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Combing the results of three cases, we get,
Lt Q/az 1 Vva>0

n—o

Art.  Prove that sequence {a"}

(i) diverges to +ooff &> 1

(i) convergesif-l<a<1

(iii) oscillates finitely if a = -1

(iv) oscillates infinitely if a < -1
Proof: (i) Sincea>1, .. a=1+hh>0

an=(1+h)n
n(n—-1
=1+nh+ (2 )h2+ ...... +h™>1+nhforn>1
Let k be any positive number, however large and m be any positive integer such that
k-1

m>—
or mh<k-1
or 1+ mn>Kk

vn>m,1+nh>1+mh>k

a™1+nh>1+mh>k vyn>m
= a™ k Yn>m
Lt a" =+

n—oo
. sequence {a"} diverges to +wo
(i) Four cases arise:
Casel.lfa=1,thenan=1 V¥ n

sequence {an} converges to 1.
1
Casell.If0<a<1,thenputb= E so that
b>1 = b" - +x
1. " -
Let € > 0, however small. Then —is a positive real number sufficiently large.
S

Since b" — +x
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there exists m € N such that

1
b">— v n>m

€
1 1
= _n>_ Vnzm
a S
= a'<g Yn>m
= [a"] <e vYn>m [- 0<a<1]
= a"—0asn—w

sequence {a"} converges to 0.

Case lll. Ifa=0,thenan=0 V¥ n
= a"—0asn—-w
= sequence {a"} converges to 0.
1
Case IV. If-1<a<0,thenputa=-Bsothatb>1
= b" — 40
1
= n —0
b
= ("> 0
= -)"a"—0
= a'—0

sequence {a"} converges to 0.
(iii) Leta=-1

an= (1) = {—L n is odd

1 niseven

Now sequence {a"} does not converge
Also |a"=1Vn

sequence {a"} is bounded
= sequence {an} osculates binately
(iv) If a < -1then put a = -b so that

b>1

= b" - 4+
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a"=(-1)"b"and b" — +w
a" — +woif nis even
and a" — -« if n is odd
sequence {a"} oscillates finitely.
Some More lllustrated Examples

Example 1: Prove that the sequence

{ 1 1 1 }
—_t—+...... +—
n’  (n+1)? (2n)®

is bounded
Solution: Let {an} be given sequence, where
I B 1
n*  (n+1)? (2n)?
<n_12 +n_12 +n— o to (n+1) terms

(n+1p)2<n2 for p=12,...n
_n+1
n2
1,1
n n
<E+E:E<z vneN
n n n
(-n>1 nzzn:n—lzs%)
a<2 VneN
Also a>0 VneN
O<an<?2 v neN
= {an} is a bounded sequence.

Example 2: Prove that the sequence
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{2-n?} is unbounded
Solution: Let {an} = {2-n?} where
an=2-n?
Let M > 0, however large
For n>2la)=]2-n}=n?-2>M
If n2-2>M
if n>2+M

i.e.ifn>+2+M

lan] > M v n
>m=max (2, Vv2+M ), m eN

= {an} is unbounded}
Example 3: Show that the sequence

-1)"
{(—)} is convergent sequence
n

Solution: Let {an} = {%} a, (-1)

n
Now |an-0|= {(1) —0}: ﬂ _1
n n n
lan - 0] <e
N
if —<ei.e. n>-—
n €

. 1
Let me N just greater than —
€

lan - 0] <e Yn>m

= {an} converges to 0
Gy
= -—— ¢ is a convergent sequence.
n

Example 4: Show that the sequence
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{1 + (-1)"} oscillates finitely
Solution: Let {an} ={1 + (-1)"} be given sequence,
where a, =1+ (-1)"
|an| =1 + (-1)7 < [1] +)(-1)7
=1+1=2VneN.

= an is a bounded sequence
Let if possible, {an} converges to |, therefore given > 0, however small 3 a +ve integer
m s.t.
lan-1| <€ Yn>m
= |am-1| <e and |am+1 - 1| <e

Now  |am+1 - @m| = |(@m+1-1) - (Qm4)|
< |am+1 - 1] + |am - 1|
< ete
1+ ()™ -1-(D)M<2e
or 2<2eor 1 <e which is not true if 0 <e< 1.
our supposition is wrong.
{an} is not convergent but bounded

{an} oscillates finitely.

nt| .
Example 5: Show that < —¢ is a null sequence.
n

! _1\(n-
Solution: Here a, = % _ nn=H(n=2).....321

n.n.n.........n.n
_non-in-2 21
n : n . n ..... n . n
= (1—3 (l—gj ........ (1_”;2) 1
n n n n
1
< 1.1.1......... ==
n

1 1
lanj<— and — - 0asn—w
n n
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= ahn—0asn—w

= |an| is a null sequence

nt|.
or {—n} is a null sequence
n

Example 6: Prove that Lim%n =1

Solution: Let

5.8

n—o

an= Yn
a>1forn>2

Put an=1+bn by>0forn>2

Now n=(a)"=(1+by)"=1+n.by+

- n>¥bn2forn32

= 0 <bn< /ifornzz
n-1

by Sandwich theorem
Limbn=0

n — oo

Lima,=Lim@+by)=1+0=1

N—0 nN—oo

= LimYn =1

n—oo
Self Check Exercise

Q.1  Prove that the sequence

{Zn _ 3} is bounded

3n+

Q.2  Prove that the sequence
{-3"} is unbounded
Q.3  Show that the sequence
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{n2+2n+5

—5————( converges to 1
2n°+5n+7 2

Q.4  Prove that the sequence

1 1 1

an= - + o
Jn2 41 Jn?2+2 n"+n

5.9 Summary
In this unit we have learnt the following
(@ sequence
(i) real sequence
(iii) bounded and unbounded sequences
(iv) convergent, divergent and oscillatory sequence.

5.10 Glossary:

1. Equal Sequences - Two sequences {an} and {bn} are said to be equal if a, = bn
for every n.
2. Divergent sequence - A sequence {a,} is said to diverge to «if given k > 0,

however large, 3 a +ve integer m (e) s.t.
an>kvn>m

and we write it as Liman = o« or a, — .

N—o0

5.11 Answer to Self Check Exercise

Ans.1 Hintan = E - i
3 3(3n-T)
Ans.2 Hint|ay| |-3"=3"=M
) 1 1 n+3
Ans.3 Hint|a,—=| = = |-—5——
2 212n“+5n+7

Ans.4 Hint Let x; = ,r=1,2,.... n.

Lt
N
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5.13 Terminal Questions
1. Prove that the sequence

2
n+1 is bounded.
2"+3

2. Find a positive integer m such that
Yn+1<0.03vn>m
3. By definition, show that
3n

Lim. =3
oo n43n

4, Prove that the sequence {n? + 3n} diverges to +o
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Unit - 6
Monotonic Sequences

Structure

6.1 Introduction

6.2 Learning Objectives

6.3 Monotonic Sequences

6.4 Behaviour of Monotonic Sequences
6.5 Self Check Exercise

6.6 Summary

6.7 Glossary

6.8  Answers to self check exercises
6.9 References/Suggested Readings
6.10 Terminal Questions

6.1 Introduction

Dear students,in this unit we shall learn the concept of monotonic sequences. We are
already familiar with the concept of monotonic function. In our previous classes we have studied
that a function f defined on a subset of real numbers with real values is called monotonic iff it is
either entirely non-decreasing or entirely non-increasing. In mathematics, a monotonic function
is a function between ordered sets that preserve or reverse the given order. The concept first
arose in calculus, and was later generalized to the more abstract setting of order theory.

A monotonic sequence is a sequence in which its elements follow a consistent trend-
either increasing or decreasing. A sequence is monotonic if every term is greater than or equal
to one before (monotonically increasing) or every term is less than or equal to one before
(monotonically decreasing).

6.2 Learning Objectives
The main objectives of this unit are
(@ to study the concept of monotonic sequences
(i) to learn the behaviour of monotonic sequences
6.3 Art-Monotonic Sequences
0] A sequence {an} is said to be monotonically increasing
if an< an+1 ¥ neN
(i) A sequence {an} is said to be monotonically decreasing
if an> an+1 ¥ neN
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(iii) A sequence which is monotonically increasing or decreasing is called a
monotonic (or a monotonic) sequence.

(iv) A sequence {an} is said to be strictly monotonically increasing
if an< an+1 ¥V neN

(V) A sequence {an} is said to be strictly monotonically decreasing
if an> an+1 ¥V neN

Examples.

1
0] Suppose is {—} strictly monotonically decreasing.
n

(i) Suppose is {n*} strictly monotonically increasing.

(iii) Suppose is {(-1)"} is neither monotonically increasing nor monotonically
decreasing.

6.4 Behaviour of Monotonic Sequences

(@ Prove that a monotonically increasing sequence {a.} converges iff it is bounded
above. The limit of {an}, when it converges, is l.u.b. of {an}

(i) Prove that a monotonically decreasing sequence {an} converges iff it is bounded
below. The limit of {an}, when it converges, is g.l.b. of {an}

(iii) Prove that a monotonically increasing sequence {a.} diverges to +owiff it is
unbounded above.

(iv) Prove that a monotonically decreasing sequence {an} diverges to -wiff it is
unbounded below.

Proof : (i) Let the monotonic sequence {a»} converge to |
given ¢ > 0, however small, there exists a natural number m such that
lan - l|<e vn>M
l-g<an<l+e Yn>M
Letk =max (I + ¢, as, az....... am-1)
an<k V n>N
sequence {an} is bounded above

Converse : Set us assume that the monotonic sequence {an} is bounded above and u is the
l.u.b. of {an}

given &> 0, 3 m e N s.t.

u-¢ <an ..(1)
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= an< an for every n>m

(- the sequence {an} is monotonically increasing)

..(2)
From (1) and (2), we have
u-e<an v n>m
Also a<u+e A n>m

an< u+ ¢, in particular v .n>m
U-g<ap<u+egVvV n>m
= lan - u| <e v n>m
the sequence {an} converges, its limit being l.u.b. of {a.}
(i) Let monotonic sequence {an} converges to |
given &< 0, however small, 3 am e N s.t.
lan - 1] <e vn>m
[-e<an<l+evVn>m
Let k=min (I - &, a1, az....... am-1)
h<a, V n>N
sequence {an} is bounded below
Converse :Let us assume that {a.} is bounded below and | is the g.l.b. of {an}
givene>0, 3 m e N s.t.
am<l+eg ..(1)
Since {an} is monotonically decreasing
an< am for every n>m ...(2)
Using (1) and (2), we have
an< | +¢ A n>m
Also an<l-g V ne m
in particular a,<l-e¥ n>m
|-e<an<l+& V n>m
lan - 1] <¢ v n>m

= the sequence {an} converges and its limit being g.l.b. of {an}
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(iii) Let us assume that monotonic sequence {an} converges to +w
given k < 0, however small, 3 a positive integer m s.t.
a>k vn>m
= There are infinitely many terms of {an} which are greater than k.
the sequence {an} is not bounded above.
Converse : Let us assume that monotonic sequence {an} is unbounded above.
given k > 0, however large, 3 a term ams.t.
am< k (1)
Now, since {an} is monotonic decreasing
an< am for every n>m ...(2)
From (1) and (2), we have
an>k V n>m
the sequence {an} diverges to +co.
(iv) Assume that the sequence {an} diverges to -c.
given k > 0, however small, 3 a positive integer m s.t.
an<-k vn>m
There are infinitely many terms of {a,} which are less than -k.
{an} is not bounded below.
Converse : Let us assume that monotonic sequence {an} is unbounded below.
given k > 0, however large, 3 a term ams.t.
am< -k ..(1)
Since {an} is monotonic decreasing
an< am ....(2)
From (1) and (2), we have
an< -k V n>m

the sequence {an} diverges to -.

Note : 1. A monotonic increasing sequence is either convergent or diverges to +o.
2. A monotonic decreasing sequence is either convergent or diverges to -c.
3. A necessary and sufficient condition for convergence of a monotonic sequence is

that it is bounded.
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4. A necessary and sufficient condition for the divergence of the monotonic
sequence is that it is unbounded.

5. A monotonic sequence can never be oscillatory.
Some lllustrated Examples
Example 1. Prove that the sequence

{2n—7}.

iS

3n+2

0] monotonically increasing

(i) bounded

(iii) convergent

Solution : (i) Let {an} be the given sequence
_2n-7

3n+2
2(n+1)-7 _2n-5
3(n+1)+2 3n+5

n

An+1l =

2n-5 2n-7

3n+5 3n+2

(2n—5)(3n+2)—(2n-7)(3n+5)
(3n+5)(3n+2)

Now a,+1l-an=

_ 6n° + 4n—15n—10-6n? —10n+ 21n+ 35
(3n+5)(3n+2)

2
= = >0V neN

(3n+5)(3n+2)

an+1>a, vn

= {an} is monotonically increasing.
2n—-7

3n+2

-5
= =
-3
8

(ii) an = >0 vn>4

Also a;= -1

dz =
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-1
1

an>-1 Vvn

as

{an} is bounded below

Again an = 2n—7
3n+2
2/3
2 25/3 3
= - md2n—7
3 3n+2
2n+4/3
-25/3
< 2
= — vn
3

{an} is bounded above
= {an} is bounded
(iii) Since {an} is monotonically increasing and bounded above

{an} is convergent

2

Example 2: Prove that the sequence
n-+1

}is convergent

Solution: Let {an}= { 5 } be given sequence
n°+1

n
n°+1

an =

n+1 n+l
(n_|_l)2_|_1 n’+2n+2

An+1 =

n+1 n

NOW a.n+1'a.n: -
N°+2n+2 n’*+1

n*+n+n°+1-n*-2n*-2n
(n2+1)(n2+2n+2)
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n*+n-1

=- <0VneN
(n*+2n+2)(n* +1)
an+1< an v neN
= {an} is a monotonically decreasing sequence
Also an=—5—>0VneN
n°+1

{an} is bounded below
= {an} is convergent.
Example 3: Discuss the convergence of the sequence {n - n%}
Solution: Let {an} = {n - n?} be given sequence.
an=n-n?
ans = (N+1) - (n+1)?
=n+1-n?-2n-1
=-n?-n
NOW  ans1-an=(-n?-n)-(n-n?
=-2n<0 v neN
= an+1< an A neN
= {an} is monotonically decreasing sequence but {a,} is not bounded below
(- an=n-n?=n(1-n) <0 VneN)
= {an} diverges to -«
Example 4. Examine the convergence of the sequence {an}, an = o", oc> 1
Solution: Here an=o", o> 1

Ans1 = Ocn+l

= An+1 - An = oc™- oc™> Q[ o™ >oc As o> 1]
= an+1> an v n eN
= {an} is monotonically increasing

But  {an} is not bounded above, since
an =o", o> 1
>0 vn eN.
{an} diverges to +oo

Example 5: Prove that the sequence {a.} defined by
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X1 = N2, X1 = 2+ X is bounded, monotonic and converges to 2.

Solution: Step |I. We shall use the method of induction to prove that {x»} is monotonically
increasing sequence i.e. we shall show that

Xn+1>Xn V N eN

Now XZ:\/2+X1:\/2+\/§>\/?:\/§:X1

= X2> X1
result is true forn=1

Let us assume that the result is true forn =k i.e.

Xn+1>Xk

2 + Xk+1> 2 + Xk

= 24 %y 42+ %

= Xk+2=> Xk+1

result is true forn = k + 1.
Alsoitistrueforn=1
Hence by induction {x,} is monotonically increasing

Step Il. Claim: {xn} is bounded above by 2 i.e. x,<2 V n eN
Now X1 = \/5 <2
= resultis true forn=1

Assume it to be true forn=m
= Xm< 2

2+xXm<2+2=4

= 1/2+Xm <J4 =2

= Xm+1< 2
resultistrueforn=m+1
Also itis true forn=1
by mathematical induction {x,} is bounded above by 2.
From Step | and Step Il it is clear that {x»} is monotonically increasing and bounded above.

{xn} is convergent

Let Limx, = x

N—o0
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6.5

6.6

6.7

Lim Xne1 = Lim 2+ X,

N—o0 nN—o0

X =24+ X (- Lim Xne1 = X)

N

= X2=2+X

= x?-x-2=0

_1+41+8 _1+3 _
2 2

But x>0 VneN= x< 0

X 2,-1

X=2
Hence {xn} converges to 2

Self Check Exercise

Q.1  Examine whether the sequence

+3. . . . :
> is monotonically increasing or decreasing.

Q.2 Prove that the sequence

is monotonically increasing, bounded and

n+5
convergent.
Q.3  Show that the sequence
1 1 1.
1+ -+ S+, + — Is convergent.
3 3 3

1\ .
Q.4  Prove that the sequence {an} = {(H —j }IS convergent
n

Summary
Dear students, we have learnt the following concepts in this unit.

(@ Monotonic sequences (monotonically increasing or monotonically decreasing
sequences)

(i) The behaviour of monotonic sequences
(iii) For better understanding of these concepts sufficient examples have been given.
Glossary:

1. Monotonic Sequence - A sequence which is monotonically increasing or
decreasing is called monotonic (or a monotonic) sequence
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6.8

6.9

Strictly Monotonically increasing sequence - A seq. {a.} is said to be strictly
monotonically increasing if an+1> an or an< an+1vV n eN

Strictly Monotonically decreasing sequence - A seq {an} is said to be strictly
monotonically decreasing of a,> an+1V n eN.

Answer to Self Check Exercise

Ans.1 Monotonically decreasing

Ans.2 Prove it

Ans.3 an<%v n eN .. an is convergent

Ans.4 Prove it.
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6.10 Terminal Questions

1.

show that the sequence {an},

1 1 1
an=1+ — + —+ — +... +
2t 3 n-1!

is convergent.

n
Prove that the sequence {(H §j } is monotonically increasing and bounded.
n

Show that it converges to limit e3.

Prove that the sequence {a, 3,}
1 1 1
an=1+—+ -+ ... + — diverges.
2 3 n

Deduce that {an} is unbounded

Prove that the sequence

\/§+\/2+x/§ +\/2+\/§+\/§ ........ converges to 2.
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Unit-7

Cauchy's Theorem On Limits

Structure

7.1 Introduction

7.2 Learning Objectives

7.3 Cauchy's First Theorem on Limits
7.4 Cauchy's Second Theorem on Limits
7.5 Cesa Ro's Theorem

7.6 Cauchy - Stolze Theorem

7.7 Self Check Exercise

7.8 Summary

7.9 Glossary

7.10 Answers to self check exercises
7.11 References/Suggested Readings
7.12 Terminal Questions

7.1 Introduction

Dear students, in this unit we shall study Cauchy's limit theorem, named after the french
mathematician Augustin-Louis Cauchy. It describes a property of converging sequences. It
states that for a converging sequence the sequence of arithmetic means of first n numbers or
members converges against the same limit as the original sequence. This theorem was founded
by Canchy in 1821. Subsequently a number of related and generalized results were published,
in part cularby otto Stolz (1885) and Eonesto Cesaro (1888).

7.2 Learning Objectives
The main objectives of this unit are to
0] learn about Cauchy's first theorem on limits
(i) study Cauchy's second theorem on limits
(iii) learn Cauchy's Stolze Theorem
(iv) to prove Cesar's theorem etc.

7.3 Theorem: Cauchy's First Theorem on Limits

a+ta+tagt...+a,
n

If an — |, then x, =
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Proof: Lett, = an - |

i.e. an =ty +1
Now x = Bfdtdte..+d,
n
(D) +(L+D)+(t+)+ (8, +1)

. (1)

Now an,—1
= tn—>0

given &> 0, however small, there exists a positive integer m such that
g
|tn|<EVn3m ..... (2)

Againast,— 0
{tn} is convergent.
= {tn} is bounded

there exists a real number k such that

tf<kvn . 3)
Now [ttt S L P O o e
n n |
t,+t, +t,| s [ty F e by
n n
<|t1+t2+tm|+|tm+ ....... +t,|
T on n
3 [t + [t + o [t . (| oot [t
- n n
mk n-m ¢
SR [+ of (2) and (3)]
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<m_k+£ [-.- n_m<1]
2 2 n
t+t, e +tn|<m_k L€ @
n | n 2 .....

mk
Now — —0asn—w
n

mk
there exists a positive integer p such that — <%for n>p... (5)
n

Let g = max. (m, p)

ot +t _ol<f L E forn>q [~ of (4), (5)]
n 2 g

t1+t2+t3+ ....... +tn_0 <gf0l’n2q
n

from (1), Lt x, =1

Lf Btdtato.+a,

N—o n

=

Note 1. Sequence {x} is called the sequence of means of the sequence {an}
Note 2. The converse of the above result is not true.

Example: Let an = (-1)". Here an does not tend to a limit as {an} oscillates finitely

0, nis even
« = a+a,t... +a, _ L
) n —-=,nisodd
n

Lt x,=0

N—oo

7.4 Theorem: Cauchy's Second Theorem on Limits

a'n+l

If {an} is a sequence of positive terms and Lt —= exists whether finite or infinite, then

n—oo a‘n

1

Lt (a,)n= Lt 2

N—o0 n—o0 a‘n
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Proof: Two cases arise:

Casel. Lt G _ [, where | is finite
nN—oo ah

given &> 0, however small, 3m € N s.t.

Ba || E \ n>m
a, 2
= =8B, 2y n>m
2 a, 2
Puttingn=m,m+1 m+2,.... , h-1, we get
I-£<@<I+£
a, 2
|_£<h<|+£
am+1
I-£<ﬁ<l+£
am+2
I-£<i<|+i
&, 2

Multiplying these (n - 1) - (m - 1) i.e. (n - m) inequations, we get

(I —fj 7 <i<(l+£j 7
2 a, 2



Let

Now

1 m m
[ (a,)" >1asn—owfora>0and1l- —— 1, 1+—— 1asn— o
n n

and

and

Let

Or

Or

1 | 81_% £
(am)n(-l-aj —>|+E

given &> 0, 3 my, moe N s.t.

Lm

(am)i(l—gj n—(l—gj<§ vn>m;

1 £ 17?
I-g<(am)n(l—§j <Ivn>m, .. 2

p = max (m, m1, m2)

from (1), (2), (3), we get

I-s<(an)%<l+s vn>p

<vVn>p

GO

1

Lt (a,)=I

N—ao

1

Lt (a)n= Lt S

n—o n— a.n
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Another Form: If a,> 0 and LERN l, then prove that Q/ge l.
a,

Case ll. Lt G +00

n—oo a.n
Lt h:o
N—o ah
1
-~ Lt %zomnite)
a

Lt (ij -0
nN—o0 a‘n

1

= Lt (an)E = 400

n—oo
Note : Converse of the above theorem is not true.

Example : Let an = 5™(n

1

L (@)
—n+(=-1)"

Lt 5 n

n—o

~1+ &0

Lt 5

n—

1
51= E which exists.

a., 5—(n+1)+(—1 ni
+. —_—

But =
an 57I’l+(71)n

— 571+(71)n+17(7l)n
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_ 5 nisodd
" 152, niseven

Lt X does not exist.
n—o an

Some lllustrative Examples

n

Example 1 : Prove that the sequence {(l+ 1) }is bounded.

Solution : The given sequence is {an}

l n
Where a, = (1+—j vV n eN

Also

n°+
Example 2 : Prove that the sequence {

n

an = (1+ 1)
n

n

=1+n_%+ n(n-1) (1)1 n(n-1(n-2)

2 13

=1+1 1 (1— ij+l (1— lj (1— §j+ ... upto (n+1) terms

2 n) 3 n

<1+1+1+1+ upto (n+1) terms
< 2t p

1 1
<1+1+ -+ —+..©

12 3
—e
an< e v neN
an>1 v neN

l<an<e Y neN

sequence {an} is bounded

2

2n+3
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2 2
Solution : Let {an} = "+l where an + N +1> 0 VneN
2n+3 2n+3
13 n 3
) - -2
Now an = n+1:2_§ 4 2 4
2n+3 2 4 2n+3
2n+3)n°+1
Let A> 0, however large
Now |an| >A 2 3n
2
—ﬁ+1
2
_3n_9
2 4
+ o+
E
4
if an>A
e. if 0.3, 18 ., [ |an = @]
2 4 42n+3)
13
ie. if n_3.a =250
2 4 4(2n+3)
i.e. if n>2A+ §
2
3
lan| >A Vn>m>2A+§,meN
= {an} is unbounded.

ni|.
Example 3 : Prove that {%} is a null sequence.
n

Solution : The given sequence is {a.} where

a.n= -
nn
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Example 4 : Show that | {

n—

. 1
Solution : Leta, = —+

Again

n(n-H(n-2)...2.1

n.n.

n-1

n

S| o

n...n.n
n-2 21
S
( —1) (1—3)..[1—”;2).15 111,121
n n n n n n

1 1
las<—and — -0 n—>w
n n

{an} is a null sequence.

{%} isa
n

2

null sequence.

i+ 1 + ! +..+ 1 =0
n> (n+1)? (n+2? ~ (@n)?|

1 1 1
+ +..+

n®  (n+1)?* (n+2)? (2n)?
> L + L + L +...to (n + 1) terms
(2n®  (2n)*  (2n)°

“n’<(nN+1)? <(n+2)%<...<(n+n)?
1 1 1 1
> > > >

" (n+1)?*  (n+2)? (2n)?

Il
5|
7\
H
+
S|
N

1 1
+

(1)

n>  (n+1)?

1 1
+..+
(n+2)? (2n)?
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1 1 1
<F+F+F+....to(n+l)terms
_n+1
n2
3 1+ 1
n n
1 1
a<—+ —
n n

From (1) and (2) ,i (1+ 1j< an<a<—+ — v n
4an n n n

1 1 1 1
Now —(1+—jand —+ ——-0asn—-ow
4n n n n

by squeeze principle, an > 0asn — «

Lta=0

N—o0

1 1 1

1
= Lt [F+ <12 (n+27 T 2ny

N—o0

2n-7| .
Example 5 : Prove that the sequence 3 is

(2)

Jo

n+2
0] monotonically increasing
(ii) bounded
(iii) convergent
. . . . 2n-7
Solution : (i) the given sequence is {a.} where a, =
3n+2
2(n+) -7
n+l —
3(n+D)+2
_2n-5
3n+5
2n-5 2n-7
an+1 - an = —-
3n+5 3n+2
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_ 6n°+4n-15n-10-6n°+21n-10n+35

(3n+5)(3n+2)
= 25 >0 Y neN
(Bn+5((Bn+2)
= n+1 - An = v neN
= {an} is monotonically increasing.
(ii) an:2n—7>o vn>4
3n+2
Also a -_—5- 1a-_—3 a-i
1= 5 - L] 2 — 8 ’ 3= 11
an>-1 Vn
{an} is bounded below
: 2n-7 2
Again a, = —
3n+2 3
23 3n+2)2n-7
2 3 2
== - <=Vvn
3 3n+2 3 ons 2
{an} is bounded above
{an} is bounded. o5
3

(iii) Since {an} is monotonically increasing and bounded above.

{an} is convergent.

1 1 1
Example 6 : Prove that the sequence {a.,} where a, = + + +....
n+l n+2 n+3
convergent.
) 1 1 1
Solution : Here a, = + + +..+—
n+l n+2 n+3 2n
1 1 1 1 1 1
an+1 = + + + ... +—+ +
n+l n+3 n+4 2n 2n+l1 2n+2
1 1 1
An+1 - aAn =

+ -
2n+1 2n+2 n+1

117

1

+ —

2n

is



1 1 1
C2n+1] 2(n+1) n+1
11
2n+1 2(n+1)

1 ) 1
2n+1 2n+2
_ 2n+2-2n-1

(2n+1)(2n+2)

= 1 >0
(2n+1)(2n+2)

¥ neN

an+1-an> 0 ¥ neN

an+1> an ¥ neN
= {an} is monotonically increasing.
1 1 1 1 1 1
Also a"= + S <—+ —+..+—
n+l n+2 n+n n n
1 1
= —+ —+— 4. to n terms
n n n
=—=1 ¥V neN
an< 1 V n EN

= {an} is bounded above.
{an} is convergent.

1 1 1 . ,
Example 7: If a, = 1 + §+ §+ ...... + o log n, then prove that {a,} is a monotonically

decreasing sequence. Prove that it is convergent.

. 1
Solution: Here an=1+—+—-+...+— -logn
2 3 n

1
an+1-an=——-log(n+1)+logn
n+1
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7.5

1@ 1 1 1 j
- ———t "+ ...
n+i\n 2n* 3n° 4n*

2 3 4
{ log (1+ X) :x—XE+X——X—+ ...... }

3 4
1 1 11
n+l n 2n* (3n° 4n*) 7
<i- 1+ iz '.'is—i‘l>0,etc.
n+l n 2n 3n°  4n
_ 2’ -2’ -2n+n+1
2n’ (n+1)
_ 2 =-2n*-2n+n+1
2n*(n+1)
_ n+l
2n*(n+1)
<0 vV neN
an+1'an<0 v neN
= an+1< aAn VneN

{an} is monotonically decreasing.
Also a,>0 YneN

an>0

{an} is bounded above.

{an} is convergent.
Cesaro's Theorem

If the sequences {an} and {b.} converge to A and B respectively, then
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Proof: Letan = A + t;, vV neN
anh— Aasn— o
th—0asn—w

= [t > 0asn—

t
by Cauchy's First Theorem on limits, |

_ab,+ab +ab, ,+.... +ab

Now dn =

(A+t)b, +(A+t)b , + (A+t)b , +.....+ (A+t, )b
n

A +b, +....0 )+ (tb, +tb  +thb ,+...+t D)
n

:A(Q+g+ ...... +q][mq+gmfuﬁm+ ------ +%QU e (2)

n

Now b,—B
by Cauchy's First Theorem on limits,

b+b,+...... +b”—>B )

Since {bn} is convergent.
it is bounded.
there exists a positive real number k such that
|bn| < k vyn 4)

(th, +tb ,+tb ,+....+th)| 1
L M1 3n 2 b <ﬁ|:|t1bn|+|t2h"l—1|+ ..... +|tnbl|:|

1
= = [[tu] by [ty][yg] oo ¥t 1]

n
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1
<= [|t1|.k+|t2|.k+ ..... +|tn|.k] [+ of (4)]

”|<k8Vn>m [ of (1)]

=k
n
t1bn+t2bn 1+t3bn o T +tnbl_>asn_>oo
n
From (2),

Lt do= Lt {A(bl+b2+ ...... +bnj+(t1bn+t2bn_l+ ...... +tnblﬂ
n—o0 n—»o0 n n

- A Lt b+b,+....+Db, Lt th,+t0, , +...+t b

n—e n N—o n

~AB*0 [+ of (3) and (5)]

=AB

Lt ab,+ab  +ab ,+...+ab

N—o0 n

7.6 Cauchy-stolze Theorem

If {bn} is a strictly monotonic increasing sequence so that bn+1> b,V n and if b, — «© as n
— oo, and {an} is any sequence, then

Lt o Gah

n—o bn n—o bn+1 _bn

provided that the limit on the right hand side exists whether finite or infinite.
Proof: Two cases arise :

Case l. Let Lt G m & _ |, where | is finite

=% Dy — bn

given &> 0, however small, there exists a positive integer m; such that

an+l - an _I
bn+1_bn

&
<—Vn3m1
2

[ - £<an+1_an
2 bnﬁ-l_bn

Multiplying by bn.+1 - bn> 0, we have,

&
<I+EVn>m1
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(l —EJ (bn+1 - bn) < anp+1 - an<(| _gj (b“+1 - b”) vnzm

Replacingnbyn,n+1,n+2, ..... , N+ p-1andadding, we get,

(| _%J (bn+p - bn) <@nsp - an< ( ——j (Bn+p - bn) VN >my

Dividing by bn+p> 0 and adding bi , we get

n+p

o)
2 bn+p bn+p bn+p

fj (1_

Keep n fixed and let p — o«

g
e

n}.ivnzmlandpeN e (1)

N | ™

TS M P
b, 2

a,,b, arefiniteandb,, , —wasb —w for n—©

._an

n+p n+p

there exists a positive integer m; such that v n > m,, we have

@ _j ¢ |_£] LR i<(| _) 2
2 2 2 bn+p bn+p 2 2
i.e. l-e<| 12| 2= b, P WY ..(2)
2 bn+p bn+p
and (I+£j-£< I+£j 1— bn +i<(|+_j+£
2 n+p n+p 2
i.e. | <(I +£j 1- bn +i+| +¢ (3)
2 bn+p bn+p



From (1), (2), (3), we get
a,,

| -e<—P <l +evn>my, p>my

n+p

or I-a<5<l+s ¥ n>mi+mp
b,
- Ao
n—oo bn
Case Il. Let ﬂ—moasn—mo

n+1

given A> 0, however large, there exists a positive integer m: such that

ﬁ >AY n>m;
Multiplying by bn+1 - bh> 0, we get,
an+1 - an>A (bns1-bn) YV Nn>mg
Replacing nwithn,n+1,n+ 2,....n+ p - 1 and adding, we get
An+p - anA (bn+p -bn)
Dividing by bn+p and adding bi , we get,

n+p

ll >A[1— b, J+ & (1)
b b b

n+p n+p

n+p

Keep n fixed and let p — o«

Now iand b, —0asn—

n+p n+p

Al l- b, +i—>Aasp—>oo
b b

n+p

n+p

there exists a positive integer m; such that

A-g<A[1— bb“ J+ bi<A+8Vp>m2 ..(2)

n+p n+p

From (1) and (2), we get,
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m>A-,svn3m1+m2

n+1

= i—moasn—mo

n

Combining the results of two cases,
Lt o Ga—&
n—w bn n—w bn+1 _bn
Cor. Deduce Cauchy's First Theorem on limits from Cauchy's Stolze Theorem.
Proof: Let Ay =a;+a+az + ..... +an, Bh=n
Now {An}is any sequence and {By} is a strictly monotonic increasing sequence and B,
— 20 asS N — oo,
by Cauchy Stolze Theorem,

Lt Do f A A
n—o0 Bn n—»o0 Bn — Bn—l

or

n—o0 n

=Lt — %
e n—(n-1)

= Lt a,

N—o0

Lt 2F%t®& _here I= Lt ay

n n—w

n—oo
Which is Cauchy's First Theorem on limits

Some More lllustrated Examples

Example 8: Prove that Lim1 1+l+}+....+1 =0
N 2 3 n

Solution: Here an= —
n

Lima, = Limlz 0

N—o0 n—wo N

By Cauchy's First theorem on limits, we have
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=0
n—oo n
or Lim1 1+E+1-+....+1 =0
n—oo n 2 3 n
1
Example 9: Prove that Lim(gg,ﬂ ....... L)n: 1
nso {1 2 3 n-1
Solution:Here, an = E§ﬂ ....... n
123 n-1
Qg _ n+1:1+ 1
a, n n

Now a>0V neN

by Cauchy's Second theorem on limits, we have
1

Lim(a,)n =1

N—o0

or Lim 21_311 ....... SLLEN ]
n»o {1 2 3 n-1
Example 10: Calculate Lim v

n—o N

Solution: Letan=u", b, =n

Here {an}is any sequence and {bn} is a strictly monotonically increasing sequence, and
bh—oowasn—w

by Cauchy Stolze Theorem
Lim 2 = Lim & "%

n—ow bn n—ow bn+l _ bn

. u . un+1 _ un

or Lim—"=Lim——
n->o N n»o N+l1—n

Limu"(u - 1)

_ 0, u<il
Tl w u>1
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. logn
Example 11: Prove that leiz

n—oo n

0

Solution: Letan=logn, b, =n

Now sequence {an} is any sequence and {bn} is a strictly monotonically increasing and by
— o0 asn - oo.

by Cauchy Stole theorem

Lim& = Lim & =&

n—w bn n—w bn+1_bn

or Lim logn _ Lim log(n+3)—log n _ Limiog (n+1)
n—oo n n—w n+1-n n—w
= Limlog (1+ 1)
n—oo n
Limloﬂ— 0
n—o0 n

7.7 Self Check Exercise
Q.1  If Lim (ans1 - an) = then
nN—oo

find Lim 2

n—-wo N

Q.2  Show that Lim UYn=1

nN—oo

Q.3  Prove that Lim(ljnz 0

N—oo n|

7.8 Summary
In this unit we have learnt the following
0] Cauchy's first theorem on limits
(ii) Cauchy's Second theorem on limits
(iii) Ceasaro's theorem
(iv) Cauchy-Stolze theorem

7.9 Glossary:
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A +a,+..ta,

1. Sequence of means - The sequence {Xn}, Xn = . is called
sequence of means of sequence {xn}
2. Deduction of Cauchy's first theorem on limits from Cauchy's Stolze Theorem -

LetAn=a;+tax+..... +an, Bh=n

then {A.} is any sequence and {Bn} is strictly monotonically increasing
sequence and B, — « as n —x]

by Cauchy - Stolze theorem

Limﬁz Limﬂ

n—o Bn n—ow Bn _ anl

or LimalJraer """ o Lim_— % - Lima,
n—o0 n n—w n_(n_l) n—o0
Lima1+a2+ ...... +a“=I,I=Liman
n—o0 n n—oo

which is Cauchy's first theorem on limits
7.10 Answer to Self Check Exercise
Ans.1 |
Ans.2 Prove it
Ans.3 Prove it
7.11 References/Suggested Readings
1. T.M. Apostal, Calculus (Vol I), John Wiley and Sons (Asia) P. Ltd., 2002.
2. E. Fischer, Intermediate Real Analysis Springer Verlag, 1983

3. K.A. Ross, Elementary thalysis - The Theory of calculus series - Undergraduate
Texts in Mathematics, Springer Verlag, 2003.

7.12 Terminal Questions

1. If {xn} is convergent and {yn} is divergent, then show that {x.+ yn} is divergent

2. If x» — 0 and {yn} oscillates finitely, then show that the sequence {xnyn} converges
to O.

3. Give examples to show that
(1) {Xn + yn} can be convergent without

{xn}, {yn} being convergent

(i) {Xnyn} can be convergent without {x,} and {y»} being convergent.
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Unit - 8

Sub Sequences

Structure

8.1 Introduction

8.2 Learning Objectives

8.3 Subsequences

8.4 Method To Construct A Subsequence
8.5 Peak Point of A Sequence

8.6 Bolzano-Weierstrass Theorem

8.7 Sub sequential Limit Or Cluster Point of A Sequence
8.8 Self Check Exercise

8.9 Summary

8.10 Glossary

8.11 Answers to self check exercises

8.12 References/Suggested Readings
8.13 Terminal Questions

8.1 Introduction

Dear students,after having the knowledge of a sequence, we shall, in this limit study the
concept of a Subsequence. In mathematics, a Subsequence of a given sequence is a sequence
that can be derived from the given sequence by deleting some or no elements without changing
the order of the remaining elements. For example, the sequence {P, Q, S} is a Subsequence of
{P,Q,R,S,T,U} obtained after removal of elements R.T, U. the relation of one sequence being

the Subsequence of another is preorder.

8.2

Learning Objectives
The main objectives of this unit are

(1) to know about subsequence

(i) how to construct a subsequence from a given sequence

(iii) to study peak point of a sequence

(iv) to study Bolzano - Weirstrars theorem

(V) to learn about duster point of a sequence or Subsequentrat limit.
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8.3 Subsequence

A sequence {yn} is called a subsequence of the sequence {x»} if there exists a sequence
{n} of positive integers such that ni< nz<.<nzand yx = X, .

In other words, if we are given a sequence {X,} and a sequence ni;< ny< nz<..... of
positive integers, we select the terms of {X,} corresponding to the sequence {ns} and place them
in the same order. This new obtained sequence is called a subsequence of {X}.

8.4 Method to construct a subsequence

Step I. Find a strictly monotonic increasing sequence of positive integers ni, Nz, Na..... i.e.
ni< nNe< nNs< ...

Step Il. Images X, , X, ,X ,..... of n1, Ny, ns,..... under sequence {x»} are the elements of

L

the subsequence { X, } = {yn}.

Examples

(@ Letnk=2k, k=1,2,3,.....

Now {n} = {2, 4, 6, ..... } is a strictly monotonic increasing sequence of positive
integers.

{X, }={xa} = {X2, X4, Xs,......} is @ subsequence of {x}.

(i)  Letnc=2k-1,k=1,2, 3.

Now {n} = {1, 3, 5,.....} is a strictly monotonic increasing sequence of positive
integers.

{X, } = {Xac1} = {x1, X3, Xs,......} is @ subsequence of {xn}.

(i)  Letne=K% k=1,2,3,...

(iv) Letnk=k3 k=12, 3,......

Now {ng} = {1, 8, 27,....} is a strictly monotonic increasing sequence of positive
integers.

{Xnk} = {xﬁ}z {X1, Xs, X27,.....} is @ subsequence of {Xn}.

Note.
D Every sequence is a subsequence of itself.

(2) As {n} is a strictly increasing sequence of positive integers, therefore the order in
which the various terms of subsequence occur is the same as that in which they
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Art.

Proof:

(3)

(4)

(5)
(6)
(i)

(ii)

(iii)

—

)

occur in the given sequence. Thus {8, 2, 4, 6,....} is not a subsequence of {1,2, 3,

The interval between two consecutive terms of a subsequence is not always the
same.

If xme {Xn}, then there exists ann> m such that X, belongs to the subsequence.

Any subsequence of sequence is itself a sequence.
A seguence has an infinite number of subsequence.

If a sequence {xn} converges to |, then prove that every subsequence of {x,} also
converges to |.

If a sequence {X,} converges to +w, then prove that every subsequence of {Xn}
also converges to +o.

If a sequence {xn} converges to -, then prove that every subsequence of {xn}
also converges to -o.

Since {xn} converges to |

given ¢ > 0, however small, there exists a positive integer m such that

X, —1|<e vn>m

If np> m is a natural number, then for k> p, ni> np>m

(ii)

|x,—1|<e vni> m
subsequence {xnk } also converges to .

Since {xn} diverges to +oo
given A> 0, however large, there exists a positive integer m such that

X>A Vn>m

If np> m is a natural number, then for k> p, n> np>m

=

(iii)

Xnk >A YN m

subsequence {xnk } diverges to +oo.

Since {xn} diverges to -w
given A> 0, however, large, there exists a positive integer m such that

Xn>-AVn>m

If np> m is a natural number, then for k> p, ni> np>m

X, >-A V> m
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= subsequence {xnk } diverges to -o.

Note. The converse of the above theorem is not true.
Examples:
0] Letxn=(-1)"={-1,1,-1,1,-1,1,.....}

Two subsequences {-1, -1, -1,.....} and {1,1,1,....} converges to -1 and 1
respectively. But {x,} does not converge.

N, nisevn
iy Let xo={ '
0, nis odd

Now {xzn} diverges to +o but {x,} does not diverge to +o.

—n?, nisodd
(i) Let m={ g
0, nis even

Now {xzn-1} diverges to - but {x,} does not diverge to -o.

8.5 Art. Peak Point of Sequence

A natural number m is called peak point of the sequence {Xn} if Xn<Xm v n>m.
Examples:
: . . 1
0] Every natural number is a peak point of the sequence< — ;. In fact every natural
n

number is a peak point of strictly monotonic decreasing sequence.

1
0 Let X = E,n_12,3,....,m

-1 n>m
{Xn} has exactly m peak points 1, 2, 3,......, m.

Note: A sequence may have no peak point, finite number of peak points or infinite number of
peak points.

Art.  Prove that every sequence contains a monotonic subsequence.
Proof: Three cases arise :
Case |.The sequence {xn} has an infinite number of peak points.

Let the peak points be ni, ny, ns,.... such that

Nni< No< N3<.....
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{Xy X, o Xy, v} i€ {xnk } is a subsequence of {Xn}
n; is a peak point and nz> n;
Xy, < Xo,

= Xn1> an

Again n; is a peak point and ns> n;

Xy, < Xy,
= Xy, > %o,
X > Xy > Xy
Proceeding in this way, we get,
Xo > X > Xy >
= {xnk } is a monotonic decreasing subsequence of {X,}.

Case Il. The sequence {xn} has a finite number of peak points.
Let m1,mz,ms,....,m, be the peak points of {xn}.
Let n; be a natural number strictly greater than each of mi,mz,ms,....,mp
ni is not a peak point
there exists a natural number nz> n; such that X, > X,
Again n; is not a peak point of {Xn}

there exists a natural number ns> nz such that X, >X,

Therefore we have ni< nz< ng such that X, <X, <X,

Proceeding in this way, we get a monotonic increasing subsequence {xnk } of {Xn}.
Case Il The sequence {xn} has no peak point.
1 is not a peak point of {Xn}
there exists a natural number nz> 1 = n; such that X, > X,
Again n; is not a peak point of {xn}
there exists a natural number ns> nz such that X, >X,
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Therefore we have ni< nz< ns such that X, <X, <X,

Proceeding in this way, we get a monotonic increasing subsequence {xnk} of {Xn}.

Hence every sequence contains a monotonic subsequence.
8.6 Cor. Bolzano-Weierstrass Theorem
Prove that every bounded sequence has a convergent subsequence.

Proof: Let {x} be a bounded sequence.

{Xn} is a sequence, therefore {x,} has a monotonic subsequence {Xnk}

{Xn} is bounded, therefore{xnk } is also bounded

[+ every subsequence of a bounded sequence is bounded.]

{xnk } is a bounded monotonic sequence
= {xnk } is convergent.

{Xn} has a convergent subsequence {xnk}

8.7  Art. Sub sequential Limit or Cluster Point of a Sequence

A real number | is called a sub sequential limit or cluster point of the sequence {xn} if
there exits of sub-sequence of {xn} which converges to I.

Note. (1) If a sequence {xn} converges to |, then | is the only cluster point of {x,}. This is so
as every subsequence of {xn} converges to |.

2) If a sequence has more than one cluster point, then it cannot be convergent.

3) If a sequence {x»} diverges to +w, then +w is the only cluster point of {x.}.

4) If a sequence {x,} diverges to -, then - is the only cluster point of {xn}.
Example:

: . 1

(@ Consider the sequence {xn} where x, = —. Then the sequence {x,} converges to

n

0. Hence 0 is the only cluster point of {Xx}.

(i) Consider the sequence {xn} where x, = (-1)". The subsequence {-1,-1,-1,....}
converges to 1 and subsequence {1,1,1,....} converges to 1. Therefore -1 and 1
are two cluster points of {xn}

{n, nis odd
(iii) Let X, = .
—n, nis even
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Subsequence {x1,Xs,Xs,....} diverges to +oo and subsequence {X2,X4,Xs,.....} diverges to -c.
Thus the sequence {x»} has cluster points as +w and -o.

Art.  Prove that a real number | is a limit point of a set A iff there exists a sequence of distinct
points of A converging to .

Proof: (i) Assume that {x»} is a sequence of distinct points of A convergent to I.

every neighbourhood of | contains infinitely many points of {x,} which are also
points of A. Thus every nbd. Of | contains infinitely many points of A, which in turn shows that |
is the limit point of A.

(i) Assume that | is a limit point of A.

every nbd. Of | contains infinitely many points of A.
1 1 . ,

v n eN, I, =| 1-=,1 + = | contains infinitely many points of A.
n n

Choose xien A and the choose x2e I, A such that xo# x1.

Proceeding in this way, we choose xke Ik A such that xi is different from Xi,X2,...,Xk-1.
[This is possible as Ik contains infinitely many points of A]

we get a sequence {xn} of distinct points of A such that x,e In

Let m be any fixed positive integer

1 1 1 1
vn>m, —<—and —>- —
n—m n m
1
X+ —<Xx+ —andx- —>x- —
n m
1 1 1 1
X—— ,X+— |c| X—— ,X+—
n n m m
or Iclm VN>m

Y n>m, X€ In

= Xn€lm

1 1
= Xn€| X——, X+ — Yn>M
m m

= Xn -1 <— =€ vYn>m
m

= thnzi

n—oo
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sequence {xn} converges to I.

Art : Prove that a real number | is a cluster point of real sequence {x.} iff given > 0, the interval
(I - €, | + &) contains infinitely many points of {X,}.

Proof : (i) Assume that | is a cluster point of {xn}
there exists subsequence { X, } of {xn} which converges to |.
given &> 0, there exists a natural number m such that

X, € (I-¢1+%) VN> m

In particular, xne (I - &, | + ¢) for infinitely many n i.e. the interval (I - ¢, | + g) contains
infinitely many terms {Xn}.

(i) Assume that the interval (I - ¢, | + €) contains infinitely many terms of {x,}, where ¢ > 0.

1 1 o 1
xne | | ==, += [for infinitely many n, where — =¢
n n n

In particular we can find X, € (I-1,1+1)

Again [I —E,I +§j contains X, for infinitely many n, we can find ny> n; such that

1, 1
X ell-=1+=|.
: 2" 2

...... <nk<..... such that

ie. | X

| is a cluster point of {xn}

Art. : Prove that a sequence {x,} converges to a real number | iff {x,} is bounded and | is the
only cluster point of {xn}.

Proof : (i) Assume that {x,} converges to |
{xn} is bounded and | is the only cluster point of {xn}.
(i) Assume that {X»} is bounded and | is the only cluster point of {x,}.

If possible, suppose that {x,} does not converges to I.
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there exists ane> 0, such that for me N, there exists and n > m such that
Xng (I-¢ 1 +¢€)
In particular, there exists an integer ni such thatX, ¢ (I - ¢, | + €) on the basis of same

argument, there exists an integer n>> ny such that X, ¢ (I-¢, | +¢).
Proceeding in this way, we get a subsequence { X, } such that
X, € (Il-¢1+g) VK

Some lllustrated Examples

Example 1 : If a sequence {xn} converges to |, then its subsequences {x2n+1} and {xzn} also
converges to |.

Solution : Since {x»} converges to |

given &> 0, however small, 3 a positure integer m such that
[Xn - 1] <e vVn>m

Now2n>mand 2n+1>m
[Xon - 1] <€ vVn>m

and |xos1-ll<e Vn>m
Xon — |l and Xans1 — |
subsequences {x2n} and {xz2n+1} converge to .

Example 2 :If two subsequences {xzn+1} and {xzn} of a sequence {x»} converge to the same limit
I, then {x,} also converges to .

Solution : Since {Xan}, {X2n+1} converge to |
Xon — | and Xone1 — 1.
given ¢> 0, 3 natural number my, mys.t.
[Xon - 1| <€ vYn>mg ..(1)
and |Xo1-ll<e ¥V n>m; ..(2)
Two cases arise.
Case 1. nis even
Letn=2k
[Xon = 1] = [Xen+1 - 1] <€V n>my

Nown=2k=n>2m;

137



[Xn - ] <e v n>2m; ..(3)
Case 2. nis odd
Let n = 2k+1
[Xn - 1] = |[Xone1 - 1] <€V n>my
Now n = 2k+1 = n>2m; +1
[Xn -] <eV n>2my+ 1 ...(4)
Let m = maso (2mi, 2m; +1)
From (3) and (4), we have
[Xn -] <eV n>m
= Xpn—lasn— o
= {xn} converges to I.
8.8 Self Check Exercise
Q.1  Prove that every sequence contains a monotone subsequence.

Q.2 Prove that a real number | is a cluster point of real sequence {x,} if given > 0,
the interval (I - €, | + €) contains infinitely many points of {X}.

8.9 Summary
In this unit we have learnt the following
0] Subsequences
(i) Method to construct a subsequence
(iii) Peak point of a sequence
(iv) Bolzano-Weirstrass theorem
(v) Subsequential limit or cluster point if a sequence

8.10 Glossary:

1. Substring : A subsequence which consists of a consecutive run of elements
from the sequence, such as {Q, R, S}, from {P, Q, R, S, T, V} is called a
substring.

2. Preorder : The relation of one sequence being the subsequence of another is

called preorder.
8.11 Answer to Self Check Exercise
Ans.1 Prove it
Ans.2
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8.12 References/Suggested Readings
1. T.M. Apostal, Calculus (Vol 1), John Wiley and Sons (Asia) P. Ltd., 2002.

2. E. Fischer, Intermediate Real Analysis Springer Verlag, 1983
8.13 Terminal Questions
1. Prove that every sequence is a subsequence of itself.
2. Prove that every sequence contains or monotone subsequence.
3. Prove that every bounded sequence was a convergent subsequence.
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Unit -9
Cauchy Sequences

Structure

9.1 Introduction

9.2 Learning Objectives

9.3 Cauchy Sequences

9.4 Cauchy's General Principle of Convergence
9.5 Cantor's Intersection Theorem

9.6 Limit Superior and Limit Inferior of a Sequence
9.7 Self Check Exercise

9.8 Summary

9.9 Glossary

9.10 Answers to self check exercises

9.11 References/Suggested Readings

9.12 Terminal Questions

9.1 Introduction

Dear students, in this unit we shall study the concept of Cauchy sequence. A Cauchy
sequence is a sequence whose elements become arbitrarily close to each other as the
sequence progresses. Cauchy sequences are named after Augustin-Lovis Cauchy; they may
occasionally be known as fundamental sequences.

9.2 Learning Objectives
The main objectives of this unit are
(@ to study Cauchy sequences
(i) to learn about Cauchy's general principle of convergence.
(iii) to prove contor-intersection theorem
(iv) to study limit superior and limit inferior of a sequence etc.
9.3 Cauchy Sequence

Definition :A sequence {x»} is said to be a Cauchy sequence if given &> 0, however
small, 3 a positive integer k (€)s.t.
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Or

A sequence {xn} is said to be a Cauchy sequence if given &> 0, however small,

|Xn'Xm|<€ Vn,mzK

positive integer m (€)s.t.

[Xn+p - Xn| <€ V' n,m>mand pe N.

Art 1 : Prove that a Cauchy sequence is bounded.

Ja

Proof : Set {x,} be a Cauchy sequence. Therefore by definition, given €> 0, 3 a positive integer

ps.t.

[Xn - Xm| <€ ¥V n,m>p

In particular, we have

|Xn - Xp| <€ vVn>p

Now
|Xnl = [Xn = Xp + Xp|
<I(Xn - Xp)| + Xl
<e + |xp|
[Xn|<€ + [Xp| ¥V n2>p
Let M = max {|xa], |X2|,....... [Xp-1l], € + [%pl}
[Xn] <M vn
= [Xn| is bounded

Art. 2: Show that a convergent sequence is always a Cauchy sequence.
Proof: Let the sequence {xn} converges to I.

Let

Now

[using (2)]

given > 0, however small, 3 k € N s.t.

|xn.1|<52 vV n>k
m> k be a natrual number
|Xm-ll<82 v m>k
[Xn = Xm| = [Xna + | - Xm|
() 1% |

<%+%:e

|Xn‘Xm|<E Vn,m>k

{xn} is a Cauchy sequence
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Art 3: Prove that a Cauchy sequence is always convergent.
Proof: Let {xn} be a Cauchy sequence
given > 0, Ja the integer p s.t.
[Xn - Xm|<e ¥V n,m>p ... D)
or in particular
[Xn - Xp| <€ vyn>p ... 2
Now
|Xn| = [Xn = Xp + Xp|
< |(%n = Xp) + [Xp|
< e+ x|V n>p

Xl <€ + x| vV n=p

Let M = max {|x1], [X2], ...... [Xp-1], € + [Xpl}
[Xn] € M vn
= {Xn} is bounded

by Bolzano - Weirrtrass theorem {xn} has a convergent subsequence{xnk } :

Let {xnk } be convergent to |.
Our claim is {xn} also converges to |
Since {xnk } — |,

given €> 0, Ja the integer p s.t.
| X, -1l <e vk>p .. 3)

For n > p, ni> np > p, from (1), we get

|Xn' Xnk | <% ..... (4)
[%n - 1] = [Xn - Xy + xnk-||

(=%, )+1%, =11

<%+52: c ( of (3)&(4))
[Xn - 1| <€ vVnzp
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= {Xn} is convergent
9.4 Cauchy's General Principle of convergence
OR

Art 4. Prove that a necessary and sufficient condition for the convergence of a sequence {xn} of
real numbers is that it is a Cauchy sequence.

Proof: See Art 2. and Art 3.

Note: In the system of rational numbers, every Cauchy sequence does not converge to a
rational number.

For example, consider the sequence
1.4,1.41, 1.414, 1.4142.

It is a Cauchy sequence but does not converge to a rational number. It can be seen to
converge to \/E (not a rational number)

9.5 Cantor Intersection Theorem
Theorem: Let {I.}, In = {an, bn} be a sequence of closed intervals such that
(|) |n+1C In Y n

(i) | (In) = bh - an — 0 as n — oo, then 3 a unigue point ¢ such that ¢ €ln Vv n, | (Iy)
being length of the interval In:

Proof: As In+1ic In Y n

ans a.n+]_S bn+1S bn V n
ai< ax<as< ....... <ap< ant1< ... D
and  bi>by>bs> ....... > bn> bna> . 2

the sequence {an} is monotonically increasing and is bounded as a,< b,V n.
= {an} is monotonically decreasing and is bounded below as b,>a, V n.
Now Let an—oc,bh—p

bn = (bn - an) + an

= imbn=Lim en-an + Limar
B=0+cx
= B=w=c(say)
Now cis l.u.b. of {an} and g.l.b of {bn}
an< € < by v n
= C e [an, by VN
= celn Vn.
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c is unique
Let of possible that there exists two real numbers ¢; and cze In vn

s {bn - an} cannot converge to 0 (zero) which is a contradiction to the fact that b, -
an — 0

our supposition is wrong
c is unique

Note: This theorem is also known as 'Cantor's Theorem on Nested Intervals' or 'Nested
Interval Property'.

9.6 Art. Limit Superior and Limit Inferior of a Sequence

We know that a sequence of a real numbers always contains a monotone subsequence
and a monotone sequence converges or diverges to +w or -co. Thus if E denotes the set of all
the cluster points (i.e. subseequential limits), including +) and -), of a sequence {x.} of real
numbers, then E has at lest one element i.e., E is non-empty.

0] The L.u.b of E in the extended real number system is called the limit superior or
upper limit of {x,} and is denoted by Lt x,or Lt sup x,or Ltx,or Lt sup Xn.

n—oo 00

(i) The g.l.b. of E in the extended real number system is called the limit inferior or
lower limit of {x»} and is denoted by Lt x,or Lt infx,or Ltx, or Ltinf xn.

ol N
Examples:
0] Let Xn = (-1)"
{xn} has only two cluster points -1 and 1.
E={1 1}
Exn =1, Ltx,=-1

(i) Let {xn} converge to I. Then every subsequence of {x,} converges to I.
' E={l}
Exn =1, Ltx, =1
n, nisodd
(iii) Let Xn = _
—n, N is even
E = {-o0, 0}

L_tXn = 0, an = -0
Properties of Limit Superior

For a bounded sequence {xn},
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Limx, = uiff for every e>0
0] Jame Nstx,<u+evn>m
(i) Xn> U - € for infinitely many values of n.
Properties of Limit Inferior
For a bounded sequence {xn},

Limx, = I iff for every e>0

0] ImeNstx>l-€ vn>m
(i) xn< | + € for infinitely many values of n.

Some lllustrated Examples.

1].
Example 1: Prove that {—} is a Cauchy sequence.
n

) 1
Solution: Let an= — .. am = —
n m

Without loss of generality, we take n > m

given €> 0, however small, we have

|an - am| <€
1 1
if ———|<e
N m
. 1 1 ( 1 1 1)
i.e. if —- —<e CN>S—=>—>—
m n m m n
1
= —<— +t e
m
) 1
e if —<e
m
i.e. if m>—
(S

1
Let p be any positive integer just greater than —
S

lan-am|<e VvV n,m>p

= {an} is a Cauchy sequence
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1
Example 2: Prove that the sequence {an} where an = 8 + F is a Cauchy sequence and find its

limit.
, 1
Solution: Herea, =8+ —
n
1
am=8+ —
n

Without loss of generality, we take n > m.
Let £ > 0, however small. Then |an - am| <¢

g

<e

. 1 1
i.e. if F _ﬁ <g
1 ) 1
i.e if $——3<e sn>m = 3<F
. 1 1
l.e. if F < W + e
l.e if F <e
i.e if m3>—
€
1
1)\3
i.e if m >(—j
&
1
e . 1)3
Let p be any positive integer just greater than (—j
£
l[an - am| <eV n,m>p
= {an} is a Cauchy Sequence
= {an} is convergent as every Cauchy sequence is convergent.
1
Now Lta,= Lt |8+
n—oo nN—oo n
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3
Lt 8 + Lt (lj

N—o0 N—o0

3
8+(Lt lj
n—>oon

=8+0=8 {:{%}isanull sequence}

sequence {an} converges to 8.

3

3

n
Example 3: Prove that
n°+1

} is a Cauchy sequence.

3
Solution: Let a, =

3 .Soam=3—
n°+1 m’+1

Without loss of generality, we take n > m. Let > 0, however small. Then

lan - am| <e
NP+l m+1
1 1
ie. if 1- 3 - 1- 3 <g
n°+1 m’ +1
i.e. if 31 — 31 <g
m+1 n°+1
1 1
i.e. if 3 —3 <g
m+1 n°+1
n>m = n®>m
= nP+l>m+1 = 31 > 31
m+1 n°+1
1
i.e. if 3 <= + e
m+1 n°+1
1
ie. if 5 <€
m +1
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Let

=

=

1
if mé+1>—
(S

1
if m>[1— js
&

1
o . 1 )
p be any positive integer just greater than E— —1)

&

|an - am| <e vnm>p
{an} is a Cauchy sequence
{an} is a convergent sequence as every Cauchy sequence is convergent.

n
Example 4: Prove that —1is a Cauchy sequence

n+
) n m
Solution: Here an = , @m =
n+1 m+1
Take n > m (w.l.0. generality)
1 1
|an - am| = |————
m+1 n+1
1 1 1 1
= — Th>m= ——>——
m+1 n+1 m+1 n+1
Let e> 0. then
|an - am| <e
) 1 1
if —_—
m+1 n+1
. ) 1 1
i.e. if —<—— +¢
m+1 n+1
. . 1
i.e. if <g
m+1
. ) 1
i.e. if m+1>—
&
i.e. if m>— -1
£
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9.7

9.8

9.9

9.10

1
Let p be a positive integer just greater than —- 1
&

|an-am|<¢  VNn,m>p
= {an} is a Cauchy sequence
Self Check Exercise
D"
n

Q.1  Show that { }is a Cauchy sequence

Q.2 Prove that {(—1)n n}is not a Cauchy sequence

1
Q.3  Apply Cauchy's General principle of convergence to prove that {a.}, an =1 + 7z +

1
— tot oz converges.

Summary

In this unit we have learnt the following

(@ Cauchy sequence

(i) Cauchy's General Principle of Convergence

(iii) Cantor-Intersection Theorem or Cantor Nested interval
(iv) Limit superior and Limit-Inferior of a sequence.
Glossary:

1. Periodic Sequence :A periodic sequence is a sequence for which the same terms
are repeated over and over.

2. The l.u.b. of E (set of all cluser point) of a seq. x» in the extended real number
system is called Limit-Superior, denoted by Limxn.

N—o

3. The g.l.b of E in the extended real number system is called Limit Inferior, denoted
by Limxn.

n—oo
Answer to Self Check Exercise
Ans.1 Prove it with the help of illustrated examples.
Ans.2 Prove it by taking help of examples.

Ans.3 Prove it by using idea of examples.
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9.11 References/Suggested Readings
1. E. Fischer, Intermediate Real Analysis Springer Verlag, 1983
2. T.M. Apostal, Calculus (Vol 1), John Wiley and Sons (Asia) P. Ltd., 2002.

9.12 Terminal Questions

1
1. Prove that {—2} is a Cauchy sequence
n
2. Show that the sequence {an},
1 .
an=1+—-+—-+... + iS not convergent.
5 2n-1
3. If {xn}, {yn} are convergent sequences then show that
(i) {Xn + yn}

(i) {Xnyn}, are also convergent.
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Unit - 10
Infinite Series

Structure

10.1  Introduction

10.2 Learning Objectives

10.3 Infinite Series

10.4 Cauchy's General Principle (Cauchy's Criterion) of Convergence of A Series
10.5 Infinite Geometric Series

10.6 Self Check Exercise

10.7 Summary

10.8 Glossary

10.9 Answers to self check exercises
10.11 References/Suggested Readings
10.12 Terminal Questions

10.1 Introduction

Dear students, in this unit we shall learn the concept of infinite series. A series is roughly
speaking, the operation of adding infinitely many terms, one after the other, to a given starting
term. Series are used in most areas of mathematics, even for studying finite structure (such as
combinatorics) through generating functions. In addition to their ubiquity in mathematics, infinite
series are also widely used in other quantitative disciplines such as physics, Computer Science
and Finance. In modern terminology, any (ordered) infinite sequence (ai, ay,.....) of terms
defines a series which is operation of adding the ai's one after the other. To emphasize that
there are infinite number of terms, a series may be called an infinite series. Such a series is

represented by an expression like a; + az + ..... + .... Oor using summation signz a .
i=1

10.2 Learning Objectives
In this unit we shall study the following concepts.
(1) Definition of an infinite series
(ii) The partial sums of an infinite series
(iii) Behaviour of an infinite series

(a) Convergent Series
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(b) Divergent Series
(© Oscillatory Series
(d) Absolutely convergent Series
(e) Conditionally convergent Series
) Non-convergent Series
(iv) Cauchy's Criterion of convergence of a series
Or
Cauchy's General Principle of convergence of a series
(V) Infinite geometric Series.
10.3 Infinite Series
Let {an} be a sequence of real numbers.
The expression a; + az + as + ...... + an + .... is called an infinite series and is denoted by

Z an or by Z an and a, is called the nth term of the series.
i=1

Partial Sums
We define
Si1=ai
S2=art+a

S3=a1+a+ as

Sh=arta t+tas+..... +an=2an

These s's are called the Partial Sums of the series Z an. The nth partial sum is
denoted by S, or s, or on.
Behaviour of an Infinite Series

The behaviour of the infinite series Z an is the same as that of the sequence {sn}. In

other words, the series Z an is said to be convergent, divergent or oscillating as the sequence
{sn} converges, diverges or oscillates.

(1) Convergent Series : The series Zah is said to converge if the sequence {sn} of
its partial sums converges to s and s is called the sum of the convergent infinite

series Zan . We write Zan =s
i=1 =
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10.4

(i)

(iii)

(iv)

(v)

(vi)

Note: Here s, > s as n — oo,

Divergent Series : The series Zan is said to diverge to « if the sequence {sn}

diverges to «. We write »_a, = o.

i=1
The series Zah is said to diverge to -« if the sequence {sn} diverges to -co. We
write Zan = -0,
i=1
Oscillatory Series : The series Zaq is said to oscillate finitely or infinitely if the

sequence {sn} oscillates finitely or infinitely.

In other words, if the series qu neither converges nor diverges to +oo (or -o), it

is said to oscillate finitely (or infinitely) if the sequence {s.} is bounded (or
unbounded).

Absolutely Convergent Series : The series Zan is said to converge absolutely

i=1
Conditionally Convergent Series : The series Zaq is said to be conditionally

convergent if Zah is convergent but Z|an| is not convergent.

Note: In this case, series Zan converges but not absolutely. For that reason, it
is also called non-absolutely convergent series or semi-convergent series.

Non-Convergent Series : Series which diverge or oscillate are said to be non-
convergent.

Cauchy's General Principle (Cauchy's Criterion) of Convergence of a Series

Prove that a necessary and sufficient condition for the convergence of the series Zaq is

that for every ¢> 0, however small, 3 p € N such that V. n>m > p,

or

ISh - Sm| <¢

[am+1 + @me2 + ... +an <evVn>m>p

Note 1: Above result can also be stated as :

A necessary and sufficient condition for the convergence of the series Zan is that for

every s > 0, however small, 3 m € N such that

|a.n+1 + Ans2 + ... + an+p| <g v n Z m, p e N
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2. If Zanis a series whose each term is positive, then the above condition
becomes

An+1 t Ans2 T ... + An+p<€ Y n>m, pe N

Art.  Show that the geometric series Z M=l +r+r2+... +rl4
1

1
0] converges to ﬁfor [rf<1

(i) divergesto o ifr>1

(iii) oscillates finitely between O and 1 if r = -1
(iv) oscillates infinitely if r < -1

(V) converges absolutely for |r] < 1.

Example 1: Show that the sequence {an} where

1
an = 1+§ + §+ ...... +E does not converge, by showing that it is not a Cauchy Sequence.

1 1
lam-an| = |—+——+....+—
n+l n+2 m
1
or |am - an| = + +..... —
n+l1 n+2 m
Take m =2n
|azn - an| = ——+ ! + —
TN g1 ne2 2n
1 1 1

S n+l1<n+n,n+2<n+n,...,n+n<n+n
1 S 1 1 S 1 1 1

"N+l n+n'n+2 n+n’ " 'n+n n+n
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1
|azn - an| >§V n

= {an} is not Cauchy sequence
{an} does not converge.
Example 2:  Apply Cauchy's General Principle of convergence to show that {an}

_ 1 1 1
where a, = 1 +? +¥ +... +F converges.

. 1 1 1
Solution: Here an=1+ 5+ +...+—
2° 3 n
_ 1 1
a.m—l‘l‘ 2 +3_2+ ..... +F
Letn>m
1 1 1
|an - an| = ot
(m+1)" (m+2) n
1 1 1
= 2+ 2+ ...... +_2
(m+1)° (m+2) n
1 1 1

“m(m+D)” (mey)(me2)

_ (m+1)—m+ (m+2)—(m+1)+ ...... +n—(n—l)
m(m+1)  (m+1)(m+2) (n-1)n

1 1 1 1 1 1 1 1
—— + - + - Fot| ———
(m m+1) (m+1 m+2} (m+2 m+3j (n—l nj

1 1 1
= — e —
m n m
1
|a.n'a.m|:_<8
m
if —<e
m
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. 1
i.e.ifm>—
&

1
Let p be a positive integer just greater than —
&

|an - am| <eV n,m>p
{an} is a Cauchy sequence
by Cauchy General Principle of convergence, {an} is convergent.
10.5 Art. Infinite Geometric Series
Discuss the convergence of seriesZar“'l, where a # 0, r # 0 and a, r are fixed real

i=1
numbers.

Proof: The given series is
dartza+ar+arr+...+artt+ .
i=1

(1) Let|rl<1

a(l-r")

Shn= ————

1-r

n

ar
—r

_a
1-r

[

Lt snzi-o

nN—o0 — r

@
1-r
[ Lt rMm=0as|r<1]

n—o0

. . 1
{sn} converges and given series converges to the sum 1—

(i) Letr=1
: ss=at+a+a+.. tonterms=na
Sh— o0 asn— oo.
{sn} diverges to « and hence given series diverges to .

Letr>1
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a(r"-1)
)
Sp—oasn— w [+ —>wasn— oforr>1]
o {sn} diverges to « and hence given series diverges to .
(iii) Letr=-1
: sh=a-a+a+...tonterms
0,if niseven
{a, if nisodd
{sn} oscillates finitely between 0 and a.

given series oscillates finitely between 0 and a.

n—oo

Art. If Zan is convergent, then prove that Lt a, =0
1

Proof: Letsh=a;+a+az + ..... + an

Zan is convergent to s (say)

{sn} is convergent to s
= {sn1) is convergent to s
[ every subsequence of a convergent sequence is convergent to the same limit]
Now an=Sn-Sn1

Lt an= Lt (sn- Sn1)

N—o0

= Lt Sh - Lt Sh-1
=S-S
Lt a,=0

nN—oo

Cor. If the sequence {an} does not converge to zero, then Zan does not converge.

This is so as if Z:ag1 converges, then a, — 0.

Note 1. The converse of the theorem is not true.

1
Consider the series Zaﬂ = ZE
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n
1 1
|52n:3n|= —_—t—+...+—
n+l n+2 2n
o+ 01
n+l1 n+2 2n
1 1 1
>—4+— 4+ +—
2n 2n 2n
n 1
= — =—-Vn
2n 2

{sn} is not a Cauchy sequence and is not convergent.

1
AlsO Sp+1 -Sh=——>0V n
n+1

{sn} is monotonic increasing sequence.

= {sn} is divergent.

=1, .
Zﬁ is divergent.

1

0

S|

But Ltan= Lt =

nN—oo N—o0
Note 2. A necessary condition for the convergence of the series Z‘a\q is that an — 0. The
condition is not sufficient.

Art. Prove that a positive terms series (i.e., a series in which all the terms ae positive) either
converges or diverges to +oo.

Proof : Let Zah be a positive terms series i.e. a,>Vv n

Letshn=ar+ax+.... + an
Since all the a's are positive, therefore, s, is positive.
NOW  Sp+1 = Sn + a@ns1
Sn+1 - Sn=an+1> 0
= Sn+1>SnV N
{sn} is @ monotonically increasing sequence.

Now there are two possibilities:
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0] If the increasing sequence {sn} is bounded above, then {s.} converges and so
Zan converges.

(i) If the increasing sequence {s»} is not bounded above, then {s.} diverges to
+c0 and so Z:G\1 diverges to +oo.

a positive terms series either converges or diverges to +co.

Cor. If an-0V n and a, does not tend to zero, then the positive Zan diverges to +o.
Proof : Since Zah is a positive terms series.

Zan either converges or diverges to +wo
an does not tend to zero

Zan does not converges

= Zah diverges to +oo.

Art : Leta,> 0 and s, = a1 + a2 + .....+a,. Show that a necessary and sufficient condition for the
convergence (or divergence) of the positive terms series Zan is that sequence {s} is bounded
above (or not bounded above).

Proof : Here {sn} is a strictly increasing sequence.

Zah converges (or diverges) iff the increasing sequence {sn} converges (or
diverges) or iff the sequence {s,} is bounded above (or not bounded above).

Note. (i) The positive terms series Zan converges iff there exists a positive constant k such
that s,< k V n.

(i) The positive terms series Zah diverges iff given a positive constant A, however
large, 3 m e N such that s,>AV n > m.

Art. : If Zan and Zqu converges respectively to ¢ and tandi, u are real numbers, then

D (Aa, + ub,) converges to Ac + pr.
n=1
Proof : Leton=a;+ax +..... + an
andTn=b1+b2+ ..... +bn
Again let s, = (Aa1 + uby) + (Aaz + uby) +.... + (Aan + pby)

= Aon + UTn
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Since Zq convergestos, ..on— G

Since Zqu convergesto t, ..tn— T

Sn = AGnh +UTh — AC + Ut

D" (Aa, + ub,) converges to Ac + pr.
n=1

Cor 1. Putting A = n = 1, we see that if Z:ag1 and an converges respectively to ¢ and t, then
a; + by +ax+ by +.... convergesto c + 1.
Note 1. From above, it is clear that sum of two convergent series is convergent.

Cor 2. Putting A = 1, u =-1, we see that difference of two convergent series is convergent.
Art. Let Zan and an be two series. Suppose that 3 m € N and an integer p > 0 such that b,
= an+pV N >m. Then the two series Zan and Zt% behave alike.

Or

Prove that the behaviour of a series is not changed by the removal, addition or
alternation of a finite number of its terms.

Proof : Leton=ai + az +..... + an

and th=by + by +..... + by

forn>m,

= (b1 + b2 +..... + bm) + (Dmsr + ... + bn)

= Tm + (Qmipts + ... + @n+p), @S bn = an+p

= Tm+ (@1 + ..ot 8mip + Ameprr .o + an+p)-, @S bp= (a1 + ...+ amp)

= Tm + Om+p- Om+p

= On+p + (Tm - Ome+p)

=onp + K

where k = tm - om+p IS independent of n and hence a constant.

the sequence {on} and {tn} of the partial sums of the series Zan and th behave
alike.

the two series Zan and an behave alike.
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Art. If Zan converges to the series ¢ and {n} is a strictly increasing sequence of natural
n=1

numbers, then the series (ay +.....+ an) + (a, + ... + @, ) + ... also converges to a.

Proof : Let ok and t« denote the kth partial sums of the series Zan and the new series (a1

{w} being a subsequence of {c,} also converges to o.
new series also converges to .

Note. the introduction of parentheses (brackets) in a convergent series does not affect its
convergence.

the removal of parentheses may affect the convergence.

For example : The series (1 - 1) + (1 - 1) +(1 - 1) + ... is convergent, but the series obtained
after removing the parenthesesi.e. 1 -1+ 1 -1 + ... oscillates finitely.

Art. Prove that convergent series Z‘% of a positive terms remains convergent when each term
an is multiplied by a factor v, whose numerical value does not exceed a positive constant k.

Proof : Since Zan is a positive terms convergent series.

.. by Cauchy's Criterion of convergence of a series, given ¢ > 0, however small, there
exists a positive integer m such that

&
am+1+am+2+....+an<EVn3m (1)

[am+1Vm+1 + @me2Vmeot ... + @nvn|
< |am+1vmea| + [@ms2Vmez| + ... + |@nvnl
= |am+1|[vmea| + [@m+2|[Vms2| + ... + |@n|[Val
< Kklam+1| + K [@ms2 | + ... + K |aq| [ |vn] K V N]
=k (Jam+| + |am+2| + .... + [an])
=k (am+s1 + @ms2 + ... + an) [*]an] =anas a> 0V n]
-k &

k
=evVn>m

Zan vn is convergent.

Art. Prove that a positive terms series Zan is divergent if a,> 3 vV n where 9 is a finite positive
constant.
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Proof: Letsp=ai+az+....+ta>% + d+...+8 =n.d
Sn>n 3
= Sh—oasn—w
Zah is divergent
Art. If k is a fixed number and Z:a\q converges to the sums s, then Zkan converges to the
sum ks. Also if Zah diverges or oscillates, so does Z:ka\1 unless k = 0.
Proof: Letsp=ai+az +..... + an
If Zan is convergent, then s, > asn — ©
Ksn — ks
= Z:kf:\1 converges to ks.
If k # 0 and sp — o0, S0 does Ksn

If Z:ag1 diverges, then so does Zkz:\1

If s, tends to no fixed limit, finite or infinite, so does ksn

if Zkan oscillates, so does Zkag1

: 1 1
Example 3: Show that the series 1+§ +? oot +.... converges to the sum 2.

2n—l

. . 1 1
Solution: The given series is 1+§ +? ot

1 1
Sh=l+—+—+...... to n terms
2 2
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Lt s, = Lt [2— znllj

N—o0 N—o0

=2-0=2

{sn} converges to 2

1
iven series 1+ —+— +...... +
g 2 22 2n—1

Example 4: Show that L =1
n(n+1)

Solution: The given seriesis ) a,

n=1
where a, = 1
n(n+1)
i, 1
n0+1) (-1)(n+1)
i 1
n n+1
Puttingn=1,2, 3,....., n
11
ar= —- —
1 2
p,=l 1
" 273
gzl 1
T34
1 1
an=—- —
n n+l1

Adding, we have

1
|:..- nl:l:)o 2n—1 = O}

+.... converges to the sum 2.
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1

Sn:1' e

n+1
Lims, = Lim 1
n—o0 nbo \ 1—n+1
=1-0
=0

= {sn} convergesto 1
the series {an converges to the sum 1.
1 —
n(n+1) -
Some More lllustrated Examples
Example 5: Show that the series
12422+ 32+ ...+ n%+ ...
diverges to +
Solution: The given series is
12+ 22+ 32+ ... +n2+ ...
Sh=12+22+32+ ....+n%+ ...

= sum of squares of first n natural numbers

_ n(n+1)(2n+1
6
Lims, = Lim n(n+1(2n+1)
n—oo n— 6
— +

{sn} diverges to +
Hence the given series 12+2%+....+n?+...... diverges to + .
Example 6: show that the series
-12-22-32- ... -n%- ...
diverges to - oo.
Solution: We have the given series as
-12-22-32- ... -n%- ...

Sn=-1%2-22-32- .. -n?- ...



=-(12+22+....+ 1

_ {n(n+1)(2n+1)}
- 6

—-0asn—w
the sequence {sn} diverges to - «
Hence the given series
-12-22-32- .. -n%- ...
diverges to - «
Example 7: Show that the series

1 -
— . p<lis divergent
n=1 n

Zw: i 4 1 i L1
par) np 1p 2p 3p ........ np
Now
1 1 1
[S2n - &l = p + 5 +.o .
(n+1)" (n+2) (2n)
1 1 1
>_+ ...... —_— '. < 1
n+l n+2 n ( p )
1 1
>—+—+..... +—
n 1
- == vn
2n 2

1
[Szn-Sn|>= V¥ n
2

{sn} is not a Cauchy sequence and hence not convergent

1
AlSO  Sp+1-Sp= p>OVn
(n+1)
Sn+1>Sn V n
= {sn} is monotonically increasing sequence
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> 1
{sn} is divergent =" 5 ps 1 is divergent.
n=1

Now you can try the following exercises
10.6 Self Check Exercise
Q.1  Show that the series

D (-D)™* oscillates finitely

1
Q.2 Use Cauchy's Criterion to show that the series Zm diverges
Q.3  Show that the series

....... is not convergent.

n(n+1)
(n+2f

Q.4  Show that the series Z cannot converge.

10.7 Summary
In this unit we have learnt the following
(1) Infinite Series and its Partial Sums
(i) Behaviour of an Infinite Series
(iii) Cauchy's Criterion of Convergence of a Series
(iv) Infinite Geometric Series
10.8 Glossary:

1. Absolutely Convergent Series -
The series Zan lan] = |az| = |az| +.....+ |an| +...... is convergent.

2. Non-Convergent Series -
The Series which diverge or oscillate are called non-convergent Series.

10.9 Answer to Self Check Exercise

Ans 1 H 0, n even
ns. ere s, =
"" 11, n odd
1 1
Ans.2 Heresp,=1+ —+....... +
3 2n-1

166



Ans.4 Here an =

Find |S2n+1 - Sn|. and then prove.

n+1 1
Ans.3 Here a, = T: 1+ E Now prove.
1
1+~
n(n+1z = n > Find Limit and proceed to prove.
(n+2) ( 2
1+—
n

10.10 References/Suggested Readings

1.
2.
3.

T.M. Apostal, Calculus (Vol 1), John Wiley and Sons (Asia) P. Ltd., 2002.
E. Fischer, Intermediate Real Analysis Springer Verlag, 1983

R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and

Sons (Asia) P. Ltd., 2000

K.A. Ross, Elementary Analysis - The Theory of Calculus Series - Undergraduate

Texts in Mathematics, Springer Verlag, 2003.

10.11 Terminal Questions

1.

Prove that the series

Show that the series

1
D= converges.
n!

n=1

n°-1

Discuss the convergence of the series z . Justify your answer.

n=1

Show that the series

Z(iJ is divergent.
1

n+
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Unit - 11
Alternating Series

Structure

11.1 Introduction

11.2 Learning Objectives

11.3 Alternating Series

11.4 Leibnitz Test Or Alternating Series Test
11.5 Self Check Exercise

11.6 Summary

11.7 Glossary

11.8 Answers to self check exercises
11.9 References/Suggested Readings
11.10 Terminal Questions

11.1 Introduction

Dear students, in this unit we shall study the concept of alternating Series. In
mathematics, the alternating test is the method used to show that an alternating series is
convergent when (1) etc term decrease in absolute value and (2) approach to zero in the limit.
The test was used by Gottfried Leibnitz and some times known as Leibnitz Test. This test is only
sufficient, not necessary, so some convergent series may fail the first part of test.

11.2 Learning Objectives
The main objectives of this unit are
0] to define an alternating series

(i) to test the convergence of a series by Leibnitz Test or by an alternating Series
test.

11.3 Alternating Series

A series whose terms are alternatively positive and negative, is called an alternating
series.

1 11 _ . :
For example, 1 "> +§+Z +...... Is an alternating series.

11.4 Leibnitz (Or Alternating Series) Test

If {an} is monotone decreasing sequence of positive terms and converges to zero, then

D (-1)™* aq is convergent.
n=1
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Proof: Here {an} is a monotone decreasing sequence of positive terms converging to zero.
we have
0] an>0 Vn
(i) an > an+l Vv nand

(iii) an—0asn—w
Let {sn} be the sequence of partial sums of Z (-1)™ an.

Son=(a1-az) + (as-aq) +....... + (@zn-1 - azn)
= S>>0 Vvn L. 1)
[-.- content of each bracket is > 0]
Again szn = a; - [(az - a3) + (as - @s) +.....+ (Azn-2 - Azn-1) + Azn)
Sp<aaVn L 2)
From (1) and (2), we get
O<sy<a v n
AlSO  Son+2 - Son = @zn+1 - A2n42> 0
Son+2> S2n v n
= {s2n} IS an increasing sequence
Also  {s2n} is bounded above
{s2n} is convergent
Let Son—Sasn— o

NOW  Son+1 = Son + @2n+1

= Lt Son+1 = Lt Son + Lt @zne
= Lt Sont1 =S+ 0 [~ an— 0asn— o]
= Lt Son+1 = S

Now Son— sasn— ooandalso Sy — Sasn— o

Lt sh=s

N—o0
given series z (-1)™! a, converges to s.
n=1
Note: Another Form : If the alternating series
Up-Ux+U3z-Usg+ ...... (un>OVneN)

is such that
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0] Un+1< Un v n,and (i) Lt un=0

then the series converges.
Cor. 1. We have

0 <sx< ax
= 0< Lt sa<as [-.- of squeeze principle]
N—o0
= O<s<a

sum of the convergent series Z (-1)"an lies between 0 and a; (both inclusive)
n=1

Cor.2:Ifay,—a=0Vn,then Z (-1)" a, oscillates finitely.

Proof: We have

Son+1 = Son + Azn+1

= Lt Son+s1 = Lt Son + Lt @zner
= Lt Sonv1=St+a#=s
= Lt Son+1 = Lt Son

. {sn} has two subsequential limits s and s + a which are finite. Hence {sn}
oscillates finitely.

Z (-1)" a, oscillates finitely between s and s + a which differ by a.
Art. If the series Z anis absolutely convergent, then prove that Z an is convergent. Is its
converse true?

Proof : Since ) anis absolutely convergent,
Y. |an| is convergent

by Cauchy's Criterion for convergence of a series, given &> 0, however small, 3
m < N such that

[an+1] + |an+2| +.... + |an+p| <€V N >m and pe N
NOW |an+1 + an+2 +.... + an+p| S Ian+1| + |an+2| +.... + |an+p|
<gvVn>mandpe N

by Cauchy's Criterion for convergence of series, Z an is convergent.

if Z an is absolutely convergent, then Z an is convergent.

The converse is not true.
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1
Let an = (-1)"—
n
1. .
Z |an| = Z H is not convergent (Prove it)
, 1.
Now we will prove that Z (—1)“'1H is convergent

1
Comparing ) (-1)™*=with ) (-1)™* a,, we get
n

1
an = —
n
we have
0] an> an+1>0Vn { l > i > 0}
n n+l

{an} is a monotonic decreasing sequence.

(i) an=£—>0asn—>oo
n

1
by Leibnitz Test, Z (—1)”5 converges.

) aq converges but )’ |aa| does not converge.

Art. If Z an is absolutely convergent and {\} is bounded sequence, then prove that Z Andn IS
absolutely convergent.
Proof : Since {\n} is bounded

there exists a real constant A> 0 such that |A,| <AV n (1)

Now Z an converges absolutely

= 1), an| is convergent
o by Cauchy's Criterion of convergence of series, given > 0, however small, 3 m €
N such that
£
[an+1| + [@n+2| +.... + |@n+p| <zv n>mand pe N .(2)

|7\-n+1 a-n+l| + |}\4n+2 a.n+2| +....+ | }\,n+ a.n+ I
p p
= |}\,n+1”an+l| + |7bn+2||an+2| Tt |7¥n+p”an+P|
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<7\.|an+1| + 7\.|an+2| +....+ 7\.|an+p| ['.' of (1)]
&
= ?L(lan+1| + |an+2| +.... + |an+p|) <7\.z ['.' Of (2)]

=evVn>mandp e N
by Cauchy's Criterion for convergence of a series Z |Anan| converges i.e.

). Anan converges absolutely.

Note. the absolute converges of Z an is a must for the validity of the above theorem.
1.
Example.z (-1)“'1H is convergent but not absolutely.
Also {(—1)”‘1} is bounded.

1 1
But ) (-1)™. (-1)"*= =) = is divergent and not convergent.
n n

Some lllustrated Examples

-t 1 11
Example 1 : Show that the alternative series z( ) = 1—5 +§+Z +... IS convergent.
n
-t 111
Solution : The given alternating series is Z( ) = 1—5 +§+Z +... (1)
n
; (_1)n71 ; n-1
Comparing Z with ) (-1)™%, we get,
n
1
a.n = —
n
we have

(@ an>0Vvn

(i) an> an+1V n

1
(iii) ahn=— —asn—oow
n

by Leibnitz's Test, series (1) is convergent.

. . & (=D"(n+5)
Example 2 : Use Leibnitz's Test to show that the series Z—

converges.
~ n(n+l) d
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Solution : The given seriesis ) (-1)"a= ) (-1)™ ay

n=1 n=1

Where a, = (n+5)
n(n+1)
we have

() a>0Vn
B n+5 _ n+5
C (n+D)(n+2) n(n+1)
_ n(n+6)-(n+2)(n+5)
 n(n+D)(n+2)
n°+6-n’*+7n-10
n(n+1)(n+2)
n-10
— <0V
n(n+1)(n+2)
anm< anv n
(iii) an = n+o
Lta=Lt n(n+1)
1 5
7+7

(”) a.n+1 = a.n

1
—
~+

5

0+0 _
1+0

by Leibnitz test, series )’ (-1)™aq converges.

Y (-)taqie. ) (-1)"an converges.
n=1

n=1
Example 3 : Show that the series
1 1

1- —+ —

1
+ —+.....
2 B 4

Solution : The given series is

is convergent.
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We therefore have
() a>0Vvn

(i)  Since Vn+1>vn
1 1
= ﬁ<ﬁv n
an+1< anVv n.

1
(iii) an- ——= —0asn—w

N

by Leibnitz test, the given series is convergent.
Example 4 :Prove that the series.

1 :
1-—+—- 7 + ... Is convergent.

Solution : The given series is
Y (Dan=1- 1,11, ..
3 5 7
Where
B 1
" nthtermof A.P. 1, 3,5, ...
3 1 1
T 1+(n-1)2  2nd
We have
() a>0Vvn
(ii) Since2n+1>2n-1
1
2n+1 <T—1v

a.n+1< anv n.

n
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(iii) an-i—masn—»oo
2n-1

by Leibnitz test, the given series is convergent.
Example 5 : Prove by Leibnitz Test, the given series
1 ] 1 . 1 ] 1
log2 log3 log4 log5

Solution : The given series is

+ ... Is convergent.

1 1 1 1
Z (-D™an = - + - + ..
log2 log3 log4 log5
Where a, = ;
log(n+1)
We have

(@ an>0Vvn
(i) Since log (n +2) > log (n + 1)

1 < 1 v n
log (n+2) log (n+1)
an+1< anv n.

1

(i) an

—0asn— o

~ log (n+1)
Hence by Leibnitz test, the given series is convergent.

: . 1 1 1 .
Example 6 : Prove that the given series = 1-— +—+—+..,, p > 0 is convergent.
2p 3p 4p
Solution :We have

1 1 1
Y (D™an=1-s—+—+—+.,p>0
2p 3p 4p

1
Where an= —
np

we have
1
@ an= —>0Vn
nP

(i) Since (n+1)P> nP
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l —
(n+)” n”

= a.n+1< anv n
1
(iii) an=— —0asn—ow
np

Hence by Leibnitz's Test, the given series is convergent.
Example 7 : Show that the series

2D

=———"s convergent
Log

Solution: The given series is

>y

Log

Now, We have

_1 n-1
Searia- 2000
Log
Here an= L,n>2
logn
0] an = ! >0VvVn>2
logn

(i) Sincelog(n+ 1) >logn
1 1

= <
log(n+1) logn

= ant1<anv n>2

(iii) an= ———0asn—ow

logn

.. by Leibnilz Test Z:(—l)n an is convergent

n=2
n
Example 8: Prove that the series Z:(—l)”‘l . 5—nis convergent

Solution: The given series is Z:(—l)"’l an,
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(iii)

n
where a,= —>0 Vn

n

n
an=5—n>0 Y n

ian= i( nj: 5'1_nS“Iog

d" " dn 5" 5"
an is a decreasing function of n

a.n> a.n+1 V n

Liman = Lim1

n—oo n—w 5”
= Lim L
n—swo §" |ogn
—0 (','5”—)00[’]—)00)

= 1—n|nogS<

OV n

(use of L'stospital Rule)

n
by Leibnitz let the series Z(—l)” 5—nis convergent.

Example 9: Show that the series

Z(_l)n—l n_+1: g_ §+ﬂ_
n 1 2 3

oscillates finitely.

Solution: The given series is Z:(—l)”‘1 an,

n+1 1
where a,= —=1+ — v n
n n
we have
(@ a>0 Vvn
(i) n+1>n
1 1
= —<—
n+1 n
1
= 1+ <l+ — Y n
n+1 n
= an+1<an ‘v’n
1
(iii) an=1+— —>1#0asn—-w

n

Mo
+
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the given series oscillates finitely.
Example 10: Show that the series
1 1 1 1
+

- - converges conditionally.
Log2 Log3 Log4 Log5

+

Solution: The given series is
r 1, r (D)
Log2 Log3 Log4 Log5

NG

The Series (1) can be written as -
L

09
Comparing it with i -D", un, un = 1
n—2 Logn
Now iun =n= i i
d" d" {logn
log n.O—}.l
- n
(Log n)2
n(Log n)
= Un is @ monotonically decreasing sequence
Also  Limun= Lim . 0
n—w n—w |ogn

by Leibnitz Test, the given series is convergent

1 >1 (- logn<nvVvn>2)

logn n

Now |(-1)"un|=un =

un is divergent i.e. the given series

1
Now, the series Z His divergent and so Z:‘(—l)”un

is not absolutely convergent.
Hence the given series is conditionally convergent.

11.5 Self Check Exercise
Q.1  Show that the series
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11.6

11.7

11.8

1 1+2 1+2+3 1+2+3+4
2 3 & 5

+.... Is convergent.

1 11
Q.2 Show that the series, is convergent 1 - 5 +g7 +...... , is convergent

Q.3  Show that the series

> (=™ (Iogznj is not convergent.
n

Q.4  Show that if ) a is convergent and » b is divergent, then »'(a +h,)is

divergent.
Summary
In this unit we have learnt the following concepts.
(1) Alternating Series
(i) To Test the conconvergence of a series by Leibnitz Test or by Alternating Series
Test.
Glossary:
1. Alternating Series - A series whose terms are alternatively positive and negative,
is called an alternating series.
1 11
Forexample 1- —+—-—+ ........
3 57
2. Anther form of convergent series -
If Ui - U2+ U3 .......... (us> 0V n € N) is an alternating series s.t.
0] Un+1< UnV N
(i) Limu, = 0 then the given series is convergent.

N—o0

Answer to Self Check Exercise

_ 14243+ +n_n(n+l)

Ans.1 Hint. an = = —
(n+1)3 2(n-|r1)3 2(n+1)2

Now proceed to prove the convergence.
Ans.2 Prove it (easy to prove)

logn logn
Ans.3 Here an= 92 ,an+1an=i2
n n
1-2log x
...ilogix = 39 =<0 v x >+Je
dx x X

179



Ans.4 Easy to prove
11.9 References/Suggested Readings
1. T.M. Apostal, Calculus (Vol I), John Wiley and Sons (Asia) P. Ltd., 2002.

2. R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and
Sons (Asia) P. Ltd., 2000

E. Fischer, Intermediate Real Analysis Springer Verlag, 1983

K.A. Ross, Elementary Analysis - The Theory of Calculus Series - Undergraduate
Texts in Mathematics, Springer Verlag, 2003.

11.10 Terminal Questions

1. Prove that the series

2. Show that the series
1 1 1

Xy (x+1)(y+1)+ (x+2)(y+2)

3. Prove that the series

01
G

Jniva

4, Show that the series

< n
" , osculates finitely.
2 o y

5. Show that if ul, u2........ un..... is a decreasing sequence of positive terms tending
to zero, then the series
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Unit - 12
Comparison Tests For Series of Positive Terms
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12.3 Comparison Tests For Series of Positive Terms
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Test 2
Test 3
Test 4
12.4 p=Test
12.5 Self Check Exercise
12.6 Summary
12.7 Glossary
12.8 Answers to self check exercises
12.9 References/Suggested Readings
12.10 Terminal Questions
12.1 Introduction

Dear students, in this unit we shall extend our knowledge by studying comparison test
for series of positive terms. The comparison test, sometimes called the direct comparison test to
distinguish it from similar related test. (especially the limit comparison test), provides a way of
deducing the convergence or divergence of an infinite series or an improper integral. In both the
cases the test works by comparing the given series or integral to one whose convergence
properties are known.

12.2 Learning Objectives
The main objectives of this unit are
() To study comparison tests for series of positive terms
(ii) Test 1 to Test 4 are studied under comparison tests.
(iii) To study another test of convergence namely, p-test.
12.3 Comparison Tests for series of positive terms

Test I. Let Zah and an be positive terms series. Let k be a positive constant
independent of n and m be a fixed positive integer.
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0] If an< k bV n > m and an is convergent then 26\1 is divergent.

(i)  Ifa>kb.vn>mand ) b is divergentthen > a is divergent.

Proof: Let Sh=airtax+ ... + an
and spy'=bit+hby+..... + bn
(i) Since ) b, converges =s.' — s' (finite) as n — oo
b>0Vn.s'<sVn (-.-sn'<ibn=s')
n=1
an< k by vV n>m
am+1< K bm+1, am+2< K Dmsz, ....... an<kbn
Am+1 t Ams2 Foonnes + an< K (bm+1 + Dmsz + ... + bn)
= Sn - Sm< K (Sn' - Sm')
= Sn<Smt K(S'-Sm') VN('rsn'<s'Vn)
= sn< a finite quantity (" sm Of sy’ are finite)
= the sequence {sn} is bounded

Also {sn}is increasing
sequence {sn} converges
= > a, converges.
(ii) Since an >k bn Yn>m
: proceeding as in (i), we have
Sn>Sm + K (Sn' - Sm').
Now since ) h, diverges
Sn' —
sn — o= {sn} diverges to +o.

Hence ) a, is divergent

Testll.Let Y a and ) b, be two positive terms series

N—o0

() If Lim%z l, | being a finite non-zero constant, then Zan and an both
n

converges or diverges together.
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Proof:

(ii)

(iii)

=

=

It Lim 2 =0and an converges, then Z:a\1 also converges.

n—o

n—ow

If Lim—=owand diverges, then also diverges.
b > b, diverg > a, g

Since Lim G - I

N—o0

given €> 0, however small, 3m € N, s.t

ﬁ—l <e Yn>m
n
|—e<$<|+e Y n>m
bn
(I- €)bp<an< (Il + €) bn (" bn>0Vn)

>0 (- both an, by are positive for all n)

Now choose € in a such a way that| - > 0.

Let

Now

Case 1.

Case 2.

Case 3.

Case 4.

Hence

(ii)

|- € =ky, | + € = kg, ki ko are positive constants independent of n.
k, bn<an< kzbn Vn>m

following cases arise:

If an is convergent then Za\1 is also convergent (- an> k2 bV n > m)

If > b, is divergent, then )’ a, is also divergent (- a,> ki ba¥v n >m)

1
If is divergent, then is also convergent (*. bp< —anvV n>m
Da, g b, gent ( kl >m)

1
If is divergent, then is also divergent (. bp< —anvV n>m
>a g b, gent ( kz >m)
Zq and Zq both converge or diverge together.
Since Lim &

n—o

given > 0, however smell, 3m e N s.t.

a,

—<eVvVn>m
b

n
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or an<e bn Yyn>m

Since )b, converges (~ by>0Vn)

by comparison test Zaﬁ converges

(iii) Since Lim b =

N—o0

given &> 0, however small, 3 me N s.t

a,

—L>3vVn>m
b

n

an> 0 bn Yyn>m (" bn>0Vn)
But ) b diverges
by comparison test, Z:ay1 diverges

Test lll. Let an> an be convergent and ch be divergent. Then we show that

(i) Y a, converges if Lim [%]: A£0

n

d f L — |=
(ii) > 4, diverges i Im[cn] p 0
Proof: - Lim(%) =i

n

by limit superior property, for every e>0,3m e N s.t.

a,

L <A+ e Yn>m
b

n

a,

or LA vVn>mAN=A+e¢e
b,

= an<\' bn Y n>m
an<\' bn Y n>m

Now as )b, converges

= by comparison test, Zan also converges
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(i) Since uyz0 .u> 0

Now  Lim3=y
C

n

by Limit inferior property, for every e>0,3m € N s.t.

a,

—>u-e Y n>m
Cn

or ﬁ>u'Vn>m (op'=r-t
C

n
Choose € in such a mannerthatr' =r-e>0
an >p' cn Yyn>m

Since ) c,diverges
by comparison test, Zan diverges.

Test IV. Let > a, and > h, be two positure terms series.

H a‘n+l bn+l : H

i If <M vn>m me N and is convergent, then is also

() = b, b, g 2.3
convergent.

, a. b, L .

ii If 22> "™ v n>m, meNand b is divergent, then is divergent.

(ii) A Db, 9 >a, 9
Proof: Let Sh=artaz+.. + an

and sp=bi+by+..... + by,

Likewise =S, - Sm
Pm+1 + Dmsz2 +....... +by=5s-Sm
() Sn-Sm = am+1 T Ame2 ool + an
=am+1{1+@+@+ ........ }
A1 A

= am+1 {1+ am+2+am+3.am2+ ........ }
Qng B Gy
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< am+1{1+ Om:2 + B3 .a'“*z o, } [ﬂ < %J

S ! a, b
= Bna {bm+1 + bmez +....... 400}
m+1
= a'm+l (Sn _ bm)
b1
Sh - Sm< Bt (Sn' - Sm) ..... (1)

As 'l is convergent. Let 'y convergestos'.
Sn'<s'Vn

a‘m+1

m+l

from (1) sn<sm + (sn' - sm’)

= sn< (a positive quantity)
= {sn} is an increasing sequence
{sn} converges :Zan converges.
N : b
(ii) Since 21551 ypsmy
a, b,

As in part (i), we have

Sn>Sm + B (SnI - Sm') (2)
H+1

am+l

Now —™=2ijs positive

m+1
Also sm and sy’ are finite as these are the sum of finite number of terms of Zan and
> b, respectively.
> b, diverges =s,' — o as n — o.
From (2)
Sh—o0asn— o

= {sn} is divergent
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= > a,isdivergent.
12.4  Art. p-Test
1 1 1

1
Prove that the series Zﬁzl_p+§+3p +. OO ,p>0
converges if p > 1 and diverges if p < 1.
1 1 1
Proof: The given series is le—p +§ ? ....... — o ,p>0

1 1
Let  >'a = ZFSO thata, = -v'n

1 . . :
Now an = — > 0 V n. Therefore Zan IS a positive terms series. Hence converges or

n

divergence of Zan is not affected by grouping the terms in any manner, we like.

Case l.Letp > 1.

Group the terms in such a way that first group contains first term of the series, second
group contains next two terms, third group contains next four terms and so on. In other words, V

r e N, the rth group contains 2" terms.

1 ( 1 1) ( 1 1 1 1) ( 1 1
E an— —t | = || "+ —+— [+ | —F+—+
1P 2D 39 4D 5p 6D 7D 8D gp

=2h

1
whereblzl—p =l=a

1 1 1 1 2 1
b2 =—+ —<—+—= —=
2P 3P 2P 9P 2P 2p—1

1 1 1 1 1 1 1 1
b3= —+—+—+—<—+—+—+—

4P BP BP TP 4P 4P 4P 4P
4 1 1 1

4 gt g (zp,l)z
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1 . o , :
Now 27 is an infinite G.P. with common ratio op i

(2?)

converges, {,-0< 1 <1for p >1}

2

by Comparison Test, th is convergent.

= > a, is convergent.

Case Il Letp=1

>a,= Z% which is divergent.
Case lll. LetO<p<l1
1 1

—>= vn>2
n® n -

1 .
But ) —is divergent.
. 1. .
by Comparison Test, ) —-is also divergent.
n

1
we see that Z—p p > 0 converges.
n

If p>1anddivergesirp<1
Note. (i) letp=0
Lo1vn

nP

Lt iio

N— np

1
= > Fdoes not converge.
1 . " .
But )’ — is a positive terms series.
n

1 .
Y — diverges to +.
n
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(i) Letp<O
Put p=-gsothatp>0

1 1
Fz F=nq—)00asn—>00

1 o1 . y .
Zﬁdlverges to +oo . ZF p<O0isa postive terms series

Zipconverges forp>1anddivergesforp<1
n

. 1 1 1 1 . .
Note. The series —+—+—+........ +—+..... and geometric series
1* 27 3° nP

1+r+r2+r¥+....m+ .. with |r] < 1 are called auxiliary series.

Note. Method to apply Comparison Test

We know that if Lt i= I, where | is neither zero no infinite, then the two series

n—o0
Zan and an are both convergent or both divergent. So to test the convergence or

divergence of Zan, we find ZDn known as auxiliary series. Two auxiliary series are given

. : 1 :
above. If a, can be expanded in ascending powers of —, then we retain the least power of
n

1 . . 1 1 1 1 1
—and take it as b,. Also if an = sin —, sin? =, tan —, tan'—, we take b, = —.
n n n n n n

1 ,
Also b, = —, where p = Deg. of denominator - Deg. of numerator.
n

Illustrative Examples
Example 1: Discuss the convergence or divergence of the series

1 3 5
+ + +....
123 234 345

Solution : The given seriesis Y a,= 1 + 3 + 5 +
el %= 1237 234" 345"
Where a, = 1+(n-1.2
[1+(n-D.1[2+(n—-1).1[3+(n-1).1]
_ 2n-1
n(n+1)(n+2)
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Let bnzF [vp=3-1=2]
a, _ 2n-1 n*
b, n(n+)(n+2) 1
_ _n@n-1
(n+DH(n+2)
51
= n
(1+ l] (1+ 2)
n n
2-0 L -~
Lt ——=-—= =0, which is non-zero and finite
e (1+0)(1+0)
by Comparison Test, Za“ and b, converge or diverge together.
ButZ:bn Z— is convergent. { Zn—lp convergesif p >1}

given series »_a, is convergent.

Example 2 : Test the following series for convergence

Solution : The given seriesis > _a,

fl f2 f3
Wherean= | =+ .|—= +.]— +.....
28 3 43

n
an= /—
(n+1)°
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1-—+...
b 2n

Lt & 1, which is finite and non-zero

nN—o n

Z:ag1 and an converge or diverge together.

1
But b, = ZH diverges the p-Test

by Comparison test, > a, diverges.

Some More lllustrated Examples

Example 3 : Discuss the convergence of the series

1

3 5

i e el SO
13 57 911

Solution : (i) We have

hax:!

a = 1+(n-12
" 1+ (n-1).4{3+(n-1).4
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_ 2n-1
(4n—-3)(4n-2)

1
Let by = (p=2-1=1)

a, _ 2n-1 n
b, (4n-3)(4n-1 1

n

_ 2n° —n
(4n—-3)(4n-12)

1
. a : Z_H
Lim* = Lim-——=v
S
n n
2 2 1 .
= — = — = — (non zero and finite)
44 16 8

= D a,and >'b, converge or diverge together.

But» b, = Z% diverges

series ) a, diverges.

Example 4 : Examine the convergence of the series
2 3 4
— + —+ —+..
1 2 3

Solution : The given series is

2 3
Zan—l—p+§+...

2+(n-1.1 _ n+l

apn= —————-2
{1+(n-1.14° n®
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= Lj m% = Lj m(1+ %j = 1 (finite and non zero)

nN—oo n N—o0

Zan and an converge or diverge together.

But> b, = . 1

n°*t
and divergentifp-1<lie.p<2

is convergentifp-1>1ie.ifp>2.

given series Zan converges for p > 2 and diverges for p < 2.
Example 5 : Examine the convergence of the series
> N’ +n+1
n*+1

Solution: We have the given series

n+n+1
where a, = —————
Za“ n*+1
1
Let bn = F

1+0+0 .
= = 0 % 0 and finite.
1+0

by comparison Test, Zan and an converge or diverge together.

1
But  >'b = ZF converges by p test

the given series Zan converges.
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Example 6: Examine the convergence or divergence of the series Z

3n-1
Solution: The given seriesis > a, = L
3n-1
1
an =
3n-1
1
Let bn = —
n
a, _ 1 n_n 1
b, 3-1"1 3n-1 , 1
n

. . 1 1
Lim % = Lim — = 3 (non zero and finite)
n—oo X n—oo 3_7

n

Y a,and > b, converge or diverge together.

1
But  >'b, = > Hdiverges by p - test

the given series Zan diverges.
Example 7: Discuss the convergence of the series
= 1
“~ n’logn

Solution: The given seriesis Y a,,

n=2
where an = 21
n“logn
1
Take bn = —
n
a_ 1 np_ 1
b, n’logn 1 logn
LimﬁzLimizo

n—o bn n—ow |Ogn
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1.
But an = 2—2 is convergent by p-test.
n
by comparison test, the given series is convergent.

. 1 . .
Example 8: For the series E T discuss the convergence or divergence.
n

Solution: The given series is Z%z >a,

where a, = i
Jn
1
Take bn = —
n

L
b,

=]
"
5

-

Limﬁzoo

n—o0 bn

1
But  >'b = > His divergent by p-test

By comparison test, Zan is divergent.

12.5 Self Check Exercise

Q.1  Examine the convergence of the series

2> 3
1+ S +—+ <+
2° 3 #
. _ _ 2+n
Q.2 Discuss the convergence or divergence of the series Z 3+ o7
+

1
Q.3 Discuss the convergence or divergence of the series z 1
1

n'+=
n

Q.4  Discuss the convergence of the series

> (3nvi-3h)
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125 Summary
We have learnt the following concepts in this unit.
0] Comparison Test for series of positive terms
(i) Test 1 to Test 4, Method to apply comparison test
(iii) p-test etc.
12.7 Glossary:

Method to apply comparison test -

We know that if Lim2n= l, I is nether zero nor infinite. then the two series Zan,

n—oo
an are both convergent or both divergent. So the test of convergence or divergence of Zan .

We find an known as Auxiliary series. Two auxiliary are given above. If a, can be expanded

1 1 1 1 1
in ascending power of Hand take it as by. If an = sin ﬁ sin—lﬁ, tan H tan—lﬁ we take bn =

1

n
1 :
Also bn= — . p= degree of denominator-degree of numerator
n

12.8 Answer to Self Check Exercise

n

1
Ans.1 a,= n—l b, = —and now proceed
(n+D™ n
2+n 1
Ans.2 an= ——— 1., bn= —and now proceed
3+2n n
1 1
Ans.3 a,= ——, bn = —and then proceed.
1 1 n
n+-—
np

N

11 1|
Ans.4 Take an= (N+1)3- n®= n3 (1+_j -n3
n

1 1

1
eV , bh = —— and now proceed.
3’ on’s

G
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196



T.M. Apostal, Calculus (Vol I), John Wiley and Sons (Asia) P. Ltd., 2002.

R.G. Bartle and D.R. Sherbert, Introduction to Real trellises, John Wiley and
Sons (Asia) P. Ltd., 2000.

E. Fischer, Intermediate Real Analysis Springer Verlag, 1983

K.A. Ross, Elementary Analysis - The Theory of Calculus Series-undergraduate
Tests in Mathematics, Springer Verlag, 2003.

12.10 Terminal Questions

1.

a+bn
a+bn?

Discuss the convergence or divergence of the series z
Discuss the convergence or divergence of the series

Z n

n*+1

Examine the convergence of divergence of the series

1
Zn”+q
n

Discuss the convergence or divergence of the series
Z(\/n2 +1—n? —1)

Discuss the convergence of the series

zf3-m(%)
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Unit - 13
Cauchy's Condensation Test
And
Cauchy's Integral Test
For Infinite Series

Structure

13.1 Introduction

13.2 Learning Objectives

13.3 Cauchy's Condensation Test

13.4 Pringsheim's Theorem

13.5 Cauchy's Integral Test

13.6  Self Check Exercise

13.7 Summary

13.8 Glossary

13.9 Answers to self check exercises

13.10 References/Suggested Readings

13.11 Terminal Questions

13.1 Introduction

Dear students, in this unit we shall study the concept of Cauchy condensation Test and
Cauchy integral Test. The Cauchy condensation Test named after Augustion-Locis Cauchy, is a
standard convergence test for infinite series. For a non increasing sequence f(n) of non-

negative real numbers the series Zf(n)converges iff the conduced series
n=1

ZZ”f(Z“)”Z1 converges. Moreover if there converge, the sum of the conduced series is no
n=0

more then twice as large as sum of the original. On the other hand the Cauchy's integral test
compares a series with an integral. The test compares the area of a series of unit width
rectangles with the area under the curve. The Cauchy integral test is also known as Euler-
Maclaurin summation formula. The integral test of convergence was developed by colin
Maclurin and Augustin Cauchy and is sometimes known as Maclaurin-Cauchy Test. This test is
used to test the convergence of an infinite series of non negative terms.

13.2 Learning Objectives
The main objectives of this unit are

() to study Cauchy's condensation test of convergence for infinite series.
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(i) to prove Pringsheim's Theorem

(iii) to learn about Cauchy-integral test for finding the convergence of an infinite
series.

13.3 Cauchy's Condensation Test
If f(n) >f(n+1) >0 V n, then prove that the two series

S f(n) and 32" (2")

Converge or diverge together
Proof: We accept the result without proof.
Another form of Cauchy condensation Test.

If an> an+1> 0 V n, then prove that the two series Z:an and 22” a,, converge or diverge
n=1 n=1

together.
Example 1: Show that the series

1
ZF p > 0 converges if p > 1 and diverges if p < 1.

1 1
Solution: Let Zf(n)= ZFSO that f(n) = el p > 0 clearly, f(n) is a positive decreasing

function of n vn.
by Cauchy's condensation Test,

> f(mand > 2"f(2") converge or diverge together.

Now S 2f(2)=3

-
(2)

= Zz(p—%l)n , which is a G.P. with common ratio =

1

2n
p = ZZHp = ZZHp—n

1
2"

Following two Cases arise
Case 1: Ifp>1,then2r1>20=1
1
20t

<1

1 1
> ()= zz(p—ll)nis a G.P. with common ratio = — where 0 <_t5 <1

and hence » 2" f(2") converges
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1
IRIOEDD 5 converges forp > 1.

Case2: IfO<p<i1lthenl-p>0

= 2> 20.1

izt

1 1
> 2 () = Zz(p—ll)n is a G.P. with common rates = ot where b > 1.

Hence > 2"f(2") diverges

1
> f()= ZFdiverges for0<p<1

1
Combining the results of two cases we see that ZF p > 0 converges for p > 1 and
diverges forp < 1.

Note: If p=0then f(n) =1 which does not tend to zero as n — .

positive terms series Z f (n) diverges

1
Againif p< 0, Let p=-q (g > 0) then f(n) = ZF =n9—oasn— oo.
f(n) > 0asn— .
but > f(n) diverges forp<0

we can say that

ZW converges for p > 1 and diverges for p < 1.
13.4 Art. Pringsheim's Theorem
If the terms of the positive terms series Zan is that Lt na,=0.

n—o0

The condition is not sufficient.

Proof: Necessary condition

Assume that positive terms series Zan converges

by Cauchy's General Principle of convergence for a series, given ¢ > 0, however
small, 3 m N such that
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Am+1 + Amez + ... + an<e vyn>m ... Q)

terns of »"a, steadily decrease

each of the (n - m) terms am+1, @m+2,....., @ IS > an
(N-m) an< ams1 + Ams2 + ... + An

= (n-m)a<e vV n>m [~ of (1)]

= nac<map,+e¢vn>m .. (2)

Since > a, converges,

an—0asn—w

= ma,—0asn— o
we can find a positive integer m:> m such that
[m an| < v n>m;

i.e. mac<evVn>m, .. 3)

From (2) and (3), we have

nan<e +¢ vYyn>m
or n an< 2¢ vYyn>m
= Ltna,=0

(i) Condition is not sufficient

Consider the series )_a, where a, =

— nlogn
Now by Cauchy's Condensation Test, the series )’ I is divergent.
= nlogn
1
But Lt (na))= Lt —=0
n—w n—o |Ogn

13.5 Art. Cauchy's Integral Test

If f be defined, non-negative and decreasing for x > 1, then the series Z f(n)and the

n=1

integral J. f (x) dx converge or diverge together.
1

We accept this result without proof.
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Example: Using Cauchy's Integral Test, discuss the convergence or divergence of the series
o 1

— P> 0.

n

n=1

. : TR i |
Solution: The given series is E —p> 0.
n-1 N

1
Here f(x)=F,p>0

f (X) is positive and decreasing for x > 1
Cauchy Integral Test is applicable.
Caselp=1

N—o0

Tf(x)dx: Lt Tldx
1 1X

Lt [logx];

N—o0

Lt (logn-logl)

—w-0=w
00

I f (x)dx diverges

[y

=X Zi diverges

p

n
Case Il p=1

1}
—
—
P —
><|
o
Q.
X

Il
>
5
1
| ><',—‘
-c o
| |
= >

1]
|
5
—
-
kel
I
Ml

Two sub-cases arise :
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0] Ifp<1,then Lt n!?P=w

N—o0

j f (X)dX = oo
1

= J. f (x)dx diverges
1

= zi diverges.

=nP
N 1
(i) Ifp>1,then Lt n*?= Lt —=0

n—ow n—x N
[foodx=— -1
1 1-p
= i , Which is finite
p—-1

f (x)dx converges

=38

=1
= D — converges
=n?

- 1
Combining the results of the two cases, we see that Z—p p > 0 converges for p > 1
n=1
and diverges for p < 1.

Some lllustrated Examples

Example 2: Show that the series

ﬁ, p > 0 converges for p > 1 and diverges for p < 1.
n(logn

Solution: The given seriesis »_ f(n)
n=2

where f(n) = m, p>0

clearly, f(n) is a decreasing function of n.
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by Cauchy's condensation test
> f(n) and > 2" f(2") converges or diverge together

Now > '2"f(2")= Zz“

2(l 92“)
-1
(nlog2)®
: 1 1
) (log2)°® n®
which converges for p > 1 and diverges for p < 1. (see Example 1)
2 f(n gn(log )’ converges for p > 1 and diverges for p < 1.

Example 3: Show that the series

is convergent for p > 1 and divergesforp <1

Solution: The given seriesis »_ f(n),

n=2
N
(logn)®

clearly f(n) is a positive decreasing function of n.

where f(n) =

by Cauchy's condensation test,

> f(n) and > 2"f(2") converge or diverge together

Now > '2"f(2")= 22“( gZ”)
2" i
(IogZ)

which is convergent for p > 1 and divergent for p < 1. (see Ex.1)

z f(n)= Z ! converges for p > 1 and diverges for p < 1
(logn)®

n=2 n=2
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0

Example 4: Discuss the convergence or divergence of the series zip p > 0, by using
n N

Cauchy's integral Test.

. . R - |
Solution: The given series is Z—p p>0
nfln

1
Here f(x) = F,p>0

= f(x) is positive and decreasing function for x > 1.
Cauchy Integral Test is applicable.
Two cases arise
Casel:Forp=1
0 n 1
[fOydx= | jm[=dx
1 1 X

n—oo

= Lim[logx];

n—o0

= Lim [log n-log 1]

n—oo
—w-0=w

0

I f (X) dx diverges :Zipdiverges.
1 n=1 n

Case 2: Forp=1

[ 109 ak= Limin—lpdx

1 n—ow n=1
) x|
= le{ }
n—oo 1_ p 1
I
= — -1
1-p LM

Two subcases arise:

0) ltp<1,then | jmn™* =

n—oo
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f(X)dX=o0 = j f (X)dX Siwepyeo

1

P —3

=X > idiverges

n=1 np
i It p>1, then imn®=1i 1 =0
(i) p>1then | 1mn*=LimM =~
7 1 1 - .
j f (X)dx= —— (0 - 1)= ——, a finite quantity.
1 1-p 1-p
jf(x) dx converges = Z—pconverges combining the above two cases
1 n=1 n

=1 :
we see that Z—p p > 0 converges for p > 1 and diverges for p < 1.
n-1 N

Example 5: Discuss the convergence or divergence of the series

o0

> ne”

n=1

Solution: The given series is Znén
n=1
—x2
f(x) = xe
_X2 —X2
= fx)=xe (2x)+e .1
=(1-2x% e <0Oforx<1
f(x) is positive and decreasing function for x > 1.
Cauchy Integral Test is applicable
0 n 2
Now J. f(X)dx= Limj xe dx
1

n—wo 1

-1 . f—
7|_|mj e (-2 dx

n—owo 1
—1 . -x2 n —1 !
~uiml* - 5[+ ]
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“Lime

nN—oo

I
|
N
1
o
|
|
iR
| I
VR
|
3’\1
Il
o
N—

o)

-1

2
209
2e

1
—, a finite quantit
2e quantty

I f (X) dX converges, consequently Z:nén .
1 n=1

13.6 Self Check Exercise

Q.1

Q.2
Q.3

d 1
Prove that the series , where an = ——————— converges if either p > 1 or
nZ:;an P 0gT)’ g p p
=1 and divergesforp<1landqg> 1.

. . . = n
Discuss the convergence or divergence of the series z —
m (N +1)
Discuss the convergence or divergence of the series ]

1
] p > 0
nlogn(loglogn)®

13.7 Summary

In this unit we have learnt the following concepts.

(i)
(i)
(iii)

Cauchy's condensation Test
Pringshiem's Theorem
Cauchy's Integral Test etc.

13.8 Glossary:

1.

Cauchy - Machaurin Integral Test -
The Cauchy Integral Test is also known as
Cauchy - Maclaurin Integral Test

Euler's Constant - The limit to which the sequence {t.} converges is called Euler's
constant, denoted by Y or C,0 <Y < 1.

13.9 Answer to Self Check Exercise

207



1 1
Ans.1 Hint. a, = ; Take b, = —for first case and b, = — for second
n®(logn)* n n
case.
, X ,
Ans.2 Hint. Take f(X) = ——=, find f(x) <0
1) ¢ +1)° fx)

V¥ n > 1 and then proceed.

Ans.3 Hint. Take f(x) =

(log logx)P, p > 0, find f'(x).
xlog x

f(x) is positive and decreasing for x > 3. Now proceed.
13.10 References/Suggested Readings
1. T.M. Apostal, Calculus (Vol 1), John Wiley and Sons (Asia) P. Ltd., 2002.

2. E. Fischer, Intermediate Real Analysis Springer Verlag, 1983

3. R.G. Bartle and D.R. Sherbert, Introduction to Real trellises, John Wiley and
Sons (Asia) P. Ltd., 2000.

4. K.A. Ross, Elementary Analysis - The Theory of Calculus Series-undergraduate

Tests in Mathematics, Springer Verlag, 2003.

13.11 Terminal Questions

4

1. Discuss the convergence or divergence of the series Z 3
=2+ 2

2. Show that the series

S N+5 5.

Z( - ] (log n)A is convergent.

—=\n"+1
3. Prove that the sequence {t.}, where

=1+ —+—+. +— -logn
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Unit - 14

Cauchy's Toot Test And D' Alembert's
Ratio Test For Infinite Series

Structure

14.1  Introduction

14.2 Learning Objectives

14.3  First Form Of Cauchy's Root Test
14.4  Cauchy's Toot Test

14.5 Kummer's Test

14.6 D' Alembert's Ratio Test

14.7  Self Check Exercise

14.8 Summary

14.9 Glossary

14.10 Answers to self check exercises
14.11 References/Suggested Readings
14.12 Terminal Questions

14.1 Introduction

Dear students, we have already discussed various test of convergence for an infinite
series in our previous units. In this unit we shall discuss about Cauchy's root test, D' Alembert's
ratio test and Kummer's test for the convergence of an infinite series. The root test is a criterion

1
for the convergence of an infinite series. It depends upon the quantity |_| msup (|an|)n where

n—oo

an are the terms of the series. It is particularly useful in connection with power series.
14.2 Learning Objectives

The main objectives of this unit are

0] to study first form of Cauchy's Root Test

(i) to learn about Cauchy's Root Test

(iii) to study Kummer's Test

(iv) to study D' Alembert's Ratio Test of convergence etc.
14.3 First Form of Cauchy's Root Test

R 1
Ifa,>0and Lim(a,)n=1, then ) &, is convergentif | < 1 and divergent if | > 1.
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- 1
Proof: (a) Let Lim(a,)r=1<1.

ChoosersuchthatO<l<r<1

Now, by limit superior property, 3 m € N s.t

(an)%<r vn>m

= an<rn vn>m
clearly > r"is a G.P. with common ratio i 0 <r < 1,

> r" converges

by comparison Test Zan converges.

1

(b) Let Lim(a)n=1>1
by limit superior property,
1
(a,)n > 1 for infinitely many n eN.

an> 1 for infinitely many n eN
f— an — O

= > a, cannot converge

But Zan is a positive term series

> a, diverges to + c.

Note: Cauchy's Root Test fails when | = d.
14.4 Cauchy's Root Test

1 0
If Lim (an)ﬁz [, an> 0, the series Z a,is convergent if | < 1 and divergent if | > 1.

n=1

1

Proof: (i) Let Lim (g,)n=1<1

Choose > 0 s.t. <1+ e<1.

1

Now asLim (a,)" =

= Idme Ns.t
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|- e< (an)%<l+e vn>m

Letusputl+e=r sothatO<r<1

(an)%<r vn>m

= an<r” vyn>m
clearly > r"is a G.P. with common ratio r 0 <r < 1.

Dr" converges

by comparison test, Zan converges

(ii) Let  Lim (an)%: I>1

Choose €> 0 s.t. [>]-e>1

1

Now as Lim (an)ﬁ =,

dm e Ns.t.

|-e<(qq)%<|+e vn>m

Take |-e=rsothatr>1

1

(a,)n>r vn>m

= an>r" Yn>m

Now, Zr" is a G.P. with common ratior > 1
> r" diverges
by comparison test, Zan diverges

Note: This test is applied when power of every factor of a, is a multiple of n.

Some lllustrated Examples

n+1\"
Example 1: Test the convergence or divergence of the series Z[B—j
n

Solution: The given series is Zan , where
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1 1
1 [n_JrlJ“ " onel M
@)= % ) [ " 3
1 1+i
Li n= Li — | = =<1
= nLT(qq) nLT 3 3<

Thus given series Zan is convergent by Cauchy's Root Test.

Example 2: Examine the convergence or divergence of the series

e

Solution: The given series is Zan , where

n\"
an=| —
(n+l]

1 1
=|—1|= .
1+= 1

n (1+n)
, L 1
Lim(a,)n= Lim -
n—o0 n—w® ( 1)

1+—
n

1
=—<1
e

given series Zan converges by Cauchy's Root Test.
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n
Example 3: Discuss the convergence or divergence of the series Z(1+ lj (

n

Solution: We have

>4, , where a, = (1+Ej” (lJn

n) \2
e
Lim (g, )= (1 +0) (%): 1

N—o0 2

The given series Zan converges by Cauchy's Root Test.

0 logn
Example 4: Examine the convergence or divergence of the series Z 0 n X
n=2 Ogn
Solution: We have the given series as Z a,,
n=2
logn
where an =
(logn)”
logn.|
_ eOQn ogn (...ax :elogax _ exloga)
(logn)”
logn logn
1 ogdh
n=
(&)= Sogn
: 1 . _logn . logn
= Lim(a,)r=0<1 ( L|mi=0asL|mi:Oj
N0 N> Jﬁ N> Jﬁ

by Cauchy root test, Zan converges.

145 Kummer's Test

If Zdi is a divergent series. Let

n
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Tn = Dn & Dn+1. Then the series Zan converges if Lim T,> 0 and diverges if Lim
ar|+1
Tn< 0; both the series being positive terms series.

Proof : (i) SetLimT,=g>0
Leth be anumbers.t.0<h<a
we can find a positive integer m(h) s.t.

To>hforn>m.

i.e. Dn ah
an+1

h an+1< @anDn - @n+1 Dn+1 forn >m

-Dmni>hforn>m

Changing nto m, m+1, m+2, ...... , -1 and adding we get
h (a.m+]_+ a.m+2 + ... + a.n) < a.m dm - anDn

<amdm

2,
h

ami1t Amizt ... + an =kforn>m

the series converges by Cauchy's General Principle of the positive terms series.

(i)  Let Lim Ta<0

To<forn>m

Dn & -Dnai<Oforn>m
aTH—l
or anDn< an+1 Dnsa forn>m

Sequence {a.Dn} is an increasing sequence.
am Dm< @m+1 Dm+1<@m+2 Dm+2 .... < anDnfor n >m
anDn> am Dm=kforn>m

k
ar>— forn>m
D

n

1
—diverges.
2.5 diverg

n

Hence by comparison Test, Zq diverges.
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Note : Particular form of Kummer's Test.

If Zi is a divergent series and T, = Dy, &,
Dn a'n+l
Li_mi> 1 and diverges if Lim i< 1.

&, 81
Proof : Take Dn =1 in Kummer's Test.

Dn+l1=1

- Dn+1, then the series Zan converges if

=1 . ZDi is divergent.

n

1
Dn

Ty =Dy Dy = o1
a'n+1 ah+1

D a, is convergent if Lim Ty> 0. i.e. if Lim [i—l} 0 or if u_m(iJ> 1.
a'n+1 an+l
Likewise > a, is divergent if Lim S,

+1

14.6 D' Alembert's Ratio Test

If |_i mh = |, then the positive terms series Zan converges if | < 1 and diverges if |

n—oo

> 1.
Proof : (i) Setl<1.

Choose e>0st.l<l+e<1

3 a positive integer m s.t.

I-e<h<I+GVnzm

a,

Putl+ e=r sothat0O<r<1.

h<rVn3m

a,

Charging nto n-1, n-2, .... m, we have
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ar|+1

Multiplying these, we get

i < h-m

r
or an< am' —

an< kv n>m where k = ﬁm>o.

Now Z krmis a G.P. with common ratior suchthat0<r<1

Y. k" converges

by comparison test » &, converges.
(i) Leti<1

Choose e>0s.t.I>l-e>1

; H aml —
Since —= =
Lim~,

h>I-eVn3m

a,

5ﬂ<1Vn3m
a,

a.n+1> an‘v’ n 2 m
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{an} is an increasing so that an does not tend and zero as n — .

D" a, cannot converge.

Since ) a, is a positive terms series

> a, diverges.
Note : Cauchy's Root Test is stronger than D' Alembert's Ratio Test. This is so because
1
Lim(a,)" exists whenever | j mh exists, but the converse is not true.

n—oo n—o0

Some lllustrated Examples

Example 5 : Show that the series

Zan= 1+ —+ —2+ X_3 +
TR TR TR
Xn—l n
a.n: ,an+l— I
n-1! n!
Now P = X n-1
an nl Xn—l
)
Lim®2 =x Lim=>= x0=0<1
nN—oo an N—o0 n

by ratio test, Zan converges for all finite values of x > 0.

Example 6 : Discuss by a suitable example that Cauchy's Root Test is better than D' Alembert's
ratio test.

Solution : Set us consider a series »_a, as

1 1 1 1 1 1
—+ — + —+
25

R Y 3
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1 1 1

—2n_1 y @z2n = F, Aon+l =

1 11
(32n71)2n71 = E’ (azn)2” = §

dzn-1 = W

1

. 1 i 1
Lim ()= = Lim(a.)> = 3

n—oo n—o

— 11
Lim(a,) = §<1

Zan is convergent by Cauchy's root Test

on 2n-1
Again B 3 =3(§j

32n 22n—1 2
s g
leaz—1 0
2n 2n
Also i: 22 =2 (EJ
a2n+l 3 " 3

N—0 n+1

\3

i: <1
a.,
oA

”\

and =Zwo>1

an-¢—1
Ratio test does not provide us the result.
Root Test is better than the Ratio Test

Example 7: Discuss the convergence of the series

X NG X3
—+
X+1 x+2 x+3

Solution: We have

2 3

Zq;— AP S
X+1 x+2 x+3
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Xn Xn+1
y An+l =

an =

X+n X+n+1
LA, ) X+n
— =y,
LIJ;ﬂ a, LnL!.ZnX+n+1
X1
=x Lim+y"—
X 1
e
n n
0+1
= X. =x.1=x
0+1+0

by Ratio test Zan converges for x <1 and diverges for x > 1.

For x = 1, the ratio test fails.

1
Forx=1,a,= —
1+n

1
Take b, = —
n

) ) 1 1
EL[)T]%Z |_nL£nl—= 0—+1:1, finite and non zero

n
Y a,and > b, converges or diverges together.

1
But  >'b = > Ediverges by p-test
> a, diverges

: . X
Example 8: Discuss the convergence of the series Z— x> 0.
n

Solution: Here the given series is Zan

X"
an= —
n
Xn+l
an+l =
n+1
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h:X(szx Ll
a, n+1 14 =

n
aml_ 1 j
X
Lim=" (1+o
by ratio test Zan converges for x < 1 and diverges forn > 1

For X =1, the ratio test fails

1
When x=1 Zan = Zﬁwhich diverges by p-test.

n
Example 9: Discuss the convergence of the series — 1x“, x> 0.

Solution: Let the given series is Zan ,

n

an = x".
A |

n+1
anrg = —————x"!

(n+1)"+1
n+1 X2 +1
NOW an+1: 5 Xn+1X

a, n+1+2n+1 nx"

n+l n®+1

n n+2n+2
1 1+i

_ 1 n

—(1+ ]—2 5

1+—+—
n n

aml_ 1+O -
I—Iman (1= )1+O+O

n—oo

by ratio test, Zaq converges for x <1 and diverges for x > 1.

For X = 1, the ratio test fails
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For X=1,an=

n°+1
1
Take bn:_
n
. a, ) n? : 1
_— = —=1
Limy, = Lime= Bim
n2

which is finite and non-zero

Zan and an converges or diverges together.

1
But  >'b = > Hdiverges by p-test.

> a, diverges for x = 1.

14.7 Self Check Exercise
2
Q.1 Examine the convergence or divergence of the series Zn—l
n!
Q.2 Examine the convergence or divergence of the series
n-1
Z n'’ x>0
1+X
Q.3  Show that the series ZX_, converges absolutely for all x.
n!
3 XS X7
Q.4  Prove that the series x - 3 +E - = F o is convergent for -1 < x < 1.
14.8 Summary
We have learnt the following concepts in this unit
0] First form of Cauchy's Root Test
(ii) Cauchy's Root Test
(iii) D' Alembert Ratio Test
We have noticed here that Cauchy's Root test is more powerful than the D' Alembert's
Ratio Test.
14.9 Glossary:
1. Cauchy's Radical Test - The Cauchy's Root Test is also known as Cauchy's
radical test.
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2. D' Alembert's Ratio Test - The positive terms series converges if

Lim -2 >1
a'n+1

14.10 Answer to Self Check Exercise
Ans.1 > a, converges

n-1 n-1

Ans.2 Take U, = —, Unsa = ————, then proceed for0<x<1,x>1,x=1

1+X XM

Xn n+1
Ans.3 Take an= —, .. @n+1 = and then proceed.

n! n+1

2n-1 2n+1

Ans.4 Take a, = (-1)™* , @ne1 = (F1)N then proceed.

2n-1 2n+1
14.11 References/Suggested Readings
1. T.M. Apostal, Calculus (Vol 1), John Wiley and Sons (Asia) P. Ltd., 2002.
2. E. Fischer, Intermediate Real Analysis Springer Verlag, 1983

3. R.G. Bartle and D.R. Sherbert, Introduction to Real trellises, John Wiley and
Sons (Asia) P. Ltd., 2000.

14.12 Terminal Questions

(-1)"(n+2)

1. Show that the series u =
Z n 2"+5

is absolutely convergent.

(n-2)"

2. Prove that Z 37 is convergent for -1 <x<5.
(_1)“—1 x2n-1
3. Discuss the convergence of the series Z—
(2n-1)!

4. Examine the convergence or divergence of the series

n

> ———.,x>0,a>0
X'+a
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Unit - 15

Raabe's Test, Guass Test And Logarithmic
Test Of Convergence For Infinite Series

Structure

15.1 Introduction

15.2 Learning Objectives

15.3 Raabe's Test

15.4 D' Morgan And Bertrand Tests
15.5 Guass Test

15.6 Logarithmic Test

15.7 Self Check Exercise

15.8 Summary

15.9 Glossary

15.10 Answers to self check exercises
15.11 References/Suggested Readings
15.12 Terminal Questions

15.1 Introduction

Dear students, in this unit we shall study few more tests of convergence for an infinite
series. The ratio test may be inconclusive when the limit of the ratio is 1. Extension to the ratio
test, however, sometimes allow one to deal with this case. Raabe - Duhamel's test. On the this
hand, Gauss Test is another root test the convergence of an infinite series.

15.2 Learning Objectives
The main objectives of this unit are
0] to study Raabe Test of convergence
(i) to learn about D' Morgan and Bertrand Test
(iii) to study the Gauss Test of convergence
(iv) to learn about logarithmic test of convergence for an infinite series.
15.3 Art. Raabe's Test

If Za\q be a positive terms series, then Zan converges or diverges according as |_tn

[i—1]> or<1.
an+1

223



We accept this result without proof.
Note. Two Important Notations

1. If |_t |s finite and non-zero, we say that f(x) = O {¢ (X)} as x — a.

X—a

In other words f(x) = O {¢ (x) means |f(X)] < A | (X)] where A is positive
constant.

It must be kept in mind that

O(Ej—wasn—moand O(Ioﬁ
n

—0asn— o
n

Again if f(x) = O (1) means that f(x) is bounded.

If Lt f(x) = 0, then we say that f(x) =0 {6 (X)}  asx — a

X—a

15.4 Art. D'Morgan and Bertrand's Test

If Zan is a positive terms series and

Lt { [—— j 1} log n =1, then Zan converges if | > 1 and diverges if | > 1.
a,

N—o0 +1

We accept this result without proof.
15.5 Art. Gauss's Test

If an> 0 and B 1+ Lo +0 [izj , then Zan converges for u> 1 and diverges
a'n+l n n
for u< 1.
Proof: (i) Let p= 1

Now —=1+—+O( j
a'n+:l. n n
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by Raabe's Test, Zan converges for u> 1 and diverges for pu< 1.

(i) Letp=1

S
A n
e e [

by D' Morgan and Bertrand's Test, Zan diverges.
Note. Another Form of Gauss's Test.

If an>0 and B 1+ Lo +a—g, where p > 1 and {an} is a bounded sequence, then the

a‘n-¢—1 n n
series Zan converges for u> 1 and diverges for u< 1.

15.6 Art. Logarithmic Test
If a.> 0, then the series > a,

a,

0] converges if | {nlog ——>1and
N—o +1
(i)  divergesif | tnlog <1
n—ow +1

We accept this result without proof.
Illustrative Examples

(n)

——x", x>0
2n

Example 1: Discuss the convergence of the series Z

Solution: The given series is Zan where

ey

2n
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_ [(n+)n] 2n
(2n+2)(2n+1)2n (n)z'

_ h+l «
2(2n+1)
1+1
:—nl X
2| 2+~—
n
a,.,_ 1+0 X
Lt == “2

X

Sl T 20+0)7 4
X X

by Ratio Test, »_a, converges for R 1i.e. x < 4 and diverges for R lie x<

. X .
4 and diverges for 2 >1lie x>4.

When x = 4, Ratio Test fails.

For  x=4 a, _ 2(2n+1).£: 2n+1
a,., n+l 4 2(n+))

i-lz 2n+1

ar|+1 2(n+1)

2n+1-2n-2
2(n+1)

1
2(n+1)

n(i—ljz N
a‘n+l 2(n+1)
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-1
2(1+ 1j
n

a, 11
S 1] - =
Lt n[am J 20:0 2 "

by Raabe's Test, Zan converges fro x < 4 and diverges for x > 4.

Note. Another form of above question.

Discuss the convergence or divergence of the series

W @, 6,

1+ X + X + X2+ ... , Xx>0.
2 4 6
Example 2: Discuss the convergence or divergence of the series
1+ ﬂx+ ﬁxu @x% ........

5 5.7 5.7.9

Solution: The given series is Zan where

_ 468....(20+2)
5.7.9.......(2n+3)

46.8........ (2n+2)(2n+4) «

n

n+l

an+1 =
"7 579...(2n+3)(2n+5)
A, _ 2n+4 «
a, 2n+5
1+i
- 25nx
1+ —
2n
Ltﬂ_ EX:X
e & 1+0

by Ratio Test, Zan converges for x <1 and diverges for x > 1

When x = 1, Ratio Test fails.

a, _ 2n+5
Forx=1, ——/—=
a,. 2n+4
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& - 2n+5_1
a,., 2n+4

_ 2n+5-2n-4
2n+4

1
2n+4

n( & —1]: n
a,., 2n+4

a”— = 1 :1
,';E”(aM 1] 2(140) 2

by Raabe's Test, Zan converges for x < 1 and diverges for x > 1.

Example 3: Show that the series
a+l, (a+1)(2a+1) . . (a+1)(2a+1).....(na +1) .
p+1 (B+1)(28+1) (B+1)(2B+1).....(n3+1)

Converges if B>o and diverges if f<a.

Solution: The given series is »_a, where

(a+1)(2a+1).....(na +1)
(B+1)(28+1).....(nB+1)

T (B+1)(2B40) (ng+1)(n+15+1)
a, _ n+lo+1
a,, n+1p+1
_ N +a+1
ng+p+1
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a+l
a+—=

_ n
p+1
e

& _at0_a
f!:;!:o a'n+l ﬂ—FO ﬂ

by Ratio Test, Za\q converges for %< lie. a<p
. (24 .
and diverges for E> lie. a>p

When 2 1li.e. o =, Ration Test fails.

When a = 3,

a, nhNa+a+l_ 1

a, ha+a+l

B 1=1-1=0
ar|+1

n[i—ljz 0
ar1+l

&, _
o[ 2 t}ocs
N—0 an+l

by Raabe's Test, Zan diverges

given series converges if >a and diverges if f<a

Example 4: Find whether the series

1+l l+1-¢-1 1+1+}+l
234

X+ X 2+ X 23+ X o is convergent or divergent.

Solution: The given series is Zun where

11 1
1+E+§+ ...... —
Un= X
11 1
l+5+§+ ...... 7+—1
Un+1 = X n
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u, _ 1 1 1_
Lt _Lt i_xo_l_l

n—o0 un+l n—o0 X

Ratio Test fails.

Now log Uy =Iog(£]n+l
u X

u 1
nlog —= ——log —
(VI +1 7 X
1+1
n
u 1 1 1
nlog —= ——log —=log —
,!:!:0 J u,, 1+0 J X J X

N : o : 1
By Logarithmic Test, given series is convergent if log » >1

. 1 L . 1
i.e. X <—and the series is divergent if x >—.
e e

1
When x = —, Test fails.

e
u n n
Nownlog —= ——loge = —
u,, nh+1 n+1
u n
nlog—-1=——-1
- n+1
1
n+1
u logn
logn|nlog—-1 - .og9n
™ n+1
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Lt logn {nlog il —1}:O<1 { LtM—O}

n—ow un+1 n—oo n + 1

: L 1
given series is divergent for x = —
e

. . . 1 . 1
Hence given series )" u, is convergent for x <= and divergent for x > =
e e

Example 5: Discuss the convergence of the series
1? 1’5 1°59

F + o + CE1P oo to infinity.

1?5 1’59
r., rs rs.
42 48 4.8.12°

Solution: The given seriesis > a, =

_ 125°9%....(4n—3)?
A812%.....(4n)

n

1°5%.9°.....(4n-3)*(4n+1)?
42.8°.12°......(4n)%(4n + 4)?

an+1 =

a _ (4n+4)
., (4n+1)°
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Where u= §>1

by Gauss's Test, given series Zan converges.

Some More lllustrated Examples
Example 6: Discuss the convergence of the series
1 13 135

+ —+ ———+....
2 24 246
Solution: Here

1 1.3 135
2611_+_+—
2 24 246
1.35....2n-1
24.6.....2n
1.3.5.....(2n—1 2n+1)

)(
246.....(2n)(2n+2)

Where a, =

An+1l =

5 1
a 2+l “Toq

n
an+l 2n+2 2+Z
n

Now

. a, 2+0_
o =——=1
LImz"=57%
Ratio Test fails
&—1- 2n+2_ 1
a,., 2n+1 2n+1

n[a“—l]z n__ 11
a,., 2n+1 2,

n

: N I
len(am 1} 2:0 2

n—oo

Now
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by Raabe's Test Y a, diverges

Example 7: Show that the series

1.23....... n
Z X" x>0
35.7...(2n+1)

Converges of x < 2 and diverges of x > 2

Solution: We have the given series as Zan

Where g = 123wl o

35.7....(2n+1])

_ 123....n(n+2Y
35.7...(2n+1)(2n+3)
1
a‘n+l — n+1 — 1+ﬁ
a  2n+3 3

2+—
n

n+l

aAn+1

Now

X
. a,, _1+0 X
LnLI;nan 2+O'X 2

. X . .
by Ratio test, Zan converges for > < 1li.e.x<2and diverges

X )
for §>1|.e.x>2.

X

when =1i.e. x =2, Ratio test fails.

For
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- -
Lime| 2-2]= ;5= 3

by Raabe's test, Zan converges for x < 2 and diverges for x > 2.

Example 8: Discuss the convergence of divergence of the series

i 369.3n
' 4.7.10..(3n+1)

Solution : The given series is Zan where
_ 3.6.9...(3n)
~ 4.7.10..(3n+1)

s = 3.6.9...(3n)(3n+3) (i
+1 =
4.7.10...3n+1)(3n+4)

n

an

Now

1
1+—

ar|+1 - 3n+3 - n X
a, 3n+d4 4 4
3n

M aml — 1+O —
= ——X =X
Lim= "~ 1%

by ratio test Za\q converges for x <1 and diverges for x > 1

Forx=1

4

a, =3n+4:1+§
a,, 3n+3 .1

n

&)y
o) bof )

1+i—l+0(i)

3n n n?
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= 1+i+0(i2j

3n n
= 1+ﬁ+0(%j
n n

1
Where M§ <1

by Gauss's Test, the given series Zan diverges

The given series Zan converges x < 1 and diverges for x > 1.

. _ 1
Example 9 : Test the convergence or divergence of the series Z—p , p> O.
n

o - 1
Solution : The given seriesis »_a, , where a, = =

1
dn+1 =
(n+1”
1 p
1+~
Now B o (147 _((+DY | Ty
a, n’ n 1
:1+£+O i :1+ﬁ+o i
n n’ n n’
where p=p

by Gauss's Test, Zan converges for p> 1 and diverges for p< 1

Example 10 : Discuss the convergence or divergence of the series

a, a@+)  a@+h(a+?) |
b b (b+1) bb+)b+2)

1+

Solution : The given series is ZUn where

_a(a+h(a+2)..(a+n-1
" b (b+D(b+2)..(b+n-1)

_a(a+h(a+2)..(a+n-n(a+n)
" b (b+)(b+2)...b+n-D(b+n)
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b

u, _b+n _ 1+ﬁ
u., a+n 1+g
n

el
(Dol )]

= 1+E+O(%)
n n

1
= 1+ﬁ+0(—2j, p=b-a.
n n
by Gauss's Test Zun converges for b - a> 1 and diverges forb-a<1
Example 10 : Discuss the convergence or divergence of the series
2x  Fx* £
— + +
2! 3! 41

Solution : We have the given series as Zaq :

1+

Where
nn—lxn—l
an =
n!
(n+1)"x"
an+1 =
(n+1!

Now

a, (n+1)! it
_ ()™ (n+1j"'l
n"* n
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Lim%:(1+0)'1.e.x:ex

by Ratio test Zaq converges forex <1

. 1 . . 1
i.e. X '<E and diverges forex > 1 i.e. x >E

1 ) .
But at x = —, ratio test fails.
e

1 a, —(n-1)
Forx=—, —/ =log e + log (1+—j
€ a'n+l n

=loge-(n-1)log (1+%j

=1-(n-1) {%—i+i3 ..... }

2n>  3n
|Ogi:i_i2+o(i3j
a, 2n 6n n
= nlogi=§-3+o(%j
4 2 6n n
H a'n+1_3
nlog 2= =—-—>1
LL[on ? a, 2

by log arithmic test, Zaq converges

: . 1 . 1
Hence the given series Zan converges for x <— and diverges for x >—.
e e

15.7 Self Check Exercise
Q.1 Discuss the convergence or divergence of the series

(n +i)“

Q.2 Discuss the convergence or divergence of the series
S
n°+1

Q.3 Discuss the convergence or divergence of the series.

X", x>0
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15.8

15.9

15.10

15.11

15.12

n!
2 (a+n—1)’a>0

Summary

We have learnt the following concepts in this unit

() Raabe's test of convergence and its application
(i) D' Morgan and Bertrand Test of convergence

(iii) Gaun's Test and its application to test the convergence or divergence of an
infinite series.

(iv) Logarithmic test and its application of an infinite series.

Glossary:
1. Raabe's Test (another form) - If Zaq be a positive terms series when Zan
converges or diverges according as |_| mn (&—1} or<1.
nN—o an+l
2. D' Morgan and Bertrand Test (another form) and |_| m{n(i— j—l:l log n =
nN—o0 +1

[, then Zaq converges if | > 1 and diverges if | < 1.

Answer to Self Check Exercise

Ans.1 ' a converges for x < e and diverges for x > e
Ans.2 By Gauss's test Zq converges for x < 1 and diverges for x > 1

Ans.3 By Gauss's test, Zun converges fora-1>1ie.a>2anddivergesfora-1<1
ie.a<2.

References/Suggested Readings
1. E. Fischer, Intermediate Real Analysis Springer Verlag, 1983
2. T.M. Apostal, Calculus (Vol I), John Wiley and Sons (Asia) P. Ltd., 2002.

3. K.A. Ross, Elementary Analysis - The Theory of Calculus Series -
Undergrounuate Texts in Mathematics, Springer Verlog, 2003.

Terminal Questions
1. Discuss the convergence of divergence of the following series.

1 13 135
+

1,13 135
ATV REVT:
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N 135...(2n-1) 1

OIS el 2
246.....(2n) n

x 1x* 13 x° 135X

(iii) —+— —+ + +onee

1 23 245 2467
Discuss the convergence of divergence of the series

N a(a+1l N a(a+h(a+2) N
1.2 1.2.3

l1+a
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Unit - 16

Sequences of Functions
(Pontwise and Uniform Convergence)

Structure

16.1 Introduction

16.2 Learning Objectives

16.3 Sequence In A Set

16.4 Sequence of Functions

16.5 Pointwise Convergence

16.6  Uniform Convergence

16.7 Mpn-Test For Uniform Convergence
16.8 Summary

16.9 Glossary

16.10 Answers to self check exercises
16.11 References/Suggested Readings
16.12 Terminal Questions

16.1 Introduction

Dear students, you are already familiar with the concept of sequence and series from
your previous knowledge's. There we have discussed the case when the terms of the sequence
were numbers. In the present unit we shall discuss. Sequences whose terms are real valued
functions defined on an interval as domain. We shall denote the term by £, (x), sequence by {fn}
or <fn> etc.

16.2 Learning Objectives

The main objective of this unit are

0] to study the concept of sequence in a set

(i) to learn about sequences of functions

(iii) to study pointwise and uniform convergence of sequence of functions

(iv) to study Mn-test for uniform convergence etc.
16.3 Sequence in a Set

A sequence in a set E is a mapping of the set N of positive integers into E.
Example: A sequence in the set of reals f : N — R is defined by

f(N)=n?vY neN
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The image f(n) is denoted by f, and we call f, the nth term of sequence. The sequence
is often written as {f1, f2, f3,....., fn} or simply {fn}.

16.4 Sequence of Functions
A sequence whose terms are real valued functions defined on a set E is called sequence
of functions.

1
Example. The sequence {f» (X)} where f, (x) = &v X € R, n eN is a sequence of
functions.
Uniformly Bounded Sequence

A sequence {f.} of real valued functions defined on a set E is said to be uniformly
bounded on set E if 3 a real number M s.t. |fn (X)] <M V X € E and for every positive integer n.

Example 1. Consider {f» (X)} defined by f, (X) = sin nxV x e r. Show that the sequence {f»} is
uniformly bounded.

Solution: fn (X) =sin nxV x € R
We know that [sinnx| <1V x e R,V neN
{fn (X)} is uniformly bounded.

1
Example 2. Show that the sequence {f. (x)} defined by fn (x) = &is not uniformly bounded.

Solution: fn (X) = 1
nx

. 1
Since — - wasx—0
nx

1
fn(X)= n_ is not uniformly bounded.
X

16.5 Pointwise Convergence

A sequence of functions {f.} defined on set E is said to be pointwise convergent if for
each x € E sequence {f. (x)} or real numbers converges.

Let {fn (&)} converges to f (a) say for a € E. Similarly let {f» (b)}, {fn (C)}...... at points b,
Cy veeen or E converge to f(b), f(c),..... i.e. let the sequences of numbers {f. (x)} converge for x

We can define a real value function f with domain E and range

{f @), f(b), f(©),...}st.f )= |jm/fn ) V x € E.

X—>00
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The limit of the function f» (x) to which it converges for each x € E will itself be a function
of x, say f(x), then f(x) is called limit function of f.(x) on E. We simply express as fn(x) — f (X)
for each x € E as n — o and say {fn» (x)} converges pointwise to f (X) on E.

Thus for x € E and given &> 03 m e N such that
lfn () - f (¥ <e¥ n>m
Note. Thus number m in general depends upon x and ¢ both.
16.6 Art. Uniform Convergence on an Interval

A sequence of functions {fn}, n = 1,2,3,..... is said to converge uniformly on an interval E
to a function f if for any > 0 and for all x € E, there exists a + ve integer N (independent of x
but dependent on <) such that for all x € E.

Ifn (X) - f ()| <ev n>N
Point of Non-uniform Convergence

A point such that the sequence does not converge uniformly in any neighbourhood of it
however small, is said to be a point of non-uniform convergence of the sequence.

Art. Difference between Pointwise Convergence and Uniform Convergence.

In the case of pointwise convergence, for each ¢> 0 and for each x € E, there exist a
positive integer N (depending upon ¢ and x both) such that [fn (X) - f (X)] <¢, ¥V n > N. But in
uniform convergence, for each ¢> 0, it is possible to find a positive integer N (depending upon ¢
but not upon x ) such that

[fn(X)-f(X)|<e,vn>NandV x e E
Note 1. Every point-wise convergent sequence need not be uniformly convergent.
Note 2. A sequence which is not pointwise convergent cannot be uniformly convergent.
Art. Cauchy Criterion for Uniform Convergence

A sequence of functions {f»} defined on E converges uniformly on E iff for every > 0 and
for all x € E there exists a positive integer N such that

|fren(X) - /o () <e, VN>N,p>1
Proof: The condition is necessary
Assume that the sequence {f.} converges uniformly on E to the limit function f.
to a given ¢> 0, and for all x € [a, b] there exists positive integers mi, m2 such
that

|fn(x)-f(x)|<§ vn>m
and  [fop () - £ ()] <§ v n>m,

242



Let N = max {m1, mz}

|fn(x)-f(x)|<§ vn>N

and |fn+p(x)-f(x)|<§ vn>Np>1

NOW  [fnp(X) - fo (91 = [fnep() - £ () + £ (9 - fn ()]
= [ (= T ]-[ .0 - T ()]
fonp (0= FOJ[+[£,00 = £ (x)

<

<%+_=8 vn>N,p>1

frp()—f(X)|<e¥ n>N,p>1

The condition is sufficient.

Assume that the given condition holds. By Cauchy's general principle of convergence

{fn} converges for each x € E to a limit say f. Thus the sequence converges pointwise to f. We
shall prove that this convergence is uniform.

(1).

Art.

For a given &> 0, choose a positive integer N such that (1) holds. Fix n, and let p — « in

foep = fasp—
[f(X)-fn(X)|<evn>Nandforallx e E [ of (1)]
ie. |f,()—-f(x)[<evn=NandvxeE

fn (n) — f (X) uniformly on E
i.e., sequence {fn (X)} converges uniformly to f (x) on E.
Note. Above result can be written as
lfn () - /fm(X[<e vnm=N
Let {fn (X)} and {gn (X)} be two sequence defined on set E. If {f. (xX)} and {gn (X)} converge

uniformly to f (x) and g (x) respectively on set E then {fn (X) + gn (X)} and {fn (X) - gn (X)}
converge uniformly to f (x) + g (x) and f (x) - g (x) respectively.

Proof: Since {f» (x)} and {gn (x)} converge uniformly to f (xX) and g (x) respectively on E.

Therefore for every ¢> 0 3 two positive integers m; and m; such that

|fn(x)-f(x)|<§w>m1andeeE ..... L)
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and |gn(x)-g(x)|<§w3m2andvXeE ..... @)
Take m = max {m1, mz}

|fn(x)—f(x)|<%w3mandweE ..... 3)

and Ign(x)—g(x)|<EVn3mandVXEE ..... 4)

Now for n > m, x € E, we have
[fn (X) + gn (X) - (f(X) + 9 ()] = [{fn (%) - f ()} +{n (X) - 9 (O}
<1/ () - f (9] + 190 (%) - 9 (X)]
e €

S r5Ee [+ of (3) and (4)]

{fn (X) + gn (X)} converges uniformly on E to f (x) + g (X)
Again |(fn (X) - gn (X)) - (f (X) - g )| = |(fn (X) - £ (X)) - (9n (X) - g (X))]
SI(fn () - f () +1gn (X) - 9 (X))
E ¢

<§+ > =c [ of (3) and (4)]

{fn (X) - gn (X)} converges uniformly to f (x) - g (X) on E.

Art. Verify that product of two uniformly convergent sequences need not be uniformly
convergent.

Proof: Let  fn (0 = XMy Nl x e 0, 1)
(n+1) x
(n+1)x?
on (X) = s> vVneN,xe(0,1)
1+n°x

1
Lt/ = x and |_tgn(X) =0where x € (0, 1)
N~ 1 :
the sequences {f» (xX)} and {gn (X)} converge pointwise to — and 0 respectively on
X

0, 1).

n+x+1 1

(n+Y)x x

fn(x)_1 =

X
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n+x+1-n-1
(n+1x
=—— > 0asn—w
n+1
{fn (X)} converges uniformly on (0, 1)

2
(n+1)x _0‘

n(X)-0|=
lgn (x) - O 1

(n+1)x2 n+1
= N < > —0asn—ow
1+ n°Xx n

oot

} converges uniformly to 0 on (0, 1)

1+ n?x?
2
Product = f, (X) gn (X) = nX+—X2tXfor eachx € (0, 1)
1+n°x
NX+ X + X
n (X n(X) = -
Lt/ 0090 00= Lt =
X X+X
_ ﬁ+ n
"Lty
n? + x
0+x

1
Assume that {f» (X) gn (X)} converges uniformly to O so that for ¢ = 2 dmeN

NX+ X + X
n (X n (X -0l = |—————
|fn (X) gn (X) - O] L 0(
NX+ X* + X

1
<=Vn>mandxe (0, 1)

1+ n*x?

1
Taking x = n € (0, 1), we get
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1 1 1 1
I+ 5+~ I+ 5+— 1 1
n_n-_n _n >E >Z which contradicts the supposition.

{fn (X) gn (X)} is not uniformly convergent.
Illustrative Examples
Example 3: Does pointwise convergence imply uniform convergence ? Justify your answer.
. nx
Solution: Let fon (X) = ——=—= VxeR
1+n°x

Then f(X)= Lt/

n—ow

0

- 0+ X

Also, whenx =0, fn (X) =0
= fx)=0

F=Lt/MAVxeR

n—oo

=0VxeRwithx=0

5 =

the sequence {f) is pointwise convergent.
We shall show that convergence is not uniform in any interval [a, b] including '0'.
Assume that {f.} converges uniformly in [a, b]
to a given ¢> 0, 3s a positive integer N such that for all x € [a, b]
Ifn () - f (X)] <e v neN
nx

0
1+ n°x?

<g ¥V neN

1
Take ¢ = 2 and an integer K with K > N
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Such that %e [a, b]

1
Takingn =K, x = E we have

1
o Koo
2.,2

1+n°x 1+K2.K12

_1_1.1
1+1 2 4

which contradict the supposition.

the sequence is not uniformly convergent in the interval [a, b] which contains the

oint i
p K
) 1
Since E — 0as K — o,

the interval contains the point '0'.

Hence, the sequence is not uniformly convergent on any interval [a, b] containing '0'".

nx .
Another Statement : Show that the sequence {fa ()}, When fn (x) = ol not
+n°Xx

uniformly convergent on any interval containing O.
1 . . .
Example 4. Show that the sequence {fn}, where f, (X) = ——is uniformly convergent in any
X+n

interval [0, b], b > 0.

1
Solution: Here fo(X)= —
X+n

F&=Lt/m®

n—o0
1
- r!::[c X+ N
=0V xel0,b]
the sequence converges pointwise to '0'.

Again for any &> 0,
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|fn (X) - f ()] = <g
X+n
if x+n>1
&

. 1
i.e.,ifn>— -x,
g

) ) . ) 1
which decreases with x and its maximum value = —
&

. 1 . L
Let N be an integer >—, so that for e> 0, there exists a positive integer N such that
&

Ifn () - f (X)] <¢ v neN
the sequence is uniformly convergent in any interval [0, b], b >0
Example 5: Show that the sequence {f. (x)} defined by
fo(X) = NXe™ ¥ n eN
Convergent pointwise but not uniformly in [0, «]
Solution: Here fn(x) = nxe™ vn eN

We have

F=lim nxe "™

X—>00

=lim 2z [ of L' Hospital Rule]

=0V xel0,x]
sequence converges pointwise to 0.
Assume that the sequence is uniformly convergent in [0, o]

giveneg>03tsuchthatvn>nand vV x>0
lfo(¥)-f ()| =mxe™<e ... 1)
Let to be an integer greater than t and e?¢?
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1 1
Puttingt=to, Xx= —=in (1) we get to = —— e'<¢
g 0 \/t_ () g 0 \/ﬂ

0
or Jtp <ee

or to< e?e? which is contradiction to fact that to> e?¢?
given sequence is not uniformly convergent in [0, «]

16.7 Mn-Test for Uniform Convergence

If {fn} is a sequence of functions such that | t fa (X) = f (X), X € [a, b] and

N—o0

Ma = Sup {|f,(3)— f(x):xe[ab]|}

xe[a,b]
then fn — f uniformly on [a, b] iff My > 0as n — «
Proof: The condition is necessary
Assume that f, — f uniformly on [a, b]
to givene> 0, there exists a +ve integer N such that
[fn(X)-f (X)) <eV¥ neNandV x e [a, b]
Mn = sup|fn (X) - f (X)] <eVn eN

N
i.e. Mn<eV n eN
Mhp—0asn— o
The condition is sufficient.
Assume that M, > 0asn — o
to a given £> 0, there exists a +ve integer N such that

Mn<eVn eN
Sup |fn (X) - f (X)| <eV n eN

xe[a,b]
or [fn(X)- f (X)) <eV neNandV X e [a, b]
fn— funiformly on [a, b]

Illustrative Examples

Example 6. Show that the sequence {f.} where f, (X) = X € R converges uniformly on

1+nx*’
any closed interval.
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X
1+ nx?

Solution: Here f, (X) =

f=Lt/H®

N—o0

= Lt

2
oo L+ NX

3

— n
_Ltl
n~>w7+x
n

2

= 0 X2=Oifx¢0
+

Also for x = 0, each fn (X) =0,

f(x)=0
Thus f(x) =0 vVxeR
Now | f,()— f(¥)|= |———0
" 1+ nx?
| ox
1+ nx?
Let = X
Y= 1ine

dy _ (1+nx?).1-x(2nx)
dx (1+ nx2)2

_ 1+ nx? — 2nx?
(1+ nxz)2
1-nx?

(1+ nx2 )2

d2y (1+ nx2)2 (0—2nx) — (1- nx?).2(1+ nx?).2nx
and =

dx’ (1+ nx’ )4
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—2(1+ nx*)nx — 4nx(1— nx?)

(1+nx?)®

=201+ nx? + 2— 2nx’]
(1+nx?)®

d?y _ —2nx(3—nx’)
dx’ (1+nx?)®

For y to be maximum or minimum,

dy
2 =0
dx
1- nx?
= —2:
(1+ nx2)
= 1-nx*=0
= X2 = 1
n
>  x=-——
Jn
2 -2/n(3-1
When x = i, d_z/: \/_—(3)
n dx 1+3
_ 4
8
—/n
= <0
2
y is maximum when x = i
Jn
1
and maximum value ﬁ: i
1+1 2dn

Ma = Sup {|f,(x)— f (x|}

xe[a,b]
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X
1+ nx?

2% el
xe[a,b]
1
n

=— —>0asn—ow
2n
Therefore by M, Test, given sequence converges uniformly to f on [a, b]

2
Example 7: Test the sequence {f» (x)}, where f, (x) = % for uniform convergence on [0, 1]
+n°X

Solution: We have  fn (X) = —nzi( >
1+n°x
=Lt/ (¥

2

Lt

32
e L+ N°X

Sl x

Lt

n—oo

n3

X2

+

=0V xel0 1]
n*x ~
1+ n®x?
X
1+ n®x?

Now, [fa (x) - f (X)| =

n>x

Lety= ———
AR
1+ n®x? ) n® —n*x(2n°x)
Then ﬂ: ( ) >
dx (1+°x)

. n-n’x?
(1+ n®x?)?

. . d
For maxima or minima, d—y =0
X
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1
X=—3
2
a2y (1+ n"’xz)2 (=2n°X) — (N — n°x%)2(1+ N*x?) 2n°x
Now 5 = 4
dx (1+n°¢)
_ —2n°X(3n” —n°x?)
(1+n°% )2
-2n° ig (an —n5.13]
_ dzy} n2 "
=5
¢ Jit (1+ n3.nlSJ
7
_Nn2
=

Mn = sup {|fn () - f ()| : x € [0, 1]}

n’x
=s ———:Xe[0,]]
uIO{1+ nex? €l ]}

:ﬁ—wsoasn—)oo

by M, - test, {fn (X)} does not converge uniformly on [0, 1]
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Example 8 : Show that seq. {f.} where f, (X) = nx (1 - x)" does not converge uniformly on [0,1].

Solution :f (X) = |t fn ¥

N—o0

= Ltnx (@-x)"

n—ow

_ nx ©
Lty M

(By L-Hospital's Rule)

_ X
- |::E —(1-X) " log(L- X)

X(1-x)"
Wiy
=0since(1-x)n->0asn— o

fx)=0Vvxel0,1]
Mn = sup {|fn (x) - f (¥)] : x € [0, 1]}
=sup [nx (1-x)" : x e [0, 1]]

>n 1 (1—ij [Take x 1]
n n n

=(1—Ej —>1asn—>oo
n &

Hence by M, test, {f.} does not converge uniformly on [0, 1]

Hence 0 is a point of non-uniform convergence since as n — «, x — 0.
Example 9 : Show that O is a point of non-uniform convergence of the seq. {fn (X)} when
fn (¥) = Nxe™

Solution :f (X) = Lt fn ¥

n—oo

= Lt nxe ™
n—o0o
nx
Lt —»=0vneR
noo €

Mn = sup {|fn (x) - f ()| : X € R}
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=sup{n (x) €™ :x e R}

1
_n=

zn.T. en [Taking x =
n

N

e R]

= ——o0wasn—ow
e

Mh—- O0asn— o

the sequence does not cgs.
Sincex—0asn—ow

0 is a point of non-uniform convergence.

Example 10 : Show that the sequence {fn (x)} defined by f. (X) = SJDX
n
on [0, 2x]

is uniformly convergent

Solution : Here fn (X) = Sinnx

9n

_ ~»snnx is bounded
sinnx
Now f (x) = |_t =

=0
e AN

and i—>Oasn—>oo
Jn

Mn = sup {|fn (x) - f (X)| : x € [0,2n]}

=sup{

Maximum value of sin nx is 1 where x = —

sinnx

n

:XE[O,ZH]}

1

N

My—0asn—w

Mn =

by M, test, given uniformly on [0, 2x]
16.8 Self Check Exercise

Q.1  Show that the sequence {f.} where f, (x) = tan? (n x), x > 0 is uniformly
convergentin [a, b], a > 0 but is only pointwise convergent in [a, b]

Q.2 Show by M, - Test 0 is the point of non-uniform convergence of the sequence {fn

(O} fn(x) =1 - (1-x°)".
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16.9

16.10

16.11

16.12

Q.3 Show that the sequence {f» (x)}, defined by
sinnx
fmx)=
Jn

Summary

is uniformly convergent on [0, 2x].

We have learnt the following concepts in this unit:
0] definition of sequence in a set

(i) definition of sequence of functions

(iii) learnt pointwise convergence

(iv) the uniform convergence

(v) Mhn-test for uniform convergence.

Glossary:

1. Limit Function : The limit of a function f.(x) to which it converges for each x € E
will itself be a function of x, ray f (x), then f(x) is called limit function of f, (x). on
E.

2. Uniformly Bounded Sequence : A sequence {f.} of real valued function defined

on a set E is said to be uniformly bounded on set E if 3 a real number M s.t. |fa
(X) | <MV x € E, and for every positive integer n.

Answer to Self Check Exercise

. E,X>O
Ans.l Take f(X)= Limf ®) =42
n—o O,X:O

and then proceed.

Ans.2 Here Mn Sup {(1 - x?)": x e (0, \/5)} and then proceed for M, - test.

=0, as sin nx is bounded.

Ans.3 Here f (x) = |_j Shnx

M=

Now proceed for My-test.
References/Suggested Readings
1. T.M. Apostal, Calculus (Vol 1), John Wiley and Sons (Asia) P. Ltd., 2002.
2. E. Fischer, Intermediate Real Analysis Springer Verlag, 1983

3. R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis, John Wiley and
Sons (Asia) P. Ltd., 2000.
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16.13 Terminal Questions

1.

Show that O is a point of non-uniform convergence of the sequence {fn (x)}, fn
x)=nxe™ xeR.

Show that the sequence {fn(X)}, fn (X) = X -
1+x

°3)

Use M, - test to show that {f» (X)}, when f, (X) =

, N eN ; converges uniformly on

X
———, does not converge
1+ n?x? d
uniformly on [0, 1].

Show that the sequence {fn (X)}, fn(X) = is uniformly convergent

n(1+ nx*)
onR.
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Unit - 17
Series of Functions and The Uniform Convergence

Structure

17.1  Introduction

17.2 Learning Objectives

17.3  Series of Functions

17.4  Sequence of Partial Sums of Given Series
17.5 Uniform Convergence of Series of Functions
17.6  Weierstrass's M-test (or W.M-Test)

17.7  Self Check Exercise

17.8 Summary

17.9 Glossary

17.10 Answers to self check exercises

17.11 References/Suggested Readings

17.12 Terminal Questions

17.1 Introduction

Dear students, we have already discussed about the sequence of function and their
convergence in our previous unit. In this unit we shall study the series of functions and their
convergence. A series is the sum of the terms of an infinite sequence of functions. A function
series is a series where the summands are not first-real or complex numbers but functions.
Examples of function series include power series, Lamrent Series, Fourier series etc. We shall
denote the series of functions by X fn.

17.2 Learning Objectives

The main objective of this unit are

0] to define what do we mean by series of functions

(i) to study sequence of partrol sums of given series

(iii) to learn about uniform convergence of series of functions

(iv) to test the convergence of a series we shall study Weierstrass M-Test.
17.3 Series of Function

A series of the form

ur (X) +uz (X) +us (X) + ...+ ... = i Un (X)

n=1
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Where u: (X), uz (X) ...... are real valued functions defined on a set E is called series of
Functions.

17.4 Sequence of Partial Sums of Given Series

Let Z Un (X) = U1 (X), Uz (X) ...... be a series of function defined on a set E, then the
n=1

sequence {fn (X)}, where

frn(X)=us(X) +u2(X)+ ...+ Uy (X) = Zn: ur (X)

r=1

Vv n eN is called sequence of partial sums of the series Z Un (X) andfn (x) is called nth
n=1
partial sum of the series.

17.5 Uniform Convergence of the Series of Functions.
The series Zun (x) is said to converge uniformly on set E if the sequence {fn (x)} where
n=1

frn(X) =u1 (X) +uz2(X)+....... +Un(X) VN eN converges uniformly on E and

limiting functions of {f. (X)} is called sum function of given series Zun (x).
n=1

Note. A series of functions Z f,, converges uniformly to f on E if for every &> 0 and for all x €
E, there exists a positive integer N (g, X) such that for all x € E,

[{f2 () + f2(}) + fa (X) +.oooooot fo (X)} - £ (X)] <€V n eN.
Note. Cauchy Criterion for Uniform Convergence of Series

A series of functions Z f,, defined on [a, b] converges uniformly on [a, b] iff for every &>
0 and for all x € [a, b], there exists a positive integer N such that

[frez (X) - frsz (X) +........ + fap (X)| <eVN>N,p>1

[fm+z (X) - fme2 (X) +ooeeen. +fh(X))<e vn,m>N

n2x

Example 1: The sum to n terms of a series is fn (x) ——— . Show that it converges non-
n"x

uniformly in the interval [0, 1]
n°x
1+n*x?

F= Lt/

n—ow

Solution: Here fn (X) =
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- ,!:oto 1+ n*x?
X
= n2 =0
n—ow 1 2
;e + X
Now |fa (X)=f(X)|= ﬂ—o
" 1+n*x?
n*x
1+n*x?
2
n>x
Let = —
y 1+ n*x?
d 1+n*x*)n” —n’x(2n*x
Then Yo ( ) 2( )
dx (1+ n4x2)
n? [1+ n*x? — 2n4x2]
(1+ n“xz)2
n (1— n4x2)
(1+ n“xz)2
For y to be maximum or minimum, we have
d
N _o
dx
n® (1— n4x2)
= 2
(1+ n“xZ)
= 1-n*x2=0
= n*x?=1
1
= X2 = oy
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g2y N (1+n'x )2 (-2n*x)n?(1-n*x*).2(1+n"x*).2n"x
2 2
(1+n*x)

_ —2n6x(l+ n4X2)|:1+ n*x? + 2(1_ n4X2)j|

(1+ n“xz)4
—2n°x(1+n*x? + 2-2n"x?)
(1+ n“xz)3
_2n6x<3_n4xz)
(1+ n“xz)3
1 1
6 4
L ogry nZ(3‘” n‘tj
Whenx= —, —-= _
n X
(1+ n* 4)
n
_ 2n*(3-1)
(1+2)°
_an
8
4
= - n_ < 0
2
y is maximum when x = —
n
n 1
= 1
and maximum value = n“~ _ -
1+n* 1 2
o

1
Also x=-— —0asn—w
n
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Ma= SUP |fn (X) = f (X)]

xe[0,1]

- sup n°x
xer01 |1+ n*x?

- sp n’x | 1
01 |1+ n*x?| 2

Which does not tend to zero as n — .

Hence {fn» (x)} does not converge uniformly to f on [0, 1].
Example 2: Show that the series

X 22X X Fx 22X
=+ —— = |+ ~— — |+
1+x° | 1+2°x% 1+x 1+3x* 1+ 2°x

does not converge uniformly on [0, 1]

Solution: The given series is X + 2°x X + 3'x — 2°x +
' 1+x° (1+2°%% 1+x2) (1432 1+2°%°

Let un (x) be nth term of the series and {fn (X)} be a sequence of partial sums of the
given series.

X
Uz (X) =
1 () 1+ X
2°x X
Uz (X) = -
2 (%) 1+2°x% 1+ X°
Us () = Fx 2°x
. _
1+3x% 1+2°%°
n>x
Un (X) =
) 1+ n*x?

32

Adding fn (x) = — X
1+n°x

Hence f (x) = Lijgfn xX)=0Vxel0,1]

Now M =sup [|f,(x)— f(¥)]:01]]
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2
=sup { A ;( 5 ZXE[O,l]i|

— as N — oo,

Since M, does not tend to zero as n — oo, the series is non-uniformly convergent on [O,
1] by M-Test. Here 0 is a point of non-uniform convergence.

Example 3: Show that O
i —2x(1+X)"*
) [1+ (1+ x)”’l} [1+ (1+ x)”]

is a point of non-uniform convergence of the series

. . e —2X(1+X)"*
Solution: The given series is E 1
1 [1+ @+x)™ }[1+ 1+ x)”]

Let un (x) be nth term of the series and |f» (X)| be a sequence of partial sums of the given
series. Now proceed as above.

Example 4: Discuss for uniform convergence of the series

i[ X (n-Dx }in[o,l]

1+ 1+ (n-1%%x°

Solution: The ivenseriesisi x ___ (n-Dx
| ’ S 1+’ 1+ (n-1)°x°

Let un (x) be the nth term of the series and |f, (X)} be a sequence of partial sums of the
given series.

_ —2X(1+X)"*
n () = [1+ 1+ x)”’l}[1+ 1+ x)”] """ @
or Un (X) 2 2

Tl (L) @™
Puttingn=1, 2, 3,...... , nhin (1), we get

-_ 2
e () = 1+ (1+x) !
U (x) = 2 2

1+ (1+x)? 1+ (1+x)
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2 2

us (X) = -
1+ (1+x)° 1+(1+x)?

Un (X) =

TH(@+x)" 1+ L+ )™
Adding vertically, we get

o (X) =uz (X) + U2 (X) +......... + Un (X)
= —2 =
1+(@A+x)"
-1when x>0
f)=Ltfnx)=10when x=0
i 1 when x<0
Take x>0

Mn = sup {|f,(})— f (X)|: x> G

2
=sup ¢ ——— ;x>0
{1+(1+x)” }

2
1+ (1+ 1]
n

2
Mp>——asn — o
1+e

Taking x==
n

M, does not tend to zero as n — « and so the sequence {f»} is non-uniformly

convergent in any neighbourhood of zero. Thus 0 is a point of non-uniform convergence of the

given series.
17.6  Art. Welerstrass's M-Test (or W.M-Test)

A series Zun (x) of functions will converge uniformly on E if there exists a convergent

n=1

series Z M, of positive constants such that |un (x)| < M, for all n and all x € E.

n=1

264



Proof: Given seriesis » U, (x)
n=1

Let there exist a convergent series ZMn of positive constants such that

un I <Mn L 1)
Since ) M, converges

for given &> 0 3 a +ve integer t such that
Mn1 + Mps2 +.iit Mpsp<eV n>t, p>0 ... (2)
Now forn>t,p>0
[Un+1 (X) + Uns2 (X) +....... + Un+p (X)]
< [Uns1 ()| + [Uns2 (X)] +....... + [Un+p (X)|
< Mns1 + Mpi2 + . + Mnp [ of (1)]
<e [ of (2)]
Zun (X) converges uniformly.

Illustrative Examples

Example 5: Show that the series Z converges uniformly in [1, o]

~ 1+ n°X
Solution: Let > u, (x) = i 12
T 1+n°X
1
Un (X) =
®) 1+ n*x
Un (X) = 1 |< 1 <i
" 1+m°x|"1+mx n?
=MnV X € [1, ]
_ 1
l.e. Mn = F

1
and DM, =) —7is convergent.

by W-M Test, the given series is uniformly convergent on [1, oo]
Example 6: Apply W.M. Test to show that the series

265



M X

1+ x*"

iy Y

1+ %"
converges uniformly V x € R is Zan is absolutely convergent.

n

Solution: Consider >

1+x
d [ x ) (108 - xt2amett
dx (1+ x2" ] ) (2+x)’

nx"* [1+ X" — 2x2”]

(1+ X" )2

X" (1-x")

(1+ X" )2

d 4
dx (1+ in]
= nx" (1-x*" =0

= x=0,1,-1

d
When x < 1 slightly, then d—y is +ve.
X

d
When x > 1 slightly, then d_y is -ve
X

d 4 ,
atx=1, — X = | changes sign from +ve to -ve.
dx | 1+ x*"

n

o iSs maximumatx =1

1+ X

1
Its maximum value = E <1
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4

X
Hence |un (X)| = < |an|
1+

X2n

> |a,||is convergent [+ D a, is convergent absolutely]

by W.M. Test, the given series is convergent ¥V X € R

2n

.. X
il <1 VXxeR
® 1+ x*"
2n
‘aﬁ 1 x| oo

and  )’|a,| is convergent
By W.M. Test, > u, is convergent vV x € R

. : X
Example 7: Test for uniform convergence the series Z

X

Solution: Let ux= —=>
2.t ) n(L+ nx?)

X

U ) = )

lun ()] =

n(l+ nx*)

(1+ nx? ) 1—x"2nx
n(1+ nx?)?

d -—
Now & (un (X)) =

1-nx?

n(1+ nx2)2

For un (X) to be maximum or minimum,
d
—(un(x))=0
dx

= 1-nx2=0

= nx?=1
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-

When x <i i (un(x))>1

Jn ' odx

and When x >i, i (un (X)) <0
dx

N

% (un (X)) change sign from +ve to -ve

Un (X) is maximum at X =

1
Jn

and maximum |un (X)| = 7 m
n(1+ j

2n2
11 1.
= [un (X)] <§ 3 and Z—sls convergent.
n2 ni
by W.M. Test, the given series is uniformly convergent V x.
COS2X  COS3X
2° * F *

) COS2X C0S3X
Solution: Let D u, (x) =cos x + 2t +

Example 8: Prove that the series cOS X + —— +———+ ........ converges uniformly on R.

@ T
Cosnx
Un (X) = >
n
cosnx| 1
Jun (X)] = >—|<—=VxeR
n n

1.
But z — Is convergent.
n

by W.M. Test the given series is uniformly converges in R.
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45  8x’

+ + e converges in -1 <x 1.
1+ X 1+x' 1+

Example 9: Show that the series

Solution: The given series is

2X 4  8x’
7t a7t
1+x° 1+x* 1+X38

2n X2n—1
Un (X) = on
1+ X
n.2"-1 .
lun (X)| = < 2"K® Mor x| <K <1
1+ X2
= M (say)

Some More lllustrated Example

Example 10 : Show that the series

.. X x*
x4 + +

1+x* (1+x* )2

o is not uniformly convergent on [0, 1]

Solution : We have the given series as

s X x*
x4 + +

1+x* (1+x* )2

fn (X) = sum of n terms of the series

. X x* x*
= x4+ - s et
Iext (1+x*) (1+x*)
-1
L) ([x) g oAl
fn(X)—X4_—1 (-SH—T)
1+x*
1
=(1 4 1——
O ey

Setf(x)= Lim/» ()

n—o0
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. 1
= Lim@+x) 1
N (1+ x“)
_l@+x) , 0<x<1
0 , Xx=0
Since f(x) exists for all values of x in [0, 1]
= the series is pointwise convergent in [0, 1]
For 0 < x <1 and for given > 0, we have
1

o —(1+xY

fn (%) - fO] = |1+ X7),91-
(1+x )

1

= — K<€

(1+ x“)n_1

1 1
Now if (1 + x®)™>= orif (n - 1) log (1 + n4) > loge P
S

ﬂ

orifn-1>
log(1+n*)
g
log| =
ifn>1+ — S/
log(1+n*)

which clearly implies that

if x — 0 then n — o and so the given series is not uniformly convergent in [0, 1]

Moreover x = 0 is a point of non-uniform convergence of the series.
Example 11 : Show that the series

(L-x2+@-x2x+(1-x?x2+........ is

Uniformly convergent on [0, 1]
Solution : Set i Un(X) be the given series

n=1
Set Un (X) = nth term of the series
Un(x) = (1 - x)? x"1
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Set fn (X) = sum of n terms of the given series
=(1-x2?+(1-x2x+(1-X2x2+........ +(1-x)?xmt
n

- -x)Z[ll_X J: (1-%) (1-x7)

Now f(x) = |_jm/a (9 Lt=@-%) (1-x")

=(1-x) forO<x<1
|£a(X) - fOAI = 1(1 - x7) (1 - %) - (1 - X)|

=x"(1-x) Vx e [0, 1] (1)
Set y=x"(1-x)=x"-x"
v nx"t-(n+1)x"
dx
For y to be maximum or minimum
d n
_y = O = —

j—
dx n+1

2
and% =nxm2{(n-1)-(n+1)x

n dy n )’
whenx= ——, — =n| — [n-1-n]
n+1 dx n+1

n n-2
=n|—1| <O
(n+1j

. n
y is max when x = —
n+1

and ymax: L (1_Lj
n+1 n+1
_(n [ n j
n+1 n+1
nY n 1
= _— L —<—
[n+1] n+l n
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17.7

17.8

17.9

17.10

I3 (x)-f(x)|<%<e\1nzt>1,n c[0,1]
(S

Hence the given series converges uniformly
to (1 - x) on [0, 1]. Hence the result.
Self Check Exercise

Q.1  Test the convergence of the series » < ——— 2.2
X

= [2n?x®  2(n-1)*x
“ | gy el

Q.2 Testthe series Z fn (X) = > xe™in [0, 1] for uniform convergence
n=1

Q.3 By Mn-Test examine the convergence of the series
1 2 3
4 + 4 + 4
(1+x)"  (2+x)  (3+x)

Summary

We have learnt the following concepts to find the convergence of an infinite series:
0] series of functions

(i) sequence of partial sums of the given series

(iii) uniform convergence of series of functions

(iv) Test of convergence, namely weierstrass Mn-test. etc.

Glossary:

1. Cauchy Criterion for uniform convergence of series. A series of function Z fn

defined on [a, b] converges uniformly on [a, b] iff for every €> 0 and for all x € [a,
b], 3 a positive integer N s.t.

[frez (X) = frez (X) e + fop X)| <eVN>N,p>1
[fm+1 (X) = fme2 (X) oeneee + fm (X)) <eV n,m>N
Answer to Self Check Exercise
Ans.1 Hint. Add ui, Ua,..... U, Vertically to find f» (X). Then proceed.

Ans.2 Use M, - test for uniform convergence

n
Ans.3 Take U, = (—4 find |un(n)|, then proceed to apply M,-test.
n

+ X)
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17.11 References/Suggested Readings
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17.12 Terminal Questions

1.

Show that the series 3" 3" sin (4le converges absolutely and uniformly on (a,
n=1 X

o), a>0.

Prove that the series

COS2X  CcoS3X
22 ¥ 3?

Test the series

COS X + + .... converges uniformly on R.
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Unit - 18
Test for Convergence
(Abel's and Dirichlet's Tests)

Structure

18.1 Introduction

18.2 Learning Objectives

18.3 Abel's Test

18.4 Dirchlet's Test

18.5 Self Check Exercise

18.6 Summary

18.7 Glossary

18.8 Answers to self check exercises
18.9 References/Suggested Readings
18.10 Terminal Questions

18.1 Introduction

Dear students, we shall continue our discussion to best the convergence of series of
functions in this unit also. Two important test, namely Abel's Test and Dirichlet's Test will be
discussed in detail here. We shall see how these tests help us to test the uniform convergence
of a given series.

18.2 Learning Objectives

The main objectives of this unit are

0] to study Abel's test of convergence

(ii) to study Dirichlet's test of convergence for a infinite series of functions.
18.3 Abel's Test

Let the series 2 un (X) converges uniformly in [a, b] and let the sequence {vn (X)} be
monotonic for each x in [a, b] and be uniformly bounded in [a, b]. Then the series

2 Un (X) vn (X) is uniformly convergent in [a, b]

Proof : Let Rnp (X) be partial remainder for the series > un (X) va (X) and let S, be sum of n
terms and rnp (X) be the partial remainder for the series > un (x).

Rnyp = Un+1 (X) Vn+1 (X) + Unp+2 (X) Vn+2 (X) + ...
+ Unip (X) Vip (X)
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of x.

18.4

Proof :

=1nt (X) virr (X) + {2 (X) - 2 (X)} vz (X)
+ o H{rnp (X) - Mp-1 (X)} Vip (X)
= o1 (X) {vaer (%) - viea (O} + Tnz (X) { {vnsz (X) - vies ()}
+ o F Mnpa (X) {Vnspz (X) = Viep (X)} + Tnpvisp (X) (1)
Since {vn (X)} is monotonic
{vne1 (X) - vz (X)}, {vne2 (X) - Vnez (X)} ... :
{Vnp-1 (X) - Viep (X)}
have all of them the same sign for any fixed value of x in [a, b].
Also, since {vn (X)} is uniformly bounded on [a, b], we have

[va (X)| <KV xin[a, b] and for alln eN

And also since the Zun(x) cgs uniformly in [a, b]

a2 1, [Fnz O, -..ov , IFnp (X)] are each <§when n>m.
the same m serving for all values of x in [a, b]

(1) = [Rap (X)| <31K Vst (X) - Voo (X) | + SLK [Visp (¥)]

<i’2K+ i,Kzg
3K 3K

[ [vaer (X) = Viep ()] < [Vier ()] + | vep (X)] < K+ K =2 K]

= |[Rn+p (X)] <e¢ when n > m then m is fixed integer depending on ¢ but independent

= > U, (X) va (x) cgs uniformly in [a, b]
Art Dirichlet's Test
The series > U, (X) va (x) is uniformly convergence [a, b] if

0] {va (X)} is @ +ve monotonic decreasing sequence converging uniformly to zero for
as<x<h.

OENE Zur(x)

where K is a fixed number independent of x.

< K for every value of x in [a, b] and for all integral values of n,

With usual notation

Rn,p = Un+1 (X) Vn+1 (X) + Unp+2 (X) Vn+2 (X) + ...+ Un+p (X) Vn+p (X)
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= [foer () - fo (] + Vi (X) [frez (X) - frer (X)] Vi (X)
o [ frnep (X) - frrp1 (X)] Visp (X)
= froer (X) {vnez (X) - vis2 ()} + frez (X) {vie2 (X) - Viez (X)) + ...
+ frrp1 (X) {Vnepa (X) = Viep ()} + frep (X) Viep (X) = fr (X) Vs (X) ..(1)
Now all v1 (X), v2 (X), ...... are +vie and vi (X) <vz (X) >vsz (X) > .......
and |fn (X)| < K for any x on [a, b] and for all n.
(1) = IRnp (X)] < [frer (] [vaea (X) - viez (X) ]
+ ez Q] [vnez (X) = Viea (] + oo+ [ frapr ()| [Viep-t (X) - Viep (X)]
+ | frep | [Vnep (X) + | fn (] [vaea (X)]
< K [Vht1 (X) = Viep (X) + Viep (X) - Ve (X)]
= 2Kvn+1 (X) ..(2)

Also, since {vn (X)} cgs to zero

&
n ()| <=——Vn>m
[va (X)| kN2

Thus (2) N |Rn,p(x)|<2K31K:gforn3m
= [Rnp (X)| <e¢¥ n > m and for every x in [a, b]

Art. Let ZUn(X) be a series of real valued function defined as a set E and let | t un () exist

n=1 x—a

(n=1, 2, 3, ....) where a is a limit point of E. If the series Zun(x) converges uniformly on E,
then

Lt >u00=Y (Ltun(x)j

X—a

Proof : Let fn (X) = u1 (X) + U2 (X) + ...+ Un (X)

Lt 20,00 = Lt Lt 2 un(

o Lt2u.(¥=LtLtA® (1)
X—a n=1 X—a N—w

and 3 (Ltu0)= Lt 3 Ltwo)

n=1 Xx—a n—o m=1L x—>a

276



or [Lt Mx)) = LELEY, u

n=1 X—a n—w X—a m=1l
[-.- the limit of the sum of a finite number of function is the sum of their limits]

or i (Lt Un(X)j =Lt Lt/ -(2)

X—a n—oo X—a

From (1) and (2) , we get

Limi Un |X|=i (Limun(x)]

n—o  nN= n=1 n—o
(*+ R.H.S. of (1) and (2) are equal)
Hence the proof.
Some lllustrated Examples

-1
Example 1 : Test for uniform convergence of the series Z& . xnin [0, 1].
n

Solution : Let uy (X) =

and un (X) = x".

(D"
n
The sequence {vn (X)} is uniformly bounded and monotonically increasing in [0, 1] and
n-1
Z& is convergent by Leibnitz test.
n
Hence by Abel's test, the given series is uniformly converges in [0, 1].

Example 2 : Show that Z% converges uniformly in [0, 1] if 25% converges.

. 1
Solution : Let ux(x) =an, vn (X) = —
n
Let us assume that >"a is convergent.

1
Zan is uniformly convergent in [0, 1] un(X) = Fis a +ve, monotonically

decreasing and bounded in [0, 1]

by Abel's test Z %is uniformly convergent in [0, 1]

(-

Example 3: Show by Abel's test the series Z T [x|" is uniformly convergent in [-1, 1]
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Solution: Let un(x) =

» Un(X) = [X]"

(-1’
n
Since |x|"is positive, monotonically decreasing and bounded for [-1, 1]

(-3

n

-1)"
Further, Z uis; convergent by alternating series test and
n
independent of x

by Abel's test the given series is uniformly convergent in [-1, 1].

Example 4: Prove by Dirichlet's test the series Z 5 is uniformly convergent for all real x.
X

Solution: Let  un(=x)=(-1)"

and un(X) = 5
n+ X

n
fo(x) = Zun = 0 or 1 according as n even or odd.
1

fn (X) is bounded.
Also  un(x) is a monotonically decreasing sequence converges to zero V real x.

by Dirichlet's test the given series is uniformly convergent for all real x.

(1

Example 5: Test for uniform convergence the series Z AL
n+n
Solution: Take un=(-1)*
1
and u,= 5
n+n

=D u,00=> (-)"*=00r1
= fn (X) is bounded V n
Also {un (x)} is a decreasing sequence and — 0 as n — oV real X

by Dirichlet's test the given series is uniformly convergent Vv n.

Example 6: Show that the series Z(—l)”‘1 X" is uniformly convergentin 0 <x<m<1.
n=1

Solution: Let un = (-1)™?
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18.6

18.6

18.7

18.8

and u,=Xx"
n
Z f.(x)= Zur =0 or 1 according as n even or odd.
r=1
fn (X) is bounded for all n.
Also {vn (x)} is a +ve monotonically decreasing sequence - 0V x,0<x<m<1
Hence by Dirichlet test the given series is uniformly convergentin0 <x<m< 1,

Self Check Exercise

0 2 0
Q.1  Prove that Lim{z b }Z 3n1

x—>1 n=1 n3 + XS n=1 n +
3 2
hat the series Z(—l)” X 1 converges uniformly on every bounded
Q.2 Prove tha o g W y
subset of R.
o 1. .
Q.3 Show that the series sin x + E sin 2x + ....... converges uniformly forO<a<x<bh
< 2m.
Summary
We have learnt the following in this unit.
0] Abel's test
(ii) Dirichlet's test of convergence for infinite series.

Glossary:
Cluster point of a sequence -
A real number p is said to be a cluster point of the sequence {an} if to each €> 0 and
each m € N, 3 a +ve integer mg> m s.t.
p-e<ame<p+ e
e.g. {(-1)"} has two cluster point 1 and -1. respectively.
Answer to Self Check Exercise
Ans.1 Use W.M. Test and then Abel's test

3 2

Ans.2 Take un = (-1)", va(X) = X +3n
n

and proceed.

1
Ans.3 Take un(x) = sin nx, Uan(X) = Eand then proceed.
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18.9 References/Suggested Readings
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18.10 Terminal Questions

1.

Prove that V 8 € R, the following series converges uniformly provided |x| < 1.

() X€os 6 +x2cos 26 +x3cos 36 +.....

2 3
(i) x cocl + X?cos 20 + %cos 30 + ...

cosnx

Show that the series )
n=1

converges uniformly on [0, 2x].
Xn

n+1
positive number less than 1.

Prove that the series Z is comiformly convergent in [-8, 8], if 8 is any fixed

280



Unit - 19
Some Important Results About

Uniform Convergence

Structure

19.1 Introduction

19.2 Learning Objectives

19.3 Some Results About Uniform Convergence
19.4 Self Check Exercise

19.5 Summary

19.6 Glossary

19.7 Answers to self check exercises

19.8 References/Suggested Readings

19.9 Terminal Questions

19.1 Introduction

Dear students, in this unit we shall study some important results about uniform
convergence. These results are very useful in understanding the concepts of uniform
convergence and continuity, uniform convergence and Riemann integration, term by term
integration etc.

19.2 Learning Objectives
In this unit our main objectives are to study the following
0] Uniform convergence and continuity.
(ii) Uniform convergence and Riemann integration
(iii) Term by term integration
(iv) Uniform convergence and Differentiation
(V) Term by term differentiation
(vi) Weierstars Approximation Theorem etc.
19.3 Art. Some Important Results

Result I: Let fn be real valued function defined on E and let the sequence {fn}
converge uniformly to f on E. Let c be a cluster point of E and suppose that

Lt/nx)=Ln(n=1,2,..... )

X—>C
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Then the seq. {L.} of real constants converges and

Lt/ (=Lt Ln

ie. Lt Ltf®=LtLtf®

Result II: Uniform Convergence and Continuity

Let {fn} be a sequence of real valued function on E which converges uniformly to f on E.
If each fn is continuous on E then f is also continuous on E.

Result lll: The sum function of a uniformly convergent series of continuous function is itself
continuous.

Illustrative Examples

Example 1: Test for uniform convergence and continuity of the sum function of the series for
which

1
(I) fn(X)=m0<X<1

(i) M) =nx(1-x)n0<x<1

Solution: (i) Here fn (x) = i

f =Lt/ )=

n—oo

Owhen 0< x<1
1when x=0

Thus 0 is a point of discontinuity of the sum function.

Hence the series will be non-uniform convergent in the closed interval [0, 1]
On0<x<1,

Mn = sup [| f,(3) - f(X)]:xe(0,1]]

=Su ‘ 1
B

ZXE(O,l]:|

{Take x:%e(o,l]}

My—0asn—w
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Alsox - 0asn— «©

0 is point of discontinuity of sum function.

@) fa0)=nx(L-x" O0<x<1

When 0<x<1, r!:!;fn (x) = nI::[O (1_ )_
= Lt g ioga
"Lt |)£(1 X)x)

f&)= Lt/fo(x)=0where0<x<1

N
Also  fn(X) =0wherex=00r1

The sum function f(x) is the convergentforallxin0<x<1
But O is a point of non-uniform convergence as proved earlier.

Example 2: Show that zero is a point of non-uniform convergence of the series

_1-(@+x)" 1-@+x™
> u, (X)... where un (x) = e i
Solution: Here Un (X) = 1-@+x)" -+ X)n:1
1+(@+x)" 1+@+x)"
u; (X) = ﬂ -
1+(@Q+x)"
YRR (o VG Rl (20
1+(A+x)°  1+(1+x)
b (g = 00 1-(+X)°
1+(A+x)° 1+(@+X)
Un () = 1-(1+x)"  1-(1+ x)”:l
1+ (@+x)" 1+@+x)"

Adding vertically, we get



_1-@A+x)"
Jn )= 1+@+x)"

fF=Lt/mx=

n—oo

Lt/=LtD=-1

n—o n—ow

—1when x#0
0O when x=0

Hence f (x) is discontinuous at x = 0. It follows that O is a point of non-uniform
convergence of the series.

Example 3: Examine the series er‘”x for uniform convergence and continuity of its sum
function near x = 0.

Solution: fn (X) = Y xe™ =x. 1—e:x
r=1 1-e
Lt f.(x)=———when x=0
and  fo(X) =5 1-e*
0 when x=0
F00= Lt
Lt7®0= Lt i—e
X
= Lt 2 3
n—0 1—X+X7—X7
2 3
1
= Lt X X =1
Ol X+ S+ S
2 3
Also f(0)=0
Lt /) =/ (0)
n—0
= f (x) is discontinuous at x = 0
1.2 n+1
n“(1-x)
= —d
nI:EJ; n+1 X
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_n2 (1_ X) n+l :|l

= Lt {(n+1)(n+2) i

= Lt

e (N +1)(n + 2)

So that the series is not integratable term by term.

Example 4: Show that the series for which sequence of partial sums is given by f, (X) =

1+nx’
can be integrated term by term in 0 < x < 1, although it is not uniformly convergent in this
interval.

Solution : Here fn (X) =

1+nx

fFO=Lt/mM=Lt

n—ow N—o 1+ nX

if(x) dx=0

and Ltjf(x)dx Lt j1+nx X
= Lt= Iog (1+n) {f form}
r!:oto 1+n
1

Hence the series can be integrated term by term.
But zero is a point of non-uniform convergence of the series.

Example 5: Examine for the continuity of the sum function and term by term integration the
series whose nth term is

n2 xe"x2 - (n _ 1)2 Xef(n—l)zxz
x having all values in the interval [0, 1]
Solution: Let {f» (x)} be a sequence of partial sums

the series is not uniform convergent in any interval which includes x = 0.
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Result IV: Uniform Convergence and Riemann Integration

Let {fn} be a sequence of real valued function defined on the closed interval [a, b] and
bounded on [a, b] and let fn € R [a, b] forn=1,2,3,......

If {fn (x)} cgs uniformly the function f on [a, b], then fe R [a, b]

and j f(x)dx= [ t j f (x)dx

n—o

Result V : The {fn (x)} be a sequence of real valued continuous function defined on [a, b] s.t. fx
— f uniformly on [a, b]. Then fe [a, b] and

Lt j f (X)dx = j f (X)dx

N—

Result VI : Term by Term Integration

Let ZUH(X) by a series of real valued function defined on [a, b] s.t. u, (X) € R [a, b]. If
n=1

the series converges uniformly to f on R [a, b] then fe R [a, b] and

T{iun(x)} dx = i]zun(x)dx

aln=1 n=1 5

Illustrative Examples

Example 6: Examine for term integrate the series the sum of whose n terms is n? x (1 - x)"

2

Solution: jf(x)dx_ ILt o

1
=deX:O [0<x<1]

0

{ Lt n*x@-x)"= O}

N—o0

But Lt Jl' f.()dx= |t Jl. n°x(1— x)" dx

n—o o n—w o

n X(l X)n+1 1 nZX(l_ X)n+l
B n';E H n+1 }O+J‘ n+1 dx]

0
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ui (x) = X =0

1+%°
J (X) B 22 X2 X
’ 1+2°x% 1+x°
Us () = Fx 2%.X
5 (X) = ]
1+3'x% 1+2°%°
n°x (n-1)*x

Un (X) = -
®) 1+n*%®  1+(n-1)*x?

Adding vertically, we get
n°x
1+n*x?

()=

f&=Lt/®

n—ow
X

n’
=Lt =0Vxel0,1]

n—owo 7 + X2
n4

Result VII. Uniform Convergence and Differentiation
Let {fn} be a sequence of real valued functions defined on [a, b] such that
(@) fn is differentiable on [a, b] for n = 1,2,3
(i) The sequence {f» (d)} converges for some point d of [a, b]
(iii) The sequence {f'n} converges uniformly on [a, b]

Then the sequence {fn} converges uniformly to a differentiable function f and |_t f'n (X)

=f (x)asx<h.

Result VIII: Term by Term differentiation

Let Zun (x) be a series of real valued differentiable function on [a, b] such that Zun (d)
n=1 n=1

converges for some point d of [a, b] and Zu'n (x) converges uniformly on
n=1
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Un (X) = n? xe’“zx2 - (n - 1)? Xe*(nfl)zxz
ur (x) = xe¥-0

U (X) = 22xe 27X - xe”

us (x) = 32 xe¥X 22 g ?¥

fn(X) =n? xe ™

Now f(x)= Ltfm(x)=0forO<x<1

n—ow

the sum function f (x) is continuous for all values of x in [0, 1]

1
Now j f (X)dx=0
0
1 1 55
and .[fn(x)dx: _|‘xe‘nx dx
0 0

17 e
=-— Ie‘”x (-2nx) dx
2 0

1
1

1]
N
1
T
CD\
:N
L1

— —as n— o

Hence the series is not term by term integrable in0 <x <1

n°x_ (n-1)°x
1+n*%® 1+(n-1*'x
[0, 1]. Can the series be integrated term by term?

Example 7: Test the series Z( j for uniform convergence in the interval

n°x n—1)>%x
Solution: The given series is Z[l T (( 1)4 ZJ
+n*x*  1+(n-D*x
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n’x  (n-1)°x
1+n*x* 1+ (n-1*x?

Un (X) =

[a, b]. The series Zun (xX) converges uniformly on [a, b] to a differentiable sum function
n=1

fand
fe0= Lt 2u'n® (@<x<b)
n—wo m=1
In other words if a < x < b, then
d (& | d
— u,(X) |= —Uu, (X
o 210 2 )
Result IX: Let {fn} be a sequence of real valued functions defined on [a, b] such that
(@ fn is differentiable on [a, b] forn=1,2,3,......
(i) The sequence {fn} converges to f on [a, b]
(iii) The sequence {f'n} converges uniformly on [a, b] to g
(iv) Each f'» is continuous on [a, b]
Then g(x) = f'(X) (a<x <Db)
That is

Lt/ =1 () (@<x<h)

nN—o

Result X: There exists a real continuous functions on the real line which is no where
differentiable.

Result Xl :Weirstrass Approximation Theorem

Let f (x) be a continuous function defined on [a, b] there exists a sequence of
polynomials which converges uniformly to f on [a, b]

Illustrative Examples

. T
Example 8: Show that the series ZW is uniformly convergent for all real values of x
+

and that it can be differentiated term by term.
Solution: Let un (X) = —5——5—
() n® +n*x?

Now 1+n*>>1VxeR
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= —
n+n*x® n

1.
But ZF IS convergent.

By Weierstrans M-test, the given series is uniformly convergent for all x € R.

it can be differentiated term by term.

Example 9: Given the series Zun (x) for which

X —ilo 1+ n*x?
fn()_znz g( )

Show that the series Zu'n (x) does not converge uniformly, but that the given series
can be differentiated term by term.

1
Solution: Here fn(x) = Wlog (1+n*x?,0<x<1

FO)= Lt/
- LE |09(12; Q“xz)

818

4n®x?
_ 1+n*x?
Lt

22

:Ltn_x

1+n4X2=0,05x51

f(x)=0
2n*(x)

Now  fn () = 2n*(1+n*x?)

X
1+ n*x®
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2

Also  Ltfn(®= Lt— =0,0<x<1

nN—o N—o0 1+ n

f = Ltfe

nN—o
term by term differentiation can be done.
But the series Zu'n (x) is not uniformly convergent for 0 < x < 1 as the sequence
n°x

{f 'n(x)} ie. {W} has 0 as a point of non-uniform convergence.
+n°x

COSHX

Example 10: Show that the function represented by z

_ 2, Sinnx
Solution: Let f(x) = Z 3
~ n

sin nx
and un(X)= 0

cosnx

u'n (x) =

i” = i cosznx

1 1 N

cos nx
But

1
<—for all x and Z —|s cg.

By W.M. Test Zu'n (x) is U.C. for all x and therefore Zu'n (x) can be differentiable
term by term

£ = Zu ) = ZCO:”X

o0

1
Example 11: Show that if f(x) = Zﬁ

3 then it has a differential coefficient equal to -

T Nn°+n°x
® 1
2X —zfor all values of x.
1 n2(1+ nx2)
Solution: Here Un (X) = ———5—~
®) n®+n*x?
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2X

Unw = - S ———
e n®(1+ nx?)?

Now u'y (X) is maximum value %(u'n x)=0

(1+nx?)2-4nx2(1+nx?) =0

or 1-3nx?=0
1
or n= —
Jan
max. |u'n (X)| = 1

e
33

5
8n2

1
Then |u'y (X)| <— for all value of x.
n2
1.
But — Is convergent.
n2
Hence by W.M. Test, the series Zu'n is U.C. for all real values of x. The term by term
differentiable is therefore justified.

f) =D U, (x
n=1

- 1
= -2X —
Z n2(1+ r.])(2)2

1

0

1
Example 12: Show that if f(x) = Zﬁthen it has a differential coefficient equal to
T N +n'x

o0

1
-2X -
le n? (1+ nx?)?

for all values of x.

Solution: Here un (X) = 55—
’ n®+n*x*
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2X

u' =
T (L nx?)?

Now u'y (X) is maximum value %(u'n x)=0

(1+nx?)2-4nx2(1+nx?) =0

or 1-3nx?=0
or n= i
J3n
max. [u'n (X)| = !

T 5, N2
J3n? (1+ ;)

&

5
8n2

1
Then |u'y (X)| <— for all value of x.
n2
1.
But Z—5IS convergent.
n2
Hence by W.M. Test, the series Zu'n is U.C. for all real values of x. The term by term
by term differentiable is therefore justified.

F)= DU, (x

- 2X
= -2X S —
Z n2(1+ n)(2)2

1

f(xX)=00n][0, 1]
Solution: Since f is continuous on [0, 1]
. by Weierstrass's Approximation Theorem, there exists a sequence {pn} of polynomials

Pn such that P, (x) — f uniformly on [0, 1]
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. fPn (X) — f? uniformly on [0, 1], as f, being continuous is bounded on [0, 1]

Let

=

=

by theorem of uniform convergence and integration, we have
1 1

jfzdx= Lt jf pn()dx (1)

0 n—wo o

Pn (X) = ag + aiX + axx? +.......+ anX"
1

ian(x)dxzj'[aoxof+ale +a X f +..... +anx“f] ..... ()
0

0

from (1), we have

1
[fax= | t©@=0
0

N—o

jfz(x)dx=ovxm {0, 1}
0

f2(x)=00on]0, 1]
f(x)=00n[o0, 1]

19.4 Self Check Exercise

Q.1

Q.2

Q.3

Examine for uniform convergence and continuity of the sum function of the series
for which fn (x) = nx (1 - x)", x € [0, 1]

Examine for uniform convergence and continuity of the series er‘”x , hear x =
0

Test for uniform convergence and term by term integration of the series

X
e
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. = Sinnx. . : . .. x&cosnx
Q.4  Given by Z 5 Is a differentiable for every x and its derivative is -
3 N L

18.5 Summary
In this unit we have learnt the following
0] Some important results about uniform convergence
(i) Uniform convergence and continuity,
(iii) Uniform convergence and Riemann integration
(iv) Term by term integration
(v) Uniform convergence and differentiation, term by term differentiation
(vi) Weierstrars approximation theorem etc.
19.6 Glossary:
(1) Uniform convergence and continuity -

Let {fn} be a sequence of real valued function on E which converges to f on E. If
each fn is continuous on E then f is also continuous on E.

19.7 Answer to Self Check Exercise

Ans.1 Prove it.

Ans.2 Take fn(X)= er’rn =X - e:
r=1 l-e "
Limf.(0)=——,x#0
and  f(x) = nL!):rl " 1-e"’
0 , x=0

and then proceed.

Ans.3 Prove it.

1

COSNX 1.
——|<—=V nand Z—ZIS convergent.
n n

n2

Sin nx
Ans. 4 Take un(X) =

RO find un'(x), ux

Then proceed.
19.8 References/Suggested Readings
1. T.M. Apostal, Calculus (Vol I), John Wiley and Sons (Asia) P. Ltd., 2002.

2. R.G. Bartle and D.R. Sharbert; Introduction to Real Analysis, John Wiley and
Sons (Asia) P. Ltd., 2000
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3. E. Fischer, Intermediate Real Analysis Springer Verlag, 1983

19.9 Terminal Questions

. - 1 : . . -
1. Show that if f(x) = Zﬁ then it has a differential coefficient equal to -2x
— N +Nn°'X
s 1,
n’(n’+n'?)
2. Examine for term by term integration the series Z:(—l)”xn , X € [0, 1]
0
3. Show that 0 is a point of non uniform convergence of the series Zun , Un (X) =

1-1+x)" 1-@1+x)""
1+ (1+X)" 1+ @+ X"

4. Test for uniform convergence and continuity of the sum function of the series for

1
which f, (X) = m,OSngl
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Unit - 20
Power Series And

Radius of Convergence

Structure

20.1 Introduction

20.2 Learning Objectives

20.3 Definition of Power Series

20.4 Radius of Convergence And Interval of Convergence
20.5 Uniform Convergence of Power Series
20.6 Some Important Results

20.7  Self Check Exercise

20.8 Summary

20.9 Glossary

20.10 Answers to self check exercises

20.11 References/Suggested Readings
20.12 Terminal Questions

20.1 Introduction

and c is a constant. The power series are useful in mathematical analysis, where they arise as
Taylor series of infinitely differentiable function. In many situations, c (the centre of the series) is
equal to zero, for example when considering a Macoupin series. In such cases the above power

Dear students, we shall discuss about the concept of power series in this unit. In
mathematics, a power series (in one variable) is an infinite series of the form

Zan(x—c)” = ap +ai1 (X - ¢) + a2 (X - ¢)? +...., where an is the coefficient of the nth term

n=0

series takes the form

series also occur in combinatory as generating functions and in electronic engineering.

20.2

n=0

Learning Objectives
The main objectives of this unit are

(1) to define a power series
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(i) to study radius of convergence and interval of convergence
(iii) to learn about uniform convergence of power series
(iv) to study some important results etc.
20.3 Definition of Power Series
A series of the type
i an(z-zo)"=ao+ai(z-zo) +...an(z-20)" + ....
n=0

is called a power series about z = z,. In particular, z and constants an zg are often real,
but if complex, the series can still be discussed. If z - zo = x (change of variable) the above

o0 o0
series can be reduced to Z anx" . Hence it suffices to consider the series of the form Z anX"
n=0 n=0

about x = 0, x is real. If z is replaced by a and z by x then power series reduced to z an (X -
n=0
a)" about x = a.

The power series Z anX" either

0] converges for all values of x
(i) converges only for x =0

(iii) converges for x in same region on the real line. we give example in each of the
about three cases.

n

: . X
0] The series Z— converges absolutely for all value of x
n
n n+l
Letun = , Uns1 = , then
n+1
lu, | n+1
Lt =Lt =1
o | Una | n3a [ X]

Hence by D'Alembert's ratio test, the series converges absolutely for all value of x.

(i) The series Z nx" converges only for x =0

Let un =|nx",
Un+1 =[n+1 x™1
lu. | _ 1
Lt — =Lt

n—o0 | un+1 | n—ow (n+1) | Xl
=0<1ifx=0
298



> |nx"is divergent.
But if x = 0, then the given series has its sum =0 [ each term = 0]

D | nx"is convergent,

(iii) The series z x" converges for |x| < | and divergent for |x| > |

n=1
Take u, = X"
Un+l — Xn+1
Ju, | _ 1
Lt = Lt —= —
N Iun+1 | n—wo | Xl Xl

: : 1 . .
By D'Alembert ratio test Z Un is convergent for ﬁ> li.e. |x] <1 and divergent for
X

1 .
—<1lie. [x>1.

| X

For |x| = 1, |_t

| un+l |
the test fails here.

Thus the given series is convergent for |x| < 1i.e. -1 <x > 1 only.

Art. If a power series Z anXx" converges for particular value xo of x, then it converges
n=0
absolutely for all value of x for which |x| < |Xo.

Proof : Let > awx" converges
n=0

un=an% —0asn—w
we can find a number M > 0 such that

"«M Valln

lanX"| <M |—

(1)

X
Therefore for [x| < |Xo|, the G.P. series Z ‘— converges.
X
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Thus we conclude that the series Z |anx"| converges for all value of x given by |x| < [Xo|

1 1
ArtIf | tfa,|n = R then the series )’ a.x" converges absolutely for |x| < R and diverges for

N—o0

x| >R

Proof ;: Consider the series Z anX"

w 1
By Cauchy's Root test, »  a.x" converges if | t ‘anxn n<q

n=0 n—

1
ie.  Ltixl|afn<1

nN—o0

ie. [x] <

LtlanI%

n—oo

and Z anx" diverges if | ‘ahx n> 1

N—o

1

i.e. Ltixl (a,)">1

nN—o0

ie. [x] > T

Lt(a)"

From (1) and (2), we get

uiwm=i(uU J

n—o n=l n=1 n—>ow
[© R.H.S. of (1) and (2) are equal]

Illustrative Examples

n+1

Example 1 : Consider the series Z( ) . X" for uniform convergence in [0, 1]

) (_1)n+1
Solution : Take v, (X) = x" and un (X) =

The sequence {vn (x)} is uniformly bounded and monotonically increasing [0, 1]
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[ 0 n
Example 2 : Prove that |_t { } >

ol | nt S o+l

2

Solution : We first prove that z =3 converges uniformly on (0, K) for any K> 0
~=n®+ X

Let Un (X) =

v (X) = nx2
I x)

1
Now |un (X) < S} Vv x € [0, K]

1.
But Z — Is convergent by W.M. Test
n

ZUH (x) is uniformly convergent.

Also sequence {vn (X)} = {nx?} is monotonically increasing in (0, K)
2

5 converges uniformly in (O, K)
+x

Now H@nﬁfﬁj Z[Ltnwj >

Hence by Abel's Test, U, (X) va (X) = Z =

3
=1\ X—1 n:ln +1

n-1
Example 3: Consider Z%for uniform convergence.
+

1
n+ x2

Solution: Let u, = (-1)™, v

0 or 1 according as n is even or odd

fa)=>"u,

fn (X) is bounded.

Also {vn (x)} is a the monotonically decreasing sequence converging to zero for all real
values Xx.

by Dirichlet's Test the given series is uniformly convergent for all real values of x.

3 2
Example 4: Prove that »_(-1)" n +3X

converges uniformly on every bounded subset of R.

n n3 + X2
Solution: The given series is Y (-1) -
n
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Let S be a bounded subset of R.
Since S is bounded
3 a +ve real number M such that
xXf<M .. (1)
Let un = (-1)"
2

3
n" + X
vn (X) = <

3 M +n?

n3

[va ()] =

n3

|
‘E

Clearly vn is a +ve, monotonically decreasing function of x for x € S and va (X) > 0 as n
— oV XeS

& _|-1if nisodd
fn(x)—zllun(x)— 0if niseven

2

iy . n® +x
by Dirichlet, test the series > (~1)"

n3

converges uniformly on S.

. . 1 . 1 . .
Example 5: Show that the series sin x + 2 sin 2x + gsm 33X+ ... converges uniformly for 0 < a

Zanx“ converges if : R and diverges if |x| > R.
0

20.4 Art. Radius of Convergence and Interval of Convergence.

A power series ao + aix + a +...... i.e. » @ X" is said to have R as radius of convergence
1

Ltlan|% |

n—oo

if R =

[x| = R is called the circle of convergence of the power series.

The set of value of x for when the power series converges is called interval of
convergence of its region of convergence. So (-R, R) is called the interval of convergence.

Note. 1. R can be zero, finite or intervale.
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Note. 2. By Cauchy's Second Theoreon limit for a,> 0, we have

Lt (a) = Lt (a‘"—]

n—o n—o an
1 .
Re Le ]t
Ltlaf ™

n—oo
Illustrative Examples
Example 6: Given the domain of convergence of the power series

2 X"
Solution: The given power series is Z— butx=0
n

n=.

1
Here a,= —and ap+1= ——
n n+1

Radius of convergence of the poor series is

R= Lt|->

n—o0

an+1

Lt~

N—o0

Lt (“ )
=1+0=1

Thus the series converges in the interval given by |x| <1

n+1

l<x<1
= xe(-1,1)

To discuss the convergence at the end points, first take x = 1 for which the series
becomes

1 11 1
1+ —+-+—+.... +—+

which being a harmonic series diverges

Further for x = -1 the power series becomes
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which converges conditionally by virtue of Leibnitz's test.

Thus domain of convergence of the given power series is [-1, 1].
Example 7: Find radius of convergence of power series Z(5+12i)z”.
Solution: The given power seriesis » (5+12i)2".

Here a,=5+12i

lan| = |5 + 12i|
=(5)*(12)
= {J25+144

=+/169
=13

Ltll= Lt (1)

=(13)°=1

radius of convergence =

e

Ltlan|%

n—o

nz
Example 8: Find the radius of convergence of Z( J
n+

n
nz
Solution: The given power series is Z( j

n+1
n n
Here an=| ——
n+1

Lthaf= L[]

n—o N—o0
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1 1
= 1+— |= —= ==1
rI;E 1l 1+0
n
: 1
radius of convergence = T 1
Ltfal"
1\"
Example 9: Find the radius of convergence of the power series Z (1+ —j x".
n

1 n
Solution: The given power series is Z (1+—j X"
n

2

an=(1+£j
n
1 1)
n=1|1+=—
= (12]

Ltal- e[ e

nN—oo nN—ow

1 1

R_

Lt ©

N
20.5 Art. Uniform Convergence of Power Series

The power series Za%x” is uniformly convergent for |x| < p < R, where R is the radius
of convergence.
Proof. Let p' be a number such thatp < p'R

Since the series is convergent for |x| = p'

Therefore 3 a number K, independent of n so that

1

a,p"l<K vn

Hence for x| < p
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o3+ 5)

which is independent of x.

jax’

n
But the series K Z(ﬁj is convergent, being a G.P. series with common ratio Fp <1
Hence by W.M. test the power series is uniformly convergent for |x| < p <R
Thus, every power series is U.C. within the circle of converges.
20.6 Art. Some Important Results
Result I: Properties of Power Series
(2) A power series Zanx” is a continuous function of x within its interval of
convergence.
2) A power series can be integrated term by term so long as the limit of integration
lies strictly within the range (-R, R)
3) A power series can be differential term by term so long as the limit of

differentiating lies strictly with in the range (-R, R)

Result II: The series obtained by differentiating a power term by term has the same radius of
convergence as the original series.

Result lll: The radius of convergence of the series obtained by integrating term by term has the
radius of convergence as the original series.

Result IV:Abel's Summability

The series Zan is Abel's summable to a value S, if the associated power series
n=0

0

Zanx” converges for 0 < x < 1to function fand |jm/f (x) = S.

n=0 X—1-

Result V: Abel's Theorem

If the series Z:an is convergent and has the sum S, the series Zanx“ is uniformly
0 0
convergentfor0<x<1

and  |jm Yax'=s

x—1 0
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Result VI: Taubers Theorem

If the series Zan is Abel summable to s
n=0

and if |jmna« =0, the Zan converges to s.

n—oo

Result VII: Taylor Series

Let f be a function defined on some interval containing O. If f possesses derivatives of
all order at 0, then the series

i o © X"

o N

is called the Taylor Series for f about 0. The remainder R, (X) is defined by

Rn (X) = f (X) - v 170 O xk
o k

Here the Remainder R, depends on f.

© (n)
Now f(x)= ), Q) xiff Lt Ra=0
n=0 n—w

Result VIII: Taylor's Theorem

If z a,X"is a power series with radius of convergence R and
n=0

fx) = ianx”for IX| <R
n=0

then for any a € (-R, R), f can be expanded in a power series about 'a' which converges

0 (n)
for|x-a]<R-|aland f (x) = m(x—a)”,lx—a|<R—|a|
n=0

Note : Before taking up the solution of power series we must keep in mind the following
explanations:

(1) A+x)rT=1-x+x2-x3+x* ...
(2) (1+X)2=21-2x+3x2-4x3+ .......
(3) L-X)t=1+x+x2+x3+ ...

4) (1-X)2=1+2x+3x2+4x3+ .......
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. 1 x¥ 13 x* 135 X
(5) sinlx=x+ =, —+— . —+—— . —+....
2 3 2 5 246 7
3 X5
(6) tantx=x- —+—+...
3 5
X x xt
7 log(l+X)=x- —+—-—+.......
(7) g( ) >t3 72

(8) log (1-x):-(x+xz+§+x—+ ........ J

Example 8: Show that

3 5 7
() tan‘lxzx-x—+X—-X—+ ....... for-1<x<1
3 5 7
iy  Fe1- i il
4 3 57
2 4 6
(ii) 1(tan-lx)2=’(—-)(—[1+1)+X—(1+1+1j+ ......... d<x<1
2 2 4 3) 6 35
Solution: We have (1 +x?)1=1-x2++x*-x8+ .......
= 2 (-1 X"
= > (-1t {Taking x2 = t}

=}

=00

Here an=(-1)", ans1 = (1)

Lt =1
o | &,
for interval of convergence
[tl<1
= X3 <1
= x| <1
= 1<x<1

Therefore the series on the R.H.S. is a power series with radius of convergence unity
and converges absolutely for -1 <x <1
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As such it converges uniformly in (-A, A) where |A| < 1

The series on R.H.S. does not converges for x = +1, we get

XX X X

tantx =x- —+—-—+......... +C
3 5 7
When
3 5 7
tan‘lxzx-x—+x—-x—+ ......... ,for-1<x<1
3 5 7
Because for x = +1 the power series on R.H.S. of (1) becomes
1
+ 1—}+l—l+ ........ = +(-1)™
3 5 7 2n-1

which is an alternating series.

by Leibnitz's test the power series on the R.H.S. of (1) is convergent for x = +1
also. Therefore it converges in [-1, 1] and hence converges uniformly for x € [-1, 1].

3 4 7
Thus tan™® x = x - XX X for-1<x<1 ...(2)
3 4 7
(i) At x =1, we get
tan'1(1)=1—}+l—l+ ............
3 57
T 1 11
—= - —+—-—+..
4 3 57

which is Gregory series.
(iii) From (2) and (1), we have

3 5 7
X X X
tantx=x- —+—-—+....... ,-1<x<1
3 5 7
and (1+x)T1=1-x2+x*-x8+,,,,-1<x<1

Both the series are absolutely convergent in (-1, 1)

Their Cauchy product will also be absolutely convergent in (-1, 1) therefore by Abel's
theorem.

X X X
(tantx) (L +x?)*t = (X——+———+ ...... )(1-x2+x4-x6+ ......... )

309



:x-x3(1+1j+x5(1+1+lj+ ........ for-1<x<1
3 3 5

Integrating both sides w.r.t. x, we get

2 4 6
1 (tant x)? = X (1+ }j X (1 } lj+ ........ +Cy
2 2 4 3) 6 3 5

Whenx=0,c1=0

1 2 4
—(tan x)Z—X—— 1+} L 1+£+1j—+ ....... for-1<x<1
3) 4 3 5/6

For x = 1, the power series on the R.H.S. becomes an alternating series and as such is

convergent by Leibnitz's test.
Therefore by Abel's Theorem,

2 4 6
1(tan x)z—x—-x—(l %) %(1+%+%j+ ........ for-1<x<1

2 4
Example 9: Find the sum of the series

LS _ 2n+1
N Z1.3.5 ....... (2n-1) X hen X <1
246......(2n) 2n+1

n=1

Deduce that

: /4 11 131 1351
0] —=l+ ——t+t— -t —— .=+,
2 23 24 5 246 7
2 4 6
i) S(sintxrz X2 X 24 X rd<x<1
2 3 4 5 6
Solution: We have
-1
(1—x2) S 14 1( 2) 4 13( 22 4 1.35 L3S oya 135 ....... (2n— 1)( S
2.4 2.4.6 246.......(2n)
“14+ Z1.3.5 ....... (2n-1) en
‘o 246.......(2n)
1 _ 14 135.....(2n-1) " (wheres®=t) .. )
N/ o 246.......(2n)
135.....(2n-])) _135.... (2n-1(2n+12)

Here an= , An+1
2.4.6......(2n) 2.4.6......(2n)(2n+2)
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2n+2
R =
r!:E 2n+1

2+§

= Lt
n—o 2+1
n

2+0
2+0

2
2
=1

Therefore the series on the R.H.S. is a power series whose radius of convergence is
unity.

The series on the R.H.S. is convergent for |t| < 1
ie. for|x? <1

ie. for [x| <1

For x? = 1, the series on the R.H.S. becomes

1 13 135 1.35......(2n-1)
+ + + +

1+ =+ —+ ——+ .+ 4
2 24 246 246.......(2n)
Here u,= 1.35...... (2n—1)’
24.6.......(2n)

Uy = 135.....2n-D(2n+1)
n+l —

246......(2n)(2n+2)
u, _ 2n+2
u 2n+1

n+1

u 2n+2
ns——-1:= n -1
nIZE {um1 } r!:E {2n+1 }

n(2n+2-2n-1)

- |:£ 2n+1
n
= Lt 2n+1

n—oo
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=Lt g
n—ow 2+1
2
__1
2+0
:1<1
2

by Raabe's test the power series on the R.H.S. is divergent for x> = 1 i.e. for x =
+1

Therefore series on the R.H.S. is absolutely convergent for x € (-1, 1) and uniformly
convergent in (-A, A) where |A| < 1. The integrated series will have the same characteristics.

Thus integrating (1) on both sides of (1) w.r.t. x, we get

0 _ 2n+1
iy o +21.3.5 ....... (n-1 X
Z246....(2n) 2n+1

For x=0,c=0

o 1 x* 13 x° 135 X’
sintx=x+ . —+—. —+—— =
2 3 24 5 246 7

135.....(2n-1) X"

or sintx=x+ .
246......(2n) 2n+1

for-1<x<1 ... (2)

Clearly radius of convergence on the R.H.S. is unity and as such the interval of
convergenceis -1 <x<1

By Radbe's test for x = 1,

vV, _2n+2 2n+3
© 2n+1 2n+1

Y/

n+l

_1}: Lt {2@213@23)‘1}

n—ow

Lt n[ o

N—® n+1

=Ltn

n—ow

4x% +10X+6—4x> —4x—1
4x% +4x+1

B n(6n+5)
=Lt ania

n—oo

312



6+ﬁ
Lt 4 1
4t —+
n n

6+0
4+0+0

§>1
4

the series on the R.H.S. is convergent for x = 1 by Rabbe's test Similarly the
power weries on the R.H.S. is convergent for x = -1

Therefore the series is uniformly convergent for x e [-1, 1]

© 135....(2n-1) x>

sin-1x=x+ for-1<x<1 ... (3)
~ 246....(2n) 2n+1
0] Put x = 1 on both sides of (2)
sin-1(1)=1+1.£+£.l+£.1+ .........
2 3 245 246 7
Ve 11 131 135 1
or — =1+ -t —  —t—— .=+
2 23 245 246 7
(i) From above we have
= 1 1.3 135
1-x° 2—1+— 2) + x%)? + A3+
(1-x)2 0+ 5 6 546 %)
135 ....... (2n-1) (X2 for -1 <x < 1
246....... (2n)

1 NG 13 X° 135 x’

and sin-lX=xX+ —. —+— . —+— . —+.......
2 3 24 5 246 7

, 135....(2n-]) X2t

246....(2n) 2n+1

for-1<x<1.

Both the series are absolutely convergent in (-1, 1). Therefore their Cauchy product will
have the same characteristics.

(sin'x) (1-X°)2= |1+ (x)4— O+ =2 + ..

= 1 13 1.35
2.4 24.6
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_ 5( 4 5[ 9+10+45
=EX+HX| < [+ X ——— |+
6 120

sin™ X 2
=x+—.x3+§.x5+ ........ for-1<x<1
1— X2 3 15
sintx 2 2.4
=X+ — X+ —x%+ ... for-1<x<1
1— %2 3 3.5

Integrating both sides term by term w.r.t. X, we have

2 4 6
%(sin'lx)2=%+§.xj+%.g+ ...... c: for -1

Whenx=0,c1=0

x

1 ., x 2 x" 24X
—(sintx)?= —+— . +— . 4.
2 2 3 4 35 6

24........ 2n X
+ Foronen for-1<x<1
35 (2n+1) 2n
Here by = 24........... 2n .i
35 (2n+1) 2n
b = 24........... 2n(2n+2) 1
" 35, (2n+1)(2n+3) 2n+2
b, _ 2n+3 2n+2
b, 2n+2 2n
_2n+3
2n

{ b, } {2n+3 }
n -1t=n. -
bn+1 2n
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b, |_3.
Lt n{b —1}— E 1

N—w n+1

by Raabe's test, the power series on the R.H.S. is convergent for x> = 1 i.e. for x

1
I+
[EN

2 4 6
%(sin‘lx)2=%+§.%+%.%+ ...... for-1<x<1.

o0 ZnC X2n+l
Example 10: Prove that sin x = Z 4

, X € [-1, 1] (Prove it as in above example)

~ 4" 2n+1
No, 1:35-(2n=1) _ 135.....(20-1) 246......... 2n
' 246.....(2n) 246....2n 246.......... 2n
123, 2n
(24.6...ccc. 2n)°
-_2n
22n(n)n
_2n
2"|n[n
B 2n(:n
4n
£ 2nC X2n+1
sintx=x+ n xel1,1
Z; 2 ey XA

20.7 Self Check Exercise

2n
Q.1 Find the interval of convergence of the power series Z(—ij”
n

| | o (x-2)""
Q.2 Find the radius of convergence of » ~———.
~ nlogn
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20.8

20.9

20.10

20.11

20.12

Q. 3 Find the radius of convergence and interval of convergence for the power series

=, 3n!
X",
nz-(;(n!)3

Summary

We have learnt the following concepts in this unit:

0] Definition of power series

(i) Radius of convergence and interval of convergence
(iii) Uniform convergence of power series

(iv) Some important results like properties of power series, Abel's summabilily, Abel's
theorem, Tanfer's Theorem, Taylor series and Taylor's Theorem etc.

Glossary:
1. Tauber's Theorem: If the series iah is Abel's summable to s and if | jmn an =
n=0 n—ow
0 then Zan converges to s.
2. Every power series is uniform convergent with in the circle of convergence.

Answer to Self Check Exercise

Ans.1 (—%,%)is the interval of convergence

Ans.2 Radius of convergence is 1.
. 1 . 1 1
Ans.3 Radius of convergence = — and interval of convergence = | ——,—
27 27 27
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Terminal Questions

1. Find radius of convergence and interval of convergence for the power series
2n

2 X
25

n=0
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2 3 4
. . . X°  2X 3X
2. Find the radius of convergence of the power series x + — +

— 1+ —1+ ...
3 4
. . . &n4”
3. Find the interval of convergence of the power series z —X"
n=1
. : . = nh-1
4. Find the radius of convergence of the power series X",

n
n=1
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