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HIMACHAL PRADESH UNIVERSITY
B.A. with Mathematics (Annual System)
Syllabus and Examination Scheme

Course Code MATH102TH

Name of the Course Differential Equations
Type of the Course Core Course
Assignments Max. Marks:30
Yearly Based Examination Max Marks: 70

Maximum Times: 3 hrs.
Instructions
Instructions for paper setter: The question paper will consist of two Sections A & B of 70
marks, Section A will be Compulsory and will contain 8 questions of 16 marks (each of 2 marks)
of short answer type having two questions from each Unit of the syllabus. Section B of the
guestion paper shall have four Units I, II, lll, and IV. Two questions will be set from each unit of
the syllabus and the candidates are required to attempt one gquestion from each of these units.
Each question in Units 1, II, lll and IV shall be of 13.5 marks each.
Instructions for Candidates: Candidates are required to attempt five questions in all. Section
A is Compulsory and from Section B they are required to attempt one question from each of the
Units |, II, 11l and IV of the question paper.
Core 1.2: Differential Equations

Unit-1
Basic theory of linear differential equations, Wronskian, and its properties. First order exact
differential equations. Integrating factors, rules to find an integrating factor. First order higher
degree equations solvable for x, y, p. Clairut's form

Unit-lI
Methods for solving higher-order differential equations. Solving a differential equation by
reducing its order. Linear homogenous equations with constant coefficients, Linear non-
homogenous equations.

Unit-1lI
The method of variation of parameters with constant coefficients. The Cauchy-Euler
equationand Legendre equation. Simultaneous differential equations, Total differential
equations.

Unit-1V
Order and degree of partial differential equations, Concept of linear and non-linear partial
differential equations. Formation of first order partial differential equations (PDE). Linear partial
differential equation of first order, Lagrange's method. Classification of second order partial
differential equations into elliptic, parabolic and hyperbolic through illustrations only.
Books Recommended
1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.
2. Sneddon, Elements of Partial Differential Equations, McGraw-Hill, International Edition,

1967.
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1.1 Introduction

Many practical problems in Science are formulated by finding how one quantity is related
to or depends upon one or more (other) quantities defined in the problem. Often, it is easier to
model a relation between the rates of changes in the variables rather than between the vriables
themselves. The study of this relationship gives rise to differential equations. Derivatives can

: . . dx .
always be interpreted as rates. For example, if X, is a function of t then EIS the rate of change

, . . dx .
of x with respect to t. If x denotes the displacement of a particle, then ot represents the velocity

of a particle. If x represents the electric charge (q), then % or % represents the rate of flow of

charge, that is the current. Derivatives of higher orders represent rate of rates. If x denotes the
2

, . d-x .
displacement of a particle, then e represents the acceleration.



In physics, engineering, chemistry and, on occasion, in such subjects as biology,

economics etc. It is necessary to build a mathematical model to represent certain problems. It is
often the case that these mathematical models involve the search for an unknown function that
satisfies an equation in which the derivatives of unknown functions are involved. Such equations
are called differential equations.

1.2

1.3

Learning Objectives
After studying this unit, you should be able to:-

. Define ordinary and partial differential equations.

. Define and find order and degree of a differential equation.
. Define and find solution of differential equation.

o Formulate the differential equations.

Differential Equations

Def: An equation which involves derivatives of one or more dependent variables w.r.t.

one or more independent variables is called a differential equation.

(1

(In)

14

The following are some of the examples of differential equations:

2
() %+3XY=X3 (ii) Sin2x¥+cosx%+y:0
213 » \2
Gy y=¥ea® oy ] L -9
dx dy dy dx
2 2 2 2
w MM oz o ZU,TULTu_
ox  \ oX ox>  oy? oz

There are two types of differential equations:
() Ordinary Differential Equations
()} Partial Differential Equations

Ordinary Differential Equation: An ordinary differential equation is one which involves
one independent variable and differential coefficients w.r.t. it. In the above examples,
equations (i), (i), (iii) and (iv) are ordinary differential equations.

Partial Differential Equation: A differential equation which involves two or more
independent variables and partial derivatives w.r.t. these independent variables is called
a partial differential equation.

In the above examples, equation (v) and (vi) are partial differential equations.
Order And Degree Of Differential Equation
The order of a differential equation is the order of the highest derivative term occurring in

the differential equation.



In the above examples, the equations (i) and (iii) are differential equations of order 1 and
equations (ii) and (iv) are differential equations of order 2.

An ordinary differential equation of order n is generally written as

dy d’y dy _
F(X,y,&,y, ........ =0

The degree of a differential equation the power of the highest derivative in the equation,
when it has been made free from the radicals and fractions as far as derivatives are concerned.
In the above examples, the equations (i) and (ii) are of degree 1 and the equations (iii)) and (iv)
are of degree 2.

To clarify what we have just said, consider the following examples:-
Example 1: Find the order and degree of the following differential equations:-

2
0 x[dy] vy Yoo

dx dx
%

N dy dy ?

i =x — +k |1+ —

W Y dx { (dx

Solution:
0] Here order is 1 as highest derivative occurring in it is % And degree is 2 as the
X

power of the highest derivative is 2.

(i) The given equation is

27
yzxﬂ +k 1+(%J
dx dx

| AT
Transposing, y - X Yy _ k| 1+ (_yj
dx dx

2 2
Squaring, (y—x;—di] = k{lJ{;{_‘O } [Making it free from fractions]

This is of order 1 {Q ?ispr@ent}
X



and is of degree 2 {Q Power of %iSZ}
X

Example 2: Write the order and degree of the following differential equations:

. dy a

i =X — +

0 y dx dy/dx

(i) ye= Jy+ ¥

Solution:
(@ Given equation is
y=X ﬂ + a

dx dy/dx

It can be rewritten as
2
x(ﬂ) - yg +a=0
dx dx

Now order is 1 and degree is 2
(i) Given equation is

y2= Y+ Y
It can be rewritten as
Y; =y + Y;

Now order is 2 and degree is 3

Self-Check Exercise-1
Q.1  Write one order and degree of the following differential equation:
dy + (x-sinx)dx =0
Q.2  Write the order and degree of the following differential equation:
Ys+Xy2+2y Y, +xy=0
Q.3  Write the order and degree of the following differential equation:

y1+X=(y-xy)*

15 Solutions of A Differential Equations



The solution of a differential equation is a relation between the variables involved such
that this relation and the differential coefficients obtained there from satisfy the given differential
equation. This is also called primitive or integral of the differential equation.

Also, let

2 n
F(x,y,ﬂ ady . d y]:o ..... o)

dx dx®’
be a differential equation of order n.

Then, (i) a real valued function y = f(x) with domain Df is called an explicit solution or
simply a solution of the differential equation (1), if on substituting y = f(x) in (1), the equality sign
holds for all x € Df, i.e. F(x, f(X), f'(X), f"(X), ........ , f"(x)) = 0 for all x € Df.

(i) a relation g(x, y) = 0 is called an implicit solution of the differential equation (1), if
from this relation, we can find a real valued function y = ¢(x) which is an explicit solution of (1).

Various Types of Solution

() General Solution The solution of a differential equation, which contains as many
arbitrary constants as the order of the differential equation, is said to be the
general solution. This is also called complete primitive or complete solution of the
differential equation.

(1)) Particular Solution The particular solution of a differential equation is that which is
obtained from the general solution by giving particular values to arbitrary
constants.

(1) Singular Solution Any solution of the differential equation which cannot be
obtained from its general solution by assigning values to arbitrary constants and
which is independent of arbitrary constants, is called a singular solution of
differential equation.

Let us do some examples:-
Example 3: Show that y = A sin Bx is a solution of the differential equation

d%y
—2 +B¥% =0
dx® Y
Solution: Since y = A sin Bx
Q = A (cos B x) B = AB cos Bx
dx
d’y _ . C en
and > = AB (- sin Bx) B = -AB* sin Bx
dx
=- B? (A sin Bx)



d’y

Putting the values of y, —- in the given differential equation, we get
X

-B2(AsinBx)+B?(AsinBx)=0
i.e. 0 = 0 which is true.

2
Hence y = A sin Bx is a solution of % +B% =0
X

2

Example 4: Verify that y = e™ + e™ is an explicit solution of the differential equation % - m?y
X

= 0. Also determine the interval in which the solution holds.
Solution: The given real valued function y = e™ + e™ is defined for all x.

Also on differentiating w.r.t. X, we have

d
d_i = m(em™ - e™)
and 3—3 = m?(e™ + e™)
On substituting the values of y and d;’ in the given differential equation d)z(gl -m?y =
0, we find that the equality sign holds for all x € R. Hence y = e™ + e™ s an explicit solution of
d—;/— m?y = 0 and it holds for all x € R.

2
Example 5: Show thaty = mx + {/1+n? is solution of y = x % + all+ (%)
X X

Solution: Given equation is

2
y:xﬂ+ all+ ﬂ
dx dx

Now y=mx+ {1+n? = %zm

Putting the values of y and % in the given differential equation, we get
X

mx + §1+n? =xm+ ¥1+n?, which is true.

Hence y = mx + {1+ n7 is a solution of the given differential equation.

6



Example 6: Verify that 4x? + y2 = 25 is an implicit solution of the differential equation y% + 4x
X
= 0. Also determine the interval in which the solution holds.
Solution: Given relation is 4x? + y? = 25
= y = V25-4x°

or y = -\25—4%°

Clearly the domain of y =+/25—4x? is the interval {—gg}

Differentiating, y =+/25—4x? w.r.t., we get

dy_1_ —8x —x and it exists for x e [—§ ﬂ

dx 2 J25-4¢ [25-4% 2'2

On substituting the values of y and % in the given differential equation y % +4 =0,
X X

we find that the equality sign holds for all x {—gg}

Hence 4x? + y? = 25 is an implicit solution of the given differential equation and it holds

33
forallx e| ——,—|.
22

Note: The given differential equation is satisfied even if we take y = y25—4x? instead of y
J25-4x° .
Example 7: Show that y = (a + bx) e?x is a solution of the differential equation.
d’y , dy
-4 ==
dx® dx

Examine the nature of the solution.

+4y =0

Solution: Given differential equation is

d’y , dy
-4 — +4y=0
dx? ax Y
Also we have y = (a + bx) e*
LA (a + bx) e 2 + be*
dx

= (2a + 2bx + b) e*



2
and (32/:(2a+2bx+b)e2X2+(0+2b+O)e2X
X

= (4a + 2b + 4bx) > + 2be*
= (4a + 4b + 4bx) e*

2
Putting the values of vy, % and 3 Zin the U.H.S. of the given differential equation, we
X X

get (4a + 4b + 4bx) e - 4 (2a + 2bx + b) e + 4 (a + bx) e*
= (4a + 4b + 4bx - 8a - 8bx - 4b + 4a + 4bx) e*
= 0.e*=0 VxeR

d?y  dy
-4 +ay=o.
o Tax Y

Hence y = (a + bx)e* is a solution of the differential equation

The solution is a general one because it involves two arbitrary constants and the given q
equation is also of order 2.

Self-Check Exercise - 2
Q.1 Isy=3cosx+4sinxis a solution of the differential equation

2
d y +y= 0O ?
dx?
Q.2 Show thaty =4 sin 3x is a solution of the differential equation
d’y
¥ +9y=0

Q.3 Show that
y = 2X + 3 cos X is a solution of

4 3
M - cot x M =0
dx* dx®

1.6 Formation of Differential Equations

The differential equation whose solution is f(x, y, ¢) = 0, ¢ being an arbitrary constant,
can be obtained by eliminating c between this relation and the relation obtained by
differentiating it w.r.t. the independent variable 'x'. This will give us a differential equation of

order one.

In general, if we have to form a differential equation whose general solution is f(x, Yy, C1,
C2, veunns , Cn) = 0 where ¢y, Co, ....... , Cn are 'n' arbitrary constants, then we have to proceed as

follow:-
The given general solution is



f(X,y, C1, Coy ... ,Cn)=0

Where c;, Ca,......, Cn are 'n' arbitrary constants cor. parameters). Since (1) contains 'n'
arbitrary constants, therefore, the differential equation, of which (1) is the general solution, must
contain derivatives of n" order.

To eliminate these n constants, differentiating (1) w.r.t. X successively n times, we get

f(X, Y, Y1, C1, C2, ...... ) Cn) =0 . 2
f(X, Y, Y1, Y2, C1, C2, ....... s Cn) =0 ... 3
FOG Y, Y1, Y2, e, , Y, C1, C2, «oee.e. ,Cn) =0 (n+1)

Eliminating the n arbitrary constants from (1), (2),.... (n+1), we get

2 n
f(x,y,dy ay . d yJ =0,

ax’
which is the required differential equation.
Method form the differential equation whose solution in X, y is given:
0] Write down the equation of the general solution.

(i) Differentiate it w.r.t. X successively as many times as the number of arbitrary
constants it contains.

(iii) Eliminate the arbitrary constants from the equations obtained in steps (i) and (ii)
Ultimately we get an ordinary differential equation:

0] Whose order is equal to the number of arbitrary constants in the given equation,

(i) Which is consistent with the given equation, and

(iii) Which is free from arbitrary constants.

To clarity what we have just said, consider the following examples:-
Example 8: Find the differential equations whose solutions are given by

() y = ce* coS X (i) y=AX+B x?
Solution: (i) Differentiating the given relation

Yy = Cce* cos X
We get

Q =c [e* (- sin X) + e* cos X]
dx

=ce*[cosx-sinx] ... (2



Divide (2) by (1), we get
dy/dx  cosx—sinx
y COSX

or COS X ﬂ =y (cos X - sin x),
dx

is the required differential equation,
(i) Given relation is

y =A X+ Bx2 ..(1)
= Y =A+2Bx ... (2
dx
d’y
= =2B L. 3
dx? 3
To get the required differential equation, we eliminate A and B from (1), (2) and (3).
1 d%y
F 3,B==—= ... 4
rom (3) > o 4)
o dy 1(d?%
Putt 2), t —=A+2.—| —
utting in (2), we ge Ix Z(dxz X
= A= Y, d’y (5)
™ o
Using (4) and (5) in (1), we get
2 2
y= ﬂ—xd¥x+1 d—zxz
dx dx 2\ dx
2 2
= 2y = 2x ﬂ—szd—guxzd—g
dx dx dx
2
= x2 d7y dy

—+ 2y = 2x —, which is the required differential equation.
dx® dx

Example 9: Form the differential equation of simple Harmonic Motion given by x = Acos (nt +
oc), where n is fixed and A and << are arbitrary constants.
Solution: Given

x=Acos(nt+e) . (1)

10



dx

= — =-nAsin (nt + o)

dt

2

= d—;(=n2Acos(nt+OC)

dt

=-n’x [By (1)]
a’x _ . :
e - n°x = 0, which is the required equation of S.H.M.

Example 10: Form the differential equation of which c(y + c¢)? = x3 is the complete integral
Solution: The given integral is

c(y+c?=x* .. 1)

which contains one arbitrary constant

Differentiating (1), w.r.t. x, we get

2c (y +c) % =3x> . )
dx
Squaring (2), we get
dy ?
4c2(y+c)?| — | =9+ ... (3)
dx
Divide (3) by (1), we get
2
4c (Qj =9x=>c= 9X2 {Wherey1 = ﬂ}
dx 4y; dx

Putting the values of ¢ in (1), we get

9x {y_l_%T_ X3
ay; | 4y;

9x | 4yy?+9x
ay; | 4y;

or

2
}zmﬁﬁ

or 9 (4y 7 + 9x)? = 64 y, 2
which is the required differential equation.
Putting the value of c in (2), we shall get the required differential equation as
12y Y2+ 27x = 8x .

Example 11: Form the differential equation corresponding to
11



y2 = 2ay - x? + a2, a being an arbitrary constant.
Solution: We have
y?=2ay-x*+a*> .. (1)
Differentiating w.r.t. X, we get
2y y1 = 2ay; - 2X
gz WitX
Y1

= Yyi=ay1-X =

Putting in (1), we get

2
yzz{yyﬁqy_xz+ {yyﬁX}
yl 1

= WY E2yyi (Y Vit X) XY (Y Yat X)?
= YV S22V A 2xyyi- XY+ YRV X+ 29y
= 2y2 Y2+ Axyy: - X2y +x2=0
= (@) Y Ay +x2=0

which is the required differential equation.
Example 12: Form the differential equation corresponding to y = a sin’! x, a being a parameter.
Solution: We have

y=asintx . 1)

Differentiating w.r.t. x, we get

1

yi1=a
' J1-x?

Putting in (1),

= a=1-x* yi

y = A[1-x?y1 sint x
N
J1-x% sub™x

which is the required differential equation.

= V1=

Example 13: Find the differential equation of the family of circles (x - h)? + (y - k)2 = r?, where h,
k are arbitrary constants.

Solution: Given equation of the family of circlesis (x - h)2 + (y - k)?=r> ... 1)

12



where h, k are arbitrary constants.
Since (1) contains two arbitrary constants, we shall differentiate (1) w.r.t. x twice only.
Differentiating (1) w.r.t X, we get

2(x-h)+2(y-k)%=0

= (x-h)+(y-k)ﬂzo ..... 2
dx
Differentiating (2) w.r.t X, we have
d?y , (dyY
1+y-k) —+|—|=0 ... 3
(y-Kk o ( dx] 3
2
l+(dyj
=L X @
= y - d2y .....
dx®

Substituting it in (2), we have

Hdvﬂdv
dx ) |dx
d’y
dx?

Substituting the values of (x - h) and (y - k) from (4) and (5) in (1), we get

{H(dyj}dv _{1+(dvj}
dx ax dx
d’y d’y

dx? dx?

X-h=

- ez
dx) | |\dx dx?

2—3 2 2
= 1+ ﬂ =r? d_g/
dx dx

Example 14: Find the differential equation of all parabolas whose axes are parallel to y - axis.

13



Solution: The general equation of any parabola whose axes is parallel to y - axis is
x+h@2=da@y+k .. 1)
where h, k, a are arbitrary constants.

Since (1) contains three arbitrary constants, we shall differentiate (1), w.r.t. x three times
only.

Differentiating (1) w.r.t. X, we get

2(x + h) = 4a &
dx

= 2aﬂ=x+h
d

X
Again differentiate w.r.t. X, we have
2

d 2/: 1

dx
dy_ 1

d<¢ 2a

Again differentiate w.r.t. X, we get
d®y
ax®

which is the required differential equation.

2a

or

=0

Example 15: Find the differential equation of all circles in a plane.

Solution: The general equation of all circles in a plane is
X2+y2+2gx+2fy+c=0 ... (1)
where g, f and c are arbitrary constants.

Since (1) contains three arbitrary constants, we shall differentiate (1), w.r.t. X three times

only.

Differentiating (1) w.r.t. X, we get

2X+ 2 = = ﬂ

yy1 + 29 + 2fy1 = 0, wherey, = g
X

= X+yyi+g+fy.i=0 .. 2)

Again differentiate w.r.t. X, we have

L+ yi+yy.+ fy2=0 .. 3)

Again differentiate w.r.t. X, we get

14



0+ 2y1y> +yyz+yiy2 + fyz =0
= 3ywy2 +yys+ fys =0 ... 4)
Todiminatef from(3) and(4)
Multiplying (3) by y,, wehave

Ya+YiYa+yyays + fyys=0 ....(5)
Multiplying (4) by y2, we have
3yi1Ya+yyays+ fysys=0 L (6)
Subtracting (6) from (5), we get
ya+ ¥ Ya-3y1y; =0
= ya(L+y))-3y1y; =0,
which is the required differential equation.

Example 16: Find the differential equation of all circles touching a given straight line at a given
point.

Solution: Let us take the given line as y - axis and given point as origin.
Then its centre is (a, 0) and radius is a.
The general equation of all such circles is

(x-a?+y*=a L. (1)
Equation (1) can be written as
x2+y?-2ax=0 ... 2

Differentiating (2) w.r.t. x, we have
2x+2yy:1-2a=0

= X+yyi-a=0

= a=x+yy:
Substituting in (2), we get
X2+y?2-2(x+yy1)) x=0

= X% +y?-2x? - 2xyy1 =0

= X2 - y? + 2xyy1 = 0,
which is the required differential equation.

Example 17: Find the differential equation of all conics whose axes coincide with the axes of
co-ordinates.

OR
15



Find the differential equation of the family of curves ax? + by? = 1, where a, b are
arbitrary constants.

Solution: Let the general equation of the conic, whose axes are axes of co-ordinates, be
ax?+by?=1 L. Q)
Differentiating (1) w.r.t. x, we have

2ax + 2by ﬂ =0
dx

or ax + by ﬂ =0 . 2)
dx

or a_y ﬂ ....... 3)
b X dx

Again differentiating (2) w.r.t. X, we get

2 2
a+b(ﬂj+byd y=O

dx dx?
2 2
> L(ﬂj +y9Y <o
b {dx dx®
2
_Xﬂ + g + d2y =0 Usi 3
o X dx (dx] e [Using (3)
d’y . (dy)  dy
- - - :O’
o Ve i (dxj Y X

which is the required differential equation.
Example 18: Find the differential equation of the family of curves y = e* (A cos x + B sin x),
where A, B are arbitrary constants.
Solution: The given equation of the family of curves is
y=e*(Acosx+Bsinx)y ... (1)
where A, B are arbitrary constants.

Differentiating (1) w.r.t. X, we have

%zex(_Asinx+Bcosx)+(Acosx+Bsinx)eX
X
dy -
— & =e*[(B-A)sihx+(B+A)cosx ... (2

16



Differentiating (2) w.r.t. X, we get

2
((jj 2/ =e*[(B-A)cosx-(B+A)sinx]+[(B-A)sinx+ (B + A) cos x]e*
X
d%y
= —5=2e*[Bcosx-Asinx] .. 3)
dx
Multiplying (2) by 2 and subtracting it from (3), we get
2
d g -2 ﬂ =e*¥[-2Acosx-2Bsinx]
dx dx
=-2¢e*[Acosx+ Bsinx]
=-2y [Using (1)]
2
P
dx dx

which is the required differential equation.
Example 19: Find the differential equation of all ellipses centred at origin.
Solution: The general equation of ellipse centred at origin is
ax?+ 2hxy + by?=1 . (1)
where a, b, h are arbitrary constants.
Differencing (1) three times as it contains three arbitrary constants.
Differentiate (1) w.r.t. X, we have
2ax + 2h (xy1 +y) + 2byy: =0
= ax + h (xy; +y) + byyg=0 . (2
Again differentiate (2) w.r.t. x, we get
athlxyz+yi+y]+blyy2+y1y]=0
= a+hxy2+2yi]+blyy2+ ¥/]=0 ... (3)
Again differentiate (3) w.r.t. x, we get
0+ N [xys +y2 + 2y2] + b [yys + yay1 + 2y1y2] = 0
= h [xys + 3y2] + b [yys + 3yiy)] =0 ... 4)
Multiplying (3) with x, we get
ax+h(x2y,+2xy1) + b (xyy2 +xy?)=0 ... (5)
Subtracting (5) from (2), we get
hly -xyi-x*yo] + b [yys - xyy2 - xy;] =0
17



= hly-xy:-x%y2=-byys-xyy2-xy?] ... (6)
From (4), h[xys + 3yl =-b [yy2-3yay,] ... @)
Divide (6) by (7), we get

V=X = XY, YV —XYY, — XV}

Xy;+3Y, YYs+3Y1Y,

= (Y - Xy1 - X?y2) (yys + 3y1y2) = (Xys + 3y2) (Yy1 - Xyyz - X ;)
= Y2Ys+3yyiYa-XyViys-3XY, Y2-X2Y Y2 Vs
-3Y1Y; SXYYiYa- XY Yays- X2y, Ya+ 3y yiYa-3XYy Y; -3Xy1ye
= Y2Y3-2XYYiYa X2y ya+3Xyy; -3 yiy; =0
= yaly?-2xyyi X2y 1 +3xy; [y-xya] =0
= ysly-xya2+3xy: [y-xy] =0
= (Y-xy) [ys(y-xy) +3xy;]=0
=  y-xy2=0 or  ys(y-xy)+3xy; =0

Because (1) contains three arbitrary constants, therefore the differential equation of
which (1) is a solution must contain third order derivative.

Hence yys - Xy1 y3 + 3X y22 = 0, is the required differential equation.

Example 20: Obtain the differential equation associated with the primitive y = a + be®™ + ce ™,
where a, b, c are arbitrary constants.

Solution: Given equation is

y=a+be*+ce™ . Q)
Differentiating (1) w.r.t. X, we get

y1 =5be>*-7ce™ ... 2
Multiply (1) by 7, we get
7y=7a+7be*+7ce™ ... (3)

Equations (2) + (3) give

y1+ 7y = 7a + 12be®

Differentiating it w.r.t. X, we have
y2+7y1=60be> . 4)
Again differencing w.r.t. X, we get



ys+7y.=300be> .. (5)
Multiply equation (4) by (5), we get

5y, +35y;=300be> ... (6)
Now Equations (5) - (6) gives

y3 + 2y, - 35y1 =0,

which is the required differential equation

Example 21: Obtain the differential equation of the family of circles through the fixed points (-a,
0) family of circles through the fixed points (-a, 0) and (a, 0). Also sketch different members of
the family.

Solution: Let A (-a, 0) and B <> (a, 0) be two points.

Then the equation of the circle with segment [AB] as diameter is

x+a)(x-a+((y-0=0 [Diameter Form]
ie. x?-a?+y?=0
= x2+y?-a2=0 ... 1)

And the equation of KMB isy=0 ... (2)

Now any circle through the points A and B can be considered as the circle through the
points of intersection of (1) and (2).

Thus its equation is
x+y?-a)+ky)=0 ... (3)

Equation (3) represents the family of circles passing through the fixed points A < (-a, 0)
and B < (a, 0) for different values of k, which is as shown below:

I
To find the differential Equation of the family

Equation (3) can be written as



X2 +y? a2
y

=k . 4)

Differentiating w.r.t. X, we get

yX+2yy )-(0C+y )y _

2

y

=  y(@x+2yy)-(x*+y*-a’)y:=0

U

2xy +2y?y1 - X*y1-y?yi+a’y1 =0

= (y*-x2+a?)y;+2xy=0

which is the required differential equation.

Q.1

Q.2

Q.3

Q.4
Q.5

Self-Check Exercise-3

Form the differential equation whose solution is
y = A cos 3x + B sin 3x

where A and B are arbitrary constants.

Form the differential equation whose solution is
y = ax + bx?,

where a and b are arbitrary constants.

Find the differential equation of all circles which pass through the origin and
whose centres are on the x-axis.

Find the differential equation of all circles centred at the origin.

Find the differential equation of all hyperbolas centred at the origin.

1.7 Summary:

We conclude this unit by summarizing what we have covered in it:-

1.
2.

5.

Elementary concepts of differential equations.

Discussed types of differential equations.

i.e. Ordinary differential equation and Tartial differential equation.
Defined Order and Degree of differential equations.

Discussed different types of solutions of differential equations. Thereafter, we
find solutions of differential equations.

Explained the concept of formation of differential equations.

1.8 Glossary:

1.

An equation which involves derivatives of one or more dependent variables w.r.t.

one or more independent variables is called a differential equation.
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2. An ordinary differential equation is one which involves one independent variable
and differential coefficients w.r.t. it.

3. The order of a differential equation is the order of the highest derivative term
occurring in the differential equation.

4. The degree of a differential equation is the power of the highest derivative in the
equation, when it has been made free from the radicals and fractions as for as
derivatives are concerned.

1.9 Answer to Self Check Exercise
Self-Check Exercise-1
Ans.1 order:1 and degree:1
Ans.2 Order: 3 and degree:1
Ans.3 Order: 1 and degree:5
Self-Check Exercise-2
Ans.4 Yes
Ans.2 Verified
Ans.3 Verified
Self-Check Exercise-3

2

d y+9y:0

X2

Ans.1

2
Ans.2 xZM + 2y = 2x Y
dx® dx

ANns.3 X2 -y?+ 2xy % =0
dx

Ans. 4 x+yy; =0
AnsS.5yys-xXYy> +3x y: =0
1.10 References/Suggested Readings
1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.

2. Boyce, w. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.

1.11 Terminal Questions

1. Find the order and degree of the following differential equation:
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10.

) 27%
d’y _ [y{yj }
dx® dx

Find the order and degree of the following differential equations:

2 2
o Yy +x[ﬂj +y=0

dx? "~ dx dx
2
(ii Ldf+Rd—9+9:o
dt d c
Show that y = mx + 2 and y? = 4ax are solutions of y = x Y 2
m dx dy/dX
2
Show that 4y + x2 = 0 is a solution of % + X Y -y=0
dx dx
Show thaty =c x + a is a solution of y = x Q 2
c dx dy/dx

Is it the general solution?

Form the differential equation whose solution is
y = Ae* + Be?,

where A and B are arbitrary constants.
Eliminate ¢ fromy = (x + ¢ - ¢%.

Find the differential equation of all parabolas with latus rectum 49 and whose
axes are parallel to the x-axes.

Find the differential equation of all circles touching y-axis at the origin.

Find the differential equation which has y = a cos (mx + b) as its complete
integral, where a and b are the arbitrary constants.
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Unit - 2

Linear Equations, Linear Independence And Wronskian

Structure

2.1 Introduction

2.2 Learning Objectives

2.3 Existence and Uniqueness Theorem

2.4 Linear Combination

25 Linear Dependence and Linear Independence

2.6 Wronskian and Its Properties
Self-Check Exercise-1

2.7 Linear Differential Operator
Self-Check Exercise-2

2.8 Summary

2.9 Glossary

2.10 Answers to self check exercises

2.11 References/Suggested Readings

2.12 Terminal Questions

2.1 Introduction

A linear differential equation is said to be linear if the unknown function and all of its
derivatives occurring in the equation occur only in the first degree and are not multiplied
together.

e.g. the differential equations.

2
d g +4y =0, ﬂ = sin x are linear whereas
dx dx

2 3 2
(%j + X (%) = 0 is non-linear.
X X

It should be noted that a linear differential equation is always of the first degree but every
differential equation of the first degree need not be linear e.g. the differential equation.
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2 2
d_g/ +2 Q +y? = 0is not linear though its degree is 1.
dx dx

The most general linear differential equation of order n in the dependent variable y and
the independent variable x is an equation which can be expressed in the form.

Y 4

Xn—l

n n-1

d’y

n

ao (X) tar(X) ——= + ... + an1 (X) % tan(X)y=Fx) ... Q)

where ao(x) is not identically zero. This is called hon-homogeneous differential equation.

Here we assume that ao, ai, ay,......an and F are continuous real function on a real
interval a < x < b and that ag (X) = 0 for any x on a < x < b. The right hond member F(x) is called
the non-homogeneous term.

n n-1

If F is identically zero, equation (1) becomes ag (X) d 2’ + a1 (X) n_)ll + o + an1 (X)
ﬂ+an(x)y=0 ....... 2
dx

This is called homogeneous differential equation.

For n = 2, equation (1) reduces to the second-order non-homogeneous linear differential

2
equation a0 () 3Y +a: (x Y oay=Fx .. ©)
dx dx

and equation (2) reduces to the corresponding second order homogeneous linear
differential equation.

d’y

do (X
O()dx2

+ al(x)% + ay (X) y= o ... (4)

In this case, we assume that ag, a1, a; and F are continuous real functions on a real
interval a < x < b and that ap (x) = 0 for any xona < x < b.

2.2 Learning Objectives

After studying this unit, you should be able to:

. Define and discuss linear combination, linear dependence and linear
independence.

. Discuss Wronskian and its properties.

. Define differential operator and discuss important properties of differential
operators.

2.3 Existence And Uniqueness Theorem

In this section we shall state the basic existence theorem for initial value problems
associated with n" order linear differential equation. (Without Proof)

24



Theorem 1
0] Consider the n™ order linear differential equation

n n-1

dY 4 a

n

y

ao(X)

o + an1 (X) % +an(X)y = F(X)....... Q)

Where ag, ai, ay, ..... , an and F are continuous real functions on a real intervala<x<b
and ag(X) # 0 forany xona<x<b.

(i) Let Xo be any point of the interval a < x < b and let co, Ci,......, Cn-x be n arbitrary real
constants.

Then there exists a unique solution f of (1) such that

f(Xo) = Co, f'(X0) = C1y weuen. , f™D(x0) = cn.1 and this solution is defined over the whole
intervala<x <h.

Cor. Let f be a solution of the n' order homogeneous linear differential equation.

y

Xn—l

n n-1

d’y

n

ao(X) + ai(x) e + an-1(x) % + an(X) y = 0 such that

f(X0) =0, f'(Xo) =0, ........ , fOD(x0) = 0

Where X, is a point of the interval a < x < b in which the coefficients ao, ay, ....... , an are all
continuous and ag(X) # 0 then f(xX) =0 V x/fona<x<b.

2.4 Linear Combination

Let f1, f2, ooonn. , fn be any functions of x defined over on interval |, then the function cif1
+ Cofo +nnnnn. + cnfn is called a linear combination of the functions f1, fo, ....., fn Over |, where c;,
C2,....., Cn @re arbitrary constants.
Illustration

The expression
2sin x -3 e*+5log |x| is a linear combination of the functions sin x, e* and log |x|.
The expression

2e*+4e>+3eX

is a linear combination of the functions e*, e and e®.

We now take up the fundamental results w.r.t. the homogeneous equation.

ay
ax™*

Theorem 2: Basic Theorem on Linear Homogeneous Differential Equation

n n-1

9 aix)

n

ao(X)

Let f1, fo, ...... , fm be any m solutions of the homogeneous differential equation (1). Then
Cif1 + Cof2 +........ + Cmfm is also a solution of (1) where c;, Ca,......, Cm are m arbitrary constants.
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Another form of Theorem 2

Any linear combination of solutions of a linear homogeneous differential equation is also
a solution of the equation.

Proof: Let f1, f2, ..cun. , fm be m solutions of the linear homogeneous equation.
n n-1
a0x) Y + ay(x) Y ot 201 (X) Y L axy=0
; dx” dx
or ao(X) y™ + ay(x) y +........ +an (X)yP+an(x)y=0

Then we have

ao(X) f1 + ai(x) 1"V +........ +an1 (X) filV +an(X) f1=0 ... (1)

ao(x) f2™ + ai(x) £V +........ +an (X) 2P +an(X) f2=0 ... (2)

ao(X) fm™ + ay(x) fm™H +........ +an1 (X) fm®P+an(X) fm=0

Multiplying (1), (2), ...... , (m) by ci1, co ....... , Cm (arbitrary constants) respectively and
adding, we get

ao(X) [cafi™ + cof2™ +........ + Cnfm™] + a1(x) [cef1™V +

Cof2"Y +....... + Cnfm™ Y] +......... + an(X) [Cifi + Cof2 + o, + Cmfm] =0
or

ao(X) [C1f1+ Cafat........ + Cnfm]™ + as(X) [Cofs +

Cof2 +oounnn. + Cnfm] D 4. + an(X) [Cifi + Cof2 + v + Cmfm] =0

This shows that cif1 + Caf2 + ...... + Cmfm is a solution of the given homogeneous linear
equation. But cif1 + Caf2 +........ + Cmfm is any linear combination of f1, fo, ....... , fm.

Hence the result follows.

25 Linear Dependence and Linear Independence

The n functions fi, fo,....... , fn are called linearly dependent (or L.D.) on a < x < b if there
exist constants cg, Ca,...... , Cn not all zero, such that
Cif1 (X) C2f2 (X) +........ + Cnfn (X) = O for all x such thata <x <b.

In particular, two functions f1 and f, are linearly dependent on a < x < b if there exist
constants ci, €2, not both zero, such that

Cifi (X) + C2f2(x) =0

for all x suchthata < x <b.
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For example, the functions x and 2x are linearly dependent on the interval 0 < x <1
because there exist constants (c1 =2, c2 = 1)

s.t. Cif1 + Caof2
e, (2 +(1)(@2)=0

The n functions f1, f2,......,fn are called linearly independent (or L.l.) on the interval a < x
< b if they are not linearly dependent there. That is, the functions fi, f2, ..... , fn are linearly
independent on a < x < b if the relation.

Cift (X) + C2f2 (X) +....... + Cnfn (X) = O for all x such that a < x < b implies that c; = c2 =
........ =Ch = O

In other words, the only linear combination of f1, fo,....... fn that is identically zero on a < x
< b is the trivial linear combination 0.f1 + 0.f> + ........ +0.fn.

In particular, two functions f1 and f» are linearly independent on a < x < b if the relation.
forall x on a < x < b implies that c; = ¢, = 0.

For example, the functions x and x. are linearly independent on 0 < x < 1, since cix +
c2x2 = 0 for all x on 0 < x < 1 implies that both ¢, =0 and ¢, = 0.

We may verify this in the following way:-
We differentiate both sides of cix + ¢c2x2 = 0. to get.
Cci1+2cy,x=0,
which must also hold for all x on 0 < x < 1.
Then from this equation, we also have after multiplying both sides by x as
c1X + 2 ¢cox? = 0 for all such x.
Thus we have both
CiX+Cx?=0
and cix+2cx?=0
forallxon0<x<1.

Subtracting the first term from the second gives c2x? = 0 for all x on 0 < x < 1, which at
once impliesc2, =0

Then either 1 of above two equations show similarly that ¢c; =0

From the above definitions of linearly dependent and linearly independent we conclude

that:
() When f1, fa,....... , fn are linearly independent, then none of them is a linear combination
of others.
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The next theorem is concerned with the existence of sets of linearly independent
solutions of an n"-order homogeneous linear differential equation and with the significance of
such linearly independent sets.

Theorem 3: The n""-order homogeneous linear differential equation.

n n-1
a0) Y + a1 Yot 202 (%) Y o amy=o . 1)
X" dx™ dx
always possesses n solutions that are linearly independent. Further, iff1, f2,........ fn are

n linearly independent solutions of (1), then every solution of (1) can be expressed as a linear
combination cif1 + Caf2 +....... + cnfnOf these n linearly independent solutions by proper choice of
the constants cy, cs,...... , Cn.

Thus, given any nth, order homogeneous linear differential equation, theorem 2 assures
that a set of n linearly independent solutions actually exists. Therefore, any solution of (1) can
be written as a linear combination of such a linearly independent set of n solutions by suitable
choice of the constants cy, ca,....., Cn.

Let us do some examples:-

Example 1: For the second-order homogeneous linear differential equation.

d?y

oo T g Tal)y=0 ..

ao(X)

Theorem 3, states that a set of two linearly independent solutions exist. For that, let f1
and f> be a set of two linearly independent solutions. Then iff is any solution of (2), then the
theorem suggests that f can be expressed as a linear combination c1f1 + c.f> of the two linearly
independent solutions f1 and f, by proper choice of the constants ¢, and c..

d’y

dx®

Example 2: We know that sin x and cos x are solution of +y=0 ... (3)

for all x in -oo< X <oo0.

We can show that two solutions are linearly independent. Next, let f be any solution of
(3). Then by Theorem 3, f can be expressed as a linear combination ¢, sin x + ¢, cos x of the
two linearly independent solutions sin n and cos x by proper choice of ¢; and c..

i.e. there exist two particular constants ¢; and c; such that
f(x)=cisinx+c,cosx ... 4)
for all X in -00< X <oo.

Now, let f1, fo,....., fn be a set of n linearly independent solutions of (1), then by Theorem
2, any linear combination of solutions of the homogeneous linear differential equation.

Cif1 + Cafo +....... +cnf, L (5)
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Where cy, Ca, ..... , Cn are n arbitrary constants, is also a solution of (1). On the other
hand, by Theorem 3, if f is any solution of (1), then it can be expressed as a linear combination
(5) of the n linearly independent solutions f1, f»,....., fn by a suitable choice of the constants c;,
C2,...., Cn. Thus a linear combination (5) of the n linearly independent solutions f1, fa,....., fnin
which ci, Ca,....., Cn are arbitrary constants must include all solutions of (1). Due to this, a set of n
linearly independent solutions of (1) is known as fundamental set of (1). This is a linear
combination of n linearly independent solutions and this is called a general solution. Thus, we
have the following definition:-

Def: If f1, f2,...... .fn are n linearly independent solutions of the nth-order homogeneous linear
differential equation.

n n-1

d
() —2+ar(x) —F 4t ann () 2 +al)y=0 6)
X ax
on a<x<b, then the set fi1, fo,....... , fnis called a fundamental set of solutions of (6) and
the function f defined by
f(X) = cafa(X) + Caf2(X) +....... +cnfn(X),a<x<b .. @)
where ci, Ca,....., Cy are arbitrary constants, is called a general solution of (6) on
a<x<h.

Therefore, if we can find n linearly independent solutions of (6), we can at once write the
general solution of (6) as a general linear combination of these n solutions. In particular for the
second-order homogeneous linear differential equation.

2

a0(x) 3 Y+ ar (x) Y ) y=0 ..(8)
dx dx

fundamental set consists of two linearly independent solutions. If f1 and f.are a
fundamental set of (8) on a < x < b, then a general solution of (8) on a < x < b is defined by cif1
(X) + c2f2 (X), a < x < b, where c; and c; are arbitrary constants.

To clarify what we have just said, consider the following examples:-
Example 3: We know that sin x and cos x are solutions of

d?y

dx®

for all X, -.o< X <. Further, we can show that these two solutions are linearly
independent. Thus, they constitute a fundamental set of solutions of the given differential
equation and its general solution may be expressed as the linear combination ¢, sin X + ¢, cos
X,

+y=0

where c; and c; are arbitrary constants. We write this as y = c¢1 sin X + cos X.

Example 4: The solutions e*, e* and e?* of
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d’y __d’ dy
=2 -— +2y=0
& T dx
can be shown to be linearly independent for all X, -co< X <.

Thus, €%, e* and e constitute a fundamental set of the given deferential equation, and
its general solution may be expressed as the linear combination c,e* + c.e™ + cse?,

where c1, ¢z and ¢z are arbitrary constants. We write this as y = ci1ex + C2ex + C3€xx.
Particular Cases of Theorem 1, 2, 3
Theorem 4: If y1(x) and y2(x) are any two solutions of
ao(x) Y"(x) + a1(x) y'(x) + az(x) y(x) =0
Then the linear combination ciyi(x) + cay2(X),
Where c¢1 and c; are arbitrary constants, is also a solution of the given equation.

Proof: Since yi(x) and y»(x) are solutions of

ao(x) y'(x) + a1(x) y'(x) + a(x) yx) =0 .. 1)
ao(x) y1'(x) + ai(x) y2'(x) + a=(x) ya) =0 ... 2
and  ao(X) y2"(X) + ai(x) y2'(x) + a2(X) y2x) =0 ... 3)
ux)=cay: (X) +cay2x) L 4)

From (4) u I(X) =Gy, '(X) +GY, '(X) }

u"(x) =Yy, "(X) + Gy, "(X)

Then ap(X)u” (x) + ai(x) u' (X) + az (x) u(x)
= ao(X)[Cay1 "(X) + Cay2" (X)] + @1(x) [Cay1 '(X) + Cay2 ' (X)]
+ a(X) [C1y1 (X) + Cay2 (X)] [By (4) and (5)]
= cafao(x) y* (X) + a1 (X) y1 '(x) + @z (x) y1 (X)]
+C2 [a0 (X) y2 " (X) + au(x) y2'(X) + a2 y2 (X)]
=c1(0)+c2(0)=0

Thus ap(x) u" (x) + ai(x) u' (xX) + az(x) u(x) =0

= y = u (x) is a sol. of (1)

i.e. y = C1y1 (X) + cay2 (X) is a sol. of (1).

Theorem 5: There exists two linear independent solutions, y1 (x) and y. (x) of the equation
a(x) y'(x)+tai(x)y (x)+a(x)y (x)=0

such that its every solution y (x) may be written as
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Y(X) = cay1 (X) + c2y2 (X), X € (&, b)
Where c; and c; are suitable chosen constants

Proof: Given equation is

a)y')+ta(y x)+ta(x)yx=0 .. 1)
Let Xoe (a, b) and y; (X) and y2 (x) be two solutions of (1) satisfying

yi (%) =1landyi'(x))=0 ... (2)
and Vy2(Xo)=0andy2'(xe)=2 ... 3)

To prove that y; (X) and y» (x) are linearly independent
Let if possible, y1 (X) and y» (x) are linearly dependent.
Ciy1 (X) +coy2 (X) =0foreachx e [a,b] ... 4)
by def, there must exist constants ¢; and ¢, not both zero, such that

ci1y1 (X) + cay2 (X) = 0 for each x € [a, b]

Now (4) = Ciy1 '(X) + coy2'(X) =0foreachx e[a,b] ... (5)
Since Xo € [a, b]
. (4) and (5) give
ciy1 (Xo) + c2y2 X0)=0 . (6)
ciy1'(Xo) + C2y2 '(X0)=0O L @)

aM+¢(0=0= ¢=0
6(0+cD=0= ¢ =0}

This is a contradiction to the fact that ¢, ¢, are not both zero.

.. our assumption that y; (x) and y» (x) are linear dependent is wrong.

- y1 (X) and y2 (X) are linearly independent.

For the remaining part, let y(x) be any solution of (1) satisfying
y(Xo)=ciandy' (Xo)=c. ... (8)

Let uxX) =uX)-cys (X) +coy-(x) . (9)

(9) shows that u(x) is a linear combination of solution y(x), y1(x) and y»(x) of (1).

. u(x) is also solution of (1) satisfying u(xe) = 0 and u'(xo) = 0

Hence u(x) = 0 for all x on (a, b).

. by (9), we have
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Y(X) - C1y1 (X) - C2y2 (X) =0
or  Y(X)=cCuy1 (X) + C2y2 (X)
Where c; and c: are suitable chosen constants and are given by (8)

2.6 Wronskian And Its Properties

Def: Let f1, f2,....... , fn be n real functions each of which has a derivative of order (n-1)
on a real interval [a, b], then the determinant
f, f, f
f,' f," f'

(n-1) (n-1)
f1 fz

denoted by W(f1, f2,...... , fn) is called Wronskian of f1, fo,....... , fn.

The wronskianW(f1, f2,...... .fn) is itself a real function defined on a < x < b and its value
is denoted by W(f1, f2,......, fn) (X) or by W[f1 (X), f2(X),......, frn (X)].
Properties

Property 1: If the wronskian of the functions f1, fo,...... , fn Over an interval | is non-zero, then
these functions are linearly independent over I.

Proof: Consider the relation
Cifi + Cafo +uoin. +cnfn=0 ... 1)
where cy, Ca,...... , Cn are constants.

Differentiating (1) successively n-1 times w.r.t. x, we get

Cifi' + Cofd' +.ii. +cnfn' =0 ..l 2)
Cif1" +Cof2" +....unnn. +cCnfn" =0....... (3)
lel(n-l) + szz(n'l) LTI + Cnf =0 ... (n)
These n equations can be written as
f, f, f (o}
f,' f," f.'l]¢C, _
.................... M
fl(n—l) fg(n_l) f (n-1) C
..... N 3

Now we know that the matrix equation AX = 0 has a trivial solution if |[A] # 0

forci=co=....... =c¢n =0, we have
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' f, A
00 g0 f (D

W(fl, fz, ..... , fn) =0
If W(f1, f2,...c., fn) #0,thenci=ca = .......... =ch=0

the functions fi, fo,....., fn are linearly independent over I.

Property 2: If f1, fo,....., fn are linearly dependent over I, then

Proof: If f1, f2,....., fn are linearly independent over I, then there exists constants ci, ¢,

W(f1, f2rens f) =0 VX e .

not all zero, such that

Cif1'(X) + Cof2'(X) +........ +cCnfn'(X) =0
Cif1"(X) + C2f2"(X) +........ + Cnfn"(X) =0

Cif1™"B(X) + C2f2MD(X) +......... + Cnfn™D(x) =0
Putting x = Xo, Where xoe |, we get
lel(Xo) + C2f2(X0) o + Cnfn(Xo) =0
C1f1'(Xo) + C2f2'(Xo0) +......... + Cnfn'(X0) =0
lel(n'l)(Xo) + szz(n'l)(Xo) o + Cnfn(n'l)(Xo) =0
These n equations can be written as
f0o) (%) fa(%) | .
fr06)  fx) e fo (%)
CZ
.................... =0
M
000 HP06) £ () [ L

Now we know that the matrix equation A X = 0 has a non-zero solution if |A] =
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f, (%) f,(%) e f (%) |
f1(x) f,06) f, (%)
.................... =0
0 1 1

= W(f1, f2,0nne.. , fn) Xo) =0
But xo is an arbitrary point of I.
W(f1, f2,. ey fn) (X0) =0 VXel
=X W(f1, f2yeeuens fr) (X) =0 VXel
Theorem 6: Two solutions f1 (x) and f> (x) of the equation.

aX)y'tar(X)y +a(x)y=0, a(X) =0, x € [a, b] are linearly dependent if and only if
their wronskian is identically zero.

Proof: Condition is necessary

Let fi(x) and f2(x) be linearly dependent. Then by definition, there must exist two
constants c; and ¢z, not both zero, such that

Cifi(X) + cof2(x) =0 foreachx € [a,b] ... D
From (1), we have
Ccifi'(X) + cof2'(X) =0 foreachx € [a, b] ... (2)

Since c¢; and ¢ cannot be zero simultaneously, the system of simultaneous equations
(1) and (2) possess non-zero solutions for which the conditions is

f f
W(x) = 1I(X) ZI(X) =0onJa, b]
') f,'(¥
= W(x) = 0 on [a, b] i.e. Wronskian is identically zero.

Condition is sufficient

Suppose that wronskian of f1(x) and f»(x) is identically zero on [a, b] i.e. let
() f(x)
') f,(x)
Let x = o€ [a, b], then from (3), we get

f(%) (%)
f'(%)  f,'(%)

Now (4) is the condition for existence of two constants ki and k», both not zero, such that

W(x) = =0onfa,b] ... 3

=0 .. (4)
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klfl(Xo) + szz(XO) =0 . (5)
and klfl'(Xo) + szz' (XO) =0 L. (6)
Let f(X) = klfl (X) + szz(X) ....... (7)

Then f(x) being a linear combination of solutions f1(x) and f2(x) is also a solution of the
given equation.

Again from (7), f'(X) = kafi'(X) + kaf2'(x) ... (8)
Now (7) gives f(Xo) = Kif1(Xo) + Kof2(Xo) = O, by (5)
and  (8) gives f'(Xo) = kif1'(Xo) + Kaf2'(Xo) = O, by (6)

Thus, we find that f(x) is a solution of the given equation such that f(xo) = 0 and f'(Xo) =
0.

Hence, f(X) = 0 on (a, b)

and therefore by (7), we have

kif1(X) + kof2(x) = O for each x € (a, b),

Where k; and k. are constants, both not zero.

Hence by definition, f1(x) and f.(x) are linearly dependent.
Theorem 7: The Wronskian of two solutions of the equation

ao(X) y'+ai(x) y' + ax(x) y = 0, ao(x) # 0, X € [a, b] is either identically zero or never zero
on [a, b].

Proof: Givenap(X) y"+ a1(X) y' + a2(x) y =0, ao(x) #0,x € [a,b] ... D
Let f1(x) and f2(x) be two solutions of (1). Then their wronskian W(x) is given by

f f
() ZW);mmﬁuyﬁth) ...... )

WO

Differentiating both sides of (2) w.r.t. x, we have W'(x) = % [f1(x) f2'(X)] - % [f2(x)

Ji ()]
or  W(X)=[f1'(x) f2(x) + f1(X) f2"(X)] - [f2'(X) f1'(X) + f2(X) f1"(X)]

or  W(X)=fix) f2"(X) - f0%) f1"0 . 3
Since ag(x) # 0, dividing by ao(x) and rewriting, (1) becomes.
10 = -(ﬁjf'(x) = [i]f(x) ..... @
E 20

Since f1(x) and f2(x) are solutions of (1) i.e. (4), we have
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and  f2"(x) = - (%Ojfz(x) (%sz(x) ...... 6)

Putting the values of f1"(x) and f,"(x) from (5) and (6) in (3), we have

e s[5 (3540 s {34 (3 e

= W'(X) = (%Oj RACAACIERACRACY]

= WX =- (%0) W(x), using 2) o @)
= ao(X) W'(x) + aix) W(x)=0 ... (8)
W) _ a0
W(x) 3,(X)

Integrating we get

log W(x) = - j 6‘1?(;

7} & (%) g
= WX = %® s a solution of (8)

Now, the following two cases arise:
Case | :- Let W(X) = 0 on [a, b]. This prove second part of the theorem.

Case Il :- If possible, let W(xo) = 0 for some xoe [a, b] Then (7) gives.

W'(xo) = - (%Oj W(xo) = 0

Thus, W(X) is a solution of (8) such that W(xo) = 0
and W'(x) = 0. Hence W(x) = 0 on [a, b]
i.e. Wronskianis identically zero on [a, b]

This proves the first part of the theorem. Now, to clarify what we have just said, consider
the following examples:-

Example 5: Prove by Wronskian that the functions 1, x, x2..... x"* are linearly independent over
reals (n € N).

Sol. Let yi=1,¥2=X,Y3=X2, wueu.s, Yo = x"1
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y1=0,y2=1=1[1,y3=2X..c..., Yn = (N - 1) x™2
y'1=0,¥2=0,y"3=2=12,......., ¥'n = (n-2) (n-1) x"*

(¥ ¥.(¥) Y3(X)---¥n (X)
Y19 yL(X) Y33y (X)
W) =1 y500 ¥ Y00y (X)

VP00 "0 Y (9 Y T (X)

|1 2X.....(n=1)*

0O O Oerveereeenn, n-1
=1[112....... n-1 [product of diagonal elements]

# 0 for all real x
Hence the given functions are linearly independent over reals.
Example 6: Show that x, e, xe*, (3 + 2x) e* are linearly dependent.
Sol. Let f1 (X) = X; f2 (X) = €*;f3 (X) = xe*, f4 (X) = (3 + 2x) e*

O IR ACO R AR e
00 Fa00 1200 10
00 1500 a0 170
00 17500 £7500 £,

Now W(f1, f2, fa, fa) (X) =

e* xe* 3e" + 2xe"

e xe'+e° 3 +2xe* +2¢"
e xe+2e° 3 +2xe* +4¢e
e¢ xe‘+3¢° 3e"+2xe +6e"

o O + X
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x 0 -3¢ —6€"
110 —2€" —4e"
0 0 —e" —2€"
0 € xe*+3e° 9¢e"+2xe
x -3 -6e* X 3 3
=eX|l -2e° -4e'| =2e*]1 2e° 2¢
0 -e° -2¢ 0 e ¢
=2¢e*(0) [Q c1, ¢z are identical]
2
Example 7: Show that sin x and cos x are linearly independent solution of d 2/ +y=0
X

Also write down their general solution.

_ _ sinx  Cosx _ _
Sol. Since  W(sin X, cos x) = _ = - sin?x - c0s?X = - (sin?x + cos?X)
COSX —SInX
=-1=20
sin x and cos x are linearly independent.
: : d
Again let y=sinx.. Y- COS X
dx
d?y .
= =-sinx=-y
dx®
2
d 2y +y= 0
dx
°y
sin x is a solution of —=- +y =0
: d .
Again Yy = COS X = &Y =-sinx
dx
d%y
= =-COSX=-
dx? Y
2
d Z 4y =0
dx
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2
COS X is a solution of

y=0

d’y .

Thus sin x, cos x are linearly independent solutions of —
X

y=0

General solution is y = ¢1 sin X + ¢; cos X, where ¢, ¢, are arbitrary constants.
Example 8: If y1(x) and y2(x) are two functions for which

i Y.

1 2

W (Y1, ¥2) = =y1y2-Yy2y1=0

for each x is an interval |, then each sub interval I, of | contains a sub interval I, over which y; (x)
and y- (x) are dependent.

Sol. Let I1 be a sub interval of I. If y1 (x) = 0 for each x in I, then y:1 (x) and y2 (x) must be
dependent over |1, because ciy: (X) + c2y2 (X) =0whencis =1 and c; =0.

If y1 (X) = O for all x in |1, there exists at least one xoe I, such that yi(X) # 0. Since yi(X) is
differentiable and hence continuous, we can choose sub-interval I, of |1 such that yi(x)

#z0forallx el

When x € I, Lzlyzyl =0 (Given)
y

Y2 - constant = ¢ (say) .. Y2 (X) =cyi (X) whenx € I,
Y1

However, different intervals can require different values of ¢, so y1 (X), and y, (x) may fail to be
dependent over the whole interval I.

Example 9: Define the Wronskian of three functions f1, f2, fs over an interval I. Show by
Wronskian that the following functions are linearly independent for all reals:

€%, sin X, cos X

Sol. If f1, f2, fa are real functions each of which has a derivative of order 2 on an interval (a, b),
then the determinant

fl fZ f3
W (f1, f2, fa)=|f7, £, 11

f "1 f II2 f II3
is called the Wronskian of these three functions.
For second part:-

Let f1 (X) = €%, f2 (X) =sin X, f3 (X) = cOS X
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f f, f,| |& snx cosx
W (f1, fa fa) ()= |f', ', f]=1€ cosx -sinx
fr, f", f" |&° —sinx -—cosx
Operate Rz + Ry ;
* §inX COSX
W (f1, f2, f3) (X) = | € cosx —sinx| =2 e* (- sin® - cos?x)
2 0 0

=-2e*«:0forallx e R.

Hence the given functions are linearly independent over R.

Example 10: If y: (X) = sin 3x and y» (x) = cos 3x are two solutions of differential equation
y" + 9y = 0, show that y; (X) and y. (x) are linearly independent solutions.

Sol. The Wronskian of y; (x) and y2 (x)

Y.(¥)  ¥2(X)
Y1)y, (%)

COS3X
—-3sn3x

sin3x
3c0s3x

W (x) =

= -3 sin? 3x - 3 cos? 3x
=-3(sin? 3x + cos?3x) =-3#0
Since W (xX) = 0, .. y1 (X) and y2 (X) are linearly independent solutions of y* + 9y =0
Example 11: Show by Wronskian that the functions e*, %%, ¥ are linearly independent.
Sol. Let f1 (X) = €%, f2(X) = €%, f3 = e*
f1(q) =€ f2(x) = 2e*, f5'(2x) = 3e*
f1"(X) = €%, £2"(X) = 4%, f3"(x) = 9e>

fl fZ f3 ex er e3x
W (fl, f2, f3) =|f '1 f '2 f '3 — eX 2e2>< 3e3x
froofr, fr € 4% 9e¥
11 1 111
= e e2X .e3X1 2 =e6XO 1 2 [BP R2—>R2-R1;R3—>R3-R1]
1 4 9 0O 3 8
=e%[1(8-6)=2e>*#0 VxeR

f1, f2, fsare L.1. over all reals.
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Example 12: Show that the solutions e*, e* and e* of

3 2
d’y d7y - ﬂ + 2y = 0 are linearly independent for all real numbers. Also

a¢ T ¢ dx
write down their general solution.

ex e X e2x
— X

Sol. W (e*, e*, e®) = | —e* 2e**
ex e—x 4e2x

1 1 1
—efeXel -1 2
1 1 4
1 1
=e0 -2 1 [By operating Rs — R3 - R1; R2 = Rz - Ri]
0 O

= -6 e?x 0 for all real x
e*, e*, e are linearly independent solutions.

general solution is
y =C1 € + Cc2 e* + c3 €%, where c1, Cz, C3 are arbitrary constants.

Example 13: If o<, o<;, ocsare all distinct, prove by Wronskian that the functions
g1, €2, €°* are linearly independent over reals.

Sol. Let f1(X) = €7, fo(x) = €72%, f3(x) =€™"
fr(X) = o<1€9%, f5'(X) = <€, fo'(X) = o<3€™

and  f1"() = of €7, f2"(X) = o) €, f3"(x) = o €

Now
fl f2 f3 eoclx eocz X eocg X
W (fl, f2, f3) - fln f2| f3| - OC:L eoclx OCZ eoczx OC3 eOC3><
fln f2Il f3|| (X:f eoclx ch eOCZX (ng e0C3X
1 1 1
= @X @ 2X g o, o, o,
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1 1 1

— eoclxeoc2 xeoc3x o, o oC

= @@ (oc; - ocy) (o, - ocg) (ocg - ocq)
#0 VxeR
f1, fo, fsare L.1. over all reals.
Example 14: Show by Wronskian that the functions 1 - x3, x? + x3, - 4 + 3x2, x® - x?
are linearly dependent dependentV x € R.

Solution: The given functions 1 - x3, x2 + x5, - 4 + 3x?, x% - x?are linearly dependent if there exist
constants ci, Ca, C3, C4 not all zero, such that

cl(1-x3)+c2(x2+x3)+c3(-4+3x2)+c4(x3-x2)=0
Takingci =4, ¢, = % c3=0,Cs= g , we find the above relation satisfied.

given functions are linearly dependent.

Example 15: Show that linearly independent solutions of y" - 2y' + 2y = 0 are e* sin x and e€* cos
X. What is the general solution? Find the solution y (x) with the property y (0) = 2, y'(0) = 3.

Sol. Given equation is

y'-2y'+2y=0
Let  yi(X) = e*sin x and y»(X) = €* cos X e(2)
From (2), y1'(X) = e*sinx + e*cosx =e*(sinx+cosx) ... 3)
From (3),
yi"(X) =e* (sinx + cos x) + e* (cos x-sinx) =2e*cosx ... 4)

Now, Vy1"(X) - 2yi'(X) =2 e*cosx-2e*(sinx+cosx)+2e*sinx=0
This shows that y1(x) = €* sin x is a solution of (1).
Similarly, we can show that y»(x) = e* cos x is a solution of (1).
Now, the Wronskian W(x) of y1(x) and y2(x) is given by

(X)) Y.(X)
Y.’ (X) Y,'(X)

= e (sin X €os X - sin?X) - €2 (sin X cos X + cos?x)

€sinx € cosx
g‘(snx+cosx) €*‘(cosx—sinx)

W (x) =

=-e2£0
W(x) = O for all x in (-0, ) and hence yi1(x) and y»(x) are linearly independent solutions
of (1).
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The general solution of (1) is given by
y(X) = cay1 (X) + C2y2 (X)
=e*(cisihnx+cocosx) ... (5)
Where c; and c; are arbitrary constants
From (5), y'(X) = e*(cisinX+ c2CcOosS X) + e¥(c1cos x-c2sinx) ... (6)
Putting x = 0 in (5) and using the given result y(0) = 2, we get
y (0)=cz or C2=2
Putting x = 0 in (6) and using the given result y'(0) = - 3, we get
y'(0)=c2+cy or -3=2+c¢s
or c1=-5
From (5), the solution of given equation satisfying the given properties is
y =e*(2 cos x - 5 sin x)

Self-Check Exercise-1
Q.1  Show by Wronskian that the functions e, e, e* are linearly independent.
Q.2  Show that x and xe* are linearly independent on any interval.
Q.3  Show that sin x, cos X, 2 sin X + cos x are linearly dependent.

Q.4  Show that e2x and e3x are linearly independent solutions of y" -by' + 6y =
0.

Find the solution with the property that y(0) =0 and y'(0) = 1

Q.5 Are the following sets of functions defined on -wo< x <o linearly
independent or dependent?

f1(x) = 1, f2(x) = X, fa(x) = X3,

2.7 Linear Deferential Operator

Def. If D denotes the differential operatordi, then the equation
X

n n-1
d"y + P, dy
dx" dx™*
can be written as [PoD" + P, D™ ...... +PriD+Pjly=X

Po

IF X =0 i.e. (1) is a homogeneous linear equation and assuming that PO = 0 at any point of
interval then (1) takes the form
d n-1 dn72
R
dx dx dx

d
........ +0mY 4 Q=0 2)
dx
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Where Q, = ﬂ r=1,2,...... n.
R

ie.[D"+ Q1 D™+ QD" +......... +QnmiD+Qy(Y)=0 ... (3)
Denoting

L[y]=[D"+ Q1 D"+ Q,D"2 +........ + Qn1 D+ Qn' ().

(3) reducestoL (y)=0

Here L is called a linear differential operator.

Two basic laws of linear differential operator

L [cy] = c L[y] and I[y: + y2] = L[y1] + L[y2], where c is any constant.

Note. By using the above properties, it can be easily proved that L[c1y1 + C2y2]

=c1 L [y1] + c2 L [y2], where c1, ¢z are any constants. It can be further extended so that

L {Z C,yi = z C L[y, where ci' s are constants.

i=1 i=1
The sum and product of linear differential operators

0] The sum L; + L, of two differential operators, L1 and L, is obtained by adding
corresponding coefficients after expressing each of them in the form

PoD"+ P D™ +........ +Pr1 D+ Py
e.g.IfLi=x?D?+ 2xD + 7 and L, = D® - x D + 1 be two differential operators, then L + L, =
D3® + x2D? + x D + 8 is also a differential operator.
(i) The Product, L;L, of two differential operators as (LiL>) [y]

= L1 (L2 [y]) i.e. the differential operator LiL, produces the same result as is obtained by
first using the operator L, and then applying the operator L;.

eg.ifLa=2D+1andL,=1- 3D, then

(Lil2) [y] = La (L2 [y]) = L1 {1 - 3D)[y]} = (2D + 1) [y_?’%j

2
:zi(y—sﬂjw-?,ﬂ oW gAY LW

dx dx dx dx dx? dx
2
=-6 d”y -ﬂ +y=(-6D*-D+1)y = LiL,=-6D?-D + 1.
dx*> dx

Important Properties of Differential Operators
Property 1: If f(D) is any polynomial in D, then

/(D) ™ = e*f(a)
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Proof: Since f(D) is any polynomial in D,
Let f(D) = PoD"+ P, D™ +........ + Pn
Now f(D) e = (PoD"+ Py D™ +........ + P,) e
= PoD" (e¥) + P, D™ (&%) +........ + Py {e®)
= Po a"e®™ + P; a™le® +....... + Pn (e%)
ze*(Poa"+Pra +....... + Pr)
Hence f (D) e® = e*f(a)
Con:- If e<is a f(a) = 0, then e™* is a solution of the equation f(d)y =0

Proof: Since <<is a root of f(a) =0

fle)=0 . 1)
Also  f(D) e™ = e ™*f(o<)
=e™(0) [Q of (1)]
f(D)e7=0

= e X satisfies f(D) y =0
Hence e™ is a solution of /(D) y =0
Property 2: Exponential Shift
If £(D) is any polynomial in D with constant coefficients, then
e™f(D) = f(D - <) (e™y)
where y is any function of x.
Proof: Since f(D) is any polynomial in D with constant coefficients.
Let  f(D)=PoD"+ Py D" +.....+ P,

- d, . -
Now (D - o<)(e™y) = &(e Xy) - e<(e™y)

«y d - -
—e x_y +e Xocy_oce xy

= @"X ﬂ
dx

=e™D(y)
and (D-<)2(e™y)=(D-)[(D-)(e™y)]
= (D - =) [e™ D(y)] = €™ D*(y)
In general,
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(D- )" (e™y)=e™D" ()
Hence e™f(D)y = f(D - =) (e™y)
[Q differential operators are linear operators and f(D) is a polynomial in D]
Let us do some examples:-
Example 16: Given an example to show that
Lilo = Lols
Sol: LetLy=D+2,L,=D?-3D+5
LiL2 (y) = (D + 2) ((D? - 3D + 5))y

d7y ,dy
_(D+2)(dx 30| +5yj

dy ,d% dy d’y o dy
L 29Y ¥ 10
{dx3 o a) | Tae P Y

=(*-D?-D+10)y .. (1)
Thus Lil,=D®-D?-D+10
Again LoL; (y) = (D?-3D +5) ((D +2)) y

=(D?-3D +5) (Q+2yj
dx

3 2
= d—¥+2d—¥ -3 d 2/ Y +5(Q+2yj
dx dx dx dx dx

_ﬂ_ﬂ_ﬂ+10y

dx®>  dx* dx
=(D®-D?-D+10)y
Thus L,L;=D®-D>-D+10 ... 2)
(1) and (2) = LiL2 = L2
Example 17: Let L1, L, be two different operators and if
Li=xD+3,L,=D+x
then show that LiLo# LoLa.
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Sol: Lil2 (y) = (x D+ 3) (D + X)) y
= (xD +3) (ﬂw)
dx
2

M + ng + 3%
dx? dx dx

= [xD? + (x> + 3) D + 3x]y

=X + 3 xy

= Lil,=xD?+ (x*+3)D+3x .. (1)
Again L:Li (y)=(D+x) ((xD +3))y
=(D +x) {xﬂ+3y}
dx
-4 xﬂ +3 & +x2ﬂ + 3xy
dx | dx dx dx

2
d y+ﬂ+3ﬂ+x2ﬂ + 3xy
dx*>  dx dx dx

=[xD?+ (x*+4) D + 3x] y
= LoLi=xD?2+ (x2+4)D+3x ... @)
(1) and (2) = LiLo# LoLs
Example 18: Find the general solution of (D + 3)2y =0

=X

Sol: Given equationis (D +3)’y=0 ... 1)
Multiplying by e, e>* (D + 3)2y =0 ...... 2
Since e™*f(D)y = f(D - =) (€™y) [Exponential shift]
D° (e¥y) =0
[Q e (D+3)°y=(D+3-3)° (e*y)
=D® (e™y)
Integrating five times, we get
eXy=ci+co+Csxg+Cax3+c5x?
where c's are arbitrary constants.
= y =(C1+Ca X+ C3 x>+ Ca x>+ Cs5x¥) e,

which is the required solution.
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Now try the following exercise

Self-Check Exercise-2
Q.1 Let L1, L, be two different operators, and if
L1 =2D%-3,L,=3D +Y,
then show that LiL, = Lol
Q.2  Given an example to show that
Lilo# Lols

2.8 Summary:

We conclude this unit by summarizing what we have covered in it:-

1. Defined linear combination and discussed theorems related to it.

2. Defined linear dependence and linear independence and proved theorems
related to them.

3. Wronskian and its properties discussed in detail.

4, Defined differential operators. Its properties discussed in detail.

29 Glossary:

1. A differential equation is said to be linear if the unknown function and all of its
derivatives occurring in the equation occur only in the first degree and are not
multiplied together.

2. The n functions f1, fo,...... .fn are called linearly dependent on a < x < b if there
exists constants cy, Ca,....... , Cn not all zero, such that cif1 (X) + c2f2 (X) +........ +
Cnfn (X) =0 for all x such thata < x <b.

2.10 Answer to Self Check Exercise
Self-Check Exercise-1
Ans.1 Functions are L.I.
Hint:- 2% 0 as x # 0
Ans.2 Functions are L.I.
Hint- x2ex~ 0 on any interval
Ans.3 L.D.
Hint:- Takingc1 =-2,c2=-3,¢c3=1
Ans.4 y=e* - e* as the required solution.
Ans.5 L.I
Hint:- 6x = 0 for x # 0
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Self-Check Exercise-2
Ans.1 Hint: LiL, =3D%*+8D?-9D - 12
and LoL; =6D%+8D?-9D - 12
Ans.2 Hint: Ly =D-1and L, =x D+2
2.11 References/Suggested Readings

1. Boyce, w. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.
2. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.

3. Wylie, C.R., Differential Equations, McGraw-Hill, New York, 1979.
2.12 Terminal Questions
1. Show by Wronskian that he functions
e® cos bx, e® sin bx
are linearly independent over all reals.

1 : . .
2. Show that x> and —; are linearly independent solutions of
X
d? d
XZ—Z rx Y 4y =0
dx dx
in the interval 0 < x <c. Also write down their general solution.
3. If ocq, ocp, o3, ... , o<pare all distinct, prove by Wronkian that the functions.
X @ @ex . , € are L.l. over all reals.
4, Show by Wronskian that the functions sin x, cos x, 3 sin x - 4 cos x are linearly
dependent ¥V x € R,
5. Are the following sets of functions defined on -«< x < linearly independent or
dependent?
f1(X) = €%, f2(x) = sin X, f3(X) = 2 cos x
6. Let L1, L, be two linear operators and if

Li=xD+2,L,=xD-1
then prove that LiL, = Lol

7. By using the exponential show, find the general solution of the following
equation.
(D+2)2%y=0
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Unit - 3

Exact Differential Equations

Structure

3.1 Introduction

3.2 Learning Objectives

3.3 First Order Exact Differential Equations
Self-Check Exercise

34 Summary

3.5 Glossary

3.6 Answers to self check exercises

3.7 References/Suggested Readings

3.8 Terminal Questions

3.1 Introduction

The theory of exact differential equations is a branch of differential equations that deals

with a specific type of differential equation known as an exact equation. Exact differential
equations have several important properties. Firstly, the solution to an exact differential equation
is independent of the path taken, only depending on the initial and final points. This property is
known as path independence. Additionally, exact equations have a conservation property,
meaning that the total differential of the potential function is zero along any solution curve.

The theory of exact differential equations provides useful techniques for solving a

specific class of differential equations. However, not all first order ordinary differential equations
are exact, and in such cases, other methods like integrating factors or solving techniques
specific to the particular equation type may be required.

3.2

Learning Objectives

After studying this unit, you should be able to:-

. Define first order exact differential equation.
. Discuss first order exact differential equations.
. Find solutions of first order exact differential equations.

First Order Exact Differential Equations
Standard Forms of First-Order Differential Equations:-

The first-order differential equations may be expressed in either the derivative form

50



d
d_y = f()(1 y ), D
X
or the differential form
M(x,y)dx+N (X,y)dy=0 ... )

An equation in one of these forms may readily be written in the other form e.g., the
equation

Q_X2+y2

dx X—Y
is of the form (1). It may be written as (x? + y?) dx + (y - x) dy = 0, which is of the form
(2).

In the form (1) it is clear form the notation itself that y is regarded as the dependent
variable and x as the independent one; but in the form (2) we may actually regard either variable
as the dependent one and the other as independent.

B. Exact Differential Equations:-

Def: Let F be a function of two real variables such that F has continuous first partial
derivatives in a domain D. The total differential dF of the function F is defined by the formula.

dF(x, y) = 6F((3>)<(, Y) gy + FFXY)

dy for all (x,y) € D.

Def: The expression
M(x,y) dx + N(x,y)dy ... 3)

is called an exact differential in a domain D if there exists a function F of two real
variables such that this expression equals the total differential dF(x, y) for all (x, y) €D i.e.,
expression (3) is an exact differential in D if there exists a function F such that

OF(Xy) _ M(x, y) and FXxY) , N(x, y) for all (x, y) € D.
X oy

If M(x, y) dx + N(x, y) dy is an exact differential, then the differential equation
M(X, y) dx + N(x, y) dy =0
is called an exact differential equation.
e.g. xdy+ydxisexact
it can be obtained from xy = c directly by differentiation.
Similarly, sin x cos y dy + cos x sin y dx is exact
Q it can be obtained from sin x Siny = ¢

directly by differentiation.
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Theorem 1: Find the necessary and sufficient conditions that the equation M dx + N dy = 0

. . " N .
(where M and N are functions of x and y with the condition that M, N, ﬂ aa— are continuous
X

functions of x and y) may be exact.

Sol: Necessary Condition
Let the equation M dx + N dy = O be exact.
Then, by def, M dx + N dy = dF, (By def.)
where F is a function of x and y

Mdx + Ndy = ﬁ dx + ﬁ dy [Total Differential]
OX oy

Equating coeffs. of dx on both sides, M = 2—F ..... D
X
. , oF
Equating coeffs of dy on both sides, N = E ....... (2
2
From (1), ﬂ = i (ﬁj = oF 3)
oy oy\ ox OF Ox
2
From(2),@=i ﬁ = oF 4)
ox  ox\ oy Oyox
: 0°F 0°F
Since =
Oyox  oxoy
™M = oN [From (3) and (4)]
oy OX

Which is the required necessary condition.
Sufficient Condition

Given aﬂ = ﬂ
oX

To prove M dx + N dy = 0 is exact.
Let j MdX = (xy) . (5)

where integration has been performed w.r.t. X while treating y as constant.
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But

0 _0¢ o¢

Sothat&U de}- . ie M—& ...... (6)
% = i [%] = 82¢ (7)

oy oy\ox) oyox

ﬂ = ﬁ [Given] and ¢ = 0'¢ [Assuming]
oy X oyox — Oxoy

From (7), N _ ﬁ -9 [%}

OX oxoy ox\oy

Integrating both sides w.r.t. x, treating y as constant, we get

N = % + a function of y

_0p
= — + f(y) (say) ... (8)
2y y y

From (6) and (8)
Mdx + N dy = o9 dx + %+f(y) dy
OX oy

_[99 4,99
= {ax dx+ 8ydyj + f(y) dy

=d¢+ f(y)dy ... (9)
which is an exact differential.

[Qf (y) dyisan exactdifferential asf(y)cdy=d( [ f y) dy}

Hence M dx + N dy = 0 is exact

Cor: If the condition is satisfied, solve the equation

The equation is

i.e.

Mdx+Ndy=0
do + f(y)dy =0 [From (9)]
Integrating, ¢ + .[ f(yydy=0 ... (10)

But from (5) and (6)
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o= J- Mdx

y constant

and from (8), f(y) = terms of N not containing x

From (10), j Mdx + J' terms of N not containing which is the required solution.

xody=c
Working Rule
1. If for an equation of form M dx + N dy = 0. GM = N , then it is exact.
oy  OX
2. Its solution

jde + f (terms of N not containing x) dy = ¢

y constant

Note 1: If there is no term in N independent of x, then the solution is

_[de =c

y constant

Note2: If the equation M dx + N dy = 0 is exact, then on regrouping its terms, it can be written as

d(f(x,¥)) =0
its solution is f(x, y) =c,
To clarify what we have just said, consider the following examples:-

Example 1: (a) When does M(x, y) dx + N(x, y)dy = 0 becomes an exact differential equation.
Explain method to solve it.

(b) Solve: (x? - 2xy - y?) dx - (X + y)?dy = 0

Sol: (a) M (x, y) dx + N(X, y) dy = 0 becomes an exact differential equation if % = (Z—N
X

Method of solution:

Required solution is fde + j (terms of N not containing X) dy = ¢

y constant
(b) Here M _9 (x2-2xy-y?) =2x -2y
a oy
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and N = 2 eypy=-20x+y) (1+0)=-2x-2y
OX OoX
M _N and so the given equation is exact.
oy  ox
Solution is I(x2 —2xy—y*) dx + _[(—yz) dy=c
y constant
[Q N =-(x +Yy)?=-x2-y? - 2xy and term without X is -y?]
N NG , y3 N y3 _
= ——2y——VyYX|-Z-=c=>"—-x% -y - 2 =, is the reqd. sol.
( 3 Y 2 y j 3 3 Yoy 3 q

Example 2: Solve: (X2 - yxy - 2y?) dx + (y? - 4xy - 2x?) dy = 0.
Sol: This is of the form Mdx + Ndy =0
Here M = x2 - 4xy - 2y? and N = y? - 4xy - 2x2

ﬂ =—4x—4yandaa—N = -4y - 4X.
X

M _N .. the given equation is exact.

oy  OX

the solution is:

j(xz —4xy—2y?) dx + '[yzdy: c

y constant
or I x*dx — 4y I xdx — 2y? jl.dx + _[ y’dy=c

X3 y3
or e 2X2y - 2Xy? + Y =c, is the reqd. sol.

a*(xdy — ydx)

Example 3: Solve xdx + ydy = 7 2
X“+y

a*(xdy — ydx)

Sol: The given equation is xdx + ydy = RN
X +y
2 2
or {x+ zayz}dx+{y+ zayz}dy=0,
X +y X4y
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which is the form M dx+ Ndy =0

2 2
Here M =x + zayz andN=y- zayz
X“+y X“+y
2 2 2 2 2
M _,, o XHY)@-y2y) & (X+y)
oy (x2+y2)2 (x2+y2)2
oN , (+y*)D-x29) & (x*-y?)
and — =0-a% 5 = 5
OX (x2+y2) (x2+y2)
8M = ﬁ .. the given equation is exact.
oy  OX
the solution is:
a’y
I [X+x2+y2JdX+-[ydy:C
y constant
1
2 —
or .[xdx+ayj' X2+y2dx+fydy—c
2 2
or x +a2y.l ant> + Y =¢
2 y y 2
or X2 +y? + 2a2 tant> = 2c¢, is the reqd. sol.
y

Example 4: Solve: [cos x tan y + cos(x + Yy)] dx + [sin x sec?y + cos(x + y)]dy = 0.
Sol: The given equation is of the form Mdx + Ndy = 0

Here M =cos xtany + cos (x +y) and N = sin X, sec?y + cos (X +Y)

™M =cos x sec?y - sin (x +y) and %—N = Ccos X sec?y - sin (X +)
X

oM _ ON . -

—— = — .. the given equation is exact

oy OX

the solution is:
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J [cosxtany +cos (x+y)]dx+0=c

y constant
or tanyj cosxdx+j cos(x+y)dx=c

y constant
ortan y sin x + sin(x +y) = ¢, is the reqd. sol.
Example 5: Solve: (ycos x+siny +y)dx + (sinx+xcosy+x)dy=0

Sol: Hereszcosx+siny+y:% =cosx+cosy+1

: oN
and N=smx+xcosy+x:>8— =cosx+cosy+1
X

™M = %—Nand so the given equation is exact.
X

oy

Solution is I (ycosx+sny+y)dx=c

[Qthereisnotermin N without x|

y constant

= ysinx +xiny + xy = ¢, is the reqd. sol.

Example 6: (a) Solve: (x2 + e¥)dx + ex’y(l— 5) dy=0
y
(b) Solve: (1 + ) dx + e¥ (1— ij dy = 0.
y

—X
Sol: (a) Here M = x? + eX/yjaﬂ =W {_2}

oy y
and N-= ex’y(l— ﬁj :@ = ex’y(_—lj + (1— EJ (e”y lj = iz e
y OX y y y y
8M = ﬁ and so the given equation is exact.
oy  OX
Solution is I (xX*+e)dx=c [Note that there is no term without x in N]
y constant
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X3 exl y X3

= 34‘ 1 =Ci=> 3 +ye></y:c1:>x3+3ye></y:3cl:C:>X3+3ye></yzc
( YJ
(b) Here M =1+ ee/yjaﬂ = ex/y(__ﬂ
oy y
and N= e”{l—ﬁj:@ = ex’y(_—lj + (1—5) e 1 =X e
oM oN . L
—— = — andso given equatlon IS exact.
oy oX
x/y
Solution is I (1+eX’y)dx:c:>x+ T =c>x+y+y.eV=c
[ YJ
Yy constant

Example 7: Solve: (yzeXy2 +4X3) dx + 3xyeXy2 -3y?dy =0
. — 2y s OM _ o Xy
Sol: Here M = y?¢€ +4X:E—y (e” 2xy)+e¥ . (2y)+0

=2ye” (xy?+1)
and N=2xye¥ - 3y2:8a—N =oxy & y2 + (&Y .2y)=2yeY (xy?+1)
X

oM _ oN , o
—— = — and so given equation is exact.

oy
Solution is I (yzexyz +4x3) dx + I (-3y*)dy=c¢

y constant

xy? 4 3 )
= yze—2 +4(X—j-3(x—j=c:>exy +xt-y3=c
y 4 3

Example 8: Solve: ﬂ =- w
dx hx+ by + f

OR
Prove that (ax + hy + g) dx + (hx + by + f) dy = 0, represents a family of conics.
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sol; & = &Xthy+g
dx hx+by+f

or (ax + hy + g) dx + (hx + by + f)dy = 0 which is of the form Mdx + Ndy = 0

Here M=ax+hy+gandN=hx+by+f

ﬂz h and 8—N =h .. @ = a—N .. the given equation is exact.

oy OX oy OX
the solution is

j(ax+ hy+ g)dx + j(by+ f)dy=c

y constant

or aj xdx+(hy+g)J 1.dx+bj ydy+fj ldy=c

2 2

or a.x— +(hy+g)x+bh. y? + fy = c' or ax? + 2hxy + 2gx + by? + 2fy = 2c
y

[Let or ax? + 2hxy + by? + 2gx + 2fy + ¢ =0
2c' =
which, being of second degree in x and y, represent a family of conics.

Example 9: Solve: (y* +4x3y + 3x) dx + (x* + 4xy3 +y+ 1) dy =0

Sol: Here M = y* + 4x3y + 3x :% = 4y3 + 4x3

and N=x“+4xy3+y+1:>%—N = 4x3 + 4y3
X

oM _ ON : .
—— = —and so given equation is exact.
oy OX
Solution is I (y* + 4x3y + 3x)dx +J (y+1dy=c
y constant
X4 2 y2
= Xy*+4y—+3— + =— +y=¢
YRyt T
2 y2
= Xyt +xly+ —+ 2—+y=c¢
y y > > y

Example 10: Solve: (x* - 2xy? + y*)dx - (2x?y - 4xy® + siny)dy =0
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Sol: Here M = x* - 2xy? + y4:>% = -Axy + 4y

and N =-(2x%y - 4xy® + siny) = -2x?y + 4xy3 - siny :%—N = - 4xy + 4y°
X

oM _ oN . o
—— = — and so given equation is exact.
oy OX
Solution is J (x* - 2xy? + y¥)dx + 'f (-siny)dy =c¢
y constant
5 X2 5
= %-2y2(7j+y4x+cosy=c:>x€-x2y2+xy4+cosy=c

Example 11: Solve. (3x2 + 4xy)dx + (2x% + 2y)dy =0

N
Sol: Here M = 3x? + 4xy and N = 2x2 + 2y :@ = 4X :aa—
X
= Given equation is exact .. Solution is j (32 + 4xy)dx +j 2ydy=c
y constant
= x3 + 2x%y + y? = ¢, is the required solution.

Example 12: Solve the differential equation (cos x cos 'y - cot X) dx - (sin xsiny) dy =0

Sol: Given differential equation is (cos x cos y - cof x) dx - (sin x sin y)dy = 0 comparing it with
Mdx+Ndy=0,wegetM=cos xcosy-cotx,N=-sinxsiny

oM , ON .
= ——-cosxsinyand —=-cos xsiny

oy OX

oM _ oN

oy 0ox

Given equation is exact and its solution is

J' M dx + .[ (termsin N not containing xX) dy = ¢
y constant

or .[ (cosx cosy-cotx)dx+0=c
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y constant
or (cosy) (_[ Cosxdx)—.fcotxdx:c
or cosysinx-log|sinx|=c

Example 13: Solve
(@ (@ -2xy-y%)dx=(x+y)dy

2
(b) (Zx_ljdx+ [X‘ZX jdy=0
y y

Solve: (a) Given differential equation is

(a% - 2xy - y?)dx = (x + y)*dy

or (@%-2xy -y?dx - (x+y)dy=0 ... (1)
Comp axing it with M dx + N dy = 0, we get
M=a?-2xy-Yy3 N=-(x+Y)?

aﬂ=-2x-2y, @z-z (xX+y)=-2x-2y
oy oX

M _ N

oy 0x

Given differential equation (1) is exact and its solution is
_[ M dx + I (terms of N not containing X) dy = ¢
y constant

or J (a2 - 2xy - y?)dx +j (-yd)dy=c

y constant
2 3
X y
a’x-2y —-xy?- =— =¢
2 3

3

y

or a’x - x?y-xy?- =—=¢
y-Xxy 3
(b) Given differential equation is
2x—1 -
( ]dx+[x X de:o ...... L)
y y

Comparing it with M dx + N dy = 0, we get
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M = , N =
y y?
oM _ 2x-1 1-2x ON _ 1-2x
=- = and — = ——
oy y y’ ox y
M _ N
oy OX

Given differential equation (1) is exact and its solution is
I M dx + I (terms of N not containing X) dy = ¢

y constant

J (Zx_ljdx+0=cor lj (2x-1)dx=c
y y

y constant

2
1 (Z.X——xJz c or 1 (x2-x)=c
yl 2 y

X2 - X =cy.

Example 14: Solve the following differential equation.
(1 + 6y? - 3x%y) Y = 3xy? - x?
dx
Sol. : Given differential equation is
(1 + 6y? - 3x%y) Y = 3xy? - x?
dx

or (3xy? - x3)dx + (3x?y - 1-6y?)dy =0 ...... 1)
Comparing it with M dx + N dy = 0, we get
M = 3xy?-x2, N=3x%-1-6y>

@ :6xy , ﬂ =6xy
OX

M _ N

oy  OX
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Given equation is exact and its solution is I M dx + j (terms of N not containing Xx) dy

y constant

or 3y2J. xdx-I xzdx-I (L+6y?)dy=c

2\,2 3
3X2y _% -(y+2y3)=c

Example 15: Solve the following differential equations:

or

(a) Sec? x tan y dx + tan x sec?y dy = 0
1

(b) {y(l+—j+cosy}dx+[x+Iogx—xsin yldy=0
X

Sol:  (a) Given differential equation is sec?x tany dx + tan x sec?y dy=0 ...... Q)
Comparing it with M dx + N dy = 0, we get

M = sec?x tan y, N = tan x sec?y

oM 2 2 oN 2 2

—— = Sec’X sec’y, — = Sec® X sec?y
OX

oM _ ON

oy OX

Given equation is exact and its solution is

J' de+j (terms of N not containing X) dy = ¢

y constant
or tany j secx dx=c
or tanytanx=c

(b) Given differential equation is
1 :
{y(l+—}+cosy} dx + [x+log x-xsiny]dy =0
X
Comparing itwithMdx+ Ndy=0,weget ... Q)

M:y[1+1j +cosy,N=x+logx-xsiny
X
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— =14 —-siny, — =1_ — -siny
oy

M _ N

oy OX

Given equation is exact and its solution is
I M dx + j (terms of N not containing X) dy = c

y constant
1

or y_[ (1+—jdx+cosyj dx=c
X

or y(x +log |x|]) + xcosy =c
Example 16: Verify that the differential equation (2x + e* siny) dx + e* cos y dy = 0 is exact and
find its solution when y(0) = % .

Sol: Given differential equation is
(2x+e*siny)dx+e*cosydy=0 ... (1)
Comparing it with M dx + N dy = 0, we get

M=2x+e*siny, N=e¢e*cosy

oM oN

—— = excosy, — =excosy
oy OX

M _oN

oy OX

Given differential equation (1) is exact and its solution is
I M dx+J' (terms of N not containing X) dy = c
y constant

I (2x+exsiny)dx+0=c

y constant
x? :
or 2 — +e*siny=c
2
x2+exsiny=c ... 2



Now y(0) = %:yz % when x =0
from (2),
0 +€e%sin % =c=>1ll=c=c=1
Putting c = 1in (2), we get
X2+ e‘siny =1,
which is the required solution.

Example 17: For what value of k, the differential equation.

kx X
{1+ey jdx v e [1—5] dy=0
y

is exact.
Sol: Given differential equation is

kx X
{1+eyjdx+ e’ [1—§]dyzo ....... (1)
y

Comparing it with M dx + N dy = 0, we get

o Xy
M=1+ey,N=ey(1——j

Now (1) will be exact
oM _ oON

if &0 = 25

oy OX
K x
ie. ife (-ﬁzj - e F_é_l}
y y vy y
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ifk e¥

X

= ey, which is true when k = 1.

required value of k is 1.

Self-Check Exercise

Q.1

Q.2

Q.3

Q.4

Q.5

Show that the differential equation

2x sin 3y dx + 3x? cos 3y dy =0

iS exact.

Solve the differential equation
(x2+y?-a?) xdx + (x2-y?-b?)ydy=0.
Solve the differential equation

dy _ x-4y+7

dx 4x+y-8

Solve the following differential equation

[yzeXy2 +4x3] dx + [nyeXy2 —3y2] dy=0

Solve the initial value problem

e“(cosydx-sinydy)=0;y(0)=0

3.4

3.5

Summary:

We conclude this unit by summarizing what we have covered in it:-

1.
2.
3.

4.

Discussed form of first order differential equation

Defined exact differential equations.

Discussed with theorem necessary and sufficient condition for first order

differential equation to be exact.

Did some examples to verify for the first order differential equations to be exact.

Glossary:

1.

Let F be a function of two real variables such that F has continuous first partial
derivatives in a domain D. The total differential dF of the function F is defined by
the formula
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3.6

3.7

aF(x,y) = EEN gy _aF;Xy’ Y ay

(
oX
forall (x,y) €D
2. The first order differential equations may be expressed in either the derivative

form % = f(x, y) or the differential form
X

M(x, y) dx + N(x, y)dy = 0
Answer to Self Check Exercise

Ans.1 Equation is exact and Solution is x? sin 3y = ¢

Hint; ﬂ = 6X COS 3X = a—N
oy oX

Ans.2 Equation is exact and Solution is

Ans.3 Hint:-a— =2xy = —
oy

Equation is exact and Solution is
X?-8xy + 14x +y?- 16y =
Ans.4 Equation is exact and its solution is
e +xt-yi=c

Hint: M _ 2y€Y (xy?+1)= N
oy oX

Ans.5 Equation is exact and its solution is

e*cosy=1
Hint:-ﬂ: e‘siny = 86_N andc=1
X

References/Suggested Readings

1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.
2. Sneddon, I., Elements of Partial Differential Equations, McGraw-Hill, International
Edition, 1967.
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3.8

Terminal Questions

1.

Solve the differential equation
(3x2 + 8xy - 3y? - 5)dx + (4x? - 6xy + 3y? + 6)dy = 0

Solve the differential equation

(xw/xz—y2 —y)dx+ (y xX°—y? —X)dyz 0
Solve the following differential equation

(5x* + 3x2y? - 2xy®)dx + (2x%y - 3x?y? - 5yhdy = 0
Solve the following differential equation

xdx +ydy+ M =0

X +y
Show that the differential equation
x € dx+y (e +1)dy =0

is exact and find its solution when y(0) =0
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Unit -4

Integrating Factors

Structure

4.1 Introduction

4.2 Learning Objectives

4.3 Integrating Factor-Definition

4.4 Number of Integrating Factors of a Differential Equation

4.5 Integrating Factors By Inspection
Self-Check Exercise-1

4.6 Rules for Finding The Integrating Factors of The Equation Mdx + Ndy = 0
Self-Check Exercise-2

4.7 Summary

4.8 Glossary

4.9  Answers to self check exercises

4.10 References/Suggested Readings

4,11 Terminal Questions

4.1 Introduction

Integrating factors are a fundamental concept in differential equations. When solving
certain types of differential equations, integrating factors play a crucial role in transforming the
equation into a more manageable form. They allow us to simplify the equation or make it
solvable by standard methods.

Integrating factors are particularly useful when dealing with non-exact differential
equations. A non-exact equation is one where the left-hand side is not an exact derivative of a
function. By multiplying the equation by an integrating factors, it is possible to convert it into an
exact equation, which can then be solved using standard techniques.

Integrating factors can simplify complex differential equations by reducing their order or
making them separable. They can transform equations into more manageable forms, making
them easier to analyze and solve. The simplification often leads to closed-form solutions,
providing valuable insights into the behavior of the system.

They also allow us to extend the range of methods available for solving differential
equations. They enable us to use techniques such as separation of variables, integrating
factors, or linearization, which may not be directly applicable to the original equation. By
introducing an integrating factor, we can manipulate the equation to match the form that suits a
chosen solution method.
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Integrating factors find widespread applications in various areas of physics and
engineering. They are commonly used in fields such as fluid dynamics, electrical circuits, heat
transfer, quantum mechanics, and many other disciplines. Integrating factors provide a powerful
tool for modeling and analyzing real-world systems, allowing us to make predictions and
optimize designs.

Dear students, understanding and effectively civilizing integrating factors are key skills
for anyone working with differential equations.

4.2 Learning Objectives
After studying this unit, you should be able to:-

. Define integrating factors
° Discuss rules for finding the integrating factors
° Explain each rule for finding the integrating factors with examples.

4.3 Integrating Factor-Definition

Consider the differential equation M(x, y)dx + N (x, y)dy=0. ... D

OM (X, y) _ ON(X,Y)
oy  ox

then the equation is exact and we can obtain a one-parameter family of solutions by one
of the procedures explained in unit-3. But if

oM (x,y) , ON(x,y)
oy OX

then the equation (1) is not exact and the procedures discussed in Unit-3 do not apply.
What shall we do in such a case? Perhaps we can multiply the non-exact equation by some
expression that will transform it into an essentially equivalent exact equation. If so, we can
proceed to solve the resulting exact equation.

Let us consider the differential equation
ydx+2xdy=0 ... ()

We observed that this equation is not exact. However, if we multiply, equation (2) by vy, it
is transformed into the essentially equivalent equation.

yldx +2xydy=0 ... 3)

Which is exact since this resulting exact equation (3) is integrable, we call y an
integrating factor of equation (2). In general, we have the following definition:-

Def: If the differential equation
M(x, y)dx + N(x, y)dy =0 ... (4)
is not exact in a domain D but the differential equation.
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1Y) M, y)dx + 2 (x, y) N(x, y)dy=0 ... (5)
is exact in D, then u (x, y) is called an integrating factor of the differential equation (4).

Let us do some examples:-

Example 1: Show that iz is an integrating factor of the equationy dx - x dy = 0
y

Sol: Given differential equation is

y dx - x dy =0 ... (1)
M=y and N=-Xx
= ﬂ: 1 and a—N =-1
oy oX
ﬂ;&@ and so (1) is not exact.
oy OX

Multiplying (1) by iz , we get
y

y—yzdx-?dyzo
= —dx-lzdyzo
y y
ere = oM L
y oy y
and Nz-l2 @ziz
y X y
M _oN
oy OX

1
(1) becomes exact when it is multiplied by —-. Therefore, — is an integrating factor of
y

(1)

Example 2: Show that ——— is an l.F. of x dx +y dy + (x* + y?)x?dx = 0.
X“+y

Sol: Given equationis x dx +y dy + (x> + y?)x?dx=0 ... (1)
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= (X+x*+xy)dx+ydy=0 .. M =x+x“+x2y2:ﬂ = 2x%y

and N=y :ﬂ =0 .. ﬂiaa—N and so (1) is not exact.
X

OX oy

Multiply (1) by % , we get
X +y

y 2 y
dx + dy + x?dx =0 +X° |dx + dy=0
X2+y2 X X2+y2 y X7ax :(X2+y2 ] X X2+y2 y
y
M= +x2and N =
X2+y2 X2+y2
. M _ (X2y) __ -2y N _ (W@ -2y
- 2 = 2 - 2 = 2
oy (x2+y2) (x2+y2) X (x2+y2) (x2+y2)
M _oN
oy OX
(1) becomes exact when multiplied by ———
X +y

>— Is |.F. of given equation (1).
X +y

Example 3: Shows that i isanl.F.ofydx-xdy=0
Xy
Sol: Given equation is ydx - xdy =0
oN

M:yansz-x:%zland—z-l
oy OX

ﬂi(g—N and so (1) is not exact
X

oy

Multiplying (1) by i we get, 1 dx 1 dy=0
Xy X y

Here,le andN:-1:ﬂ=Oand@=03ﬂ=@
X y oy X oy  ox
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(1) becomes exact when multiplied by i
1. . .
— is I.F. of given equation (1)

Example 4: Show that i isanl.F. ofydx-xdy=0

XZ
Sol: Given differential equationisy dx-xdy=0 ... (1)
= M=yandN=-X:>ﬂ=10w6@=—l
oy OX
= @:& N and so (1) is not exact
oy 0x

Multiplying (1) byiz, we get, lzdx 1 dy=0
X X X

HereM:%andN:-l:ﬂ:%and@—i:ﬂ:@
X X oy X oxX X oy OX

= (1) becomes exact when multiplied by %:% is I.F. of given equation (1).
X X

4.4 Number of Integrating Factors of a Differential Equation
The number of integrating factors of a differential equation are infinite
Let us prove it as follows:
Let 1 be an I.F. of the equation

Mdx+Ndy=0

H(Mdx+Ndy)=0isexact. ... (1) [Q u isan I.f]
Let

HMdx+Ndy)=du, ... (2)

where u is a function of x and y.

u = cis a solution.

Let f(u) be any function of u. Multiplying (1) by Mf(u),
UfuMdx+Ndy)y=0 ... 3)

Now  u f(u) (Mdx+Ndy)=f(u)du [by (2)]
which is an exact differential.
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M f(u) is also an I.F. of (1)

But f(u) is an arbitrary function of u, therefore, the number of integrating factors of () are
infinite.
4.5 Integrating Factors By Inspection

If given differential equation M dx + N dy = 0 is not exact, then sometimes its I.F. can be

found by inspection. Following is the list of integrating factors of certain groups of terms, which
are parts of an exact differential equations.

Groups of terms I.F. Exact Differential
1. xdy -y dx 1 xdy — ydx (yj
o2 2 =d| =
X X X
x dy-y dx 1 ydy — xdx Xj
N ——— =d| ——
y -y y
dy-y d
e L Y 5 iog?)
Xy y X
x dy -y dx 1 xdy— ydx
X2 2 2
Y 1+(yj X
X
2. x dy +y dx 1 xdy — ydx
= XYY flog (xy)
Xy Xy
x dy +y dx 1 xdy+ydx_d{ -1 }
09)" (xy)" (n-D(xy)"™
3. x dx +y dy 1 xdy+ydx 1
T = Zdflog (2 + y?
X+ Y X+ Y2 5 [log (x* +y9)]
X dx +ydy 1 xdx+ ydy_d -1
OC+y)" OC+y)" T [20-D0¢ +y)™

Let us improve our understanding of these results by looking at some following examples:-
Example 5: Find integrating factor by inspection and solve :ydx - xdy + log x. dx = 0.
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Sol: Here log x. dx is exact differential and an I.F. is required for ydx - xdy. Obviously this I.F.
ydy—xdx+ log x dx =0

NG NG

1
—, we get
X

should be a function of x, so it is iz Multiply (1) by
X

Now I Ingx dx = I log x. izdx (Integrate by parts)
X X
:|ogxl__1_J‘ 1__1 X:_loﬂ_l
X X X X X
J Iogzx dx = - Iogx+1; Iogzx: d (Iogx+lj
X X X X
d (XJ d (|09X+1J =0, ie., d. (z+ Iogx+1j = 0 which is exact.
X X X X
Integrating, we get Yy Iog_x+1 =c=Vy+logx+1=cx, is the reqd. solution.
X X

Example 6: Find an I.F. for (x* ex - 2mxy?)dx + 2mx2?y dy = 0 and hence solve.

Sol: Given equation (x*ex - 2mxy?)dx + 2mx?y dy =0

Here |.F. = %
X

2 2
Multiplying (1) by — , we get, [ex —ﬂsj ax+ 2Way =0
X X X

From Mdx + Ndy = 0 and it is exact

. . 2 2 X—3+l
solution is I e — n13y dx =c = e*-2my? =c
X -3+1
y constant
2
= e* + % = ¢ = x%e* + my? = ¢cx?, is the reqd. solution.

Example 7: Find an I.F. for y(2xy + e*)dx = e*dy and hence solve.

Sol: Given equation isy(2xy +ex) dx=edy ... D)

1
Here I.F. = —

l X X
Multiplying (1) by — , we get, (2X+ e_} dx - e_z dy=0
y y y
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From Mdx + Ndy = 0 and it is exact.

solution

. e* x> e . .
y constant is J' [2x+—J dx=c=> 2? + — = ¢ = X% + ex = ¢y, is the reqd. solution
y y

Example 8: Find an I.F. for ydx + x(1 - 3x?y?)dy = 0 and hence solve.

Sol: Given equation is ydx + x(1 - 3x?%?dy=0 ... (1)
Here I.LF. = 3
(xy)
{Q ydx+xdy present in given egn. and the term-3x°y*dysuggeststhel .F. = ﬁ}
Xy
Multiplying (1) by 1 3+ We get, M - E dy=0=> 21 3 —E dy=0
(xy) Xy y Xy oy

From Mdx + Ndy and it is exact.

_ -2
Solution is J %dx+ J —3dy=02>i2 [X—]3 log ly| = ¢
Xy y y* -2

y constant
% - 3log |ly| = ¢, is the reqd. solution.

2X°y

Example 9: Find an I.F. for (e¥ + xe¥)dx + xe¥dy = 0 and hence solve.

Sol: Given equation is e¥ + xe¥)dx + xe¥¥=0 ... 1)

Here L.F. = iy [It is suggested by last term]
xe

Multiplying (1) by iy , we get
xe

(1+1jdx +1dy=0
X

From M dx + N dy = 0 and it is exact.

solution is
1
I (;+l]dx + ] 1ldy=c
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y constant

= log x| +x+y=c

Example 10: Find an integrating factor by inspection and hence the differential equation
y dx - x dy + 3 x3y2€  dx = 0

Sol: Given differential equation is
y dx - x dy + 3 x3y2€  dx = 0

Since 3x2€* = d(€°), the term 3x2y2€” dx.
Should not involve y?

1
This suggests that — may be an I.F.
y
o 1
Multiplying throughout by —, we have
y

dx—xd 3
y—zy +3x%€" dx=0

y
or d(ij + d(eXB) = 0, which is an exact expression.
y

Integrating, we have

X 3 . . :
~ + € =c, which is the required solution.
y

Example 11: Find the integrating factor by inspection of the differential equation
(x? + y? + 2x)dx + 2y dy = 0 and hence solve it.
Sol: Given differential equation is
(X2+y?+2x)dx+2ydy=0 ... 1)
Comparing (1) with mdx + Ndy = 0, we get
M=x2+y2+2x, N=2y

oy oX
) oM 6N
Since —#—
oy ox

Given differential equation (1) is not exact.
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Now, (1) can be written as

=

or

(X2 +y?>)dx+2xdx+2ydy=0 ... (2

By inspection,

> > Is an I.F.

X +Yy

Multiplying both sides of (2) by

, We get
XZ+ 2

(X*+y?)dx  2xdx+2ydy
+ =0
X2 + y2 X2 + y2

dx + d[log (x2 +y?)]=0
dix +log (x2 +y2)] = 0

Integrating, we get

x +log (X* +y?) =,

which is the required solution.

Example 12: Solve (x3 + xy? + k2y) dx + (y® + yx? - k?)dy = 0

Sol: Given differential equation is

(x® + xy? + k?y) dx + (y3 + yx? - k®)dy = 0
Comparing it with Mdx + Ndy = 0, we get
M =x3+ xy? + k% and N = y3 + yx? - k?x
oM
— =2xy + k? and N = 2xy - k?

oy OX

oM ©ON
_i_

oy ox

Given differential equation (1) is not exact.

The given differential equation (1) can be written as

Now the expression xdy - y dx suggest that

K2(xdy-ydx)-x(x2+y?)dx-y(x2+y>)dy=0

2 2

X +Yy

1
Multiplying (1) by ———, we get
X +y

I({xdy—ydx

1y }-xdx-ydy=0
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or kzd{—tan‘lz} -xdx-ydy=0
y

Integrating, we get

2 2
k{—tan'lf] X Y —¢

y| 2 2
X
or x2 +y? + 2k? tanl— = ¢, where ¢ = -2¢'
X
or x% +y? + 2k? tant — = ¢, where ¢ = -2¢'

which is the required solution
Example 13: Solve (x?y - 1 - x?y?)dx + x3 dy = 0
Sol: Given differential equation is
(X?y - 1-x2y?)dx + x3dy =0
or x¥(y dx + x dy) - (1 + x%?) dx=0

Multiplying it by — , we get
X

(1+x°y?)
ydx+xdy dx _
1+x°y? X
dixy) dx _
22 -0
1+(xy)" x
Integrating, we get

0

or

tant (xy) + 1. c
X

which is the required solution

Self-Check Exercise-1
Q.1  Find the integrating factor by inspection and solve the differential equation.
y(1-xy)dx-x(1+xy)dy=0
Q.2  Solve the differential equation
xdx +ydy+4y3(x2+y?)dy=0

Q.3  Find the integrating factor of the differential equation (y - 1) dx - x dy = 0 and
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hence solve it.
Q.4  Solve the differential equation
ydx-xdy+ (1+x?)dx+x?sinydy=0

Q.5 Find the integrating factor by inspection and hence solve the differential
equation

(x+y3%) dy =y (dx +dy),y>0.

4.6 Rules For Finding The Integrating Factors of the Equation Mdx + Ndy =0

If M dx + N dy = 0 is not exact and it is difficult to find integrating factor by inspection,
then five rules help us in finding integrating factors.

Rule 1: Homogeneous Equation :

If the equations Mdx + Ndy = 0 is homogenous in x and y i.e. if M, N are homogeneous

1
functions of the same degree in x and y, then ————— is an integrating factor provided Mx +
Mx+ Ny
Ny = 0
Proof: The equation is Mdx + Ndy=0 ... D
@) (1) is homogeneous, .. M and N are homogeneous functions of x and y of the same
degree, say n; so by the Euler's theorem on homogeneous functions
@+y@—nM,andxa—N+y@—nN ..... (2)
0 oy OX y
1 _ .
We are to show that ————is an I.F. of (1), i.e.
Mx+ N
M dx + N dy=0, ... (3) is exact. (Mx + Ny = 0)

Mx+ Ny Mx+ Ny

We are to prove that

oM oM
oy \ Mx+ Ny ox \ Mx+ Ny

oM oM oM oM ON
(Mx+Ny)M(x+N+y) Ny — MN =My~
Now i M = % %y %y = ’ oy ’ oy
dy \ Mx+ Ny (Mx+ Ny)? (Mx+ Ny)?
(Mx+ Ny)aNN(M +6Mx+8Nyj anM—MN—MXaM
and 0 N _ OX OX X" )_ OX OX
ox \ Mx+ Ny (Mx+ Ny)? (Mx+ Ny)?
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( oM 6MJ ( oN aNJ
N[ X—+y— |-M| X+—+y—
a( M j M( M jz x oy ox oy

oy \Mx+Ny ) ax | Mx+Ny (Mx+ Ny)?
_ N(0M)-M(nN) _
= (VX )2 =0 . (4) [by (2)]

(4) is true; and so (3) is an exact equation.
1/(Mx + Ny) is an I.F. of (1).
Case of failure. The above rule fails when Mx + Ny =0
When Mx + Ny = 0 = N = -Mxl/y. so (1) becomes
Mdx - wdyzOor% - ﬂ =
y y |y
Integrating log x - log y = log c, .. x = cy which is the required solution.
Let us do some examples:-

Example 14: Solve: (x?y - 2xy?) dx - (x3 - 3x?y) dy = 0

..... 1)
Sol: This is homogeneous in x and y.
Comparing with Mdx + Ndy = 0, we have
M = x?y - 2xy?, N = -(x3 - 3x%).
1 1 L 1
ILF. = = Multiplying (1) by ——
Mx+Ny  x°y? Plying (1) by x*y?
X
We have, [—z—gj dy=0 . 2
y y

This is an exact equation of the form: Mdx + Ndy = 0

[Sol. istdx+_[(terms of N not containing x) dy = c}
Sol. of (2) is:J (l—gjdx+3j 1dy=c
y X y

X , ,
= —-2log x + 3 log y = c, where c is an arbitrary constant.
y

Example 15: Solve: (i) X2y dx-(x*+y%)dy=0
(i) (3xy? - y®) dx + (xy? - 2x%y) dy =0
Sol. (i) Given equation is x?ydx - (x> +y3) dy =0
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Here M and N are homogeneous

by Rule |, I.LF. = 1 = — 13 3 =_—i-
Mx+Ny — (XY)X+ (=X +y))y ¥
_y2
Multiplying (1) by I.F. i.e. _—i' , we get x4y dx + % x¥+y)dy=0
y y y
2 3
= —Xst + {X—4+ 1 } dy = 0, which is exact.
y y

o X 1 -1)( % . .
Solution is I —-dx + I —dy=c=|— || — | +logly| =c, is the reqd. solution.
y Yy y 3

y constant
(i) Given equation is

(Bxy? - y3) dx + (xy?- 2x¥%)dy=0 ... (1)
Here M and N are homogeneous
1 1 1
by Rule I, I.LF. = = =
Y Mx+Ny 3%y —xy’ +xy° —2x°y*  X°y?
2 1
Multiplying (1) by L.F. i.e. % we get (E—lz) dx - (———j dy = 0, which is exact
X7y X X y X
Solution s | (§—lzjdx + | 2dy=c
X X y
y XLy
= 3log x|+ = -2log |ly| =c = log | —| + = =c,is the reqd. solution.
X

Example 16: Solve the differential equation
(x* + y*) dx - xy3dy =0

Sol: Given differential equation is
(x*+y*dx-xyldy=0 .. (1)
Comparing (1) with Mdx + Ndy = 0, we get
M =x*+y4 N = -xy3
oM

_:O+4y3:4y3’ w :_y3
oy oX
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M N
oy OX
Given equation (1) is not exact.
Now equation (1) is homogeneous.

1 1 1
I.F. = =

C Mx+Ny Xxy -xyt X

Multiplying (1) by is , we get
X

5 X4

N 3
( y jdx - Y dy = 0, which is exact.
X

its solution is

dx+0=c

J x*+y?
X5

y constant

J %dx+y4j. xSdx=c

-4
or log x + y4[x—4] =c

4
log x - % = ¢, which is the required.
X

Solution:

Self-Check Exercise-2
Q.1  Solve the differential equation
(x?+y?) dx-2xydy=0
Q.2  Solve the following differential equation
(3xy? - y°) dx - (2x%y - xy?) dy = 0

Rule Il. If the equation Mdx + Ndy = 0 is of the form yf(xy) dx + xy(xy) dy = 0,

then ; is an I.F. (provided Mx - Ny = 0)
Mx+ Ny

83



of

Proof: Here x.ﬂ =y.—, because each of these = xyf'(u), where u = xy

OX oy’
[f = f(u), where u = xy. .- 8 f()——yf() E—f()——Xf(U)]

Similarly, x. 9 =y. 6_g ..... (2)

)4 oy
The equation Mdx + Ndy = 0 is of the form y. f(xy)dx + xg (xy)dy=0 ... 3)
Here M =vy.f, N=xg; .. Mx- Ny =xy (f - 9). .(4)
We have to show that L = 1 is an I.F. of (4), i.e.

Mx+Ny  xy(f—q)
y dx + 9 dy =
xy(f -9) xy(f -9)

ie. T oax+ 9 dyisexact Mx-Ny=0) . (5)

X(f -09) y(f -9)
We are to prove that

ot j_oe; .9 (6)
oy |x(f-g)]  ox|y(f-9)
of a9 o9 of
(f- )—f( j .99 g
Now i f % &y % oy oy
oy X(f—@J) x(f -g)? x(f—9)°
ig_ i
g |_ 95
x|y(f-g)| y(f—g)
a9 _, 99 of ., of
ol f g |: f(yax xaxj+g(xax y@yJ:O
oy x(f—g) ax y(f -9)| xy(f —g)?

[By (1) and (2)

(6) is true, and so (5) is an exact equation.

——— isan |.F of (4).
(Mx+ Ny)

Case of failure. f Mx-Ny=0ie.xy(f-g)=0, .f=g.
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(4) becomes ydx + xdy = 0; .. d(xy) =0, or xy = ¢, which is the required solution.
Example 17: Solve: y(xy + 2x2y?) dx + x (xy - x?y?) dy = 0
Sol: The given equation is y(xy + 2x2y?) dx + X (xy - x?y?) dy =0

This is of the form yf (xy) dx + xg (xy) dy =0

Comparing with Mdx + Ndy = 0, we have

M=y (xy + 2x%y?), N = X (xy - X?y?)

F.= ! -1
(Mx+Ny)  3x°y*

Multiplying (1) by % we get
X

3y3’
1 2 1 1
+— | dx + +— |dy=0 (2
(3x2y 3Xj X (3xy2 3yj y @

This is an exact equation of the form Mdx + Ndy =0

Now Solution is: I Mdx + J [terms of N not containing x] dy = ¢

y constant
. : 2 1
Solution of (2) is, y constant I >—+—— |dx J —dy=c
33Xy 3X 3y
1 2 1 : .
or -—— + —log x- — log y = 0, where c is an arbitrary constant.
3xy 3 3
Example 18: Solve
2+xy?)ydx+(2-xy?)xdy=0
Sol: Given equation is
2+xy?)ydx+(2-xy)xdy=0 ... (1)
Itis of the form yf(x, y) dx + x g (xy) dy =0
1 1 1

by rule ll, ILF. =

3,3

Mx— Ny - 2+ X2y xy—(2— X*y?)xy - 2x%y

1
Multiplying (1) —— , we get
plying (1) 2x3y3 g

i+i dx + EET dy=0
Xy? 2x X°y* 2y Y
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Flow it is an exact equation

solution is
1 1 _
J 3 2 +— |dx + I _1 =0
Xy© 2X 2y
y constant
-1 1 1
= ——+ —log(x)- = lo =c,
22y 2 g (X) 5 g lyl
= Iogm=2c,+ 212
|yl X7y
= m = &5 e%<2y2: x| = e Iyl e%<2y2
|y
= [X| = cly| e/szyz , Wwhere ¢ = €%, is the required
Solution

Now, try the following exercises:-
Q.3 Solve(l+xy)ydx+(1-xy)xdy=0
Q.4 Solve (xX?y?+xy+1)ydx+ (x%y?-xy+1)xdy=0

Rule Ill. When M _ N is function of x alone, say f(x), then ejf(x)d
oy OX
equation Mdx + Ndy =0 (1)

e[ F(ax. : . . .
Proof: Now is an integrating factor of (1), if the equation

Me P axend Pay=0 2)

is exact, which is so

i £|:Mej‘f(x)dx:|: EI:Ne[f(x)dx:|
oX

oy
or i M Jrwa_ ON - Jree
OX
oM _ oN

or ifaza + Nf(x)
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oM ©ON

oy ox

N , Which is true (given).

or fx) =

Hence & “%is an LF. of (1),

Example 19: Solve: (x> + y? + 2x) dx + 2y dy = 0

Sol: The given equationis (x2 +y?-2x)dx+2ydy=0 ... 1)
Comparing (1) with mdx + Ndy = 0, we have
M=x2+y2+2x,N=2y

M _oN
oM ON oy oOX
———=2y-0=2y . ——— =1=f(x) (sa
o ox y y N f(x) (say)
LF.of (1) = & "% 0% _ g
Multiplying (1) by e, e* (x? + y? + 2x) dx + e 2ydy =0 ...(2)
or d e* (x2 + y?) = 0 which is exact.

Integrating, we get e* (x? + y?) = ¢ is the reqd. solution.

Example 20: Solve: (i) (xy2 —e%<3jdx = x?ydy. (i) (x* + y?) dx - 2xy dy =0

Sol: (i) Given equation is (xy2 —e/J/X3jdx = X%y dy

= (xyz—e%<3)dx—x2ydy=0 [Type M dx + N dy = 0]
™M _oN
oy ox _2y-(2)_ 4y _ -4
N -X’y -xX’y X
-4
|.F. = e'[7dX: e4loglxl = elog|x|’4 = |X|'4 = 1 = i
|X|4 X4
2 _e%@ 2
Multiplying (1) by LF. ie. —we get | X—o— | dx- XY dy=0
X X X
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ze/]/x3

= ia T dx - lzdy = 0, which is exact.
- y? e X x
Solution is, y constant | =5 ——— |dx = c1= y?| — |- I Sdx=c (2)
X X -2 X
Letlz_[édx puti—t:>x‘3—t:>—3x“‘dx—dt:>%—E
x* X x* -3
d (1 1 e}/s I
= | el—=| — [(e) = — &%, putting in (2), We get
| ¢ (_?J() = €, putting in (2), We g
2 2 2
—yz-{ie/vxs}zclz 33/+2 X = eci= 32/+2<9/J/X3=c,
2X -3 X X

where 6¢; = ¢, which is the reqd. sol.
(i) Given equation is (x? + y?) dx - 2xy dy = 0
Here M = x? + y?2 and N = -2xy

M _oN
oy ox _2y-(2y) _ 4y _ (—_2)
N —2xy —2Xy X
)
IF.= e =gtoox= g’ 2 b
X2

2
Multiplying (1) by L.F. i.e.. iz we get (1—1— yz]dx - ﬂ dy = 0, which is exact.
X X X

2
Solution is I (1+y—2} dx=c
X

o X y’ y’ 2 2z oxi -
= X+y (_—1] =C=>X- o =C=>X- o =Cc = X -y =cxis the reqd. solution.
Example 21: Find an integrating factor for

cos x cosy dx - 2 sin x siny dy = 0 and solve it.
Sol: Given differential equation is
cosxcosydx-2sinxsinydy=0 ...
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Comparing with Mdx + Ndy = 0, we get

M=cosxcosy,N=-2sinxsiny

oM . oN :
—— =-cosXsiny, — =-2cosxsiny
oy OX
oM _oN
dy OX _ —COsSXsiny+2cosxsiny
N —-29nxsiny
_ cosxsiny
-29nxsiny

1
= - 5 Cotx = ()
LE = @ (000 _ oo logsin
- elog(sinx)’l/z
= (sn x)_}/2

1
sin

g

Multiplying both sides of (1) by L , we get

N 1D

de -2 4SiNX sinydy=0
Jsinx
which is exact and its solution is
cos yj CC?SX dx=c
Jsinx
or Ccos yj (sinx)_y2 cosxdx=c
(sinx) 2
or cosy ———— =¢

5
or 2cosy ySINX =c¢
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Try the following exercises:-
Q.5 Solve the following differential equation
(X2 +y?+x)dx+xydy=0,x>0
Q.6  Solve the following differential equation
(x*e* - 2 mx y?) dx + 2 mx?y dy = 0
Q.7  Solve the differential equation

y X 1
+2—4+—|dx+ = (x +xy?)dy=0,x>0
(y 3t 4( y?) dy

oM ©ON

Rule IV. When % is a function of y alone, say f(y), then e[f(y)dyis an integrating factor of
the equation Mdx + Ndy = 0
Proof: Similar to the proof of Rule III.
Example 22: Solve: (y* + 2y) dx + (xy® + 2y* - - 4x) dy = 0.
Sol: The given equation is (y* + 2y) dx + (xy® + 2y* - 4x) dx = 0
Comparing (1) with mdx + Ndy = 0, we have
M =y*+ 2y, N = xy3 + 2y* - 4x

oN oM

0

XTay = E = f(y) (say)
y

LF of (1) = &Y= gtony = goor™ =
Multiplying (1) by y®, we have

(y+%)dx + (x+ 2y—4—§jdy =0
y y

= (ydx + xdy) + 2 (%—%dy) +2ydy =0

or  d(xy)+2d [é} + d(y?) = 0. which is exact
y
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Integrating we get xy + 2—)2( +y2 = 0. which is exact.
y

. 2X | o, . .
Integrating, we get xy + ? + y“ = c is the required solution.

Example 23: Solve: (i) (3x2y* + 2xy) dx + (2x3y3 - x3)dy =0

(ii) (2xy*eY + 2xy® +y) dx + (x2y*eY - x%y? - x?y? - 3x) dy = 0

Sol: (i) Given equationis ... 1)
(3x2y* + 2xy) dx + (2x3y2 - x?) dy =0

Here M = 3x?y*+ 2xy and N = 2x3? - x?
oN oM

X 0y _ (6X°y*-2X)-(12X°y*+2X) _ 6xX°y° —4x—(12X°y® + 2X)

M 3yt + 2xy y(3x*y® + 2X)

_ 23y’ +2x) _ -2
y(3x°Y® + 2X) y

2
—dy -2 1
Fom e oY= gzonr = g =y?= v

2

Multiplying (1) by L.F. i.e. 1 , We get, [3x2y2 +2—;] dx + (3X3y—x—2
y y

3 2
Solution is 3x2y2+§ dx = ¢ = 3y? L) 21X =c
y 3 y)\ 2

y constant

2
X . .
= x3%y? + —=c¢ = x%° + x2 = ¢y, is the reqd. solution.

(i) Given equation is
(2xy‘ey + 2xy2 +y) dx + (x?y*ey - x?y? - 3x) dy = 0
Here M =2xy%eY + 2xy® +y and N = x?y*ey - x?y? - 3x

2

jdy = 0, which is exact.

oN oM

OX

oy _ (2xy'e’ —2xy”—3)-(8xy’e” + 2xy'e’ +6xy” +1)

M

2xy'e’ +2xy° +y
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_ 8xye’ -8xy" -4 _ A2y’ +2xy°+1) _ -4
(2xy’e’ +2xy*+1)  (2xy’e’ +2xy* +1)y y

-4

J.——dy -4 1
— Yy — adlogy — @09y — 4 —
LIF.=g Y =e®owy=® =yi= =

y
L . 1
Multiplying (1) by I.F. i.e. —-, we get
y
2
{ery +§+i3} dx + {xzey —X—Z—S—f} dy=0
y 'y y

It is exact and so its solution is

2x 1
2xe’ + —+— |dx=c
J { y f}

y constant

2
X X : : .
= x’ey + — + —; = C, is the required solution
y

Dear Students, now try the following exercises:-
Q.8 Solve the differential equation
(xy> +y) dx + 2 (x%y* + x +y*) dy =0
Q.9 Solve the differential equation

(x +2y°) L y
dx

+u+1 +v+1 a+u+1 +u+1l
Rule v, if 23U+l _ D  arur._axd

m n m m

then xYy" is an integrating factor of the equation
x3yP (mydx + nxdy) + x3%° (m'ydx + n'xdy) =0 ... (1)
Proof: Multiplying (1) by x"y", we have
(MXAUYPHHL gy + pyatutlybvydy
+ m'Xa'+uyb'+v+1 dx + n' Xa'+u+1yb'+vdy =0 (2
Now x“y" is an I.F. of (1), if (2) is exact; so both the parts of (2) must be exact.
The first part of (2) is exact if
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Q (mxa+uyb+v+1) - ﬁ (nxa+u+1yb+V)

OX
or ifmb+v+1) Xa+”yb+" =n(a+u+ 1) Xa+uyb+v
or ifm(b+v+1):n(a+u+l)

a+u+l _b+v+l
m n

or if

, Which is true (given)

Similarly, the second part of (2) is exact if

a+u+l b+v+l
m n

, Which is true (given)

@) xYy" is an integrating factor of (1)
Example 24: Solve: (2x2y? + y)dx - (x3y - 3x)dy =0
Sol: The given equation is (2x%? + y)dx - (x®y - 3x)dy =0 ... 1)
It can be written as
x2y(2ydx - xdy) + x%?° (ydx + 3xdy) = 0
Compare with x2y® (mydx + nxdy) + x2y? (m'ydx + n'xdy) = 0
a=2,b=1m=2n=-1:a=0b'=0m=1,n"=3

a+u+l_b+v+1 a a+tu+l _b'+v+1

nd : :
m n m n
u+3 2+v u+l v+1
= and =
2 -1 1 3
oru+2v=-7and3u-v=-2 .. u:-%l,vz-g

the integrating factor is x\y" = x1V/7 y197

Multiplying (2) by x*¥7, y197 we have

3 5 0 12 a2 4 B
(2x7—y Tdx=x"y-" dy] + (x T—y 7dx=3x"Ty 7dy]=0

10 5 4 12
or gd(ﬁy?j-%d(xW?j:O

10 57 4 12

Integrating we get, 5 X 7 y "4 x 7 yﬁ7 = c as the reqd. solution.
Example 25: Solve: (20x? + 8xy + 4y? + 3y3) ydx + 4 (x> + xy + y? + y®) xdy = 0
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Sol: Here M = 20x2y + 8xy? + 4y + 3y* and N = 4x3 + 4x2y + 4y?x + 4y3x

% = 20x? + + 16xy + 12y? + 12y® and 86_N = 12x2 + 8xy + 4y? + 4y3
X

oM ON . .
—;ta— = Given equation is not exact.
X

Rewrite given equation as
x2y° (20ydx + 4xdy) + xy(8ydx + 4xdy) + y>x° (4ydx + 4xdy) + y3x° (3ydx + 4xdy) =0

Compare it with

x3yP [mydx + nxdy] + x¢y? [pydx + gxdy] + x®y' [rydx + sxdy] + x%" [kydx + [kydx + Ixdy] = 0
a=2,b=0,m=20,n=4;¢c=1,d=1,p=8,q=4;
e=0,f=2,r=4,s=4;,9g=0,h=3,k=3,1=4

Let x".y" be I.F.

a+u+1l_b+v+1l c+1+u _ d+1+v,

m n p q
e+l+u _ f+1+v_ g+1+u _ h+1l+v
r s Kk I

30+u _1+v_ 2+u _ 2+v _ 14+u_ 3+Vv_1+u_ 4+v
20 4 ' 8 4 ' 4 4 ' 3 4
3+u=5+5v;2+u=4+2v,1+u=3+Vv,4+4u=12+ 3v

=
= u=2+5viu=2+viu=2+v,4u=8+3v
= u=2andv=0
= ILF. = x4y =x%%=x2
Multiply given equation by I.F. = x2, we get
(20x%y + 8x3y? + 4x2y® + 3x%y*) dx + (4x5 + 4xty + 4x3y?) dy = 0
It is now exact equation and therefore its solution is
I (20x% + 8x3y? + 4x%y® + 3x?y*)dx = ¢
y constant

5 4. ,2 2.,3 3,,4
20xy+8xy+4xy+3xy
5 4 3

=Cc = 4%y + 2x%y? + %x3y3 +x%yt=c
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Now, try the following exercises:-
Q.10 Solve the differential equation

Q.11 Solve the differential equation

(xy? + 2x2y%)dx + (x?y - x®y?)dy = 0

(3x2y* + 2xy)dx + (2x3y2 - x?)dy = 0

4.7 Summary:

We conclude this unit by summarizing what we have covered in it:-

1.

2
3.
4

Defined integrating factor
Discussed the number of integrating factors of a differential equation.
Discussed integrating factors found by inspection.

Discussed in detail different rules for finding the integrating factors and give
examples in support of each rule.

4.8 Glossary:

1.

If the differential equation

M y)dx+n(x,y)dy=0

is not exact in a domain D but the differential equation
HXY)M (X, y)dx+ (X, y) N(x,y)dy =0

is exact in D, then u(x, y) is called an integrating factor of the differential
equation.

If the equation Mdx + Ndy = 0 is homogeneous in x and y, then ; is an
Mx+ Ny

integrating factor provided Mx + Ny = 0
If the equation Mdx + Ndy = 0 is of the form yf(x, y) dx + xg (X, y) dy = 0, then

is an integrating factor provided Mx - Ny = 0

Mx+ Ny
M _oN
OX X
When WTis a function of x alone, say f(x), then e[f( )dxis an integrating

factor of equation Mdx + Ndy = 0

4.9 Answer to Self Check Exercise
Self-Check Exercise-1

Ans.1l I.F. = i and solution is x = cye”

Xy
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ANns.2

Ans.3

Ans.4

Ans.5

I.LF. = Xziyzand solution is log (x? +y?) + 2y* =,

where c is an arbitrary constant.

1 .
I.LF. = — and solutionisy = 1 - cx.
X

L = 1
I.LF. = iz and solution is Yoz, X-COSYy =C.
X X X
2
I.LF. = izand solution is g logy i A c
y y 2

Self-Check Exercise-2

Ans.1

Ans.2

Ans.3

Ans.4

Ans.5

X2 - y2 = cx is the required solution.

Hint: Given equation is not exact but it is homogeneous in x and y. ——— i.e.
Mx+ Ny
XOC —v)) is an I.F.
3log |x| + % - 2 log |y| = c is the required solution
1 . 1

Hint: Given differential equation is homogeneous in x and y.

i.e.
Mx+ Ny x*y?

is an |.F.

Log |x| - log |y] - i = ¢, where 2c; = c is the required solution.
Xy

Hint LF.= — © = 1 -
Mx+ Ny  2x°y
X 1 . . :
Xy + log —‘ - — =, si the required solution.
Xy
Hint: I.F. = L = 1’ 5
Mx+ Ny  2x°y
4 2y,2 3
X XY X c is the required solution
4 2 3
Hint: I.F. is X
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2

Ans.6 e*+ my—2 = c is the required solution
X

Hint: I.F. is %
X

Ans.7 3x% + x*?2 + x8 = ¢, where ¢ = 12c¢' is the required solution

Hint: I.F. is x3

Ans.8 % +xy? + y?G = ¢, is the required solution
Hint: I.F. is |y|

Ans.9 x - Y2 =cy, is the required solution.
Hint: I.F. is %

Ans.lO—i + 2 log |X| - log |y+| = c, is the required solution

Hint: I.F. is

3,,3

X'y
2
X . . .
Ans.11x3? + — =, is the required solution

Hint: Lf. is iz
y
4,10 References/Suggested Readings
1. Boyce, W. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.
2. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.
4,11 Terminal Questions
1. Find the integrating factor by inspection and hence solve the following differential
equation

(X+xt+2xy?2 +yH dx +ydy =0
2. Find the integrating factor for
cosxcosydx-4sinxsinydy=0
and solve it.
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10.

Find the integrating factor of the equation

xdy - ydx =x(1-2x?)dx,x>0

by inspection method and hence solve it.

Solve the following differential equation

(y3 - 2yx?) dx + (2xy? - x3) dy =0

Solve the differential equation

y(2xy + 1) dx + x (1 + 2xy - x®y®) dy =0

Solve the differential equation

OCy* + x2y% + xy? +y) dx + (x*y° - x®y? + X%y + x) dy = 0
Solve the following differential equation

(e¥ + xeY) dx + xe¥dy =0

Solve the differential eqution

(x®+ xyH) dx + 2y3dy =0

Solve the differential equation
y(x+y+1)dx+x(x+3y+2)dx=0,y>0

Solve the differential equation

(20x2 + 8xy + 4y? + 3y3) ydx + 4 (x2 + xy +y?2 +y3) xdy =0
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Unit-5

Equations of First Order and Higher Degree

Structure

5.1 Introduction

5.2 Learning Objectives

5.3 Equations Solvable for p
Self-Check Exercise-1

54 Equations Solvable For y

5.5 Equations Solvable For x
Self-Check Exercise-2

5.6 Equations Not Containing x

5.7 Equations Not Containing y
Self-Check Exercise-3

5.8 The Clairaut Equation
Self-Check Exercise-4

5.9 Summary

5.10 Glossary

5.11 Answers to self check exercises

5.12 References/Suggested Readings

5.13 Terminal Questions

5.1 Introduction

A differential equation is an equation that relates an unknown function to its derivatives.
It expresses how the rate of change of the function depends on the values of the function itself
and its derivatives. The order of a differential equation is determined by the highest derivative
that appears in the equation.

A differential equation of form f(x, y,%j: 0, where degree of % is greater than 1 is
X X

called a non-linear differential equation of first order and higher degree. For convenience, we

. d , . :
shall write d_y = p. The general form of the first order and n™ degree equation can be written as
X

p"+ P1 (X, y) p"t+ P2 (X, y) pT? +........ +Pn1(X,yY)p+Pa(x,y)=0
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There is no general method for solving first-order non-linear differential equations. In
fact, the determination of such solutions is often difficult if not impossible. In the present unit, we
shall discuss a few techniques for finding solutions of certain particular types of non-linear
equation of first order and higher degree.

5.2 Learning Objectives
After studying this unit, you should be able to:-

. Define equation of first order and higher degree.

. Discuss and find solutions of equations solvable for p

. Discuss and find solutions of equations solvable for y

. Discuss and find solutions of equations solvable for x

. Discuss and find solutions of equations not containing x
° Discuss and find solutions of equations not containing y
° Discuss and find solution of clairaut equation

5.3 Equations Solvable Fro p

Let f(x,y,p=0 ... 1)

be the given differential equation of the first order and degree n (> 1)
Since it is solvable for p,

(P-f1)(P-f2) e (p-fn)=0

where f1, fo,....... , fn are functions of x and y.

Equation (1) reduces to a problem of solving n differential equations of first order and
first degree, viz.

dy = f1 (X, ), dy = f2 (5 Y), s : dy = fn (X, y), which can be solved by the
dx dx dx
methods already known to us
Let the solutions of these n first degree equations be
fi(x,y,¢1) =0, f2(X,y,C2) =0, ........ yFn(X,y,cn)=0

Since the given equations is of first order, therefore, it cannot have more than one
independent arbitrary constant.

Let cl=c2=..... =cn = c (say)

Hence the general solution of (1) is the product Fi(X, y, ¢) F2 (X, ¥, C) ........ Fn(X,y,c)=0
of n solutions.

Method to Solve

@ Resolve the given equation into linear factor of p.

(ii) Equate each factor to zero, which will give a differential equation
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(iii) Combine these equations to get the required solution

Let us look at some examples:-

Example 1: Solve: p?+p-6=0

Sol: The given equation is
p?+p-6=00r(p-2)(p-3)=0..p=2,-3

i.e. %:Zand% =-3

Integrating, we gety =2x+candy =-3x+ ¢

or 2x-y+c=0and3x+y-c=0

Hence the complete solutionis (2x -y +¢) (3x+y-¢)=0

Example 2: Solve: p?-5p+6=0

Sol: p?-5p+6=0=(p-2)p-3)=0=p=2,3

= % =2 and % =3
On integration, we gety=2x+candy=3x+c=(y-2x-c)=0and (y-3x-¢)=0
Hence the complete solutionis (y - 2x-¢) (y-3x-¢)=0

Example 3: Solve: p?-(x+y)p+xy =0

Sol: Given equationis p?- (X +y)p+xy=0=((p-X) (p-y)=0=p=X,y

= ﬂzxand%zy:dyzxdxandﬂzdx
X

dx

. . X’
On integration we get, y = ? +ciandlogy =x+c:

= 2y=x2+2ciandy= € zex. €= 2y=x2+candy=e*.c
= 2y-x2-c=0andy-ce*=0

Hence the complete solution is (2y - x?> - ¢) (y - ceX) - 0
Example 4: Solve: x?p? + xyp - 6y?> =0

Sol: Given equation is x? p? + xyp - 6y> =0

—XY £/ XPY? + 24x%Y? _TXyESxy 4y —6xy_ 2y 3y

= p=

2x° 2%? 2x2 " 2x? X X
= ﬂ:ﬂand g: __Syjﬂzz_dxandg:-%]
dx X dx X y X y X
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On integration, we get,
logy=2logx+logcandlogy -3logx+logc

= log y = log cx? and log y = log cx3
= y=cx?andy=cx3=y=cx?andyx*=c
= y-cx*=0andyx®*-c=0

Hence the complete solution is (y - ¢x?) (yx*-¢c) =0
Example 5: Solve: p® + 3xp? - yp? - 3xy’p =0
Sol: Given equation can be rewritten as

p[p? + 3px - py? + 3xy?] =0 = p(p + 3x) (p - y?) =0

= p=0,p+3x=0andp-y2=0:>ﬂ=O,ﬂ=-3xandﬂ=y2
dx dx dx

= yzcj dy=—3f xdx+c,J' %zj. dx +c

X2 -1
= y=¢c,y=-3 — +¢c, —=Xx+¢
2 y

the required solutionis (y - ¢) (2y + 3x2-¢) (yt+x+¢c)=0

1
Example 6: Solve: y - (1+ pz)_E = b.

N

Sol:y- (1+p*) 2 =b

1
1+ p°
=  (y-b)?+p’(y-b)*=0
= p(y-by=1-(y-b)

= (y-bP=(@+p)’=

2
N 2 _ M [solvable for p]
(y-b)
N dy _ Jy1-(y-b)’
dx y-b
= X+cC

|l
1-(y-b)*

Put y-b=sin¢=dy=cos ¢ dd
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—x+c:>j singdp=x+c

sng. cos¢d¢
e

«/1 sin?
=  -cosd=x+c=-1-(y-b)* =x+c

= 1-(y-b)?2=(x+c)’>= (x+c)?+ (y-b)?=1,is the complete solution,
where c is an arbitrary constant.

Example 7: Solve: p? - 2px + x?-y?=0

Sol: Given equation is p? - 2px + x*-y?=0 .. (1)

2X 4 +[AX% — 4(X? — y?
= p= \/ 2( y) =EXtYy=>p=EX+y, X-y

Now p=x+y

dy
_+1
= ax -y =x

LF. = & 2 e

solution is

y.e'Xzf X.e*dx=c

y -X e
= - =T tc
e e -1
= y=-x-1+ce*
= y-ce*+x+1=0
p=X-y
d
= —y+1y X
dx
1d
F = @™ = e
solution is
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y.exzf X.e*dx +c

= y.exzx.ex-_[ e‘dx+c

= yerx=xe*-e*+c

U

y=x-1+ce*
= y-ce*-x+1=0

complete solutionis (y-ce*+x+1)(y-ce*-x+1)=0
Example 8: Solve: p® + 2xp? - y?p? - 2xy?p =0
Sol: Given equation is p* + 2xp? - y?p? - 2xy?p =0
= p(p*+2xp - y*p - 2xy?) = 0 = p[p(p + 2x) - y* (p + 2X)] = 0
= pP+2X) (p-y)=0=p=0,-2xy’

= ﬂ =0, -2X, yzsﬂ =0, dy = -2xdXx, d—z =dx
dx dx y
. . 5 -1
= On integration,y=c,y=-x>+¢c, — =X+¢C

= y-c=0,y+x*-c=0,xy+cy+1=0
Complete solution of (1) is (y-c) (y +x*-c) (xy+cy +1)=0

Example 9: Solve the following differential equation
yp? + (X-y) p =X

Sol: Given differential equation is
yp? + (X-y) p =X

or  py(P-1)+x(p-1)=0

or  (py+x(p-1)=0
py+x=0andp=1

or y% +x=0and%:1

or ydy + xdx = 0 and dy = dx

Integrating, we get

2 2
Y +X? :%(say)andy=x+c
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(x2+y?-¢) (y-x-c)=_0is the required solution
Example 10: Solve the following differential equations:-

(i) p? + 2py cot x = y?

2
(i) xz(ﬂj + xyﬂ -6y?=0

dx dx
Sol: (i) Given differential equation is
p?+2pycotx=y> .. (1)
or p?+ 2pycotx-y?2=0
_ —2ycotx= \/4y2 cot® X+ 4y?
P= 2
- D= —2ycot X+ Zme
2
= p = -y cot X +y cosec X
its component equation are
p=-ycotx+ycosecx ... (2)
and p=-ycotx-ycosecx ... 3)

Equation (2) can be written as

ﬂ =y (-cot X + cosec x)
dx

Separating the variables, we get

1 dy = (-cot x + cosec x) dx
y

or ldyz {—%+i}dx

y sinx sinx
1 _
or Lay= 1 .cosxdx
y sin x
25in? X
or Zdy= ﬁdx
2sin—cos—
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or l dy = dx

or 1dy:tan X dx
y 2

Integrating both sides, we get

X
log|cos—
log ly| = - 1 +logc
2
X
or log |y+| + 2 log COSE =logc

» X
or log |y| + log |cos E‘ =log c
» X

or log |ycos > =log c
or ycos25 =c

2
or y cos?> =+ ¢

;2

X
or y cosZE =A, whereA=+c

Solution of (2) is
X
cos?= =A
Y 2

Equation (3) can be written as

dy

—= = -y cot X -y COSec X

dx

dy {cosx 1 }
or ==Y ——+——

dx sinx 9Snx
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Separating the variables, we get

—dy=- - dx
y sin x
20082 X
or —dy=-ﬁdx
29N—CcoS—
2 2

Integrating, we get

J‘%dy = -_[cotgdx

or log |y| = -2 log sing +log ¢’

or log |y| + log |sin® g‘ =log c'

.
ysmzz‘:c
X ,
ysin?Z =+c

ysinzg =A

general solution of (1) is

., X
sn’Z—-A =0
ysin' X 4

(i) Given equation is

X
cos® = —
‘y 2

X% p? + xyp - 6y? = 0, where p = %
X

or (xp+3y) (xp-2y)=0
= xp+3y=0 or Xp-2y=0

Now xp+3y=0 = x% +3y=0
X
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or Q +3 Ll =0
y X
Integrating, we get,

logy +3logx=logc

or X}y =c
dy
Also xp-2y=0 = X—-2y=0
dx
or ﬂ-zﬁzo
y X

Integrating, we get
logy-2logx=logc
y

XZ

or =c or y=cx?

general solution of the given equation is

(X%y-¢)(y-cx?) =0

Self-Check Exercise-1
Q.1  Solve the following differential equation

dy dx _x 'y

dx dy vy X
Q.2  Solve x? =p? (a% - x?)
Q.3 Solvep®(x+2y)+3p?(x+y)+(y+2x)p=0
Q.4  Solve p3x? + p?y + px?y? + py* =0
Q.5 Solve p® + 2xp? - y?p? - 2xy’p =0

5.4 Equations Solvable For y
Let the given differential equation be
fx,y,pp=0 .. (1)
Since (1) is solvable for y,

(1) can be expressed as

y=gx,pp ... (2
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Differentiating (2) w.r.t. X,

dy dp
L —p=nh @) 3
ax P (X’p’dxj @

which is an equation in two variables x and p.
Integrating (3), let its solution be F(x,y,c)=0 ... (4)
The elimination of p between (2) and (4) gives the general solution of (1)

If the elimination of p between (2) and (4) is not possible, the values of x and y may be
obtained in terms of the parameter p; say

X=f1 (pv C)! y:f2 (pv C)
These two equations together constitute the solution of (1) in the parametric form.
5.5 Equations Solvable For x

Let the given differential equation be
f&xyp=0 .. 1)
Since (1) is solvable for x,

(1) can be expressed as

x=9y,p) ... 2)
Differentiating (2) w.r.t. y, we get
dx 1 dp]
— ===h|VY,pp—| ... 3)
dy p ( dy

which is an equation in two variables y and p.
Integrating (3), let its solution be F(x, y) =0
The elimination of p between (2) and (4) gives the general solution of (1)
If the elimination of p between (2) and (4) gives the general solution of (1)

If the elimination of p between (2) and (4) is not possible, the values of x and y may be
obtained in terms of the parameter p; say

x = f}(p, c),y = f4(p. ¢)
These two equations together constitute the solution of (1) in parametric form.
Example 11: Solvey = p°x + p
Sol: Given equation is
y=pX+p ... 1)
Differentiating w.r.t. X, we have
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dy 5

- = 2 4+ —
dx 3 . dx dx

dp  dp

=p%2+2 - 4+ =

or P=P Xp dx dx
dp  dp
or 1-p)=2xp — + —
p(l-p)=2xp dx dx

dp
=@xp+1
(2xp )dx

or % p(l-p)=2xp+1lor % - 2x = , Which is linear in x
dp do 1-p p@d-p)
Here P = 2 , Q= 1
1-p p-p)

fPdp = - | ﬁ dp=e?oa o) = @907 = (1 py2

Solisx(l—p)zzj .(1—p)2dp+c=I1_Tpdp+c=I£%— Jdp+c

p(1-p)
ie.(p-1)2x=logp-p+c
lo C
o (51 +(C_1)2} or

or  (p-1?y=p’llogp-p+cl+p(p-1)?=p*flogp-p+c+p-2]+p
ie.  (p-1)?y=p*[c-2+logp]+p

Hence (2) and (3) give the solution

from (1), y= p{(

Example 12 : Solve : y + px = x* p?

Sol. The given equation is y = -px + x* p?

- - dy dp dp
Differentiate w.r.t.,, = =-p-X — + x*| 2p— | + p?(4x®
|e p = -p - X % + 2px4% + 4p2x3

dx dx

or 2 p+x$ -2px3(x$+2p] =0or (2p+x$] (1-2px3%) =0
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2p+x% =0or(1-2px3=0
dx

Now 2p+x$ =Oor2%+%=
X

X P
Integrating, 2 log x + log p =log c or log px?2=logcorpx?=c .. p=
c c? c
Putting in (1), we gety = -x (—zj + x4(—4] ory= — +¢c?
X X X

or Xy = -¢ + ¢ x, which is the reqd. solution.
Example 13.Solve :y = x + p?

Sol. The given equation isy = x + p®

Differentiate w.r.t. X, dy =1+ 3p2% e.p=1+ 3p2%
dx dx dx
_ 2
or p_21 = % ordx = 3p dp
3p dx p-1

Integrating we get
x=3 I

orx=§p2+3p+3log(p-1)+c

From(l),y=p3+gp2+3p+3log(p-1)+c

Hence (2) and (3) give the solution.
Example 14.Solve : y = 2px - xp?

Sol. Given equation is y = 2px - xp?

Differentiate (1) w.r.t. x, we get dy 2p+2x% - x.2p%+ p’
dx dx dx

d d
= p=2p-p2+2x—p (1-p)=-pd-p)=2x(1-p) L
dx dx
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%:@z _—dX:ZIogpzllongogc
X

-p =2x
- P dx p

= log p? = log E:pzzE:pz\/E (2
X X

X
Using (2) in (1), we gety =2 \/E.x—x[Ej:yzzJ& -c=>y+c=24CX
X X

= (y + ©)2 = 4cx, which is read solution.
Example 15.Solve : x - yp = ap?

Sol. Given equation is x - yp = ap?

2

X—ap

= y= , Differentiate w.r.t.x

dp 2y dp
1-2ap %P | (x—ap?).%P
dy p[ ap } (x—ap?) X

_ dx
= — =
dx p?
dy dp dp d dp
22 —p.2ap?—t.x = 2 2F 3_.p=. N~ 2
- Ide P-<ap dx de+ap dx3IO P dX[x+ap]
3 2
. 9 _ p-p dx_ x+ap”
dx x+ap® dp p@d-p?)
2
- dx X ap

dp  pl-pd)  pd-pd)

dx { -1 } ap
= P el G
dp | p(-pY) 1-p

2

1 1
f d f d
LE.= e P& = g pan@p "

- I[—l 1 1 } o = e[—logp%log(l—p)%log(hp)}

—— +
p 21-p) 21+p)
Iogiﬁﬁ}
p

2

1-p
p

_ élog\/l—:pﬂogﬁ—logp} _

solution of (2) is

112



dp+c

N

1_ 2
NP :asin'lp+c:X\/1_7p2 =(asinp+c)
p

= X = [ P J (asintp+c) ..(3)

J1-p?

. X
(1) Can be writtenasy = — - ap

P

1
y=-ap+ —. (asintp+c) [using (3)]
- p [Jl pZJ
! (asintp+c) -(4)
J1-p°

(3) and (4) represent the solution of given equation

—Sy=-ap+

Example 16 : Solve : y =3x +log p

Sol. Given equation isy = 3x + log p

ﬂ:3+ dp p—3+l%:>(p-3):1%
dx P ax p dx p dx
dp dp
= p(p-3)= ——=dx=
dx p(p-3)
1 1
= 1dx = p |: }
J I|0(|o k) j3(p 3 3p
= ;Iog (p-3)- 1 |ng- % log ¢ = 3x = log [pc—;f]:e”:pc;p?’
= ce3X:1_§:>§ =1-¢c3*
= p= 50 putting in (1), we get
1-ce
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y = 3x log ( 3 3x], is the reqd. solution.

1-ce

Example 17 : Solve x = 4p + 4p3

Sol. the given equation is x = 4p + 4p®

Differentiate w.r.t.y, — dx =4 @ +12p? dp l =4 @ +12p2 %
dy  dy dy " p dy dy

or dy = (4p + 12p3) dp

integrating, y=2p*+3p*+c

Hence (1) and (2) give the solution.

P
Example 18.Solve : p=tan | X—
p p [ 1+ pzj

P

Sol. The given equation can be written as tan™ p = x -1 >
+P

p
1+p

X = > +tantp

1+ p?) - 2p+ 1 }@

Differentiate w.r.t. y, — 2
dx (1+ p*)? 1+ p° | dy

o L. M,dpordy 2p

p (1+p%)* dy 1+p )
Integrating, y = I(1+ p?)?(2p)dp+cC

1+ p*)*
or y = -1 +coryc-

1+ p°

Hence (1) and (2) give the solution.

Example 19. Solve x =y p?

2
sol. W sqappdP_ 1y dr_2P°
dx dy p dy 1-p

:»jdy = jz{ p- l+ip}dp
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2
— p-log|1l- p| |+ c; putting it in given differential equation.

:>y:2{_§

We get, x = ¢ - [p> + 2p + log |1 - p[] + p?

= Xx=c-[2p+2log |l - p|], which is the regd. solution.

Example 20 : Solve y? log y = xyp + p?

Sol. : Given equation is y? log y = xyp + p? (1)
= xyp=Yy?logy = p?

- _Yylogy p
p oy
1 d

4 p{y-+(Iogy)-1}—(ylogy)(cfj y P _ o1
- WX y Y/ Zdx

dy p’° y?
. 1_1  logy vl gydp 1dp p

P P p° dy ydy y’

Y
VR
< |k

|Q.
< |©
N—
—

'_\

+

<
%,_/

1
VR
<o
N—
/_j%

|_\

+

<N
'cmg

<
%,_/

L ld_p_do _p
ydy y dy 'y
.,  Op_dy
p Yy
dp _ (dy
= — = |—=+logc
=0y
= logp=logy+logc
= logp=logcy =p=cy ..(2)

Using (2) in (1), we get
y?log y = xy (cy) + c?y?, which is the required solution.

Self Check Exercise-2

Q.1 Solvey=x-p?
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Q.2 Solvey=x+atantp
Q.3 Solvey = 3px + 4p?
Q.4 Solvex=y+alogp,p>0

Q.5 Solve p?y +2px=y

5.6 Equations not Containing
A differential equation which does not contain x is of form
fly,p)=0
Two cases arise:

Case |. When (1) is solvable for p

. d
Then p=g(y) i.e. d—y =g(y)
N

Integrating, J. i = X + ¢, which is the solution.

Case Il. When (1) is solvable for y
Then y =h(p), and we can proceed as distressed earlier.
5.7 Equations Not Containing y
The differential equation, not containing vy, is of the form
fx,pp=0 .. D
Two cases arise:

Case I. When (1) is solvable for p

Then p=g9g(x)i.e. ﬂ =g(x)
ax

= dy = g(x) dx
Integrating, y + ¢ = j g(x)dx, which is the solution.

Case Il. When (1) is solvable for x

Then x =h(p), and we can proceed as discussed earlier
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Let us do some examples:-
Example 21: Solve x? = p? (a2 - x?)
Sol: Given equation is

X2 = p? (a2 - X2)

X
= = a’—x?
= p—+L = ﬂ+ X
- /az_xz dx ~a? - x?
dy X dy X
= = or — =-
dx  a?-x dx a?—x?
X X
= dy = e dx dy = - e

= %J a’— )% (-2x) dx = %J (a2 Xz)iy2 (-2x) dx
1 (2 ()
2 L 2 1

= (y+c)2=a?-x? = (y+c)=a*-x?
Hence the required solution is
(y + )2 +x = @2
Example 22: Solvey? (1-p?) =b
Sol: Given equationisy? (1-p?) =b

2
= 1_p2: bz 1_£ p:>p2_y2b

y y’ y

JTdyJT
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- %dy:dx:&%] 2y) (yz—b)%dyzj 1 dx
2 V2
= i%—(y b) =x+c= y?-b=(x+c)?

(%)

= y? = b(x + ¢)?, which is the required solution.

Self Check Exercise-3
Q.1 Solvex(1+p?)=0
Q.2 Solvey?+p?=a?

5.8 The Clairaut Equation
Def. The equation

y=px+fp (1)

of first degree in x and y is called the Clairaut equation. It is after the name of Alexis Claude
Clairaut.

Differentiating (1) w.r.t. 'x', we get

ﬂ :p.1+X%+

oy AP _ . dp :
dx dx f(p)&:p—mdx(“f(p))

= x+ f'(p) £:O:>eitherx+f'(p)200r ?_ai =0

Now % =0 = p = c (constant)
dx

Putting this value of p in the given equation, we get
y=cx+ f(c)
as the complete solution of the given equation,
Elimination of p between
x+ f(p)=0andy = px+ f(p)

will give us a solution free from arbitrary constant and this is called Singular Solution of the
given equation.

Elimination of p between

X+ f'(p)=0andy = px + f(p)
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Will give us a solution free from arbitrary constant and this is called Singular Solution of the
given equation.

Rule to solve Clairaut's Equation. Putp =c
To clarify what we have just said, consider the following examples:-
Example 23: Solve: y = px + sin p
Sol: Clearly y = px + sin? p is in the Clairaut's form.
its complete solution is y = cx + sin ¢, where c is an arbitrary constant.
Example 24: Solve p = log(px - y)
Sol: Given equation is p = log(px - y)
= px-y=eP
= y = px - e? is in Clairaut's form
its complete solution isy = cx - e°.
Example 25: Solve (y-px) (p-1)=p
Sol: Given equationis (y-px) (p-1)=p

Y
= -px= ——
y-p -1
= y=px+ P 1 is in Clairaut's form
its complete solutionisy = cx + & (Replacing p by c)

Example 26: Solve: p? (x? - a?) - 2pxy +y2-b?=0

Sol: Given equation is p? (x2 - a@2) - 2pxy + y>-b?=0
=X (X - y)2 = a2 p? + b2=>px - y = + /@’ p’ + 1
= y = pxmy/a’p’ +b? , which is in Clairaut;s from

its complete solution is y = cx my/a’p’ +b?

Note: It may be sometimes possible to reduce a given equation to Clairaut's form by change of
variable in a suitable manner.

(1) If an equation involves y?, 2py put y?> =Y
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(2) If an equation involves x?, _Z_P put x% = X.
X

(3) If an equation involves x?, y%; put x2 = X, y?=Y
4) If an equation involves e, e”; putex =X, ey =Y
or Sometimes it is useful to put e = X, e” =Y.

Example 27: Solve: x2 (y - px) = p%y
Sol: The given equationis X2 (y - px) = p%y ... (1)
Putx?=Xandy?=Y

2xdx = dX and 2ydy = dY

. ydy dy vy dy X
Divide, —= = —or =p=— =P (say)orp= —
v xdx dX X P dX (say) orp yID

2

. - X X
Putting in (1), we get x| Y-—p.X |= — (p)%y
y y
or (y>-x2p)=p?orY - XP =P?

or Y = PX + P?, which is in Clairaut's form.

the solution is Y = cX + ¢? or y? = cx? + ¢?

. . 1 .
Example 28: Using the substitution X = ! , Y = =, solve the equation y? (y - px) = x*p2.

X

Sol: The given equation is y? (y - px) = x*p%. ... (1)
Put X = 1and Y =i SdX =- iz dx and dY = iz dy.
X y X y
2 2 2 Y
Dividing, d_Y: X_2 dy =p X—2 ie.p= y—zp WhereP:d—
dX vy X y X dX
2 4
Dividing (1) by y*, we get 11 p); = pzx—
y Xy y
1 1 o .
or — - =P=plorY-XP=P2orY =PX+ p? which is in Clairaut's form.
y X

the solis Y = cX + c?
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1 c
or — - —+c?orcy+cy-x=0.
y X

Example 29: Solve: (px - y) (py + X) = h?%p
Sol: Given equation is (px - y) (py + X) = h?p

h2
= (px -y) (x) [%Hj =h%p =y(px - y) (%+1j -y

@

= (pxy-y)= Sy Epry - o=y s
(perl) (py+1)
X X

Put x2=X,y?=Y .. 2xdx=dX, 2ydy =dY

a¥ = 2ydy:>P: y—p,wherePz d—Y,p: dy
dX  2xdx X dX dx
(1) takes the form
2
Y =PX- h'p (Clairaut's form)
P+1
2 h2
solutionis Y = cX - = y2=cx?-
C+ c+1

Example 30: Solve: y = 2px + y?p®

Sol: Given equation is y = 2px + y?p3

3

= y? = 2pxy + y*p’= y? = (2py)x + (2 ;;y)
dy _ dY dy
Put =Y =2y < = —=2yp=P,whereP = —
y Yax ~ax P dx

P3
(1) takes the form Y = Px + 5

o c?
Solutionis Y = cx + §:> y2=cx + 5
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Self Check Exercise-4
2 2
Q.1 Solvey?+ xz(;ﬂ] - 2% ﬂ =4 (%j

Q.2 Solve(p-1)e™*+p?e¥=0
Q.3 Solve (x*+y?) (1 +p)>=-2(x+y) (1 +p) (x+py) + (x+py)’=0

X dx

dy

59 Summary:

We conclude this unit by summarizing what we have covered in it:-

1.
2.
3.

Defined equation of first order and higher degree.
Solutions of first order higher degree equations solvable for x, y, p.
Discussed and find solutions of Clairaut equation

5.10 Glossary:

1.

d
A differential equation of form f(x, y,d—yj= 0, where degree of % is greater
X X

than 1 is called a non-linear differential equation of first order and higher degree.

A differential equation which does not contain x is of form

fly:p)=0
The equation
y =px+ f(p)

of first degree in x and y is called the Clairaut equation.

5.11 Answer to Self Check Exercise

Self-Check Exercise-1

Ans.1
Ans.2

Ans.3

Ans.4

General Solution is (y?-x2-c) (xy-¢c)=0
General Solution is

X2+ (y +C = a

General Solution is
(y-c)(x+y-c)(Bxy+x*-¢)=0

General Solution is
1
(y - ¢) (log ly| - x* - c) (X—;—Cj =0
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Ans.5 General Solution is
(y-c)(yt+x+c)(y+x*-¢c)=0
Self-Check Exercise-2
Ans.1 x2=-2p-2log|l-p|+c
and y=-2p-2logl-p/l-p2+ c, constitute the solution.

p-1

Fr) )
+

Iog{ p-1 }Ltanlp +c,

Jp2+l

constitute the required solution.

a
Ans.2 x=—|lo
2 g[

and yzg

3

Ans.3 x=- §p+c p 2

and y=3c p%— 4 P,
5
constitute the required solution.

Ans.4 y=c-alog|l-p|
and x=c+alog (%)

constitute the required solution.
Ans.5 y? = 2cx + ¢?, is the required solution
Self-Check Exercise-3

1-x . : :
Ans.l y= i{ x—x> —tan™" /—} + ¢, is the required solution.
X

Ans.2 x=2logp|6p+cC
and y = 2p + 3p?, give the complete solution.
Self-Check Exercise-4

2 . . ,
Ans.1 y =cx + — is the required solution.
c
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Ans.2 e¥ =c e* + c?is the required solution

2
Ans.3 x2+y2=c(x+Yy)- % is the required solution.

5.12 References/Suggested Readings
1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.
2. Wylie, C.R., Differential Equations, McGraw-Hill, New York, 1979.

5.13 Terminal Questions

1. Solve x +y p? = p(1 + xy)

2. Solve xp?+ (y-x)p-y=0

3. Solve p3(x + 2y) + 3p2 (x +y) + (y+2x) p=0
4, Solve p? + 2py cot x = y?

5. Solve 4p3x - (9x - k)2 = 0, where k is constant.
6. Solve p2 + mp? = a(y + mx), where p = %

7. Solve y - 2px = tan? (xp?)

8. Solve xp?-3yp +9x>=0,x>0
9. Solve y = 2px + yp?

10.  Solve p2 + 8y? = 4pxy

P

J1+ p?

12.  Solvey=px+sin?p

11. Solve x +

=a

13.  Solve (px - y) (py + x) = h?p

14.  Solve 2x%y = px3 + p?, by reducing the Clairaut's form.
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Unit - 6

Linear Homo Geneous Equations With Constant Coefficients

Structure

6.1 Introduction

6.2 Learning Objectives

6.3 Some Definitions

6.4 Product of Operators

6.5 Some Important Theorems

6.6 Solution of the Linear Homogeneous Equation With Constant Coefficients
Self-Check Exercise

6.7 Summary

6.8 Glossary

6.9  Answers to self check exercises

6.10 References/Suggested Readings

6.11 Terminal Questions

6.1 Introduction

A differential equation is said to be linear if the unknown function and all of its derivatives
occurring in the equation only in the first degree and are not multiplied together e.g. the
d? d a2y’ dy\’
differential equation—z +2y =0, v cos x are linear whereas _3/ + X2 Y- Ois
dx dx dx dx
non-liner. It should be noted that a linear differential equation is always of the first degree but
every differential equation of the first degree need not be linear e.g. the differential equation.

d’y, (dy
dx? dx

A linear differential equation with constant coefficient is one in which the dependent
variable and its differential coefficients occur only in the first degree and are not multiplied
together. The most general form of the linear differential equation with constant coefficients of
nth order is

2
] +y? =0 is not linear though its degree is 1.

dn dn{l dn72
Po dle + P dx”)ll +P; dx”g + o +Py=0Q (1)
(where Pg, Py, Py, ...... , Pn are constants and Q is a function of x) Also Po= 0
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The corresponding homogeneous linear differential equation is
dny dn—ly
0 o an—l dx”‘z .......

6.2 Learning Objectives

P + P, +Pyy=0 -(2)

After studying this unit, you should be able to :-

. Defined symbolic form of the equation and Auxiliary equation.
. Define product of operators
. Discuss and find the solutions of the linear homogeneous equation with constant

coefficients.
6.3 Some Definitions
l. Operators

2 3 n
The part di of the symbol % is called an operator. Also d— d— d—
X X

also operators.
Il. Symbolic Form

In symbolic form, we write

2

dx dx®

The symbolic form of the equation
dn dn—l dn—2
I ap g Yap S
is PoD"y + P; D™y + P, D™?y + ...... +Py =Q
i.e. (PoD" + P D™ + P, D™ + ...... +Py)y =Q ..(2)
or  f(D)y=Q
where f(D) =PoD" + P, D™ + ...... + Py
The form (2) is the symbolic form of (1).

Po—2 +P1— 2+ Pp—2 + ... +Py=0Q (1)

i Auxiliary Equation (A.E.)

Auxiliary equation is that equation which can be obtained by equating the symbolic
coefficients of y to zero.

Thus the A.E. of the above equation is
PoD"+ P D™ + P, D" + ... +P, =0
ie. f(D)=0
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(AVA Characteristic Polynomial

The polynomial f(D) is called the characteristic polynomial of the given differential
equation. This can be regarded as an operator.

6.4 Product of Operators

If f1(D) and f»(D) be two operators, then f1(D), f2(D) is also an operator.
Theorem 1: Provethat(D-a) (D-B)y=(D-B) (D - a)y,

where «, 3 are two arbitrary constants.

d d
PrOOT:NOW(D'B)y=DY-By=d—§—By [QD:&}

d
D-0)(D-B)y=(D- oc)(—dy—ﬂyJ
X

oY s apy

dx

1]
O
VR

|Q_
X <
|

=
<
N—

dxz_B&_ d +aby
d’y dy
zy'(a"‘ﬁ)& + apy

=[D?-(a+B) D +aply
Similarly (D - B) (D - a) y = [D? - (o. + B) D + afi]y
Hence (D-a) (D-B)y=(D-B)(D-a)y
6.5 Some Important Theorems

Theorem 2 : If y = y1i, ¥ = Yo, ...... y = yn are linearly independent particular solutions of the
equation.
dny dn—ly dn—2y
Po an + P, an—l + P, dxn_z + .. + Pny =0
where Po, Py, Py, ...... , Pn are constants, then the complete solution is

y = Clyl + C2y2 + ... Cnyn
Proof : Given Equation is
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dn dn—l dn72
Po dle + Py dx”sl/ + Py dx”g + o +Py=0 (1)
Sincey =y, y=Vyz, ..... y = yn are solutions of (1) [Given]
n n-1 n-2
Po% +P; Ocljxn}il + P2 anzl + o, +Pny1=0 )
n n-1 n-2
PO% +P; ddxn)iz + P2 ddxn)gz + . +Pny2=0
d n yn d nflyn d n-2 yn
pOW + P prveE + P2 o2 +o +Payn=0 )

Putting y = c1y1 + Cay2 + ...... Cnyn in (1), we get

n n-1

Po

Xn

n dn—l dn—2
= c1 (Po )r:l + P n_{l + P2 an}zll S + Pny1) +
n n-1 n-2
d
c2 (Po de‘Z +P nXZ + P2 v {2 + o, + Pny2) +
o +
n dﬂfl n-2

+ ¢n (Po dx)r/‘n + P dx“{n + Py n{” + o + Pnyn) =0

= c1(0) + c2(0) + ...... + ¢n(0) = 0 [using (2)]

= 0 =0, which is true
Thusy =ciy: + Cay2 + ...... Cnyn is a solution of (1).
Since it contains n arbitrary constants and (1) is of the nth order,
It is the complete solution of (1)

Theorem 3 : If f1(D) is a factor of f(D) and y =y is a solution of f1(D) y =0, theny =y is also a
solution of f(D)y =0

Proof : Let f(D) = f1(D) f- (D)
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f(D)y1 = f1(D) f2 (D)ya
= f2(D) f1 (D)y1
= f»(D) (0) [.. y1is a solution of f1(D)y = 0]
=0
y =y is a solution of f(D)y=0
6.6 Solution of the Linear Homogeneous Equation with Constant Coefficients
Here we have to

Solve the equation

dn dn—l
Po dx?‘/ + P31 an_i/ + o +Py=0 (1)
where Po, Py, Py, ...... , Pn are constants

The equation (1) in the symbolic form is

(PoD" + P.D™ + ... +Ppy=0ie. f(D)y=0 ..(2)
Where f(D) = PoD" + PiD™ + .....+ P,
The AE. of (1) is

f(D) = PoD" + PiD™ + ...+ P, =0 (3

This is an algebraic equation of degree n (with real coefficients) and has exactly n roots, real or
complex. Following cases arise

Case I. All roots of A.E. are real and distinct.
Let o, 0z ....... an be the real and distinct roots of A.E. (3)

fD)y=¢ (D) (D - ar)y .(4)
Where ¢ (D) is a polynomial of degree (n - 1) in D.

Now we know that the solution of

(D-01)y=0 ...(5)
is also a solution of f(D) y = 0 i.e. of the given equation.
NOW(D-ocl)y=0:>%-a1y=0:>ﬂzoudx
X

= logy = oux =y = e
Where we have omitted the constant of integration.

e“Xis a solution of (1)
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Similarly e*®, e**, ....., e*™ are solution of (1)

. CS.of(1)is
Y = C1E%T+ Coe%%+.....+ Cre™™ ....(6)
where cg, Cz ... ... Cn are n arbitrary constants.

Case ll. A. E. having two real and equal roots.
Let the two real and equal roots of A.E. be a (Here o1 = a2 = a)
Then (6) becomes:
Yy = C1e™ + Coe™ + C3 @™ + ...+ Che™ = C e + C3 @ +......+ Ch @™
where c=cy + 2
Since this solution contains (n - 1) arbitrary constants
it is not the general solution of (1)
In order to find the general solution of (1)
We proceed as follows:
Since x = a, a be two equal roots
f(D) = y(D) (D - @)?
fOy=yD)D-w?y=0 .. (7)
Solution of (D - a)?y = 0 is also a solution of f(D)y =0
Consider (D-a)?y=0.Put(D-a)y=2

D-a)z=0
dz dz
= — -az=0=>— =adx
dx z
= l0gZz=0ax +Cc = z = e¥=e™ e°=ce™

where ¢, is an arbitrary constant

Again Q D-a)y=2z.. % - oy = c1e™

which is linear iny. [Type:;ﬂ+ Py:Q}
X
Here P = -a, Q = cieaxX j Pdx = OLI -a dx = -ax
Solution is
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y e = J cie™. e dx +cy = clj dx + c;

=CiX + C2 Qe e =gl =1]
y = e** (C1X + Cp) is the general solution of (7).

Changing c; to ¢z and c; to ci, the part of the complete solution corresponding to two equal and
real roots a of the A.E. is (C1 + C2x) e*

Hence C.S. in this case is
y = (C1 + CoX)e™ + C3 € +......+ Cr €™
Similarly if A.E. has r equal and real roots, then C.S of (1) is
Y = (C1 + CoX + CaX? +.....4CX™) €% + Creg X+, 4 CoX"
Case lll. A.E. having a conjugate pairs of imaginary roots (non-repeated)
Let o+ip be a pair of imaginary roots of the A.E.
the corresponding part of C.S. of (1)
- Cle((x+i[3)x + Cze(a+iﬁ)x - Cle(xxeiﬁx + Czeaxe-iﬁx
= c1e* [cos BX + i sin BX] + c2e** [cos BX - i sin BX]
[Note. e® = cos 0 + i sin 0]
= e™ [c1 + C2) cos PBx +i(cs - €2) sin Bx] = e** (A cos Bx + B sin Bx)
where A =c¢; + c2, B =i (C1 - C2) are arbitrary constants.
C.S. of (1) becomes
y = e (C1 COS BX + C2 Sin BX) + C3 € +....... + Cr e
where ci, Ca,....... , Cn are arbitrary constants [Replacing A by c1 and B by ¢;]
Case IV. A.E. having a conjugate pair of imaginary roots occurring r times

If the A.E. has the pair of imaginary roots a+i3 occurring r times, we can similarly prove the
corresponding part of (1) is

e* (C1 + CoX +....... + CX"1) cos BX + (Cre1 + CreoX +....... tc, Xr,l) sin Bx

dny dn—ly
Po an + P, an—l + o + Pny =0 ... (1)
where Po, Py, Pa,...... , Pn are real constants.

Step |. Write the equation in the symbolic form i.e. of the form f(D)y =0
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Step Il. Write A.E. i.e. f(D) =0
Step Ill. Solve this equation for D.

Step IV. From the roots of A.E. write the corresponding part of the general solution of (1)

as follows:

Roots of A.E

Corresponding part of general solution

One real root a(when other roots are distinct)
Two equal real roots a, a

r equal roots o each

One pair of complex roots o+ip

Complex roots otip repeated r times

c.e”

(c1 + cox)e™*

(C1 + CoX +......+ CXL) X

e** (c1 cos BX + C2 sin BX)

e” [(C1 + CoX +....... + ¢cx™1) cos Bx

+ (Cre1 + Cre2X +.ooot C, 1 sin BX]

To Clarify what we have just said, consider the following examples:-

2
Example 1: Solve d_g/ -4 ﬂ +3y=0
dx dx
2
Sol: The given equation is d—zl -4 ﬂ +3y=0
dx dx

The equation in the symbolic form is (D?-4D +3)y =0

AE.isD?-4D+3=0=(D-3)(D-1)=0
= D=3,1 (Real and different)

Complete solution is y = ¢; €% + ¢, €*. where ci, C; are arbitrary constants.

3 2
Example 2: Solve: (i) % -3 zXZ +4y=0
” d'y d’y _d% dy
C8Y 98 Y 11 Y ay-0
W dx*  dx® dx? ax
d’y d%y dy
-9 23Y 15y=0
) dx® dx? T Y
3
(V) % : 13%- 12y=0
X

Sol: (i) Given equation in symbolic form is (D* - 3D? + 4)y =0
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AE.isD%-3D?+4=0=(D-2)(D>-D-2)=0
= (D-2)D+1)(D-2)=0=>D=-1,2,2

Complete solution is y = cie™ + (c2 + C3X) €%, where ci, Cz, are arbitrary constants.
(i) Given equation in symbolic form is (D*- D®-9D?-11D-4)y=0
AE.isD*-D3-9D?-11D-4=0= (D + 1)(D3-2D?>- 7D -4) =0
= (D+1)(D+1)(D?-3D-4)=0
= (D+1)({D+1)D+1)D-4)=0
= (D-4D+1)°*=0=>D=4,-1,-1,-1

Complete solution is

y = c1e® + (C2 + CaX + CaX2) €%, where ¢y, Cz, C3, C4 are arbitrary constants.

(iii) Given equation in symbolic form is (D® - 9D? + 23D - 15)y =0
AE.isD®-9D?+23D-15=0= (D - 1)(D?- 8D + 15) = 0
= D=135=(D-1)D-3)(D-5)=0
Complete solution is y = ¢:%* + c.e®* + cze®, where c1, ¢z, C3 are arbitrary constants.
(iv) Given equation in symbolic form is (D®- 13D - 12)y =0
AE.isD%-13D-12=0= (D +1)(D?-D-12)=0
= DO+1)D-49D+3)=0=>D=-1,-3,4
Complete solution is y = cie™ + c.e* + cse?, where ¢y, ¢z, s are arbitrary constants

2
Example 3: Solve d_g/ 4ﬂ + 5y =0, giventhaty =1 and ﬂ =2whenx=0
dx dx dx

Sol: Given equation in symbolic form is (D? - 4D + 5)y =0

_4:16-20_ 4xi2_

A.E.is D?-4D+5=0=D
2 2
complete solutionisy =e®. (cicosx+czsinx) ... (1)
d , .
d—y = e (-c1 Sin X + C2 €0S X) + (C1 COS X + C2 Sin X)(2e%) ... 2
X
Giveny =1, x = 0: putting in (1), we get
1=c. (3)

Given % = 2, x = 0; putting in (2), we get
X
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2=cCc+2c1=¢c2+2(1) [Using (3)]
= c=0 4)
Putting c1 =1, c2 = 0in (1), we get, y = &%, cos x
Example 3: Solve y" - y = 0 and find the solution with initial condition y(0) =0, y'(0) =1
Sol: Given equation is

y*-y=0 . Q)
= (D?-1)y=0
AE.isD*-1=0
= D=#+1

Complete solution is

y=cie*+ce* 2)

y'=cie*-ce* L 3)
Giveny(0)=0=x=0,y=0
Putting in (2), we get

O=ci+Cc2 4
Giveny'(0)=1=x=0,y'=1
Putting in (3), we get

l=c¢c1-¢c2 Ll (5)
Adding (4) and (5), we get

1
ZC =1= C1= —
1 1 2
- 1
(4) - (5) given 2c2 = -1 = 2 = =

Put c1= % andc; = % in (2), we get

— lex_ ie—x_ 1 (ex_e-x)
Y7272 72
=sin h x
= y = sinh x is the solution
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d’y
Example 4: If F - m¢y = 0, show that
X

y = c1e™ + c.e™ = A cosh mx + B sinh mx

Sol: Given equation is

2

The equation in the symbolic form is
(D?-m?y =0
AE.isD?-m?=0=D?=m?>>D=+m
C.S.isy = cie™ + c.e™, where ci, Cp, are arbitrary constants.
Since e® = cosh® + sinhd, e® = cosho - sinho
y = ¢1 (cosh mx + sinh mx) + ¢z (cosh mx - sinh mx)
i.e. y = (€1 + C2) cosh mx + (c1 - ¢2) sinh mx
= A cosh mx + B sinh mx
where A =ci + ¢z, B =1 - ¢, are arbitrary constants

Example 5: Solve y" + y = 0 and find the solution with initial conditions
T
2)=2,y|——|=-2
y(2) y( 2]

Sol: Given equation is
y'+y=0 . (2)
= (D?*+1)y=0
AE.isD?+1=0
= D=+i
complete solution is
y=Ci1COSX+cCsSinx ... 2)
Given y(2)=2=x=2,y=2;
Putting these values in (2), we get

2=ci1cos2+cpsin2 ... 3)
. Vs T
Given —— |Z2=>X=-—,y=-2
(3] "y
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Putting these values in (2), we have
-2=0-C=>C2=2
Put c2=2in (3), we get
2=c1€082-2sin2
_ 2-2sin2
CoSs2
2-2sin2

Now putci = ———— and c; =0 in (2), we get
cos2

_(2—2§n2

= C1

COos X + 2 sin X, as the required solution
cos2

4

r 2’ m4y = 0, then show that the solution y = ¢c1 cos mx + ¢, sin mx + cscosh mx
X

Example 6: If

+ casinh mx, where ¢4, €2, C3, C4 are arbitrary constants.

Sol: Given equation is
dy
dx’

The equation in the symbolic form is
(D*-mHy =0

Now, A.E.isD*-m*=0

= (D?+m?)(D?-m?) =0

= (D?+m?)(D-m)(D+m)=0

-mty =0

= D =+im, m, -m
C.S.isy =1 c0s mx + ¢z sin mx + Ae™ + Be™
where c1, C2, A, B are arbitrary constants.
Yy = C1 COS mX + C2 Sin mx + A (cosh mx + sinh mx) + B(cosh mx - sinh mx)
= €1 COS MX + C2 sin mx + (A + B) cosh mx + (A - B) sinh mx
Putting A + B =c3, A- B = c4 - we get
Yy = €1 COS MX + C2 Sin mX + czcosh mx + casinh mx,
where c1, C2, C3, C4 are arbitrary constants.

Hence the required result
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2
Example 7: Solve |

>+ 90 =0, given that 0 = o and %:Owhentzo
dt dt

Sol: Given equation is

d?o

dt?

+g06=0

Equation in the symbolic form is
(ID?+g)v=0

AE.is|D2+g=0 or Dz=|_9

Dzi\/lgi =Oi\/|§i
CS.iso= eOX(clcos\/lchzsin\/lgtj
or ezclcos\/|§t+025in \/Igt ..... D

Differentiating,
do g . [g \ﬁ \P
— =-C1,/— sin,[—= t+cz,[— cos ,|=t ...(2
0 e [9 s 9t e [9 cos [ @
Whent=0, 6 = o<, d—e =0,

dt

from (1), «<< =ci10rcy = o<

and from (2), 0 = 02\/|§

or c2=0

Putting in (1), we get
0 = o< cos \/Ig t, as the required solution.

Example 8: Solve y" - 6y" + 11y' - 6y =0
y(0)=0,y" (0)=0,y"(0) =2

137



Sol: Given differential equation is

y"-6y"+11ly'-6y=0

or 3—3 3—3+11%—6y=0

Equation in S.F. is
(D®-6D?+11D-6)y=0

AE.isD®*-6D?+11D-6=0

or (D-1)(D?-5D+6)=0

oo (D-1)D-2)(D-3)=0

D=1,23

C.S.isy=cie*+ce®+cse®™* ... (1)
Now Vy'=cie*+ 2c.e® + 3ce®™ ... (2)
= y"' = ci€* + 4ce2 + 9cze®™ L. 3)
Now y(0)=0=0=c;+cCc2+Ccz ... 4)

y(0)=0=0=c1+2c2+3¢cs ... (5)

y'0)=2=2=ci+4c+9¢c3 ... (6)
Subtracting (4) from (5), we get

c2+2c;=0 L. 7)
Subtracting (4) from (6), we get

3c,++8c:=2 L. (8)

Solving (7) and (8), we getc, =-2,c3=1
Putting values of c; and cz in (4), we getci =1
from (1), y = e* -2e>* + e¥*,

which is the required solution.

Self Check Exercise

4
Q.1 Solve d—?{-a“y=0,a>0

X

3 2
Q.2 sove 9Y. 9 9Y 03 W 4509

dx dx? dx

138



2
0.3 sove 9Y 44 W L1320

dx? dx
2
Q.4 Solve d—zl-s % +2x =0, giventhatt=0,x=0, % =0
dx dt dt
2
Q.5 Solve d—¥-4 dy + 5y =0, giventhaty =1 and dy =2whenx=0
dx dx dx

d’y . dx Vs
Q.6 Solved— + ux =0, /,z>Og|venthatx=aanda =0whent= —
X

2 2\/;

Summary:

We conclude this unit by summarizing what we have covered in it:-

1. Defined symbolic form of the equation
2 Defined Auxiliary equation
3. Discussed in detail product of operators
4 Discussed and find solution of the linear homogeneous equation with constant
coefficients.
Glossary:
d dy .
1. The part — of the symbol — is called an operator.
dx dx
2. In symbolic form, we write
2 n
iz ,d—2=D2, ....... ,dnzDn
dx dx dx
3. Auxiliary equation is that equation which can be obtained by equating the
symbolic coefficients of y to zero.
4, If /4(D) and f?(D) be two operators, then f1(D). /(D) is also an operator.

Answer to Self Check Exercise

Ans.l y = cie®™ + c,e® + Cc3 COS ax + Cs Sin ax, where ci, C, C3, Cs4 are arbitrary
constants, is the required solution.

Ans.2 y = cie* + c.e* + cz>, where c1, Cp, C3 are arbitrary constants, is the required
solution.

Ans.3 y = e (c1cos 3x + ¢z sin 3x), where c1, ¢, are arbitrary constants, is the required
solution.

Ans.4 x =0 is the required solution.
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6.10

6.11

Ans.5 y = e cos X is the required solution.
Ans. 6 x =asin ,/u tis the required

References/Suggested Readings
1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.

2. Boyce, W. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.

Terminal Questions

2
1. Solved—¥+ﬂ—6y=0
dx dx
2
2. Solve % +wy =0
X

3. Solve (D* + 8D? + 16) y = 0, where D = di
X

4, Solve y" + y = 0 and find the solution with initial conditions y(0) = 1, y'(0) =0
5. Solve y" + ay' + by = 0, where a, b are +ve constants and

0) a®> 4b (i) a?=4b (iii) a’< 4b

show that all solutions tend to zero as x — .
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Unit-7

Solution of Non-Homo Geneous Equation with Constant

Coefficients - |

Structure

7.1 Introduction

7.2 Learning Objectives

7.3 Some Useful Theorems

Self-Check Exercise-1

7.4 Method to Solve the Equation
n n-1

?jx?‘/ *P ?jx”}l/

Po + P,

7.5 Method To Evaluate . 1

Self-Check Exercise-2
7.6 Summary
7.7 Glossary
7.8 Answers to self check exercises
7.9 References/Suggested Readings
7.10 Terminal Questions
7.1 Introduction

Non-homogeneous equations with constant coefficients are a type of differential
equation where the equation involves a function and its derivatives, along with a non-zero
function on the right-hand side. These equations are called non-homogeneous because they do
not satisfy the property of homogeneity, which states that if f(x) is a solution to the equation,
then kf(x) (where k is a constant) is also a solution.

To solve non-homogeneous equations with constant coefficients, one typically follows a
two-stop process. First, the associated homogeneous equation is solved to find the
complementary Solution (also known as the homogeneous solution). then, a particular solution
is found by guessing a form of the solution that satisfies the non-homogeneous equation and
substituting it into the equation. The general solution is obtained by adding the complementary
solution and the particular solution.
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7.2

7.3

Learning Objectives
After studying this unit, you should be able to:-

. Prove theorem on complete solution of the non-homogeneous equation with
constant coefficients.

. Define complementary function, particular integral and inverse operator.

. Discuss method to solve the non-homogeneous equation with constant

coefficients

. Discuss the method to evaluate

e® with examples.

Some Useful Theorems

Theorem 1: If y =Y is the complete solution of the equation

Proof :

i.e.0+

P

dn n-1

0 y + P, d Yip, O Y,
an an—l an—2

and y = u is a particular solution (containing no arbitrary constants) of the equation
dny dnfly

0 e + P o + P v +oeee +Py=0Q ..(2)

where Q is a function of x,

+Py=0 (1)

P

then the complete solution of (2) isy =Y + u.

Sincey = Y is the c.s. of (1),

dny dnfly dn72y
0 O + P1 TV + Py a2 +o + Py =0 ....(3)

Again, since y = u is a solution of (2),

d"u d"'u d"u
Po—— +P1—=+P——+...... +Pau=0Q ..(4)
dx dx™ dx™

Puttingy =Y + uin (2), we get

P

n n-1 n-2
P +u)+P +u)+P +U) +....... +Pn(y+u) =
O o (y+u)+Ps oL (y+u)+P: o2 (y +u) (y+u) =Q
dny dn—ly dn—2y
Po X" + P; ryE +P; a2 +onen + Pny +
+F)d”u+Pd”’1u+Pd”’2u+ +PW=0
0 ax" 1 v 2 PRI n
Q = Q, which is true. [using (3) and (4)]
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Thusy =Y + uis a solution of (2)
Since it contains n arbitrary constants and (2) is of the nth order,
it is the complete solution of (2)
Definitions (i) Complementary Function (C.F.)
The portion y is known as complementary function.
(i) Particular Integral (P.l.) : The portion u is known as particular solution.
(iii) Complete Solution of (2) = C.F. + P.I.

(iv) Inverse Operator

1
f(D)

1 . . . . .
——— X is that function of x independent of arbitrary constants, which when operated on

f(D)

by (D) gives X i.e.f(D). % X=X

Hence

is the inverse operator of f(D)

1 . .
Theorem 2 : Prove that D X = j X dx, no arbitrary constant being added.

1
Proof. Let — X =1z
D

_dz

: . 1
Operating both sides by D, we get D. BX =Dz = X= ™
X

Integrating, we get z = J X dx, no arbitrary constant being added.

Hence % X = I X dx, no arbitrary constant being added.

1 : .
Note D stands for integration.

1
Theorem 3 : Prove that D) X is the particular integral of the equation f(D) y = X.

Proof : f(D)y = X (1)
Puty = (D) X - f(D). (D) X =X i.e. X =X, which is true.
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iX is a solution of (1).

f(D)

Since it contains no arbitrary constants, .. it is the particular integral.

Theorem 4 : Prove that X

= eaxj X.e® dx, no arbitrary constant being added.

Proof : Let X=y (1)
Operating both sides by (D - a), we get (D - a) 5 X=(D-a)y
—-a
or x=(D—a)y=ﬂ—ay
dx
dy L .
or ax ay = X [Which is linear in y]
X

HereP=aand Q=X

e"de _
Nowj de:j adx =-ax. .. = e
.. the solution is

y.e® =I X.e® dx, no arbitrary constant being added.

or y = e® =J. X.e® dx, no arbitrary constant being added.

1
D-a

or

X =e* =_[ X.e® dx, no arbitrary constant being added.

Let us do some examples to clarify what we have just said :-

1
iy ———— e
(D-1)(D-2)

X

Example 1 : Evaluate : (i) %xz (i) éx“ (

3

Sol. (i) %xzzj X2 dx = %



1 1 1 1

(iii) —e*= . ex = . esz' e, e*dx
(D-1)(D-2) D-1 D-2 D-1
= L esz' e dx
D-1
:i.ezxe - (1 eX:-exj e‘x.exdx:-exj 1dx =-exx
D-1 -1 D-1

Example 2 : Show that

X = ea"j e x dx, where x is a function of x.

(i)

D-a

(i) Hence prove that

l ax X2 ax
Se¥=—e
(D-a) 2
(iii) Find the particular integral of
(D-e)y=e*
Sol.: (i) Same as Theorem 4.

(i) by first part,

e = eaxj eXeX dx = -eaxj 1 dx =xe*

D-a
1 1 [1 ax} 1
Now > e¥ = —e" | =
(D—a) D_a D—a D_a(xeax)
Here X = x e¥
by first part,
1
(D )2 eaxzeaxj e'axxeaxdxzeaxj X dx
-a
2
= ¥
2
1 X

(iii)

5 er = erj e—2x X e2x dx = e2x_
(D-a) 2
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Self-Check Exercise-1

Q1. Evaluate %(x sin x)
1 2
Q.2 EvaluateF (2x +1)

1
Q.3 Evaluate D (x cos x)

7.4 Method To Solve The Equation

dny dnfly dn72y
Po e + P ot + P, v e +Py=Q ... Q)
where Py, P1, Pa,......... , Pn are constants and Q is a function of x

Seep I: write the equation in the symbolic form as
(PoD" + P1D™ + P,D™2 +....... +P)y=Q

Seep II: Write down the auxiliary equation (A.E.) as
PoD" + P.D™! + P,D"2 +....... +Pn=0

Solve it for D.

Step lll: Write down complementary function (C.F.) by the same method as for writing down
C.S. if R.H.S. is zero instead of Q.

Step IV: Find particular integral (P.l1.)
[For P.1., see different eases)
Step V: Then C.S.isy=C.F. + P.l.

Now we will discuss further in this unit and next two units of finding a particular solution

of (1)
7.5 Method To Evaluate e™
D)
1 1 ,
Prove that e = e provided f(a) # 0
f(D) f(D)

Proof: We know that

D (e®) = ae®, D?(e®) = a%e¥, ...... , D" (e®) = a"e™.

It is clear that D is replaced by a in each case.

f(D)e™ = f(a) e
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i f(D)e* = i f(@) e*

f(D) f (D)
or e = % f(a)e™
1 ax — 1 ax
f(@  f(D)

(D) e = % e, where f(a) # 0

Hence

Rule: to evaluate e, put D = a provided f(a) # 0

Let us do some examples

2
Example 3: Solve: 4 d—¥+ 4ﬂ -3y =e*
dx dx

Sol: Equation in the symbolic form is (4D2 + 4D - 3) y = e2X

A.E.is4D2+4D—3=Oor(2D—1)(2D+3)=0.'.Dzé,-g

C.F.=cre¥2 + c, e¥”?

PlL=—g——— 1 e
4D°+4D =3

R [PutD = 2]
4(8)+4(2)-3

1

— _e2x

21

. . 1 . .
Hence C.S.isy=C.F. + P.l.i.e. y = c1e¥? + c.e¥ + o1 e?¢is the reqd. solution

3 2 3 d3y dy 2
Example 4: Solve: (a) (D° - 3D*+ 4) y = e**.(b) —5 -3 - t2y=e~
ax dx
Sol: (a) Given equation is (D*- 3D? + 4) y = e
AE.isD*-3D?+4=0=(D+1)(D?>-4D+4)=0

— (D+1)(D-22=0=D=-1,22 .. C.F.=cy e*+ (Co + Cax) &%
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AE.isD?°-1=0=D=+1..C.F.isciet+c, et

P.I = 21 e'+ 21 et
D -1 D -1
1 1 :
=t. — e'+t. — e (Case of failure)
2D 2D
:l let+£ 1 e‘tzl[et_e't]

2'1 2 -1 2
complete solution is
x=C.F. +P.L

t
=cret+cet+ > [e'- e

Thus x = ¢; €' + coe + t. sinh t, where ¢4, ¢, are arbitrary constants.

1 3X
Pl=— L ew= w= S

. _— e =
D°-3D*+4 (3°-3(3)+4 4

3X
. (S .
C.S.isy =cie™ + (Cz + C3X) ¥ + 7 , Where c1, C2, C3 are arbitrary constants.

(b) given equation in symbolic form is (D® - 3D + 2)y = e*

AE.isD®-3D+2=0=(D-1)(D2+D-2)=0

1 —1J_r\/1+8_1 -1+3

= D= —=1,1-2
2 2
C.F. = (C1 + C2x) X + cze™
2X
Pl=——— = e L o= S
D°*-3D+2 2°-3(2)+2 4

2X
: € :
C.S.isy=(C1 + C2X) €+ Cae > + T where ¢1, C2, Cz are arbitrary constants.

Case of Failure.

Rule to evaluate: e®when f(a) =0
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eax =X ; eax =X 1 eax
f (D) - d " diff.coeff.of denom.w.r.t.D
ﬁ[ f(D)]

Note: If by using this rule, the denominator again vanishes, repeat the rule.

2
Example 5: Solve: 3d—Z + d 14y = 13e*
dx dx
Sol: Equation in the symbolic form is (3D? + D - 14) y = 13e*

A.E.i53D2+D-14=Oor(3D+7)(D-2)=O.'.D=2,-g

7x
C.F.=cie*+ce 8

Pl=— b 3em=13 T e
3D*-D-14 3D*>-D-14

S13 1 e [Put D = 2]
3(4)+2-14

=13. % e (This is a case of failure)

1
P.l.=x. 13 e

4 3p?_Dp-14)
dD

1 1
e = 13x e> = 13x. — e = xe

= 13x. .
o6D+1 6(2)+1 13

7x

CS.isy=C.F.+P.l.ie.y=cie®*+c; e 3 +xe?, is the reqd solution.
d®x
Example 6: Solve: prey =x+e'+et

2

. : . . . X
Sol: The given differential equation can be written as :F -x=e'+ et

. , . d
Equation in symbolic form is (D? - 1) x = e' + e*where D = p
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2
Example 7: Solve M 7 ﬂ

o + 6y = e, given that y = 0 when x = 0
Sol: Equation in symbolic form is
(D?-7D +6) y = X
AE.isD?-7D+6=0
or (D-1)(D-6)=0
D=1,6
C.F. = c1&* + 6%

Pl=— T on
D2-7D+6

1
4-14+6
1

= __e2x

4

e [Put D = 2]

. 1
C.S.isy=C.F. + P.l. = c1&* + % _ZeZX
1
When x=0,y:o,ther1o=(;1+02_Z

or C2=—-C1

_Cex+ l_ e6x_£e2x
y=ca 2 G 2

1 : . . .
= ci(e* - e®) + 2 (e® - %), is the required solution, where c1, ¢, are arbitrary constants.

2
Example 8: find the P.I. of the differential equation % 5 % + 6y = e*
X X
2
Sol: Given equation isd—z- 5 ﬂ + 6y = e*
dx dx

orin S.F. (D?-5D + 6) y = &

1
——— ¢
D°-5D +6

X

P.l. =
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-1 .
(1> -5(1) +6
1
1-5+6

1 X
=Ze
2

Example 9: Solve (D - 1)°y = 16 e

x [Put D = 1]

X

Sol: Given equation is
(D-1)3y=16e*
AE.is(D-1)2=0
D-1,1,1
C.F. = (C1 + CoX + C3x?) e

1 1

= X)) =
P = (5w (1667 =16 oo

e3x

1
(3-1°

=16 L e
8

=16 e

=2e¥*

CS.=CF. +P.l

= (C1 + CoX + C3X?) X + 2e¥
Example 10: Solve: (D3 - 5D? + 7D - 3) y = e*cosh x
Sol: Given equation is

(D®-5D?+ 7D - 3) y = e**cosh x
AE.isD®-5D?+7D-3=0
= (D-1)(D?-4D+3)=0
- (D-1)(D-1)(D-3)=0
= D=1,1,3

C.F.=(C1+ Cc2x) e¥ + c3 ¥

151



P.l.

1
e?cosh x

D®-5D?+7D-3

_ 1 o2 g€+e”
D®-5D?+7D-3 2
_ 1 ¥+ e
D?*-5D*+7D-3 2
1 1 2 1 .
=5 3 2 T3 2 €
2| D°-5D°+7D-3 D°-5D“+7D-3
1 i 1 3x 1 X
== ()= +(X)—————€
2 _( )3D2—10D+7 ( )3D2—10D+7 }
1 I 1 3X 1 X
= — | X > + X. X (]
2| 3(3)°-10(3)+ 7 6D -10
1 i 1 3x 2 1 X
= — | X—€"+X e
2| 4 6(1)-10
xe¥*  x%*
= +
8 -8
_ Xe3x ] XZex
8 8
CS.isy=C.F. +P.lL
3X 2 X
= (C1 + C2X) € + Ccae™ + X _Xe
8 8

Example 11: Solve 4y" - 4y' +y = eyz

Sol: Given differential equation is

ay'-ay+y= e

Equation in S.F. is

(4D?-4D+1)y = €2

AE.is

4D?- 4D +1=0
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(2D-12=0= D

1
N |-
N |-

C.F.is ey2 (c1 + c2x)

Now P.l. is
-1
(2D -1)*

1
P 672 = % 672 [Case of failure]

2
(2><1—1j
2

1
X —
2(2D-1)x2

x 1
4 1
(2><—1j
2

1 : .
3 e% [Again case of failure]

&

&

1

x
N
N

_X
8

2
CS.isy= ey2 (c1 + c2x) +X§ ey2

dy d°%
dx*  dx®
Sol: Given differential equation is
dy d% _
dx*  dx®
Equation in S.F. is written as
(D*-DY)y=2
AE.isD*-D?=0

=2

Example 12: Solve:

2
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-  D¥D?-1)=0
D2=0, 1
- D=0,0,-1,1

U

C.F. = e%™(Cc1 + C2X) + C3e™ + ¢
= C1 + CoX + C3e™ + C4e*

1

1
“2pipr®

=2—eX™ [case of failure]

2x — e [Again case of failure]

C.S.isy =Cy1+ CoX + C3€™ + Cs€* - X?

d’y
Example 13: Solve F y = cosh x
X

Sol: Given differential equation is

2
dx?

Equation in S.F. is

-y = cosh x
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(D?- 1) y = cosh x
AE.isD?-1=0

(D+1)(D-1)=0
= D=-1,1

C.f.is cie™ + c.e*

P.l.= %coshx
(D°-1)
1 e +e”
(D*-1) 2
S U S S
2 D*-1 2 D*-1
Now 21 ex= 1 eleeX [Case of failure]
D -1 1-1 0
1 X
=X —e
2D
1 X
=X —e
2
= —Xxe¥
} 1 1 .
Also ;€= —e¥= —e* [case of failure]
-1 1-1 0
1 X
=X—e
2D
1 X
=X—e
-2
=-—xe>
P.l. = 1xeX- Exe‘X
4 4
CS.is
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1 1
y =Cie™ + coe* + 2 xex - — xe™

or  y=Cie*+coe + 1, &=
1 2 2 2

1
y = Cie™ + Cce* + 2 x sinh x

Example 14: Solve 2 d_3y -3 d_zy
dx® dx?
Sol: Given differential equation is
o &y 5 dYy
dx® dx?
Equation in S.F. is
(2D%-3D2+ 1)y =1 + &
AE.is 2D®*-3D?+1=0
or (D-1) (2D2-D-1)=0

+4/ +
, # =1, 1;432 1,1,-1/2

+y=1+¢eX

+y=1+¢*

D=1

C.F.is

(C1 + C2X) € + C3 e

1
Pl —— (1+¢*
2D®-3D?*+1 ( )
1 1 ox
Now 3 > = 3 >—— €
2D°-3D“+1 2D°-3D°+1
= e”=1
0-0+1
Also 3 1 s €= 1 e* = lex [case of failure]
2D°-3D°+1 2-3+1 0
1 X
=X ————e€
6D*-6D
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X 0 ex [Again case of failure]

l x2ex

6

C.S.isy = (C1 + C2X) € + C3 e 241+ %xzeX

Self Check Exercise-2

Q.1 Solve (D?+4D +3)y=e>

Q.2 Solve (D?-a?)y=e*+e™

Q.3 Solve (D*-1)y=(e*+ 1)

Q.4 Solve D% - 3Dy + 2y = cosh x

Q.5 Solve (D+2)(D-1)y=e%+2sinhx
7.6 Summary:

7.7

We conclude this unit by summarizing what we have covered in it:-

1. Proved theorem related to complete solution.

2. Defined complementary function, Particular integral and Inverse operator.

3. Discussed method to solve non-homogeneous equation with constant
coefficients.

4, Discussed method to evaluate e® with exampled. Also discussed the case
of failure.

Glossary:

1. Complete solution of non-homogeneous equation with constant coefficients is the

sum of complementary function and particular integral.
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f(lD x is that function of x independent of arbitrary constants, which when
. . 1
operated on by f(D) gives x i.e. f(D) ——=X
f(D)
7.8 Answer to Self Check Exercise-1

Ans.1 -X cos X + Sin X
1

Ans.2 — (2x+1)*
48

Ans.3 X Ssin X + cos X
Self-Check Exercise-2

X .
Ans.l y=ce*+ (Cz —Ej e, where c1, ¢z are arbitrary constants.

xe™ €
Ans.2 y=cCie¥ + e+ ———+ ———
n“-a~ n-a

NX

- 3 . 3 e>  2xe*
Ans. 3y =cie*+ ey2 Czcos£x+c33|n£x + — + -1
2 2 3
1 1
Ans. 4 y = c1e*¥ + coe¥ - = xeX+ —eX
yras ety 12
—2X 2 X —X
xe xe" €
Ans. 5 y =ci1e%+ (Cp + C3X) & + + -
6 4
7.9 References/Suggested Readings
1. Boyce, W. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.
2. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.
7.10 Terminal Questions
1. Prove that
1 ax — X_n ax
(D-a)" n!
1
2. Evaluate — (4x + 5)°
D
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Find the P.I. of the differential equation

d’y  dy
Rl A R AR VRS
dx? dx .

Solve 4%+ 4 % -3y = e
Solve the differential equation
y" + 3y' +y =30e*

Solve the differential equation

3 2
d—Z +3—d 2/ +3ﬂ +y=eX
dx dx dx
Solve the differential equation
d® d?
—Z - 5—2/ + 7ﬂ -3 = e cosh x
dx dx dx
Prove that F(D) e® = e* F(a)
Solve the differential equation

3

d’y

v +y=3+e*+5e*
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Unit - 8

solution of Non-Homogeneous Equation With Constant

Coefficients-Il

Structure

8.1 Introduction

8.2 Learning Objectives
8.3 Method To Evaluate

sin ax or
f(D?) f(D?)

Self-Check Exercise-1
8.4 Method to Evaluate

COoSs ax

XM, where m is a positive integer
f(D)

Self-Check Exercise-2
8.5 Summary
8.6 Glossary
8.7 Answers to self check exercises
8.8 References/Suggested Readings
8.9 Terminal Questions
8.1 Introduction

Non-homogeneous equations with constant coefficients are a particular type of linear
differential equations of the form

Po y(ﬂ) + P, y‘“‘l) + ... +Prayt + Py = Q(x)

where y is the unknown function of x, y' denotes the first derivative of y with respect to x,
y™ represents the n'" derivative of y with respect to x and Py, P4, ....., P, are constants.

The term Q(x) on the right-hand side of the equation is the non-homogeneous part,
which distinguishes these equations from homogeneous equation where Q(x) =0

The solution of a non-homogeneous equation with constant coefficients involves finding
the particular solution that satisfies the equation, as well as the general solution of the
corresponding homogeneous equation (where Q(x) = 0). The general solution of the non-

160



homogeneous equation is the sum of the particular solution and the general solution of the
homogeneous equation.

coefficient in detail and also discussed the method to evaluate

8.2

8.3

(@)

Proof :

In UNIT-7, we have discussed the solution of non-homogeneous equation with constant

eax

In the present unit, we will discuss further two types alongwith case a failures.
Learning Objectives
After studying this UNIT, you should be able to :-

. 1 . 1 , :
° Discuss the method to evaluate > sin ax or > Cos ax alongwith their
f(D7) f(D7)
case of failures.
. Solve non-homogeneous equations with constant coefficient and non-
. 1 .
homogeneous part is of the form >- Sinaxor > COS ax.
D7) f(D?)
. Discuss the method to evaluate xX™ and solve equations related to it.
1 .
Method to Evaluate ——— sin ax or > COS ax.
f(D?) f(-a’)
1 . 1 . )
Prove that oo Sinax = < COs ax, provided f(-a%) # 0
D7) f(D?)

We know that
Dcosax=-sin(ax).a

= -a sin ax
D? cos ax = -a €coS ax . a = -a cos ax
D3 cos ax = -a? (-sin ax) . a = -a sin ax
D* cos ax = a® (cos ax) . a = a* cos ax

i.e. D? cos ax = (-a?) cos ax
(D?)? cos ax = (-a?)? cos ax, and so on
(D?)" cos ax = (-a2)" cos ax

f(D?) cos ax = f(-a?) cos ax
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[.. f(D?) is a polynussia in D]

Operating on both sides by L , we get

f(D?)
f(D?) cos ax = 1 [f(-a?) cos ax]
f(D?) f(D?)
or cos ax = f(-a® cos ax
f(-a%) £(DY)
Dividing both sides by f(-a2), we get
CoS ax = 1 coS ax
f(-a%) f(D?)
1 1
or Cos ax = cos ax, f(-a®) =0
f(0?) fa?) os & )7
Similarl sin ax = _ sin ax, f(-a?) #0
(D7) =

Note : If f(D) contains odd powers of D also, it can be put in the form

f(D) = f1(D?) + D f5(D?),

Then
1 1
———cCos ax = COoSs ax
f(D) f,(D*)+ f,(D?)
1
= cOoSs ax
f,(—a%)+ Df,(-a%)
1
= COS ax,
p+aD
where p = f1(-a?) and g = f2(-a?)
=(p-9gD) ! ! cos ax

(p+aD) p+qD

1
=(p-9D) ————cos ax
(p q ) p2+q2D2
1
=(p-9D) ———, ¢ Ccos ax
Y

+0°(a%)
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1

>— (P - QD) cos ax

p°+g’a
1
= quaz[pcosax—chosax]
P
1 :
= m[p COs ax g a sin ax]
Similarly we can deal with sin ax
1

Rule to evaluate % sin ax or >
f(D) f(D?)

Put D? = -a? provided f(-a?) =0

(b) Case of Failure

COoSs as

1 COS&X_X—l
D?) o d 2
f(D

OID[ (D7)

Prove that

1 .
Proof : ———— cos ax = Real part of g'ax

f(D?)

(D%)

= Real part of x d;eiaX [..f(-a2) = 0]
—[f(D?
OID[ (D]

= Real part of x (cos ax + i sin ax)

oo
PGP
1
d ¢ o2
PGP

=X COoS ax

Similarly, we can prove that

1
> Sinax =x———— sinax, when f(-a®) =0
f(9) =Gy

Note : If by using this rule, the denominator again vanishes, repeat the rule.

To clarify what we have just said, consider the following examples :-
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2
dy ;%

Example 1: Solve : —- -
dx dx

+ 2y = sin 3x.

Sol. Equation in the symbolic form is (D? - 3D + 2) y = sin 3x
AE.isD?-3D+2=00r(D-1)(D-2)=0=>D=12

C.F.=c1e*+c, e¥

Again P.l. is = Z;Sin 3X
D“-3D+2
1 .
= —————sin 3x [put D? = -9]
-9-3D+2
= L sin 3x = - 7—3D sin 3x
7+3D (7+3D)(7-3D)
= LSDZ)Sm 3x = -ﬂsin 3x
49-9D 49-9(-9)
- ~/+3D sin 3x = -Lsin 3x + iD sin 3x
130 130 130

= Lsin 3x + i(cos 3x) (3) = -Lsin 3x + icos 3X
130 130 130 130

CS.isy=Cf +P.l
. ) 7 9 : .
i.e. y = C1€* + c26% - —— sin 3x + —— cos 3, is the complete solution.
130 130

Example 2: Solve: (i) (D} +D?-D-1)y=cos 2x (i) (D*+D?-D-1)y=sin 2x
Sol: (i) Given equation is (D® + D?- D - 1) y = cos 2x
AE.isD3+D?-D-1=0=D¥D+1)-1(D+1)=0

- (D+1)(D?*-1)=0=(D-1)(D+1)?=0=D=1,-1,-1

C.F. =cie* + (C2 + Ccax)e™

P.l. = — g COS 2X = > 12 COoS 2X
D°+D“-D-1 D-D+D--D-1
= COS 2X = = COS 2X = -1 cos 2x
-4D-4-D-1 -5D -5 5D+5
= j.&cos 2X = -1 D2_1 . COS 2X
5 " (D+1)(D-1) 5 D?-1
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= ji(D- 1) cos 2x = i(D COS 2X - COS 2X)
5 —4-1 25

1 [-2 sin 2x - cos 2x] = -1 (2sin 2x + cos 2x)
25 25

, 1 :
CS.isy = c1e* + (C2 + Ccax)e™ "5 (2 sin 2x + cos 2x)

(i) Given equation is (D® + D?- D - 1) y = sin 2x
AE.isD*+D-1=0=D*D+1)-1(D+1)=0
= (D+1)(D?*-1)=0=(D+1?{D-1)=0=>D=-1,-1,1
C.F. = (C1 + cox)e™ + cze*
P.1. == 3 sin 2x = > 12 sin 2x
D°+D°-D-1 D.D°+D°-D-1

1 sin 2x
D(-4)+(-4)-D-1
__1 &sin 2X = __1 5
5 (D-H(D+1 5 (D=1
D-1
-4-1

sin 2x

-1 sin 2x = 1 [D sin 2x - sin 2x] = 1 [2 cos 2x - sin 2X]
5 25 25

: 1 .
CS.isy =(C1 + C2X)e™ + cze* + > [2 cos 2x - sin 2X]

d’y =
Example 3: Solve F + a®y = cos ax.
X

Sol: Equation in the symbolic form is (D? + a%) y = cos ax.
AE.isD?+a®*=0or D?=-a?
= D=+iaorD=0 +ia

C.F. = e™(c1 cos ax + ¢ sin ax) = ¢1 oS ax + C; sin ax

, 1 1
Again P.I. = ———C0Ss ax = —;—— COS ax [Put D* = -a?]
+a -a‘+a

= % . COS ax (This is a case of failure)
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=X 5 COS ax = X. icos ax
—(D?+a%)
dD

X X SsSihax Xsinhax
=—J cosaxdx= —. =
2 2 a 2a

CS.isy=C.F. +P.lL

. . Xsinax
i.e.  y=cCiC0Sax+c:sinax+

is the complete solution.
2a

2

d-x .
Example 4: Solve: prey + b?x = k cos bt, given that x =0 and % =0whent=0

Sol: The equation in symbolic form is (D? + b?) x = k cos bt
AE.isD?+b?=0 or D? = -b?
= D =+ib or D=0+ib

C.F. = e% (c1 cos bt + ¢; sin bt) = ¢1 cos bt + ¢, sin bt.

1
P..= ——— kcos bt
D“+b

1
=k ——— cos bt
D?+b?

1
=k ——— cos bt
—b? +b?

=k — cos bt [case of failure]

1
0

=k.t. d; cos bt
—(D?+b?)
dD

=kt i cos bt
2D

&J. cos bt dt
2

E sin bt
2b

C.S.isx=C.F. +P.l.
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. . kt .
i.e. X = C1 COS bt + ¢, sin bt + % sin bt

Example 5: Solve (D?-4)y =2 sin g
Sol: Given equation is
(D?- 4)y =2 sin g

AE.isD?-4=0=>D?=4

= D=+2
C.F. = c1e2* + ce®
. X
P.l1. =% 2sin—
D -4 2
=2 ! sin
1o,
4
-8 .
= — sin—
17 2

) 8 . X
C.S.isy=cie®+ce®- — sin —
R T

. X
Example 6: Solve (D + 1) y = sin 3x - 00525
Sol: Given equation is

. X
(D + 1) = sin 3x - cosZE

= (D3+1)y=sin3x—(1+c—zosxj

AE.isD3+1=0
— (D+1)(D*-D+1)=0

1-4
- D=-1,1+
2
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L 1,43
Sy

C.F.iscie™ + €2 {c cos7x+gsm—x

P.l.is

1 1
>—— .= COSX
" D.D2+1 2

1
. 1 1 (cosxj
= ———— sin3x-—- ——e%-
D(-9)+1 2 D°+1 D(-D+1\ 2

_ 1+9D sna. L 1 1+D (cosxj
(1+9D)(1-9D) 2 0+1 (1+D)1-D) \ 2

1+9D . 1 1+D (1
= —— sin3x
1-81D? 2 1-D?

1+9D
= —— SIn oX
1-81(-9)

L [sin 3x + 9D sin 3x] - i l(cosx+ D cos x)
730 2 4

i [sin 3x + 9(3 cos 3X)] - 1 - 1 (cos x - sin x)
730 2 4
CS.is

> V3. 3

1 1 1
=cie*+ €2 | c,coS— X+C,Sin— x| + —— [sin 3x + 27 cos 3x] - =- = (cos X - sin X
Yoo 2 (0S5 X+ &SN 730 =575 )

Example 7: Solve (D?+ D + 1) y = (1 + sin x)?
Sol: Given equation is

(D?+D+1)y=(1 + sin x)?
AE.isD?+D+1=0
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~1+1-4
~ D= _— Y7o

2

+i

N

N

X

=)
R

CF.=e? {clcos7x+czs = }

N

1
Pl.= —— (1+sinx)?
D2+D+1( )

= Dz;Dl (1 + 2 sin x + sin?x)
+D+

= ; {1+2$inx+

1-cos2x
D*+D+1

=2(DZ—1Dl)[2+4sinx+1—c032x]
+D+

2; 3+£;4sinx—1 ;COSZX
D°+D+1 2

D?+D+1 2 D’+D+1
2—e°*+£2;4sinx COSs 2X
D°+D+1 2 D°+D+1

1 4

B NP S SRR S S,
D°+D+1 2 -1+D+1 2 -4+D+1

1 1 1 (D+3)

+2—sinx- - ———
0+0+1 D 2 (D-3)(D+3

+ 2 (- cos x) % [?;39
+3
2 -4-9

"2 DZ+D+1

0S 2X

COS 2X

COS 2X

I
I
1
N
(@]
o
1
I

NIW Nlw Nlw Nw NDWw N~

= 3. 2 cosx+i(D coSs 2x + 3cos 2X)
2 26

= §-2cosx+ i(-25in2x+30052x)
2 26

BB

CsS.is y = €2|¢eos = x+c,sin"ox | + §-Zcosx+ 1 (3 cos 2x - 2 sin
2 2 2 26
2X)
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2

d y_sg
X*  dx

Example 8: Solve + 2y = sin 3x

Sol: Given differential equation is

2
d—¥—5 ﬂ+2y=sin3x
dx dx
S.F. of equation is
(D?-5D + 2) y = sin 3x

AE.isD? -5D+2=0

_ 5+25-8 5+\17

2 2

[5+\/1;7
CF.=cie °

Sc UL
=e’ |ce? +ce ?

D

)

) oA
n+ce X

P.I. = Z;Sin 3x
D“-5D+2

1 .
= —sin 3X
-9-5D+2

=- 1 sin 3x
5D+7

) (5D-7)
(65D-7)(5D+7)
. 9b-7
25D? - 49
__9D-7
25(-9)-49

sin 3x

sin 3x

in 3x

i (5D sin 3x - 7 sin 3x)
274

1 (15 cos 3x - 7 sin 3x)
274

CS.is
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1
e? +c,e ? + —— (15 cos 3x - 7 sin 3x

y=e?

Example 9: Solve the following differential equation
d’y  dy
— -4 =
adx dx

Sol: Given differential equation is
d’y , dy

> "4

dx dx

S.F. of equation is
(D? - 4D + 3) = sin 3x cos 2X

AE.isD?-4D+3=0

or (D-1)(D-3)=0

= D=1,3

+ 3y = sin 3x cos 2X

+ 3y = sin 3x cos 2X

C.F. = c1e* + ce¥
1 )
P.l.= ———— Sin 3X €cos 2X
D“-4D+3

1

m (2 sin 3x cos 2X)
— +

m(sm 5Xx + sin X)
- +

2—§n5X+2—§nX:|
D?-4D +3 D?-4D+3

NI, NP NP NP
1

——— snbx+————dnx
| 25-4D+3 —1-4D+3 }

1 1 . 1 1 .
——. Snb5x——. snx
| 2 2D+11 2 2D-1

N[

1 2D-11 . 2D+1 .
= sin5x+ sin X
4 | (2D-11)(2D +11) (2D+1(2D -1

1| 2D-11 . 2D +1 .
=-= 2—sm5x+ >—SNX
4| 4D°-121 4D -1
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1

2D-11 2D+1 .
————————8nNbXx+———9nx
| 4(-25)-121 4-1)-1

_ L oDsin5x-11sin5x) - L (2Dsin x+sinx)
221 5

1
41

1

4

i(10(:055x—1lsin5x) +E(2cosx+sin X)
221 5

= i (10 cos 5x - 11 sin 5x) + 2—10 (2 cos x + sin X)

CS.is
1 : 1 .
y = cie* + ce® + —— (10 cos 5x - 11 sin 5x) + 20 (2 cos x + sin x)

2

d°s
Example 10: Solve e + b?s =k cos bt,

given that s = 0, % =0whent=0.

Sol: Given differential equation is

2
d_zs + b%s = k cos bt
dt

Equation is S.F. is
d
(D? + b?) s = k cos bt?, where D = m
AE.isD?*+b%2=0
D? = -b?
= D =+ib=0+ib
C.F.is = e% (c1 cos bt + c; sin bt)

= ;1 cos bt + ¢, sin bt

1
P.l.= ——— (k cos bt
D2+b2( )

1
=k ———— cos bt
D? +b?
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k 2; cos bt [Case of Failure]
-b

+b?

=kt i cos bt
2D

kt
21

2

k
— t
2b

cos bt. dt

kt sinbt

2

sin bt

C.S.iss=czcos bt+c,sin bt + ZLb t sin bt

ds
o
ds

Now

= -b c; sin bt + bc, cos bt + % (bt cos bt + sin bt)

" =0whent=0

from (2),0=0+bc,+0=c2=0
Again s=0whent=0
from (1),0=c1+0+0

= c1=0
Putting ¢1 =0,

k
s= —
2b

c2=0in (1), we get

t sin bt

Q.1
Q.2
Q.3
Q.4
Q.5

Self-Check Exercise-1

Solve (D? + D + 1) y = sin 2x

Solve (D* - m*) y = cos mx + cosh mx
Solve (D% + 1) y = cos 2x

Solve (D? - 4D + 3) y = sin 2x cos X
Solve the differential equation

(D?-3D + 2) y =6 e + sin 2x

8.4 Method to Evaluate
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XM, where m is a positive integer

1
f(D)

Expand : 1D in ascending powers of D by the binomial theorem, taking the expansion

upto the terms containing D™ and operating on x™ with each term of the expansion of

f(D)

Consider XM

D-a

Now

XM = eaXI xXMe & dx
D-a

:ea{xm(ﬁ}le(§}+{m(m_l)xmz}(i’:j ________ } ...... (1)
—a a —a

9Integration by parts]

The last term of the bracket being

= (—1)""J u™y,, dx, where u = x™, v = @&

g
=) [m——dx
J (-a)
= —(_1) |mr_nj e dx
(-a)
—_ |I‘_Y187ax - _ m e-ax
am(_a) a.m+l
from (1)
m m-1 _
L g [ g O D I
D-a a a a a
1 m 1 m-1 m-2
=- S XM+ S m(m=D) X+ +—|m
a a a
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If we expand in ascending powers of D, xm = xm = Xm = -

g e T
-1 xm+—nu“1+i2m(m—1)x“2+ .......... +—|m+0
a a a "
_ 1 |:Xm+ m_ma m(m_l) m-2 m}
_— 2 ---------- m
a a a a

which is the same as (2)

Thus, to evaluate in ascending powers of D as far as the term

X", expand

D™ and operate on x by each term of the expansion.

Thus to evaluate

1
X™, we proceed as follows:-
D)
0] From f(D), take the lowest degree term outside. Then the remaining factor will be
of the type [1 +¢(D)]
(i) Take [1 +¢(D)] to the numerator and expand it by Binomial Theorem as far as D™.

[See
Note]

(iii) Operate on x™ with each term
Note: Q D™ (x™) =0 ;etc
Following results are useful for solving problems:-

0) (1-D)'=1+D+D2+........ to oo

(i) (1+D)*=1+2D+3D2 +............ to oo

(iii) (1-D)?2=1+2D+3D2 +.............. to oo

(iv) (1-D)®=1+3D+6D2 +................ to oo
To clarify what we have just said, consider the following examples:-
Example 11 : Solve CCII)Z(Z -13 % + 12 =x.
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Sol. Equation in the symbolic form is (D? - 13D + 12) y = x
AE.isD2-13D+12=00or(D-1)(D-12)=0 ..D=1,12

C.F. =c1 e* + cpe!®,

12|1-—D+—

: 1 1 1 13
AgainP.l. = — X = X=—|1-| —
D“-13D +12 13 D? 12 12

12 12

1 2 i
= —|1- ED—D— +...[X
12 12 12

:E_

12 1217712 T 144
C.S.isy=CF.+P.l.

1[ 13 1 13 _ 1
_X—I—ED(X):l— {x+ 2(1)} (12x + 13).

1
i.e.y = cie* + coel® + Y (12x +13) is the reqd solution.

Example 12 : Solve (D3 + 3D? + 2D)y = X2
Sol. Given Equation is (D® + 3D? + 2D)y = x?
AE.isD®*+3D?+2D=0=D(D?+3D+2)=0
— DD+1)(D+2)=0=D=0-1,-2

CF.=cie®+creX*+c3e®=ci+Ce*+cze®

-1
2
D—D— X

LT
l+i—2 D} X [Expand upto D]

-1
1 1 2
Pl=— 5 X2 = 1 x2=— |1+ 3—D+D— . X?
D°-3D“+2D 3D D? 2D 2 D
2D 1+7+E

= i 1_(3_D+D_2j+ (_1)(_2) (3_D+D_2] +

2 2

1 [ (3D D?) 9p? 1[, 3D (9 1
= — 1| T — | ¥ == |1+ = -2
2D 2 2 4 2D 2 4 2
1] 1
S P Y R BT F VAT
0|7 2 4 2D 2 4
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1 3 7,1 1|1 2 1 17 11x 3, 7x
X 2X+—2| = = | =X =3t —— = = | ==X+ —
2D 2 47| 2 D D D2 2|3 2 2
CS.isy=ci1+cye* +c3e2"+—{ }
d’y
Example 13 : Solve——4— +4y = X2 + X + sin 2x
X dx

Sol. Equation in the symbolic form is (D? - 4D +4) y = x2 + X + sin 2x
AE.isD?-4D+4=0=(D-2?2=0
= D=2,2

C.F. = (Cc1 + C2x) e

Again P.I. = ( 5 [X* + e+ sin 2x]

1
D-2)
= 1 X%+ 1 ex +
"~ (D-2?" (D-2°  (D-2)

-2
1

1—2 X2 + 12ex+ 5 sin 2x

2 (1-2) D2-4D +4

2
1-2| - (2)( 3). o +... [x2+ex+;sin2x
2 12 | 2 —4-4D +4
1
1+ D+§D2... X2 + €% - ——sin 2x
4 4D

X2 +2x+§(2)j+ e L (— COSZXJ
4 4 2

PR

NP

N, NP NP

1
X+ 2x+2 | + e* += Ccos 2x
2 8

.. complete solution is given by = C.F. + P.1I.
1 3 1

e, y=(CitcxX)eX+ = | X +2X+= | +eX+= cos 2X
4 2 8

Example 14 : Solve the differential equation

d?y , dy

ac 4 ™ + 4y = 8(x? + e* + sin 2x)
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Sol. Given equation in the symbolic form is
(D?- 4D + 4) y = 8(x2 + € + sin 2x)
AE.isD?-4D+4=0
ie. (D-22?=0
= D=22
C.F.is e (c1 + c2X)

2+

8 8 :
(D-2° (D-2° (D-2°
DY’ 1
== 1—;) x*+8x ———e*+38

2D (-2(-3D?
2 12 4

=2 |1+

=2 |1+ D+§ D2...|x? + 4x2 g2 - Esin 2X
L 4 D
= 2(x2+2x+%2j+ 4x% e + ZLZSZX

= 2% + 4x + 3 + 4x? e® + cos 2x

2(D -2) D2-4D +4

}[x2+4x.xe2"+8

1 .
e+ 8 sin 2x

sin 2x

—4-4D +4

S C.S.isy=e®(c1+cxX) +2x? (1 + 2e¥) + 4x + c0oS 2X + 3

Example 15 : Solve the following differential equation

X
(D-1)2(D+1)2y=sin25 +e*+ X
Sol. : Given equation is S.F. is
X
(D—1)2(D+1)2y=sin2§ +eX+X

AE.is(D-1?(D+1)? =0
D=1,1,-1,-1
C.F.is (c1 + Cc2X) €* + (C3 + CaX) €**

_ 1 Lo X
P.lis = 5 5 [sm —+€ +x}
(D-D°(D+)) 2
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1 1-cosx
= 5 5 +e +X
(D-D°(D+)) 2
1 1 1 1 1
=s—-1- 7. ——5cosX+ —— ex+ —— X ..(1)
2 (D-) 2 (D-)) (D-1) (D-1)
1 1 1 o 1 1 1
NOW_. > > = — > 2+ex:—_ 2:_
2 (D°-) 2 (D°-) 2 (0-1 2
1 1 1
Also - ——— cosXx = . 5 COS X =— COS X
2 (D°-) 2 (-1-) 8
1 1 1
and % e = — S eX= ex= —¢e [Case of failure):
(D=1 D"-2D"+1 1-2+1 0
1
= 3 ex
4D° -4D
1 . .
=X e [Again case of failure]
4-4
1
:XZ > ex
12D° -4
— 2 1 ex
12-4
_ xe
8
21 5 X = 122x=(1—D2)'2x=(1+2D2+ ....... )X
(D°-1) 1-D")
1 1 2 X
from (1), P.l.= —- — cosx + + X
2 8
1 1 2 X
= —(1+2x)-- cosx+
2 8
CS.is
2ex

1 1
y =(C1+ C2X) €+ (C3 + CaX) €% + E(l + 2X) -gcosx +

Self Check Exercise-2
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Q.1 Solve the differential equation
(D*-5D%?+6D)y =x2

Q.2 Solve (D?-1)y=2+3x

Q.3 Solve (D?-5D+6)y=x+e™

Q.4 Solvey"-y' -2y =x?+cos X

8.5 Summary:
We conclude this unit by summarizing what we have covered in it:-

1. Discussed the method to evaluate non-homogeneous equations with constant
coefficients and containing terms sin ax or cos ax on R.H.S. Also by using this
method find the solutions of differential equation.

2. Discussed the method to evaluate

x™, and also solved equations by using

this method.
8.6 Glossary:

1
1. COoS ax = cos ax, provided f(-a) =0
(D9 ) p f(-a’)
2 1 sin ax = sin ax, provided f(-a%) # 0
' f(D?%) f(-a%) '
1 . 1 .
3. >- Sinaxorcos ax =X - a sin ax or cos ax when f(-a?>) =0
(b [f(D?)]

dx
8.7 Answer to Self Check Exercise
Self-Check Exercise-1

NE @}

_ : 1
Ans.l y= e%{qcos7x+czsm7x - —{2 cos 2x + 3 sin 2x}

13

. X . .
Ans.2 y =cie™ + cy @™ + C3 COS MX + C4 SN MX + ame (sinh mx - sin mx)
m
J3 V3

1
Ans.3 y=cie*+ e>/2 {Czcos7x+cgsin7x} + %[cos 2x - 8 sin 2X]

1
Ans.4 y=c;e*+ce®+ a(ZcosSx-sn3x+33inx+6cosx)
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3 1
ANns.5 y=cie* + ce¥ + —e-3x + — (3 cos 2x - sin 2x)
10 20

Self-Check Exercise-2
1 2
Ans.1 y:C1+C262X+Cge3X+— X3+51+@
18 2 6

Ans.2 y =cie*+ ce™ - (2 + 3X)

1 X
Ans.3 y=cie*+ce® + — (X+§] + — A
6 6 m?—-5m+6

e (o, 3) 1
Ans. 4y =cie*+ce*- — | X*=X++—=| - —(sin x + 3 cos Xx)
2 2 10
8.8 References/Suggested Readings

1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.
2. Boyce, W. and Diprima, R., Elementary Differential Equations and Boundary

Value Problems, 3rd Ed., Wiley, New York, 1977.

3. Zill, D.A. A First Course in Differential Equations with Applications, 2nd Ed.,

Prindle, Weber & Schmidt, Boston, 1982.
8.9 Terminal Questions

1. Solve (D? + 4) = e* + sin 2x
2. Solve ﬂ + 2x2d—2y + n*y = cos mx
dx* dx?

3. Solve (D?-4D + 4) y = e*® + 5 cos 3x

4. Solve (D* - 1) y = cos ax cos bx

5. Solve (D*-a%) y=x*

6. Solve (D3- 13D +12) y = x

7. Solve the following differential equation
dy &y b,
dx®  dx® dx

8. Solve the following differential equation

(D*+8)y=x*+2x+1

181



Unit-9

Solution of Non-Homogeneous Equation with Constant

Coefficients-lll

Structure
9.1 Introduction
9.2 Learning Objectives
9.3 Method To Evaluate . 1D (e®X), where X is any function of x.
Self-Check Exercise-1
9.4 Method to Evaluate
1 . .
(D) (xv), where v is any function of x.
Self-Check Exercise-2
9.5 Summary
9.6 Glossary
9.7  Answers to self check exercises
9.8 References/Suggested Readings
9.9 Terminal Questions
9.1 Introduction

Dear students, in the last two Units we have discussed solution of non-homogeneous

equation with constant coefficients. The solution of nhon-homogeneous equations with constant
coefficients is of significant importance in various areas of mathematics and physics. The
solutions of linear non-homogeneous equations with constant coefficients exhibit a useful
property known as the superposition principle. It states that if two particular solutions of the non-
homogeneous equation are known, then any linear combination of these solutions is also a
solution. This property allows us to construct more general solutions by adding or subtracting
specific solutions. Overall, the ability to solve non-homogeneous equations with constant
coefficients is essential for understanding and analyzing a wide range of phenomena in both
theoretical and applied mathematics, as well as in various scientific and engineering disciplines.
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9.2 Learning Objectives
After studying this unit, you should be able to:-

. Discuss the method to evaluate (e®X) and solve equations by using this
method.
: 1 : : .
. Discuss the method to evaluate (D) (x V) and solve questions by using this
method.
1
9.3 Method to Evaluate (D) (e® X), where X is any function of x
Prove that
1
(e X) = e®*———X
f (D) f(D+a)

Proof:D" (e®*X) = D" (X e¥)
=D"Xe¥+ n D" xe™a+ n D"X.e™. a*+...+X e¥. a
[Q by Leibnitz Theorem, (Uv)n = UV +Ng Un1 V1 +....... + uVy]
=e¥ [D"X+ n, D™X.a+n, D"X. &% +....... +X. a"
=e™(D+a)X
D" (e*X) =e®™ (D + a)" X
f(D) (e*X) = e®f(D + a) X [Q f(D is a polynomial in D]

1
Operating on both sides by ——, we get

f(D)

1
— = /(D) (e™X) =

[e™f(D + a) X]

f (D) f (D)
or e X = (D) [e®f(D + a)X]
or (D) [e**f(D + a) X] =e®X ....... (D)
Put fD+aX=X: ... (2
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1
Operating on both sides by ——, we get

f(D+a)
L jpra)z ——x
f(D+a) f(D+a)
or X= ;Xl ....... 3)
f(D+a)

Substituting from (2) and (3) in (1), we get

(€™ X)) = e¥——— X
f(D) f(D+a)

Changing X; to X, we get

(e X1) = e*——X
f (D) f(D+a)

Hence the result

In other words:- Take e* outside and in f(D) write (D + a) for every D so that f(D)

1
becomes f(D + a) and operate m with X alone by the previous methods.
+a

To clarify what we have just said, consider the following examples:-

d2
Example 1: Solve: —Z ZQ +y=x?e¥
dx dx

Sol: Equation in the symbolic form is (D? - 2D + 1) y = x? e
AE.isD?-2D+1=0o0r(D-1?=0=D=1,1

C.F. = (c1 + c2x)ex.

1 1
AgainP.l.= — — x%e¥*=——— (¥ x2
? D?-2D+1 D2—2D+1( )
= e¥, 1 2 = @3 1 2
(D+3°-2(D+3)+1 D?+6D+9-2D-6+1
— @a3X 1 2 — a3Xx 1 X2

‘4+4D+D° . C D?
4 1+D+T

184



(¢

3x [ 2\ 3x 2 23\2
= 1+ D+R =5 [1- D+D— + D+D— F oo X2
4 i 4 4 4 4

e” D?
= l—(D+TJ D? |x? [Expand upto D?]
3X
=£ 1—D+§D2}x2
4| 4
e* [ 3
= — x2—D(x2)+—D2x2}
4| 4
3x [ 3X
- % x?-(2x)+4§1(2)}= %(2x2—4x+ 3)

3X
€
y=Cf +P.l. ie.y=(C1+CoX) e+ 5 (2x% - 4x + 3)

Example 2: Solve: (D? + 3D + 2) y = e sin x

Sol: Given equation is (D? + 3D + 2) y = e sin x
AE.isD2+3D+2=0=(D+1)(D+2)=0=>D=-1,-2
C.F. =cie™ + coe

P.l. = 1 (e sin x) = e, 5 L sin x
(D+2)°+3(D+2)+2

D?+3D+2

— a2x — a2x

—————=Sin
D“+7D+12

cer (D7) e DL
(7D +11)(7D—11) 4907 —121

7D-11 L, 7D-11 _
———SInNX=e“"———SIn X
49(-1)-121 170

—— X sinx
(-D+7D+12

— A2X

2X 2X

- =€ [7TDsinx-11sinx] = € [7 cos x - 11 sin ]
170 170

2X

e
C.S.isy=cie*+ce® +
ymae e ( 170

j [7cos x - 11 sin X]

Example 3: Solve (D? + 2) y = x?e® + e* cos 2X
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Sol: Given equation is
(D? + 2) y = x?e®* + e* cos 2x

AE.isD?+2=0=D=+i/2
C.f.is =c1cos /2 x + ¢z sin /2 x

P.l.=

o7 5 (x2e® + e* cos 2X)
+
1

T D242 Ocen)

D712 (e* cos 2x)

=ed 2+ cos 2x

X X X
(D+3)%+2 (D+D*+2

= e3X;x2 + eX;cos 2X
2 2
D +6D+11 D“+2D+3

= ¥ 1 X2 + eX —1 COS 2X
2
6D+ D } 442D +3

3x I 271
= £ 1+M X2 + eX (2D+1) cos 2X
11 11 (2D -1(2D +1)

11 11 11

P 2 2\2
= 1—6D+D +(6D+D j o }x2+ex%coszx

3x [ 2
e 6D D 36D}(2+ex(2D+1) o5 20

1] 11 1 12 A(—4) -1

eSx B 2 X
= 6D _ 25D }x2+ { € j[ZD COS 2X + C0S 2X]

1] 11 121 =17
e3x B X

= XZ—E(ZX)+§.2 L [-4 sin 2x + cos 2X]
11 | 11 121 =17

1117 11 121
C.S.is

-—[cos 2x - 4 sin 2x]
17

e* [ , 12x 50} e*
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3X
. (S]
=1 Ccos\/2Xx + Cosin/2 x + Tl [XZ

12x
11

Example 4: Solve (D + 3D? + 2D) y = xe*
Sol: Given equation is

(D® + 3D? + 2D) = xe*
AE.is D(D*+3D+2)=0

=

=

D(D+1)(D+2):O
D=0,-1, -2

C.F.is cie% + coe™ + c3 e

=C1+ Ce*+ Cc3 e

P.Il = xe
D(D+1)(D+2)

=€

1 X
X 1 X
(D+)(D+2)(D+3)
1

e 5 5 X
6+11D +6D“+D

e [ 11D+6D2+D3T
E 1+ X

6

X

e
y=C1+CeX+cze®+ £(6x -11)

Example 5: Solve

2
d’y -4ﬂ+4y=x2e2’<

dx® dx

Sol: Given differential equation is
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-t

121

|

X

e
- —[cos 2x - 4 sin 2X].
17



% - 4%+ 4y = x*e*
Equation in S.F. is

(D?- 4D + 4) y = x%e*
AE.isD?-4D+4=0
= (D-22?=0
= D=2,2

C.F. = (Cc1 + Cc2x) e

1
Pl=— (X e
p?_ap+a” )

= (D ~ 2)2 (X2e2x)
_r
(D+2-2)°

— Aa2x 2

1
= (C1 + C2X) €%+ — x* e
y = (C1+ C2X) 2

Example 6: Solve the differential equation

Sol: Given equation is
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d'y
ax*

Equation in S.F. is

-y =e*cos X

(D*- 1)y = e*cos X
AE.isD*-1=0
or (D-1)(D+1)(D2+1)=0
D=1,-1, +

C.F. =cie¥+ ce™ + c3€0S X + C4 Sin X

P.l.=

I:)4_1(ex COS X)

—_— 1 X
~ (D-1)(D+1)(D?+1) ©
ex ! > COS X
(D+1-1)(D+1+D)[(D+D“+1]
ex - co
D(D+2)(D*+2D +2)
1 C
(D? +2D)(D? +2D +2)

1
e c
(-1+2D)(-1+2D +2)

e* 1 =e* } COS X
(-1+2D)(2D +1) 4D" -1

COS X

S X

— X

0s X

0S X [Q D?=-17]

COS X

1 X
=- —e*cosx
5

. ) 1
C.S.isy=cie*+Cce*+ C3C0S X + C4qSINX-—e*Ccos X
5

Example 7: Solve the differential equation
(D?- 4D + 4) y = e c0s? X

Sol: Given equation in S.F. is
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(D?- 4D + 4) y = e* cos?x
AE.isD?-4D+4=0
or (D-2?=0

D=22
. C.F.is (c1 + c2 x) *
P.I.= 2; e cos’x
D>-4D+4
1

— a2

X 7 COS?X
(D+2)°-4D+2)+4

o 1 [1+c0s2X
D? 2

2

N

e i + %cost
D D

eX| —+

2 4

N

B% cost}

= % e (2x2 - cos 2Xx)

. 1
~ CFisy=(c1+cox) e+ A e (2x? - cos 2x)

Self Check Exercise-1

Q.1 Solve the differential equation
(D? + 1) y = xe*

Q.2 Solve the following differential equation
(D?-2D+ 1)y =x%>e*

Q. 3 Solve the differential equation
(D*-2D3*-3D?+4D + 4) y = x2 &

Q.4 Solve (D? - 4D + 4)y = e cos 2x

1
9.4 Method to Evaluate (D) (xv), where v is any function of x.

Prove that
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1 d[ 1 }
XV)=X ——V+ — | ——— | V
dD | f(D)

f(D) f(D)
Proof : We have
D" (xv) = D" (vx)

=DW.x+nciD"v.1

=xD"v+D"v

=xD”v+i (DM v
dD

J(D) (xv) = x f(D) v + % [/(D)v

[..f(D) is a polynomial in D]
or f(D) (xv) =x f(D) v+ f" (D) v

Operating on both sides by ——, we get

f()

1
ﬁf(D) (xv) = f(D) [x f(D) v+ f(D)

1
orxv= f(D) [x f(D) v] + (D)f (D) v

1 1
o f(D) [X f(D)Vv]=xV - )

Put f (D) v =v1

[ O)v

'—f(D)v- 1 %
- f(D) f(D)

1

1
~ (D)

or Vi

Substituting from (2) and (3) in (1), we get

— =/ D)V

1

1 1 1
—— (Xxv) =X V1 -
f(D) f(D) f(D)

f (D)

f(D)
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1 1

= ——— Vi- "(D) v1
Changing vi to v1
1 3 1 ) 1 ,
ORI [f(D)]Zf(D)V

d 1
Or —— XV) =X —— V+ — | —— |V
f (D) f (D) dD | f(D)
: I : : 1

Note : The above rule in some cases fails if by using the usual rule for evaluating (D)
get zero in the denominator.

To clarify what we have just said, consider the following examples :-
Example 8 : Solve (D? + 4) y = x sin X
Sol.: AE.isD?+4=0

D=0=2i
C.F. = (c1 cos 2x + ¢z sin 2x) ™

=1 COS 2X + C» Sin 2X

Now P.l. = — X Sin X
D+
1 ) d 1 .
=X = sinXx+ — | ——— | sinx
D“+4 dD | D°+4
. 1 .
=X — smx-ZDﬁsmx
D°+4 (D°+4)
) 1 ) )
=X sinx-2D ——— sinx [Put D? = -1]
-1+4 (-1+4)
:lxsinx-EDsinx
3
1 ) 2
= — XSinXx- — COS X
3 9

Now C.S.=C.F. + P.l.
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: : 1 2 : ,
I.e.y =C1COS 2X + C2 Sin 2 X +§ X sin x - 9 Cos X , is the complete solution.

Example 9 : Solve (D*-1) y = x sin x.
Sol. : Given equation is

(D*- 1)y =xsin x
AE.isD*-1=0
= (D?-1)(D*+1)=0

= C1€°+CceX+Cc3C0S X+ C4SiNX
1 .
P.l. = ——— Xsinx
D" +1
l. P.of ——xe~
D" -1

= e |.P. of e* ;4 X
(D+i)"-1

= 1.P. of e : 1
-4Di 6D?
1+ e
4Di
iX -1
=|.P. of € -41 3—D X
—4Di 2
=|.P. of € - 1—3—[_)..
-4Di 2i
= |.P. of € - x—g}
—4Di 2
= 1P, of — {E’}
—4Di 2
=|.P. of ) - X—E_
-4Di 3
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1P of € 2x-3
_4Di | 2i

X

—ipof &L 2ix-3)
8 D

=|.P. of

(cosx+i sinx] (ix2 - 3%)

=é(x2cosx—3xsinx)

Example 10 : Solve (D? + 3D +2) y = xe* sin X
Sol. : Given equation is

(D? + 3D +2) y = xe* sin x
AE.isD?+3D+2)=0
= (D+1)(D+2)=0
= D=-1,-2

C.F. cieX+c,e®

1 .
P.l. = z—xeX sin X
D°+3D+2

[ 1 } !
e > (x sin x)
(D+D)°+3(D+1)+2

= eX 1 X Sin X
D?+2D+1+3D+3+2

=eX2;xsinx
D“+5D+6

1 1

. 2D +5
e X————8NX-—————=19d
| -1+5D+6 (D°+5D +6)
| 2D+5
=e

X sinx— S
. 5(D+1 (-1+5D+6)

= e xz—sinx+—{2—
| D°+5D+6 dD (D°+5D+6

x|
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x D-1 . 2D+5
———sinX——————sinx
5D -1 {5(D+1)}

x nx-— . sinx
5-1-1 25(D? + 2D +1)

D-1 . 2D +5 . }

X . . 2D+5
=g ——(Dsinx—sinx) — sinx
| 5(-2) 25(-1+2D +1)

[ —x : 1 2D+5 .
= e¥| —(cosx—snXx) —— sinx
| 10 25 2D

1
D
>

X . 1 5.

—(cosx—sinX) ——| 1+ — [sin X

10 25\ 2D

= e _—X(cosx—sinx)—i sinx+§fsinxdx
10 25 2

—X . 1. 5
=e* | —(CoSX—Sin X) ——1 SN X+ — (—CoSX)
| 10 25 2

—X . 1. 1
= e*| — (CosX—SinX) ——SiN X+ — COSX
10 25 10
CS.is

o 5 —X . 1 . 1
y = cie™ + C2 €%+ e¥| — (COSX—SIN X) —— SN X+ — COS X
10 25 10

Self-Check Exercise-2
Q.1 Solve (D?+4)y =xcos X
Q.2  Solve the differential equation
(D% - 1) y = x% cos X

2
d y-2ﬂ+y=xexsinx
dx*  dx

Q.3 Solve

Now we do some typical problems:-

d’y

Example 11: Solve F+ a’y = sec ax
X
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Sol:  Given equation in S.F. is

(D? + a?) y = sec ax
AE.isD?+a?=0
= D=+ai=0+ia

C.F.is (c1 cos ax + c; sin ax)e®

= ;1 COS ax + c sin ax
1
P.l. = ———sec ax
D? +a?
1
= - — S
(D-ia((D+ia)
1 1 1
- — — - Sec ax
2ia| D-ia D+ia

= 1{ ! secax— ! secax} ....... (1)

ecC ax

Ta D-ia D+ia

Now 1_ sec ax = eiax'[ sec ax e dx Q 1 X = eaxj Xe ®dx
D-ia D-a

= eiax'[ sec ax (cos ax - i sin ax) dx

= eiax'[ (1 -itan ax) dx

= (cos ax + i sin ax) {x+|—log(cosax)}
a

sinaxlog(cosax)
a

cosax

= {xcosax— } + i{xsinax+ Iog(cosax)}

Similarly by changing i to -i, we get

sin axlog(cosax ) . cosax
og( )} - |[xsmax+
a

sec ax = [xcosax— Iog(cosax)}

D-ia
Putting in (1), we get

cosax

Pl = _L[Zi{(xsinaxh
Zia

Iog(cosax)H
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0Sax

. C
Sin ax + 2
a

log (cos ax)

=X
a
Hence C.S. is given by

. Xsinax  cosax
Yy =1 COS ax + ¢, sin ax + + >— log (cos ax)
a a

Example 12: Solve (D? + 4) y = 4 tan 2x
Sol:  Given equation is (D? + 4) y = 4 tan 2x
AE.isD?+4=0=>D=+2i

C.F.is c1 cos 2x + ¢, sin 2x

P.I = 4 tan 2Xx
D2+4( )
= _4 — (tan 2x)
(D+2)(D-2i)
=_1 1_— 1_ tan2x ... Q)
I|D-21 D+2
Now - tan 2x=e2ixj e?X tan 2x dx
D-2i
=e2ixj (cos 2x - i sin 2x) Sin2x dx
COS2X
= 2| [sin2xdx—i 1-cos"2x 2de}
i COS2X
[ —cos2x . (1 7 sin2x
= g2 —i<=logtan| =+ x |-
2 2 4 2

= g2 —E(COSZX—i sin2x)—|—logtan(£+ x]
2 2 4

e T
= e ——logtan| —+Xx
2 2 4

1 i . T
=-= - —e|gpgtan | =+Xx| .. 2
> g (4 j 2
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Changing i to -i in (2), we get

1
(D +2)

Using (2) and (3) in (1), we get

tan 2x = 1 + L gan log tan x| o (3)
2 2 4

I
1
[

o
Q
3]
7N\
NI
_l_

x
N
H/_J
f—J\—\

CDEJ.
x
N |+
cD\
N
x
%f_J
1

= {Iog tan (%+ xj}{cost}

CS.is
Yy = €1 COS 2X + C2 Sin 2Xx - cos 2X log tan (%+ xj

Q.4  Solve the differential equation
y" + 16y = sec 4x
Q.5 Solve the differential equation
(D? + 1) y = cosec x
9.5 Summary:

We conclude this unit by summarizing what we have covered in it:-

1. Discussed the method to evaluate (e®X), where X in any function of x.

2. Solved differential equations questions by the method to evaluate (D) (e® X).
3. Discussed the method to evaluate (x V), where V is any function of x.

4. Solved questions by this method i.e. method to evaluate 1D) (x V).
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9.6

9.7

Glossary:

l ax —_ ax
f(D) (e™x)=e f(D+-a) X

1
L oxvy=x Lt oy 4Ly
f(D) f(D) dD | f(D)
Answer to Self Check Exercise
Self-Check Exercise-1

e 4
Ans.1 y =C1COS X+ C2SinX+ 5 (x—gj

eSx ) 3
Ans.2 y =(C1+CxX) e+ 7 X —2x+§

Ans.3 y = (C1+ C2X)e?* + (C3 + Cax)e™ +% [2x% + 4x + 7]
€”* cos2x

Ans.4 y = (ci+ C2X) % - 2

Self-Check Exercise-2

9.8

9.9

X COS X N 2sin x

Ans.1 y =1 C0S 2X + C2 Sin 2X + 9

1 .
Ans.2 y =cCcie¥+ coe™*+ > (- - x?) cos x + x sin x

Ans. 3 y =(c1 + Ccz X)e* = e* (X sin X + 2 cos X)

Cos4x

. 1 :
Ans. 4 y = C1C0S 4X + C2 Sin 4x + 2 [xsm4x+ Iogcos4x}

. sinx :
Ans. 5y =c1COS X+ CzSin X+ {Tlogsmx—xcosx}

References/Suggested Readings

1. Boyce, W. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.
2. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.

Terminal Questions
1. Solve the following differential equation
(D? - 5D + 6) = xe®
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Solve the following differential equation
(D?-2D+4)y=(x+1) e

Solve the differential equation

(D? - 4D + 3) y = €* cos 2x + cos 3x
Solve (D?- 2D +2) y = e*sin x
Solve (D?- 1)y = x sin x

Solve (D? - 4) y = x cos 2X

Solve (D* + 2D? + 1) y = X2 cos X
Solve y" +y = x €* cos 2X

Solve the differential equation

(D? + 1) y = cot x

Solve the differential equation
(D?+ 3D + 2) y = sin &*
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Unit - 10

Reduction Of Order

Structure

10.1 Introduction

10.2 Learning Objectives

10.3 Solving A Differential Equation By Reducing Its Order

10.4 Solution By Inspection
Self-Check Exercise

10.5 Summary

10.6 Glossary

10.7 Answers to self check exercises

10.8 References/Suggested Readings

10.9 Terminal Questions

10.1 Introduction

Differential equations playa a fundamental role in various fields of science and
engineering, describing the relationships between variables and their rates of change. Solving
differential equations is essential in understanding and predicting the behavior of dynamic
systems. One common approach to solving differential equations is by reducing their order. This
technique simplifies the problem by transforming a higher-order differential equation into a
system of lower-order equations. By doing so, we can often obtain explicit solutions or
numerical approximation that are more manageable and easier to interpret.

Reducing the order of a differential equation offers several advantages and is of
significant importance in various aspects. Higher order differential equations can be complex
and challenging to solve directly. By reducing the order, we can break down the problem into a
series of simpler equations, making the solution process more feasible. Lower-order differential
equations often have well-known solution techniques and formulas. Reducing the order allows
us to apply these established methods, thus providing a wider range of tools for finding
solutions.

10.2 Learning Objectives
After studying this unit, you should be able to:-
. Discuss how to solve a differential equation by reducing its order.

. Discuss to find a particular solution by inspection.
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10.3 Solving A Differential Equation By Reducing Its Order

Theorem: Let f(x) be a non-trivial solution of the n" order homogeneous linear differential
equation.

n

d y dnfly
+ az (X
dx" 1 () ax™*

Then the transformation y = f(x) v(x) reduces (1) to a (n - 1)st order homogeneous

ao (X) o + an1 (X) % +an(X)y=0 .. Q)

linear differential equation in the dependent variable, z = 3— [Without Proof]
X

This theorem states that if one non-zero solution of the nth-order homogeneous linear
differential equation is known, then by making the suitable transformation, we may reduce the
equation to another homogeneous linear differential equation, which is one order lower than the
original.

We shall discuss the theorem if n = 2.

Let differential f be a known non-trivial solution of the second order homogeneous linear
equation.

a0 (%) OIZ2’+al oY ray=o )
dx dx
Put y=7f.v. . 3)

when f(x) is the known solution of (2) and Vv is a function of x to be found out.

Differentiating, we get
d dv
Yoo Yoo, @)
dx dx

d2
dx®

\

f()d f()—+f()—+f(X)V ....... )

. dy d’
Putting the values of dx w2 N (2), we get

2
ao (X) {f(x)%+2'(x);—d\;+ f "(x)v} + a1 (X) |:f(X)%+ f '(x)v} +az (x) f(x) v=0

= ao(x)f(x) 2 +vj—+[a () f'(¥) + a1 (x) f'(x) + a2 (x) fK)]V =0

Since f(x) is a solution of (2), the co=eff. of vis zero.

) /0 + a1 (x) (] %= 0

we get a0 (X

202



dv d®v
=7 .. —
dx dx?

Put gz
dx

20 () % +[280 () f() +a () f(9] 2= 0

This is a first order homogeneous linear differential equation in the dependent variable z.
The equation is variable separable type.
Assuming f(x) = 0 and ao (x) # 0, we can write
d _ {zum} o
z FX) a(x)

Integrating, we get

log [2] = -log (f(4)? - | :1083 dx + log [c]

where c is an arbitrary constant

Cexp{ a4
L, 200
(f(x)?

This is the general solution of (6)

If we choose ¢ = 1 and replace z by % we get
X

exp{—'[ai(x) dx

dx (f(x)*
exp{— :10(()ng
Integrating we get, v= 2
I (f(x)
from (3), we get
y :J‘ ao(zx) dx is a solution of (2), Call this function as g(x)
(f(x))

We shall prove that f(x), g(x) are linearly independent.
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Now

f
WG9 W= ((f()) 3(();))

_ 1T F(¥)+(x)
) ‘f ) FO)(X)+ F (X)v(X)

exp{—'[al(x) dx

= (f(x))* v'(¥)

. 3,(X)
Vo5 oy

=exp _ jao(x) dx

= exp _—j%dx 20

Thus the linear combination c1f(x) + c2 g(x) is the general solution of (2)
Hence we have:

Let f(x) be a non-trivial solution of the second-order homogeneous linear differential equation

d? d
ao (X) 2/ + a1 (x) Yy +taa(X)y=0 ... 1)
X dx
Then (i) The transformation y = f(x) v(x) reduces (1) to the first order homogeneous linear

differential equation

ao (X) f(x) % + [2a0 (X) f'(X) + ax(x) f(x)' z = 0 in the dependent variable , where z = dvldx.

(i) The particular solution

_ axx)d}
- =] {2
[f(x)]?

gives rise to the function v(x), where

(x)
exp{— I aidx}
(),
[f(3]°

v(X) = J.
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The function g defined by g(x) = f(x) v(x) is then a solution of the second-order differential
equation.

(iii) The original known solution f(x) and the "new" solution g(x) are linearly independent
solutions (1) and hence the general solution of (1) may be expressed as the linear combination.

c1f(X) + c2 9(x)
Alternatively, Let any linear of second order be

d?y dy
+P =2 +Qy=R
o P Y
or y'+Py'+Qy=R . 1)

where P, Q, R are function of x
Let u be a particular solution of the homogeneous differential equation.
y"+ Py' + Qy =0, then
u'+Pu+Qu=0 ... 2
Let y=uv, where u and v are function of x.
y'=u'v+uv
y'=u'v+uv +uv+uv'
=u"v+2uVv' +uv"
Substituting values of y, y', y" in (1), we get
u'v+2Uu' v +uv'+P(uv+uv)+Quv=R
or uw'+2u+Puv+U'+Pu+Quv=R
or uv'+ (2u'+Pu)v' =R [Q of (2)]
Dividing both sides by u, we get

V' + [Zv# Pj - R
u u

2 R
or V'+P1= -V +P, R = —
u u

Let vizw, V' =w
Then (3) becomes, w' + Pt w =Ry

This is a linear equation of order one in w and can be solved for w. After finding w, we can find v
by integrating w'.

Therefore, the solution of (1) is given by y = uv.
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10.4 Solution By Inspection
Find a particular solution of

d?y dy _ . . :
v +P & + Qy = R by inspection, where P, Q, R are functions of x
Given equation is
d’y_ ., dy
+P —=+Qy=R ... 1
o P Y @)
The corresponding homogeneous equation is
d’y_ ., dy
+P —=+Qy=0 ... 2
o ix Qy 2
Case I: We will find m so that e™ is a solution of (2)
2
Putting y = e™, ﬂ =me™, d—Zz m2e™ in (2), we get
dx dx
m?e™ + Pme™+Qe™ =0
or m>+mP+Q=0 ... 3)
Puttingm=1, -1, 2, -2, .......... in (3), we get

0] e*isasolutionof (2)if1+P+Q=0

(i) e*isasolutionof 2)if1-P+Q=0

(iii) e?is a solution of (2) if4+2P +Q =0
(iv) e*isasolutionof (2)if4-2P+Q=0
and so on.

Case Il. We find m so that x™ is a solution of (2).

2
Putting y = x™, % =m xm1, d—Zz m (m-1) x™2 in (2), we get
X
m(m-1) X™2 + Pm x™1 + Q x™=0
or m(m-1)+mpx+Qx*=0 ... 4)
Puttingm =1, -1, 2, -2,....... in (4), we get

() y = x is a solution of (2) if P + Qx =0
(i) y = xis a solution of (2) if 2-Px + Qx> =0
(i)  y=x%is a solution of (2) if 2+ 2Px + Qx?=0

and so on.
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2

d”y + Pﬂ
dx® dx
change of dependent variable

Working rule to solve

+ Qy = R, where P, Q, and R are functions of x, by

Step I: Find by inspection as explained above or otherwise, a particular solution u (say) of the
2

corresponding homogeneous equation ((jj g + P% +Qy=0
X X

Step II: Put if = uv, where v is a function of x. We will get a linear equation of order one which
can be solved.

Step IlI: After finding v, we get y = uv as required solution of given differential equation.
Let us do some examples to clarify what we have just said.

N . . ) d?y dy
Example 1: Given that y = x is a solution of (x* + 1) — - 2x—= +2y =0,
X

Find another linearly independent solution by reducing its order.

Sol: Puty =vx
ﬂ =v.l+x %
dx dx
\;
=X — +V
dx
2 2
and d—g =X d—\zl +ﬂ_1+ v
dx dx= dx dx
2
=X M + 2%
dx>  dx
2
Putting the values of ﬂ : (3 2’ in the given equation, we get
X dx
2
(x*+1) xd—\2/+2ﬂ - 2x x%jtv +2vx=0
dx dx dx
2
= x(x2+1)d—\2/ +2x2ﬂ+2ﬂ-2x2ﬂ -2xv + 2xv =0
dx dx  dx dx
2
~  x(2+1) d—‘z’ 2%
dx dx
2
Putting ﬂ: Z,.. d_\2/ = %
dx dx dx
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x(x2+1)%+22:o
dx

dz 2dx
> S+ =
z  x(X*+1)

= E+2F— X }dx=0
z X X +1

Integrating, we get the general solution as
log z+ (2 log x - log (x*+ 1) =log c

= log z + log x? - log (x?2+ 1) =log ¢

= I 2 =1
0 =logcC
d X2+l g

2

= ¢, where c is an arbitrary constant

{xﬂl}
= Z=C >
X

Choosingc=1,wefindthatz=1+ iz
X

: dv 1
l.e. — =1+ —
dx X
Integrating, we get

V=X- =
X

(-3
y=VX=| X—= |X
X

=x?-1is also a solution

Example 2: Given that y = ex is a solution of the differential equation

d’y _ dy
-5 —=+6y=0
dx? dx y

Find the general solution of the differential equation by reducing its order.

Sol: Given differential equation is
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2
d Y .5 ﬂ+6y=0

dx? dx

Here e2xis solution of (1)
Put y = ve?, where v is a function of x.

y' = V. 2e¥ + V' e

=(2v + V) e*
and  y"=(2v+V). 2e* + (2V' + V") e

= (4v + 4Vv' + V") e
Substituting these values of y, y', y" in (1), we get
(4v+4v' +Vv") e -5 (2v+ V) e> +6ve* =0
or 4v+4v+Vv)-5(R2v+Vv)+6v=0
or vt-vv=0 . (2)
Put Vv =w,Vv'=win (2),

w-w=0

dw

— -w=0
dx

or

dw
dx
Separating the variable, we get

1dw=dx
w

=w

1
Integrating,| — | dx
grating, [ = |
logw -log c1 =X

)
or log | — | =X
(o

w
G
w

or =eX

= Cy %
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or — =C1 ¥
X

Integrating, we get
v=c1J e*dx + ¢

vV=cie*+Cy
y=ve*
ory = c1 e* + ¢, e*is the required general solution of cix.

Example 3 : Given that y = x? is a solution of

d2
XZ—Z - 2X dy +4y=0
dx dx
find a linearly independent solution by reducing the order write the general solution.

Sol. : Puty = vx?

ﬂ =V.2X + xzﬂ
dx dx
2 2
and d—Z =v.2+2x@ +2x% +x2d—\2/
dx dx dx dx

Putting these values in the given equation, we get

2
xz[x2 d V+4x;£+2v]3x [X2%+2v:| +4vx?=0
X

e X
v dv
= X*—— + (4x*-3x%) — +2VvXP-6vX*+4vx*=0
dx dx
d?v v
= xt— +x3d— =0
dx dx
dv  1dv _
= — +—— =0
dx*  x dx
Put ﬂz z
dx
v _
dx*>  dx
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—+—-.2=0
dx x

= %+%:O
Z X

Integrating, we get
logz+logx=logc

or log (zx) =log c
Zx=c¢

Takee=1, ~.zx=1

= z==
dav 1
= — ==
dx X
dx
= dv=—
= v = log X
= y = vx? = x? log x is the second solution.

Hence general solution is
y =cC1 X? + 2 X2 log x for all x e (0,0)
[.. forlog x, x > 0]

Example 4 : Given that y = x3 is a solution of the differential equation

dZ
XZ—Z - 6X dy +12y=0
dx dx
Find the general solution of the differential equation by reducing the order.

Sol. : Given differential equation is

2
xZM - 6x dy +12y=0 (1)

dx’ dx
Here x3 is a solution of (1)
Put y=vx3 where v is a function of x

y'=v.3x*+Vv' x3
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=x2 (v + Vv'X)
and y"=2x (3v+Vv'X) + x? (3V' + V'X + V')
Substituting the values of y, y', y" is (1), we get
X[2x (v + V'X) + X2 (4v + V" X)] - 6x [x2 (Bv + V'X)] + 12v X3 =0

2@Bv+vVXx)+x(4v' +Vv'X)-6(38v+Vvx)+12v=0

or 6V + 2v'X + 4V X + V'x2 =18v - 16v'Xx + 12v =0
or x2v'=0
or v'=0
= V'=C1
ﬂ =C1
dx
= V=CiX+C

y = x3 (c1 X + C2) is the general solution of (1)

Example 5 : Given thaty = x +1 is a solution of

2
(x+1)2% 3 (x +1) % +3y=0
X X

-

Find a linearly independent solution by reducing its order. Write also the general
solution.
Sol. : Given differential equation is

2

dy
dx’
Put y=(x+1)

b =(x+1)%+v
X

dx

(x+1)2 -3(x+1) % +3y=0 ..(1)

2 2
oy e Sa
X

d  dx  dx
Putting in (1), we get

) d’v _dv av _
(x+1) {(x+1)§+2&] 3(x+1) {(x+l) dx+v} +3v(x+1)=0

and
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2
= (x+1)3H +2(x+1)2?-3(x+1)2?-3v(x+1)+3v(x+1)=0
X X

dx?
= (x+1)3d—2\/—(x+1)2ﬂ—0
dx? dx
dv dv
+1) — - —=0
= &+ D dx? dx
Put % =z
dx

x+1) —-z=0
dz dx

= —_— =
Z X+1

Integrating, we get

logz=log(x+1)+logc

= z=c(x+1)

Takec=2
z=2(xx+1)

= ﬂ=2(X+1)
X

= I dvzj 2(x + 1) dx

= v =(x+1)?

= y =v(x + 1) = (x +1)% is also a solution.
the two linearly independent solutions are (x + 1), (x + 1)3
general solution is
y = ci(x + 1) + co(x + 1)3, where ¢4, ¢, are arbitrary constants

Example 6: Solve the following equation by the method of reduction of order

2
xzu-2x(1+x)%+2(l+x)y:x3

dx?
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Sol: Given equation is

2
xz%—Zx(l+x)%+2(l+x)y=x3

2
dy (LX) dy 20
dx X ) dx X

2
Comparing it with d—¥+ P ﬂ + Qy = R, we get
dx dx
P=-2(1+X),Q= 2(1J;x) R=x
X X

Now P+Qx=0
21+ x) N 2(1+x) =

X x?

0

= 0=0

y = X is a solution of the equation

dy  2@+x) dy , 20+x) _
dx? x  dx N

Put vy =vx, where v is a function of x

0

d’y dv dv dv
dx? dx dx® dx
2

d
Substituting values of y, ﬂ \ —Z in (1), we get
dx dx

dv _dv 1+ X dv 1+ X
x—2+2——2 — || VEX— | + 2 > |VX =
dx dx X dx X

dv  _dv 2(1+X)

or X —+2—- V-2(1+x)—
dx dx X dx
d?v dv

or X —+ 2X —=X
dx dx
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dv _dv

or -2—=1 . 2
¢ dx @)
dv dv

Put & =W, y =w'in(2 ... 3)
w-2w=1

This is linear equation in w.
IF= e ™

Solution of (3) is
w. 2 = I le?dx+cy

—2X

or Ve = +C1
dv_ 1
or —=-= + e
dx
Integrating w.r.t. x, we get
1
v=Ix+ deXic,
2
General solution of (1) is y = vx
1
or y=—§ ¥+ X €2 + CoX
1
or y=-= x2+& X €2 + CoX
2 2

Example 7: Solve the following differential equation by the method of reduction of order

dzy
d — - (2x- 1)—X +(x-1)y=0
Sol: Given equation is
2
32/ (2x - 1)—+(x 1)y=0
2
or M-Mﬂ+l_—xy:0 ...... 1)

dx? X dx X
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2

Comparing (1) with d—Z+ P ﬂ + Qy = R, we get
dx dx
P:-(2X+1),Q: X_l,R:O
X X
1+P+0Q=1- 2x-1 N x—1= X—2X+1+x-1

X X X
0
or 1+P+Q=-=0
X

y = e*is a solution of (1)

Put y = ve*, where v is a function of x

dy _ . v
— —veX+eX—
dx dx
2 2
and d—ZZ vex+exﬂ+ exy +exd_¥
dx dx  dx dx
2
Substituting values of y, ﬂ , d_zl in (1), we get
dx dx

vex + 2e*— + e

dv . d’ (2x—1){ . de} x-1
- . ve' +ef— |+ ve

dx ax? X dx N
2x-1 x-1 dv 2x—1 d3v
or veX| 1- — |te*— |2~ +tef— =
X X dx X dx
dv 1 dv
or — + = — =
dx?  x dx
2
Putting ﬂz w and d_z/ =w'in (2), we get
dx dx
w' + 1 w=0
X
or d_VV 1 =0
dx x
or 1 dw + 1dx =0
w X
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Integrating, we get

or

or

or

or

or

I Vlvdw+

I 1dx = log |cy, c1 is arbitrary
X

log |w| + log |X| = log |c4]

log |w X| = log |c1]
WX = C1
dv
—X=C1
dx
dv = cll dx
X

Integrating, we get

or

I dvzcl'[ %dx+c2

v=cilog |X] + ¢

the general solution of (1) is

y = [c1 log [x] + co]e* Qy=ve]

Self-Check Exercise

Q.1

Q.2

Q.3

Q.4

Q.5

If y = eXis a solution of xy" - (x + 1) y' + y = 0, then find another linearly
independent solution by reducing its order.

d2

_2/ - 2X ﬂ +2y=0

dx dx

find a linearly independent solution by reducing its order. Write the
general solution.

Given that y = x is a solution of (x? - 1)

Given that y = e* is a solution of y* - 6y’ + 8y = 0, find a linearly
independent solution by reducing its order. Write the general solution.

Solve the differential equation by the method of reduction of order:

2
M-cotxﬂ -(1-cotx)y=e*sinx
dx

dx®

Solve the following differential equation by the method of reduction of
order:

y'+2y' +y=(ex-1)?
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10.5

10.6

10.7

Summary:

We conclude this unit by summarizing what we have covered in it:-

1. Discussed a method to solve a differential equation by reducing its order.
2. Discussed method to find a particular solution by inspection
3. Find solutions of differential equations by reducing its order.
Glossary:
1. By reducing the order, we can break down the problem into a series of simpler
equations, making the solution process more feasible.
2. y = x is a solution of
% +P % +Qy=0ifP+Qx=0
3. y = xtis a solution if
2-Px+Qx2=0
4, y = X2 is a solution if

2+2Px+Qx?=0
Answer to Self Check Exercise
Self-Check Exercise

Ans.1 Another solution is -(x + 1) and complete solution is y = c1e* - ¢z (x + 1), where ¢,
C2 are arbitrary constants.

3
.. X L
Ans. 2 Another solution is E - X log x and general solution is

X .
y=Ci X+ C{E —xlogx |, where c1, ¢, are arbitrary constants.

Ans. 3 Another independent solution is e* and general solution is

y = c1e% + c.e*, where c1, ¢, are arbitrary constants.

G

1 .
Ans. 4 yz-zexcosx- ge‘x(cosx+25|nx)+C2eX

Ans. 5 y=-e*log (1 - €*) + cixe™ + c.e™

10.8 References/Suggested Readings

1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.
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2. I. Sneddon, Elements of Partial Differential Equations, McGraw-Hill, International
Edition, 1967.

10.9 Terminal Questions

1. Given that y = x is a solution of
dZ
XZ—Z - 4x dy +4y =0,
dx dx
find a linearly independent solution by reducing the order. Write the general
solution.
2. Given that y = e* is a solution of y" - 5y' + 4y = 0, find a linearly independent
solution by reducing its order. Write the general solution.
3. Given that y = e* is one solution of y" - 6y’ + 8y = 0. Use reduction of order to
find a second linear independent solution. Also find the general solution.
4, Solve the following differential equation by the method of reduction of order:
d’y . dy
1-x3) —5 +x — -y=x(1-x%3%?
(1-x%) o x Y (1-x9)
5. Solve the following differential equation by the method of reduction of order:
X y
" - 1 + = X - 1
y x-1 y x-1

219



Unit - 11

Variation of Parameters

Structure
11.1 Introduction
11.2 Learning Objectives

11.3 Method of Variation of Parameters to Solve a Second Order Linear Differential Equation
With Constant Coefficients

Self-Check Exercise
11.4 Summary
11.5 Glossary
11.6  Answers to self check exercises
11.7 References/Suggested Readings
11.8 Terminal Questions

11.1 Introduction

The variation of parameter method is a technique used in solving non-homogeneous
linear differential equations. It provides a systematic approach to finding particular solutions by
assuming that they can be expressed as a linear combination of known functions multiplied by
unknown coefficients.

By using the variation of parameter method, one can find a particular solution that
satisfies the non-homogeneous equation, while also considering the complementary solution
that satisfies the associated homogeneous equation. This method allows for the complete
solution of the differential equation, incorporating both the general solution of the homogeneous
equation and a particular solution of the non-homogeneous equation.

Compared to other techniques, the variation of parameter method is more versatile and
applicable to a wider range of non-homogeneous equations. It does not required making
specific assumptions about the form of the particular solution, which can be limiting in certain
cases. Instead, the method allows for the flexibility of choosing the basis functions for the
particular solution, resulting in a more general solution.

11.2 Learning Objectives
After studying this unit, you should be able to:-

. Discuss method of variation of parameters to solve a second order linear
differential equation with constant coefficients.

. Solve differential equations by the method of variation of parameters.
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11.3 Method of Variation of Parameters To Solve A Second Order Linear Differential
Equation With Constant Coefficients

Consider the second order linear differential equation

d’y

— +P1—= Y+ P

dx? l dx ¥=Q

where P1, P, are constants and Q is a function of x.

Let y; and y; be two particular L.l. solutions of the equation

d’y dy
—2 +P1—2+Py=0
dx’ " dx y=
d*y, ., dy
= +P1— +P,y:1=0
dx? Vdx 2ya
d*y. dy
and d)(22 P1 d)(z +P2y2=0
Now Let y = Ay: + By2

where A and B are functions of x
Differentiating (5) w.r.t. X, we get

d d d dA dB

o e P R o
Choose A and B so that

Y1d—A + yzd—B =0

dx dx

Then (6) becomes

dy _ g

dx dx dx

Differentiating (8) w.r.t. X, we get

dy _, d°y , 5 d% ,dAdy  dB dy,
dx’® dx’® dx*  dx dx dx dx

(1) becomes

2 2
Ady1+Bd y2+d_A\dy1 dB dy2 ( dy1+de2)+P2(Ay1+By2):A

dx? dx? dx dx dx  dx
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d?y, dy, d%y dy. dA dy, dB dy
Al = A.p2i.p +B| —224p22.p + — 2 4+ —22.0=0
- [dx2 Y zle [dx2 PR T Tk ax @

~  po+Bo+ AW B D,
dx dx dx dx

dy, dA N dy, dB

~Q=0 [Using (3) and (4)]

-+ —+—==—-Q=0 ... 9
- dx dx dx dx Q ®)
Solving (4) and (9) ford—A andd—B, we get
dx dx
dA/dx dB/dx _ +Q
-Y, -V %_ %
yl dX y2 dX
L, A_  ¥vQ dB_  y»Q
ac b ok D,y
Ydx 7% dx Ydx 77 dx
= AZ-I yz—QdX+C1,B:I LdX+C2
W(Y1: Y,) W(Y1:Y,)
i Y
where W (y1, y2) = |dy, dy, =y1%—y2%¢0 [Q yi1, y2are L.1]
dx dx

1, C2 are arbitrary constants.
Substituting these values of A and B in (5) we get the general solution of (1).
Let us do some examples to clarify this method:

Example 1: Solve the following equation by the method of variation of parameters:
d?y
— ty=tanx
o 7
Sol: Given equation is
d%y
—>- +y=tanx
o 7
Equationin S.F.is(D*+1)y=tanx ... 1)
The corresponding homogeneous equation is

(D?+1)y=0
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AE.isD?+1=0 ... 2
AE.isD*+1=0
or D=+i=0+i

the complementary solution of (1) is

Yc = C1 COS X + C2 Sin X

Now we seek a particular solution of (1) by variation of parameters.

Let y=Acosx+Bsinx ... 3)

Differentiating (3) w.r.t. X, we get
y'=A'cosx+B'sinx-Asinx+Bcosx ... 4

Choose A'cosx+B'sinx=0 ... (5)

(4) becomes
y'=-Asinx+Bcosx ... (6)
Diff. w.r.t. x, we get
y'=A'sinx+B'cosx-Acosx-Bsinx ... (7)
Substituting the values of y, y" from (3) and (7) in (1), we get
-A'sinx+ B'cos x-Bsinx-Acos x+ A cos X + B sin x =tan x
or -A'sinx+B'cosx=tanx ... (8)
Now we try to find values of A" and B' from (5) and (8)
Multiplying (5) by cos X, (8) by sin x and subtracting, we get
A' (cos?x + sin?x) = 0 - sin x. tan x
A' = - sin x tan x
Again multiplying (5) by sin x, (8) by cos x and adding, we get
B' (sin®x + cos?X) = cos X tan x
or B' = sin x
nx
COS X

Now A'=-sinXxtan x = -sin X.

sin® x

COSX

1-sin®x
COSX
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1
=- | ———cosXx
COSX
=COsS X-secX

Integrating w.r.t. x, we have

T X
tan| —+—
53

Also B'=sinXx = B = - cos x

A =sinx - log

Putting values of A and B in (3), we get

y =|snx—log tan(£+§j
4 2

which is a particular solution of (1)

}cosx—cosx.sinx,

General solution of (1) is

Yy = C1 COS X + C, Sin X + {Sinx—log

}cos X - COS X. Sin X

2

7T X
tan| =+ =
&3)
d7y

Example 2: Solve Y +y = cosec X, by the method of variation of parameters.
X

Sol: Given equation is

d%y

—> +y=cosecXx ... 1

o Y )
Equation in the symbolic form is (D? + 1) y = cosec X
AE.isD?+1=0 ~D=0+i .. 2

.. C.F.isy =Acos x + B sin x where A, B are constants.

Let (2) be a sol. of (1) where A, B are functions of x.

Differentiate (2), ﬂ =-Asin X + cos x d—A + B cos x + sin x d—B
dx dx d

X
A ) B
Put  cosx d— + sin xd—:o ..... 3
dx dx
then ﬂ =-Asin x+ B cos x
dx
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2

Differentiate —Z =-AcCos X - Ssin xd—A - B sin x + cos xd—B
dx dx

Putting in (1), - A cos X - sin xd—A - B sin x + cos xd—B
dx dx

+ A cos X + B sin X = cosec X

or - sin xd—A + cos xd—B -cosecx=0 ... (4)
dx dx
From (3), cos xd—A + sin xd—B +0=0 .. (5)
dx dx
dA  dB
Solving, dx - _dx _ 1
1 —cotx -1
d—A =-land —=cos x
dx dx

Integrating, A = c1 - x and B = ¢z + log sin x
Hence the sol. isy = (c1 - X) cos x + (C2 + log sin X) sin X
d’y

Example 3: Solve: Y + 4y = 4 tan 2x by the method of variation of parameters.
X

. . d%
Sol: The given equation is F +4y=4tan2x .. (1)

X
Equation in the symbolic form is (D? + 4) y = 4 tan 2x
AE.isD?+4=0..D=0+2i
.. C.F.isy=Acos 2x + B sin 2x where A, B are constants ... 2

Let (2) be a sol. of (1) where A, B are functions of x.

. : d : dA . dB
Differentiate (2), d_y =-2A sin 2x + cos 2x ax + 2B cos 2x + sin 2x —
X

X dx

Put  cos 2xd—A + sin 2xd—B= o . 3
dx dx

then % = -2A sin 2x + 2B cos 2x
X

d2
Differentiate —Z = -4A cos 2x - 2 Ssin 2x d—A - 4B sin 2x + 2 cos 2xd—B
dx dx dx
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Putting in (1), - 4A cos 2x - 2 sin 2x3—A - 4B sin 2x + 2 cos ZX?
X X

+ 4A cos 2x + 4B sin 2x = 4 tan 2x

or -2 sin 2x d—A+2c052x E—4tan2x=0 ..... 4)
dx ax
or sin 2xd—A - COS ZXE+2tan 2x=0
dx dx
From (3), cos 2xd—A + sin 2xd—B +0=0 . (5)
dx dx
B,
dx dx
Solving, -2tan 2xsin2x=2tan2xcos 2x =1
dA

= -2 tan 2x sin 2x and E = 2 tan 2x cos 2x
dx dx

or

dA_ 2sin*2x _ 5 1-cos’ 2x
dx COS2X COS2X

= -2 (sec 2x - cos 2x) and? =2 sin 2x
X

. V4 ,
Integrating, A = -log tan (Z+ xj + sin 2x + ¢y and B = - cos 2X + C»
Hence the sol. is

y= {cl—logtan(gjt xj+sin2x} COS 2X + [c2 - cos 2x] sin 2x

= [cl—logtan(%+ XH COS 2X + C2 Sin 2x

dZ
Example 4: Solve: —Z -y = — (by the method of variation of parameters)
dx 1+e
d2
Sol: The given equation is Z -y= 2 = Q)
l+e
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2

Equation in the symbolic form is (D?- 1)y = -
l+e

AE.isD?-1=0 ~D=+1

Cf.isy=Aex+Be* ... (2), where A, B are constants

Let (2) be a sol. of (1), where A, B are functions of x

Differentiate (2), ﬂ = Ae* + exd—A - Be™, e‘xd—B
dx dx dx
Put e"d—A + e‘xﬁ: o . (3)
dx dx
then ﬂ = Ae* - Be™
dx
2
Differentiate d—Z = Ae* + e"d—A + Be™* - e'Xd—B
dx dx dx
Putting in (1), we get Ae* + exd—A + Be™ - e'Xd—B - Ae* - Be* = 2
dx dx 1+¢€"
or exd—A -e'Xd—B - 2 =0 L. 4)
dx dx 1+€
From (3), exd—A - e'X@ -0=0 . (5)
dx dx
dA dB

Solving, d)f = dxi = !
2¢* -2 1+1

1+e* 1+¢

dA e dB e”
- an -

dx 1+ dx | 1+e
_X —2X
Integrating, we get A=cy + dx=cl+ dx
J g g ' I 1+¢ I e +1
Q+e)e*-e™ e
=c + dx=ci+| e*dx- dx
' -[ 1+e” ' -[ I 1+e”

=ci-e*+log(l+e*)andB=c.-log (1 +¢€¥

Hence the sol.isy=[ci-e*+log (1 + e*) e*+[c2 - log (1 + €¥)] e*
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Example 5: Solve the following differential equation by the method of variation of parameters

d?y Vs T
—5 ty=secx |- <X<—
dx 2 2

Sol: Given equation is

(D*+1)y=secx ... 1)
The corresponding homogeneous equation is
D2+1)y=0 ... 2)
AE.isD?+1=0
or D=+

the complementary solution of (1) is
Yc = C1 COS X + C2 Sin X

Now let us try to find a particular solution of (1) by variation of parameters.

Let y=Acosx+Bsinx ... 3)
y'=A'cosx-Asinx+B'sinx+Bcosx ... 4)
Choose A'cosx+B'sinx=0 ... (5)

So that (4) becomes
y'=-Asin X + B cos x
y"=-A'sinx-Acos x +B'cos x-B sin X

Putting values of y, y" in (1), we get

-A'sinx-Acos x+B'cos x-Bsinx+Acos x + B sin x =sec x
- A'sin x + B' cos X = sec x

Also A'cosx+B'sinx=0 [From (5)]

Solving simultaneously, we get A'=tanx,B'=1

Az—j tanxdx,Bz'[ 1 dx

A =log |cos x|, B =X

a particular solution of (1) is

Yp = €0S X log |cos X| + x sin X
General solution of (1) isy =yc + Yp

or Yy = C1 COS X + C2 Sin X + cos X log |cos x| + X sin X
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Example 6: Solve the equation by the method of variation of parameters
(D? + 1) y = cosec x cot X

Sol: Given differential equation is
(D*+1)y=cosecxcotx ... (1)

Corresponding homogeneous equation is

(o?+1)=0 L (2)
AE.isD?+1=0
or D=+

Complementary solution of (1) is
Yc = C1 COS X + C2 Sin X

Now let us try to find a particular solution of (1) by variation of parameters.

Let y=Acosx+Bsinx ... 3)
y'=A'cosx+B'sinx-Asinx+Bcosx ... 4)
Choose A'cosx+B'sinx=0, ... (5)

So that (4) becomes

y'=-Asin X + B cos x

y" =-A'sin x + B' cos x - A cos X - B sin x
Now putting values of y, y" in (1), we get,

- A' sin X + B' cos x = cosec x cot X [From (5)]
Also A'cosx+B'sinx=0

Solving simultaneously, we get

A' = - cot x, B' = cot? x

Az—j cot x dx, Bz.f cot? x dx

or A =-log |sin x|, B =J. (cosec? x - 1) dx

=-cotx-Xx
a particular solution of (1) is
Yp = (- cot x - X) sin x + (- log |sin x|) cos x
General solution of (1) isy =yc + Yp

or Yy = C1 COS X + C2 Sin X - cos X log |sin X| - (cos X + X sin X)

229



or Yy = €1 COS X + C2 Sin X - cos X log [sin X| - X sin X [ci=c1-1]
Example 7: Solve (D? - 3D + 2)y = cos (e™) by the variation of parameters method

Sol: Given differential equation is

(D?-3D+2)y=cos(e® .. (1)
Corresponding homogeneous equation is
(b?-2D+2)y=0 L. (2

AE.isD?-3D+2=0

or (D-1)(D-2)=0
D=1,2
the complementary solution of (1) is
Ye =C1 € + o %

Now let us try to find a particular solution of (1) by variation of parameters.

let y=Ae*+Be* . 3)
y'= A'e*+B'e>*+Ae*+2Be* .. (4)
Choose Ae+Be*=0 ... (5)

So that (4) becomes
y=Ae+2Be*
y'=A'e+2B' e*+Ae‘+4Be*
Now putting the values of y, y', y" in (1), we get
A' e* + 2B' e = cos (e¥)
Also A'e+B'e*=0 [From (5)]
Solving simultaneously, we get
A' = -e* cos (e*) and B' = e cos ()

A= I e*cos (e*¥)dxand B = J. e2* cos (e™) dx
A=sin(eX),B= I tcostdt, wheret=e*=-(tsint+ cost)

A =sin (e¥), B =-(e*sin e* + cos e¥)
a particular solution of (1) is
yp = (sin €) e - (e sin e-x + cos e¥) e?x

or Yp = € sin e - e sin e - e2x cos e~
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= -e? cos e
General solution of (1) isy =y + yp
or y =C1 €+ c2 e - e* cos e~

Example 8: Find the general solution of following non-homogenous differential equation using
method of variation of parameters:

16e™
(D*>+6D+9)y= —;
X +1
. . . o 16e™
Sol: The given differential equation is (D2 + 6D + 9) y = —; 7 D
X+

Its A.E.isD?+6D+9=0

(D+3)2=0=>D=-3,-3

complementary solution of (1) is

ye=(C1+c2x)eX=cre+coxe™
Now we seek a particular solution of (1) by method of variation of parameters
Let y=Ae®+Bxe* . (2)

Differentiating w.r.t. x, we get

d
@y . 3Ae¥*+Ae*+BEe*>*-3xe®) +B xe*

dx
Choose A'e** +B'xe*=0 .. (3)

d
Y o 3Aex+Be®-3Bxe™ .. 4)

dx

Differentiating w.r.t. X, we get

d’y _ .. o _
—2=3Ae3x+9Ae3"+B eX-3Be¥

dx

-3B(e*-3xe*e®™)-3B' xe

dzy 1 A-3 ' A-3 -3, -3 -3
—2=-3AeX+Bex+9AeX-6BeX+9BxeX
dx

-3B'xe®™ (5)

2
Putting values of y. % . (; y

” 7 from (2), (4), (5) in (1), we get
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BAe*+B e*X+9Ae*-6Be¥+9Bxe®* 3B xe¥

16>
+6(-3Ae>+Be¥-3Bxe¥)+9(Ae*+Be¥) = —;
X +1
16e >
or -3Ae¥+B e¥-3Bxe¥= —
X +1
or -3A'-3BXx+B'= %6 ...... (6)
X" +1
From (3),A'+Bx=0 L. @)
Solving (6) and (7). B= 2 and A'= 2
X +1 X“+1
B = 16j dx__ 16tan-1xandA=-8j 2X_ 4y = -8 log (2 + 1)
xX*+1 X2 +1

Putting values of A and B in (2), we get
yp=-8e*log (x? + 1) + (16 tan x) (x &)
=[-8log (x? + 1) + 16 x tan! x] e
which is particular solution of (1)
general solution of (1) is given by
y=Yec+Yyp=(Ci+c2X)e>+[-8log (x*> + 1) + 16x tan x] e

ie. y=[ci+c2-8log(x?-1)+ 16 xtan? x] e

Self-Check Exercise

Q.1 Solve the following differential equation by the method of variation of

parameters:-

d_zy + 4y = cOS X
dx?

Q.2  Solve the following differential equation by the method of variation of parameters.

(D*-1)y=¢
Q.3  Solve by the method of variation of parameters:
d2
—Z + dy + 2y = sin
dx dx

Q.4  Solve by the method of variation of parameters:
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(D? + a?) y = sin ax
Q.5 Solve by the method of variation of parameters:

y'+2y +y=2e

11.4

11.5

11.6

11.7

11.8

Summary:

We conclude this unit by summarizing what we have covered in it:-

1. Discussed in detail the method of variation of parameters to solve a second order
linear differential equation with constant coefficients.

2. Find solutions of second order linear differential equations with constant
coefficients by using method of variation of parameters.

Glossary:

1. The variation of parameter method is a technique used in solving non-

homogeneous linear differential equations.
Answer to Self Check Exercise

Self-Check Exercise

. 1
Ans.1 y=cyC0S2X+Csin 2x + § COS X
L1
Ans.2 y=cie*+ce*+ E X €%, where

1
C1=Ci- 1 and c; =c»
Ans. 3 y=c; e*+c, e%- e?sin e

X .
Ans. 4 y=c;cos ax - 2— COS ax + C3 Sin ax
a

1
where cz=cp + —
4a

2
Ans.5y:cle'x+c2xe'x+§ e

References/Suggested Readings

1. Boyce, w. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.
2. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.

Terminal Questions
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Solve by the method of variation of parameters

d?y
—5 +9y=sinXx

dx’ Y

Solve the following differential equation by the method of variation of parameters

d2
ay + 9y =sec 3x

dx’
Solve by the method of variation of parameters:

2
M +4y=tanx

dx’

Solve by the method of variation of parameters:
(D?-6D +9)y = x?2 e¥

Solve by the method of variation of parameters:
(d?-2D +2) y = e*tan x
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Unit - 12
Cauchy-Euler's Homogeneous Linear Equation

Structure

12.1  Introduction

12.2 Learning Objectives

12.3 Method to Solve Cauchy-Euler's Equation
Self-Check Exercise

12.4 Summary

12.5 Glossary

12.6  Answers to self check exercises

12.7 References/Suggested Readings

12.8 Terminal Questions

12.1 Introduction

dny dnfly dn—2y
+ Pi— 2

dx" ax™* dx"?
Po, Pi1, P2,......,Pn and Q are functions of x is called linear differential equation with variable
coefficients.

+P

A differential equation of the form Pg

A homogeneous linear equation of the form

n n-1

d
POX“KX + Pyx™t dx”}l/ o + Pny = Q(X)
where Py, P1, Ps,....... , Pn are all real constants and Q(x) is a function of x, is called

courtly - Euler's linear equation. It is named after the mathematicians Augustin-Louis Cauchy
and Leonhard Euler, who made significant contributions to the field of differential equation.

12.2 Learning Objectives
After studying this unit, you should be able to:-

. Define Cauchy-Euler's linear equation.
. Discuss method to solve Cauchy-Euler's equation.
. Find solutions by this method.
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12.3 Method to Solve Cauchy-Euler's Equation
A linear equation of the form

dn n-1

Poxnazl + Pyx™t dx“‘)ll e +Py=0Q(X) ... (1)

where Po, Pa,....... ,Pn are real constant and Q(x) is a function of x, is called linear
equation.

The equation (1) can be written in the symbolic form as

(Pox"D" + Py X" D™ +......... Ppy=Q(x ... (2

where D = i

dx

Put x=e? ie,z=logx,x>0

dz _1

dx X

dx dz dx dz x xdx
Let 1 =0

dz

2
Also d—Z:iﬂ:E lﬂ :liﬂ.yﬂi E]
dx \dx/ dx\x dz x dx \ dz dz dx \ x
d

—ld_zyg+_y _i l_iﬂ {Q%:l}
x dx? dx dz\ x*) x x?®dz dx X
dy_1 (d’ dy
d¢ x*\dZ dz
20y _dy dy
d* dZ¢ dz

or x?D?y=0%y-0y

or x?D?y=(0%-0)y = x2D?=0%-0
=  xD2=0(0-1)

Similarly x3D¥=0(0-1)(0-2)
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and so on

In general, x"D"=06 (0-1) (6-2) ....... CE n_—l)

Substituting the values of x"D" ......... x2 D2, x Din (2), we get,

PO (0-1)(0-2)....(0-N=1) + P10 -1) ... (0- N=2) +.ee...¥ Pra0 + P ]y =Q (€9 ... (3)
or  f®)y=¢(2)

where £(0) is a polynomial in 6 with real coeffs. and ¢ (z) is a function of z.

Now (3) can be solved for y in terms of z by the methods already known to us. Let its
general solution be

y=v(2)
general solution of (1) is
y =y (log x), x > 0.
Note: Working rule to solve Cauchy's linear equation

Step 1: Put x=¢€% ie, z=logx,x>0

Step 2: Put i = 0 so that
dz

XD=0,x2D?>=0(0-1),..,xD"=0(0-1) (6-2) ... (0- n—-1)
Step 3: Putting these in the given equation, we get,
[Po® (0-1)....(0-N-1)+P10(0-1)...(0- N—2) +....+ Py] y = Q (e?) which is
linear equation with constant coeffs. and solve for y in terms of z.
Step 4:Put  z =log x to get the required solution.
To clarify what we have just said, consider the following examples:-

Example 1: Convert the following differential equation by substituting x = e into another whose
coefficients are constant:

de_zgl +9x% +25y=0
dx dx
Sol. : The given differential equation is
x23—3+9x$+25y=0 ...... (1)
or,inS.F. x*D*+9xD+25y=0 ... 2
Put X =e€? |e., z=logx,x>0

and xD=6,x*D?=0(0-1)in(2)
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6(O-1)+96+25]y=0
or (62 + 8 0 + 25] y = 0, which is required differential equation.

Example 2: Solve the following differential equation

dS
Sol: Given differential equation is
d _ 6y
¢ X
d’y
or XX—= =6
o Y
or x*D®-6)y=0 .. 1)

Put X = €%, so that z = log X
and xD=0,x2D?=0(0-1),x*D3=0(0-1)(0-2)
where 6 = %
Putting these values in (1), we get
O6@®-1)(®-2)-6]y=0
or [63-3602+20-6]y=0
AE.is0%-302+20-6=0
or 6-3)(0B*+2)=0
=  0=3, +2i
General solution is

y =ci1e¥ + C; cos~/2z + cssin/2z
or  y=c1x3+c,cos (12 log x) + ¢z sin (+/2 log x), x>0

Example 3: Solve the following differential equation

2
xz% +9x% +25y=50
X X

Sol: Given differential equation is

2
x2¥+9x% +25y=50 ... (1)
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Equation is S.F. is
(x*D?+9xD+25)y=50

Put X=e? |ie. z=logx,x>0

and xD=0,x2D?=0(0-1)in (2), we get
[6(©6-1)+96+25]y=50

or (62 + 80+ 25)y=50

AE.is 62+80+25=0

oo ~8E64-100 _ -8x-36 _
2

=-4+3i
2

C.f.is = e* (cy cos 3z + c; sin 32)

= x*[c1 cos (3 log x) + ¢z sin (3 log X)]
1

Pl.=— (50
6'2+8¢9+25( )

1
=50 —— (1
0° +80+25 @)

1

— 0.z

0° +80+25

ot
0+0+25

0z
=2
C.S.is

y =2+ x*[c1 cos (3 log x) + ¢z sin (3 log x)]

Example 4: Solve the following differential equation

d2
XZ—Z - 3x dy + 4y = 2x?
dx dx
Sol: Given differential equation is
2
20y
dx’
Equation in S.F. is
(x*D?-3xD+4)y=2x?

Put X=e? |.e. z=logx,x>0

3x dy + 4y = 2x?
dx
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and xD:G,xzDzze(e-1),Wheree=dg
z

from (2), we have

[0(O-1)-30+4]y=2e?%
or (02-40+4)y=2¢e?%
AE.is0?-40+4=0
or 06-22=0

0=2,2

C.F.is yc=(Cc1+ C22) €%

P.l.= _t 2e%

0> +40+4

-
(22-4(2) +4

e [case of failure]

1 . .
=2z. o .e% [Again case of failure]

=27.27. 1 e

= 72 22

General solution isy = yc + yp

or y=(C1+cCp2z)e?*+z2e%

or y = (c1 + ¢z log x) x? + (log x)? x?
d2

Example 5: Solve x2—¥ - X dy +y=2log x
dx dx

Sol: Given differential equation is
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,d’y dy

XW—X& +y=2logx ... D
Equation in S.F. is

x*D?-xD+1)y=2logx ... 2
Put X=e? ie. logx=2z,x>0

and xD:G,xzDzze(e-l),whereO:diin(2)
z

We have O@®-1)-06+1y=22
= (02-20+1)y=2z=(0-1)2y=2z
AE.is(0-12=0=0=1,1

C.F.=(c1+ coz) €*

22 =2
(6-1° (1-06)*

=2z+202)=2z+2)=4+2z

CS.isy=(c1+c22)e*+4+2z

z2=2(1-0)2z=2(1+20)z

i.e. y=(c1+c2log X) X+ 4 + 2 log X, is the reqd. solution.

d2
Example 6: Solve: XZ—Z - 3x dy + 2y = 4x3
dx dx

Sol: Putx=ezi.e., z = log x ande:E),xzDZ:E)(e-1),where9:di
z

the given equation becomes (6(0 - 1) - 20 + 2) y = 4e*
ie., (02-30+2)y=4e%*

AE.is0?-30+2=0
- 0-1)(0-2)=0=0=1,2

C.F.=cie?+ce®

1
Pl = 2; 4e¥=4 ——— —¢%
0°-30+2 R -33)+2
=4.—1 e’ = 2e*
9-9+2

C.Sisy=ci1e? + c% + 2e*

y = CciX + C2x? + 2%3, is the reqd. solution.
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d? d?
Example 7: Solve: x3—¥ rael Yy X% + 8y = 65 cos (log X)
X

ax?
Sol: Put x = e*i.e. z = log X, the given equation becomes
[6[6-1)(06-2)+36(6-1)+6+8 y=65cosz
A.E.is 0[02-30+2)+302-30+0+8=0
ie. 0°-30°+20+30°-30+0+8=0i.e0®°+8=0
= 0+2)(06°-20+4)=0

2+4-16

-  9=-2, =Y " =2 1+43]
2

C.F. is c1e?*+ e?[c, cos \/§ Z]

65 cosz=65.2; cosS z =65

Pl =—
0°+8 0°.0+8 -0+8

COs z

=65 (8+0) cos z=65 (8 +0)

64— 6? 64+1

=8cosz-sinz

cosz=(8+0)cosz

C.s.isy=cie%+ e*(c, cos \/§z +Cc3sin V3z)+8cosz-sinz
i.e. y = c1x?2 X [c2 cos (\/§Iog X) + c3 sin (\/§|OQ X)] + 8 cos (log X) - sin (log x), is the
complete solution.
Example 8: Solve: {x*D* + 2x°D?® + x2D? - xD + 1}y = x log x
Sol: The given equation is (x*D* + 2x°D% + x°D?-xD + 1}y =xlogx .. (1)
Putting x = ez= z = log X, the given equation becomes
[6(6-1)(0-2)(0-3)+20(06-1)(6-2)+6(0-1)-06+1]y=¢€%2
= [0(0°-602+110-6_+20(02-30+2)+02-0-0+1]y=ze?
= 90% - 40% + 602 - 40 + 1] y = ze?
= 1-0)¢y=2ze2 (2)
AE. is(1-0)*=0=6=1,1,1,1 C.F.is(c1+CzZ + Cc3z% + CaZ)€?

z

P.l.is —ze
1+0)
:ez%z {Qi(ea"V):eax;V}
[1-(6+D)] f(D) f(D+a)
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5

1 z

=e ra z=e o
the general solution of (2) is

5.2
y = C.F. + P.l. = (C1 + C2Z + C3Z? + C4Z®) €%+ 5

Hence y = [c1 + ¢z log X + ¢35 (log x)? + ¢4 (log x)°] x + g (log x)°, is the general solution of the
given equation.

3 2
Example 9: Solve: x4d—Z + 2x3d—¥ - xzﬂ
dx dx dx

Sol: Given differential equation is

+xy=1+x

x“ﬂ + 2x3d—2y -xzﬂ
dx’ dx’ dx
or x¥D¥+2xD?-xD+1)y=1+x ... (1)
Put x=¢€? i.e.z=logx
and xD=0,x2D?>=0(0-1),xD%=0(0-1)(0-2)in (1), we get
00-1)(0-2)+200-1)-0+1]y=1+e?
or [02-02-0+1)y=1+¢?
AE.is0%-02-0+1=0
or 0-1)0*-1)=0
= 6-12@®+1)=0
6=1,1,-1
C.F.is=cie? + (c2 + c3z)e?

+xy=1+x

= cixt + (c2 + c3 log X) x

1

PlL.= ——————(1+¢e*

93—92—9+1( )

1 1+ 1 o
-0°-0+1" 6°-0°-0+1

Now 3 21_ A= 3 21_ e"2=+eOZ

0°-0°-60+1 0°-0°-60+1 0-0-0+1
Also 3 21 e’= ! e’= Ee'Z [case of failure]

0°-60°"-60+1 -1-1+1+1 0
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1
,——— €
30°-20-1

1
3+2-1
1

= —ze'Z—l x* log x
4 4

CS.is=

-Z

=z e’

y =c1 X1+ (c2 + cs3 log X) +%X'l log x

Example 10: Solve the following differential equation

2

xzd—z + 4x dy + 2y =x2+ iz
dx dx X
Sol: The given differential equation is
2
xzd—z + 4x dy + 2y =x2+ iz
dx dx X

. 1
orin,S.F,(x*D*+4xD+2)y=x*+ =
X
Put X = €7, or z=logx,x>0
and xD=0,xD?=0 (0 - 1), where diz 0
z

(1) becomes [0(0-1)+40+2]y=e*+e%

or (0°+30+2)y=e*+e%
AE.is®+30+2=0 or 0+1)(0+2)=0
0=-1, -2
C.F.=cie?+ ce®
1
Pl ———— (e#+e#
0°+30+2 ( )
P = 2; e? + 3;e—zz
0 +30+2 0°+30+2
NOW 1 eZz — 1 2z — ieZZ

02+30+2  A+6+2 12
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and ——(—— : e%= 1 s le'22
0°+30+2 4+6+2 0
_ 1 2z — Le'zzz Z_Le'zzz-ze'zz
6*+30+2 26 +3 -4+3

from (2), P.l. = ie22 -ze?%
12
C.S.is

1
y = cie?+cy e—Zz + Eezz -7 e—22

_6,¢ 1,1
or = =+ =+ —x*- —log x.
YT X T2 N
Example 11: Solve the differential equation
d’y d’y dy
x3—= +6x2— +4x — - 4y = (log x)?
o o TP gx WX
Sol: The given differential equation is
d’y d’y dy
x3—= +6x2— +4x — - 4y = (log x)?
o o x 4 =loox)
InS.F., x®*D3*+6x°D?+4xD-4)y=(logx)?* ...
Put x=e? or z =log x

xD=0,x2D2=0(0-1),x3D3=0(0-1)(0-2)in (1)
[0(6-1)(0-2)+60(0-1)+40-4]y=2z?
(03 - 302 + 20 + 602 - 60 + 4) y = 22

s (02+30%-4)y=2°

The AE.is 03+302-4=0

or  (0-1)(02+40+4)=0=(0-1)(0+2?2=0

6=1,-2,-2

C.f.=c1e? + (C2 + C3z) €2 = c1X + (C2 + C3 log X) X2
1
Pl=———— 72
0°+30° -4
-1
_ 12 : 22:_1[1_39%03} ,
4
~ 4(1_ 30 4+9 j 4
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C.S.isy=cix+ (Cz+c1log x) x2 - % {(Iog X)? +g

| I

Example 12: Solve: (x2D2 - 3x D + 5) y = x2 (log x), x > 0.
Sol: The given equation is

(x*D?-3xD+5 vy=x%(logx) ... (1)
Put x=e?i.e.z=logx, x>0
and xD=0,x?D?2=0(0-1)in (1), we get

[0(0O-1)-30+5]y=2ze*
or (62 - 40 + 5)y = ze*
AE.is0?-40+5=0

o 4+\16-20 _ 4x2i -

2 2 -

C.F.isy =e€? (c1cos z + C2 Sin 2)

1
0?—40+5° C (0+27-40+2)+5"

=e”— ! z=e% 21 z=e*?(1+0)'z
O0°+40+4-40-8+5 0 +1

Pl= —"———z7e¥?=¢%

=e?? (1-0%)z=ze* [Expanding by Binomial Theorem]

C.S.isy=e?(c1c0os z + Cz Sin z) + %
or y = x3(c1 cos (log x) + ¢z sin (log x)) + x2 log x
Example 13: Solve the following differential equation
(x?D? - XD + 4) y = cos (log x) + x sin (log x)
Sol: Given differential equation is
(x?D? - XD + 4) y = cos (log x) + x sin (log x)
Put x=e? i.e.z=logx, x>0
and xD=0,x?D?=0(0-1)in (1), we have
[6(6-1)-06+4]y=cosz+e?sin X
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or

[02-20+4]y=cosz+e?’sinz

AE.is0?-20+4=0

P.l.

or

oo 2+J4-16 _2+J-12 _ 2+2i3

2 2 2
= 11h/§
C.S.is=e?*[ci1 cos (\/§z) + C2 Sin (\/§z)]

(cos z + €% sin 2)

6> —20+4
1 1 S,
= —————c0SZ+ ———e?’sinz
6*-20+4 6*-26+4
1 .
= —CcoSz+e? > sin z
-1-20+4 @+)°-20+1)+4
1 , .
= cosz+e sin z
3-26 6°+3
3+26 .
= cos z + e* sin z
(3—26)(3+20) -1+3
3+ 20 1 )
= ——Cc0S2+ —e€e?sinz
9-— 442 2
3+26 1,
= cosz+ —e?sinz
9-4(-1) 2

= %[3 cos z + 26 cos z] + %ez sin z

= i[3cosz-25in z] + 1ezsinz
13 2
General solution of (1) is

y=ez[clcos(\/§z)+c25in(x/§z)]+ %(3cosz-25inz)+ %ezsinz

y =e'°%9% [cy cos(\/§X)+c2 sin (\/§x)]+ %(3 cos (log x) - 2 sin (log x)]
1, .

+ Ee"gxsm (log x)
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or

y =X [c1 cos (\/§ log x) + c2 sin (\/§ log x)] + % (3 cos (log x) - 2 sin (log x)]

+ %x sin (log x)

Self-Check Exercise

Q.1  Solve the following differential equation
(x*D?+2xD-2)y=0
Q.2  Solve the differential equation

dZ
X—Z + dy =X
dx dx
Q.3  Solve the following differential equation
d’y . dy
X2—= +2x—- 20y = (X + 1)?
dx? ax G+ 1)

Q.4 Solve (x*D3-x2D?+2xD-2)y=x3+ 3x
Q.5 Solve the differential equation

12.4

12.5

12.6

dZ
xz—Z -2y =x2+ =
dx
Summary:
We conclude this unit by summarizing what we have covered in it:-
1. Defined Cauchy-Euler's homogeneous linear equation.
2. Discussed the method to solve Cauchy-Euler's equation.
3. Find solutions of differential equations by this method.
Glossary:
1. A differential equation of the form
d"y d™y .
Po o + P oL Foee + Pny = Q, where Py, Py,....... , Pnand Q are functions of
x is called linear differential equation with variable coefficients.
dny n—ly
2. A homogeneous linear equation of the form Pox"—— + Pix™ ———+....... +Phy=
an 1

Q (x), is called Cauchy-Euler's linear equation.
Answer to Self Check Exercise
Ans.1 y=ciX+CyXx?

248



Ans.2y:cl+c2logx+%x2,x>0
2
Ans. 3y =c1 x*+ c2 X°- X—+§+i
14 9 20
— 2 1 3 3 2
Ans. 4 y =(c1 + czlog xX) X + (3x +Zx—§x(logx)

1
Ans.5y=cixt+cox®+ §(X2 - x1) log x

12.7 References/Suggested Readings
1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.

2. Boyce, w. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.

12.8 Terminal Questions

1. Solve the following differential equation
d? d?
x3—Z +6x2—2/ + 4x ﬂ-4y=0
dx dx dx
2. Solve the following differential equation
dZ
XZ—Z - 3x ﬂ +3y=x2
dx dx
d? d?
3. Solve—z—ﬂ—¥+%ﬂ—2—z-
dx> x dx x* dx X
4, Solve the differential equation

(x°D®+ 2x°D? + 2) y = 1O(X+1j
X

5. Solve the differential equation
d? d?
x3—y +3x2—y +x% +y=xlog x
X

ax® dx?
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Unit - 13
Legender's Linear Equation

Structure

13.1 Introduction

13.2 Learning Objectives

13.3 Method to Solve Legender's Linear Equation
Self-Check Exercise

13.4 Summary

13.5 Glossary

13.6  Answers to self check exercises

13.7 References/Suggested Readings

13.8 Terminal Questions

13.1 Introduction

There are some equations which can be easily reducible to the homogeneous linear
form and hence also to the linear equation with constant coefficients.

Any equation of the form

dn dn—l
Po (0 + bx)" dx?’/+ Pi(a+ bX)n-ldx—”}ll Frt Pay = Q (%),
Where Po, P1, Py,....., Py are real constants and Q(x) is a function of x, is transformed

into the homogeneous linear equation, is called Legendre's Homogeneous linear Differential
Equation.

13.2 Learning Objectives
After studying this unit, you should be able to:-

° Define Legendre's homogeneous linear differential equation.

. Discuss method to solve Legendre's homogeneous linear differential equation

. Solve homogeneous linear differential equations of Legendre's type by this
method.

13.3 Method to Solve Legendre's Linear Equation

A linear equation of the form
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n n-1
Po (a + bx)" d 2’ +P;(a+ bx)n—ld—ny + Py =Q (X), ... (1)

dx dx™*

where Py, Pi, Py,......, Pn are real constants and Q(x) is a function of x, is called
Legendre's linear equation.

The equation (1) can be written in the symbolic form as
[Po(@+bx)"D"+P1(a+bx)" D"+ ... Paly Q(X)

WhereDzi
dx
Puta+bx=ez ie,z=log(a+bx),a+t+bx>0
%_ b
dx a+bx
dx dzdx dz a+bx a+bxdz
Let g=9
dz

Dy= b oy, ie,(@a+bx)dy=boy
a+b x

= (@a+bx)D=b#6

dx® dx \ dx dx la+bxdz)a+bx dx\dz) dz dx|a+bx

b dzydz+dy{ —b? }

a+b x dZ dx dz | (a+b x)?

b d% b b dz_ b
a+bx dz2 "a+bx (a+bx)? dx dx a+bx

d’y  b*  d?y b>  dy
d? (a+bx)? dZ2 (a+bx)? dz

2 2
= @b dY opedY e
dx dz dz

= (a+bx)’D?y=b%0%y-b%0y
= (@+bx)’D?y =Db%0 (0 - 1)y
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—  (a+bx)?D2=b% (0 -1)

Similarly (a + b x)3D? = b3 (0 -2)

and so on.

In general, (@ +bXx)"D"=b"9 (0-1(0-2)...(0—n-1)

Substituting the values of (a + b x)'D", (a+ b x)™ D", ..., (@a+ b x) Din (2),
are get,

[Po b"0(6 - 1).....(6—n—1) +P1 b0 -1)....(0—n—2) + ....

+Pn.1b6+Pn]y=Q(et;aJ

orf®)y=02 L. 3
where f (0) is a polynomial in 6 with real coefficients and ¢(z) is a function of z.

Now (3) can be solved for y in terms of z by the methods already known to us. Let its
general solution be

y=v(2)

general solution of (1) isy = y[log (a + b x)], a+ b x> 0.
Note. Working rule to solve Legendre's linear equation
Stepl.Puta+bx=e%ie,z=log(a+bx),a+bx>0

Step 2. Put % =0, so that
(@+bx)D=bo,(a+bx)2D?=b%0(0 - 1), ...... (a+bx)"D"

=b"0(0 -1) (0 —n—1)
Step 3. Putting in the given equation, we get,

[Po b"0(6 - 1).....(6—n—1) + P1b™H(O - 1) ....(0—n—2) + ....

+Pn]y=Q(e ‘aJ

b

which is linear equation with constant coefficients and solve for y in terms of z.
Step 4 Put z = log (a + b x) to get the required solution.

To clarify what we have just said consider the following examples :-

By putting5+2x=e*ie,z=log(5+2x), 5+2x>-

and 5+2x)D=20, (5+2x)°D?=2%0(0-1)=40(0-1),
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The given equation (1) becomes,
[40(0-1)-6.20+8]y=0

or  [402-40-120+8]y=0

or (462-160+8)y=0

or (02-40+2)y=0

AE.is0?-40+2=0
oo 41«21—_8 _ 4i2«/§ _ 4i§\/§ PN

general solution of (1) is

y - c:le(z""ﬁ)z + Cze(z_‘ﬁ)z = e22|:(:le\ﬁz +Cze*\/§Z:|

or y=(5+2x)2 [c1(5+2x)“"§+ C2 (5+2x)‘ﬁ].

Example 2. Solve the following differential equations :
. d? dy
i X+1?— -(x+1) — +y=0.
0) (x+1) o (x+1) o 7Y

3

(ii) (2x—1)3% +(2x- 1) % 2y =0.

Sol. (i) The given differential equation is

2
x+ 225 Y e Ly =0
or,inS.F.,[x+1)?D?-(x+1)D+1]y=0 ..(1)
Putx+1=e’ie.z=log (x + 1)
and (x+1)d =0, (x+1)°D?>=0(0-1)
the given equation (1) becomes
0@®-1)-6+1]y=0
or 0*-06- 06+1]y=0
(0*-20+1)y=0
AE.is0?-20+1=0
0-1)%=0=06=1,1
CS.isy=(c1+c22)

or y =[c1 + c2 log (X + 1)] elo9t+D)
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or y=[c1+cz2log (X + 1)] (x+1)
(i) The given differential equation is
3

i ex-009Y rex-n Y oy=o
dx dx

3

or,inS.F.,[(2x-12®*D*-(2x-1)D-2]y=0
Put2x-1l=e*orz=1log(2x-1)

and (2x-1)D=26, (2x-1)3D3=2% (0-1) (0 - 2) in (1).

[2%0 (0-1) (0-2)+26-2]y=0
[40(0-1)(0-2)+ 0-1]y=0

(40%-1202+80+0-1)y=0

AE.is40%-1202+90-1 =0
(0-1) (402-80+1)=0

8+./64-16 8+ 43
'8

0=1, =1

8
¥3

0=1,1+

1+@z [Lﬁ]z

CS.isy= clez+cze( +ce ’
B, B,
or y=e?*c+ce? +ce ?

ﬁl (2x-1) —ﬁ| (2x-1)
or y=(2x-1) {Cﬁcze2 o +ce ? o

&

3

or y=(2x-1)|c+C,(2x-1 2 +L

3
(2x-1)?
Example 3 : Solve

[(Bx+2)’D?+3(3x+2)D-36]y3x®+4x+1
Sol. The given differential equation in S.F. is

[(Bx+2)2D2+3(3x+2)D-36]y3x2+4x+1
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Put

and

or

or

and

Now

and

or

or

3X+2=¢€? orz=|og(3x+2),x>-§

(3x +2) =30 and (3x + 2)2 D? = 320(0 - 1) where 0 = di
z

z 2 7 o)\
From (1), we get, [96(0 - 1) + 3. 36—36]y:3(e;2J +4(e32j i1

[902 - 36] y = %[ezz - )

the A.E. is 902-36=0
9(0-2)(0+2)=0
0=2,-2
C.F.isyc=cie??+ce?

P.lisyp= 2; F(ezz—l)} -1 2L_QZZ_ 1 21 .
906" -4) |3 27 6° -4 27 -4

21 e = ;L 62 = L 62 which is a case of failure.
0 -4 2°-4 0
21 e = z.i e’ =7z 1 g% = 1ze22
6> -4 20 2(2) 4
021 1 A= 21 A= -l
- 0)--4 4
11 11 1
= —. -+ — = —(ze*+1
%= 270 % 274" 108 )
the general solution of (1) is
Y=YctYp

1
=cieZ + e+ — (zeZ+1
y=c 2 108( )

y=ci(3x+2)?+ co(3x + 2)2 + % [(3x + 2)? log (3x + 2) + 1]

Example 4: Solve the following differential equation

2
(x+3)2% -4 (x + 3) % + 6y = X
X X
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Sol. The given differential equation is

d?y dy
X + 3)? -4 (x+3) = +6y=x
( )le2 ( )dx y
or, iNS.F.[(x+3)?D*-4(x+3)D+6ly=x ... (1)
By putting x + 3 = €7, or z=log (x+3),x>-3

and (x+3)D=0,(x+3)?D?=0(0-1)where di: 0in (1), we get,
z

00-1)-40+6]y=¢?-3
or [0?-50+6]y=€*-3 .. (2)
The AE.is 62-50+6=0
o  (0-2)(0-3)=0

or 0=2,3

C.F.is yc =1 €% + ce%

1 1 1
and P.l.is =—  (e?-3)= ——— % - — 1
Yo 02—5¢9+6( ) 0?-50+6 0?-50+6
= ;ez_ ; = 1 zZ=_
1 —5(1) +6 (0>-5(0)+6 2 6

or Yp = leZ-1

PT o7 2

General solution of (2) is
Yy=YctYp

or y=c1e22+c2e3z+%(ez—l)
1
or y=c1(x+3)2+c2(x+3)3+E(x+3—1)

or y:cl(x+3)2+cz(x+3)3+%x+l

Example 5: Solve (1 + x)?y2 + (1 + x) y1 = 2 cos [log (1 + X)]
Sol. The given differential equation is
d’y

(1 +x) v

+(1+x)%=2003 [log (1 + x)]
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or,inS.F.,[(1+x)?D?+(1+x)D]=2cos[log (1 +x)] ... (1)
Put 1+x=e%orz=log(l+x),x>-1

and (1+x)D=6, (1+X)2D2=6(6—1)Wheredi:e
z

From (1), we get,
[6(6-1)+6]y=2cosz

or 02y =2cos z
The AE.is ©2=0 ... (2
6=0,0

CF.=(c1+c22) e”%=ci+c2z

2

1
P.I.=i2 (2cosz)=2— cosz=2icosz=-2cosz
0 0 1

CS.is
y=cCi+C2z-2c0sz=cC1+cCz2log(1+x)-2cos [log (1 + x)]
Example 6: Solve the following differential equations:

2
(1+x)2% +(1+x)% +y=2sin[log (1 + )]
X X

Sol: The given differential equation is

2
1+x23Y w1+ Y y=2sinqog @+ x)]
dx® dx
or,inS.F.[1+x)?2D?+(1+x)D+1]y=2sinlog (1 +x)] ...
Put 1+x=¢% orz=log (1 +Xx), x>-1

and (1+x)D=0 and (1+x)>°D?*=06(0-1) where dize
z

From (1), we get, [0 (6-1)+0+1]y=2sinz

or [0*+1]y=2sinz .. (2)
The AE.is 02+1=0
or 0 = +i

C.F.isyc=cicosz+csinz

and P.lisyp= o (2sinz)=2. sin z Q06?2 =-1)

6% +1 -1+1
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=2. % sin z which is a case of failure

=2z isinz—-zcosz
Yp Y

the general solution of (2) is

Y=YctYp
or y=C1C0SZ+C2SiNzZ-2zcCoOSz
or y = ¢z cos [log (1 + x)] + c2 sin [log (1 + x)] - log (1 + x) cos [log(1 + x)]
or y =[c1 - log (1 + x)] cos [log(1 + x)] + ¢z sin [log (1 + X)].

Example 7: Solve
(X + 1)2 ‘I(Z +(x + 1)% = (2x + 3) (2x + 4)
Sol: Given equation is S.F. is
[(x+1)?D?+ (x+1)D]y=[2(x+1)+1][2(x+1)+2] ... (1)
Put x+l=ze’=z=log(x+1),x+1>0
8} = [0(0-1) + 0]y =[2e* + 1] [2e* + 2]
=02y =2 (2e*+3e*+1) .. 2)
AE.is0°=0 =0=0,0
C.F.is=(c1+coz) e’ =cy + oz
1

v [2(2e?% + 3e* + 1)]

and P.I =
:2{29—12e22+39—12e2+9—12—1}

g, 6,7
1
= e% + 6e* + 7°
complete solution of (1) is
y=C.F.+P.l.=ci1+crz+e?+6e’+2z2
=ci+c2log (x+ 1)+ (x+1)2+6(x+1)+[log (x + 1)]?
= y=ci+czlog (x+1)+x?+8x+7+[log (x + 1)]

= y=ci+czlog (x+1)+x2+8x+[log(x+1)]>, whereci=c1+7
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Self-Check Exercise

Q.1  Solve the following differential equation

d’y dy
2x - 1)3 2X-1)— -2y =
(2 )dx3+(X )dx y=x

Q.2 Solve

2
(3x + 2)2d—Z +5(3x + Z)Q By=x2+x+1
dx dx
Q.3  Solve the following differential equation

2
(x+1)2% +(x+ 1)% = 4x2 + 14x + 12
X X

13.4

13.5

13.6

13.7

Summary:

We conclude this unit by summarizing what we have covered in it:-

1. Defined Legendre's homogeneous linear differential equation.

2. Discussed method to solve Legendre's homogeneous linear differential equation.

3. Find solutions of homogeneous linear differential equations of Legendre's type by
this method.

Glossary:

1. An equation of the form

d"y L4y : .

Po(a + bx)”w + Pi(a + bx)”1W+ ........ + Pny = Q(x), is called Legendre's
homogeneous linear equation, where Py, Px,....... , Pn are real constants and Q(x)

is a function of x.
Answer to Self Check Exercise

B B 1
Ans.l y=(2x-1) |C+C,(2x-1D 2 +c,(2x-1D 2 —Elog(ZX—l) v

1 2
ANS. 2y =i (3 + 2" + Ca(3KH 2 + = {(3)“2) —3X+2—7}

15 4

Ans.3y=ci+czlog (x+1)+x2+8x+][log (x+1)]?, whereci=c1=7

References/Suggested Readings
1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.
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2. Boyce, w. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.

13.8 Terminal Questions

1. Solve
d’y dy
X+a)?—; -4(x+a)——+6y=x
(x+a) Ve (x+a) o T
2. Solve the following differential equation

2
@+ 2028y 20 Y o+ aey=8 1+ 2y
dx dx

3. Solve the following differential equation
2

(x+1)2¥ +(x+1)% = (2x + 3) (2x + 4)
X X

2

4, Solve the following differential equation
2
x+27 Y a5 ax+ ) Yoy = ax+1
dx dx
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Unit - 14

Simultaneous Differential Equations

Structure

14.1 Introduction

14.2 Learning Objectives

14.3 Simultaneous Linear Differential Equations with Constant Coefficients
Self-Check Exercise-1

14.4  Simultaneous Equations In A Different Form

14.5 Method of Solving Simultaneous Equations of The Form
o _dy _ dz

P Q R

Self-Check Exercise-2

14.6 Summary

14.7 Glossary

14.8 Answers to self check exercises

14.9 References/Suggested Readings

14.10 Terminal Questions

14.1 Introduction

Simultaneous differential equations, also known as systems of differential equations, are
a collection of equations that describe the relationships between several unknown functions and
their derivatives with respect to one or more independent variables. Unlike single differential
equations that involve only one unknown function, simultaneous differential equations involve

multiple unknown functions and their interactions.

form:

A general system of simultaneous differential equations can be written in the following

% = f2 (Xl, X2yueinnn , Xn, t)
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dx

d_tn: fn (X1, X2,00veee , Xn, 1)
Here X1, Xa,...... , Xn represent the unknown functions, t is the independent variable (often

representing time), and fi1, fo,.....,fn are functions that describe the relationships between the
unknown functions and their derivatives. Each equation in the system represents the rate of
change of a particular unknown function with respect to the independent variable. The functions
f1, fo,.....,fndescribe how the unknown functions depend on each other and on the independent
variable. There are different methods for solving simulkineous differential equations, depending
on the nature of the system. In this unit, we shall discuss differential equation in which there is
one independent variable and two or more than two dependent variables. In order to solve such
equations completely, we need as many simultaneous equations as are the number of
dependent variables.

14.2 Learning Objectives
After studying this unit, you should be able to:-

° Define simultaneous differential equations
o Discuss method of solving simultaneous differential equations with constant
coefficients.
. Find solutions of simultaneous differential equations with constant coefficients
. . . . dx d dz
. Discuss method of solving simultaneous equations of the form B = 6 = R

14.3 Simultaneous Linear Differential Equations with Constant Coefficients
There are two methods for solutions of these types of equations

First Method Symbolic Method (use of operator D)
Let  fi(D)x+ fo(D)y=T: ... 1)
and gi(D)x+gDy=T. ... 2)

where D = % T1, T2 are functions of t (independent variable) and f1(D), g1(D), g2(D) are

all rational integral functions of D with constant coefficients and x and y are dependent
variables.

Operating on both sides of (;) by g2(D) and on both sides of (2) by f2(D) and subtracting, we get
(f1(D) 92(D) - 91(D)(f2(D))x = g2(D)T1 - f2(D) T2

which is a linear equation in x and can be solved to give the value of x.

Putting this value of x in (1) or (2), we shall get y.

Note. Since f»(D) and g»(D) are functions with constants co - efficients
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f2(D) 92 (D) = g2 (D) f2 (D)
Let us see what the method is with the help of following examples:-
Example 1: Solve: Dy-z=0 ... (2)
d-1)y-b+1)z=0 L. (2)
Sol:First of all we shall eliminate z, where D = di

X

From (1),z=Dy ... 3)
Putting in (2), weget(D-1)y-(D+1)Dy=0
or (D-1-D?-D)y=0or-(D*+1)y=0o0r(D?+1)y=0
AE.isD?+1=0 orD?=-1 ~D=+iorD=0+i

C.S.isy =e%(c1cos X + C2 Sin X) Or y = ¢1 €OS X + Cz Sin X
d .

From (3),z=Dy = . C1 Sin X + C2 COS X
X

Hence y = c1 COS X + €2 Sin X, Z = - C1 Sin X + C2 €Os X is the required solution.
Example 2: Solve (D + 1)y =z + e* (1)
O+lz=y+e (2)

Sol:First of all we shall eliminate z where D = i

From(1),z=(D+ly=¢ . 3
Putting in (2), we get (D + 1)[(D + 1)y - e*
or (D+1)2y-(D+1)e*=y+ e
or [(D+1)?-1]y = (D + 2)e* or (D? + 2D)y = (D + 2)e*
or D(D + 2)y = De* + 2e* = e* + 2e* or D(D + 2)y = 3e*
AE.isD(D+2)=0..D=0,-2
CF.=cie™+ce?®=cy+co e
Again P.l. = 2;%X = ?;ieX =e
D°+2D 1+2
C.S.isy=C.F. + P.l. =c1 + coe + e
Putting in (3), we get
z=(D + 1)[c1 + e+ €] - &
= D(c1) + D(C26%) + D(&¥) + C1 + C.6 %+ e* - e
=0+ cy(-2) e+ e+ Cr+ e =eX+cy - e
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Hence y = c1 + c.e2* + €%, z = eX + ¢1 - C2e'%, is the reqd solution.

Example 3: Solve: % 7x+y=0

% -2x-5y=0
Sol: Given equations in symbolic formare (D - 7)x+y=0 ... (1)
-2x+(({D-5y=0 (2
Multiply (1) by - 2 and operate (2) by D - 7, we get, -2(D-7)x -2y =0 ... 3)
2b-7)x+{O-7D-5y=0 L. 4

(4)- (3) gives, [[D-7)D-5)+2ly=0
= (D?-12D +37)y=0

_12+\144-148 _12+2i _
5 +

AE.isD?-12D+37=0=D

2

CS.isy=e®[cicost+cpsint) L (5)
= % = e%[-c1 sint + ¢, cos t] + [c1 cos t + ¢ sin t](6e®)

Y _ eriaes - on si
= o e[(6c, - c1) sint+ (6c1 +¢Co)cost] L (6)

dy

From (2), 2x = (D - 5)y = o By
= 2x = e®[(6c2 - ¢1) sint + (6¢1 + C2) cos ]

-5e%[c1 cost + ¢z sin ] [Using (5) and (6)]
= 2x = e®[(6c2 - €1 - 5¢2) sint + (6¢1 + €2 - 5¢1) cos ]

th

= X = > [(cz-c1)sint+(c;+c)cost] L @)

(7) and (5) form the solution

Example 4: Solve: %: ax + by

dy
—=ax+b
dt Y
Sol: Given equation in symbolic formare (D -a)x-by=0 ... 1)
-ax+ (D-b)y=0 . (2)
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Multiply (1) by (D - b") and (2) by (-b), weget, ... (3
(D-a)(D-bY)x-b(D-b)y=0

abx-b(D-bY)y=0

(3)-(@) gives[(D-a)(D-b)-ablx=0

= [D?-(a+b)D + (ab' - a'b)x=0
AE.isD?-(a+b)D+(ab'-ab)=0

5. (a+b)+4/(a+b)? —4(ab'-a'b)

=
2
(a+b)+\{(a+b)?—4ab?} +4a'b)
= D=
2
a+b)+./(a-b)*-4ab’
= D=( ) \/(2 ) = D=my, my
(a+b)+4/(a-b’)? - 4ab’ (a+b)—/(a—b)?-4ab’
where m; = and m; =
2 2
Solis x =cieme™+c, ™ . (5)
%: Cimy emlt + C2 emlt ...... (6)
dt
From (1), by = -ax + %
dt
= by = -a[c. €™ + c.€™] + (cimi €™ + c,e™)
= by = -(ac1 - mici) €™ - (acz - macy) €™
= y = %[cl(ml -a)e™ + c(ma-a)e™] L (7)
(5) and (7) form the solution.
Example 5: Solve the Simultaneous differential equations
d?x d’y
—-3x-4y=0; +x+y=0
dt? Y dt? Y
Sol: Write D for % the differential equations are
(D?-3)x-4y=0 ...(1)
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x+(D?*+1)y=0 . 2

Operating on both sides of (1) by (D? + 1) and on both sides of (2) by
-4 and subtracting, we get
[(D?-3)D*+1)+4]X=0=(D*-2D?+1)x=0

= (D?-1)2x=0

AE.is (D?-1)?=0

= D=+1,+1ie.1,1,-1,-1

X =(c1 +cot)et + (cs+cat)et L (3)
%z (c1 + cat)e! + coet -(c3 + cat)e - che

d*x
dt?
Putting in (1), we get

and = (C1 + Cat)e! + 2ce! +(C3 + cat)e - 2cqe

(c1 + cat)e! + 2ce! + (C3 + cat)e - 2cqe™- (3c1 + 3cat)e

-(3cs + 3cat)et = 4y

4y = (C1 + Cot + 2C2 - 31 - 3cot))e! + (C3 + Cat - 2C4 - 3C3 - 3cat)e
= (-2¢1 + 2¢; - 2Cot)e + (-2¢3 - 2C4 - 2cat)e

y= % [(c1 - c2 + cat)e! + (c3 + Ca t)eT]
Hence x = (c1 + cat)e! + (c3 + cat)et
y = % [(c1- c2+ cat)et + (C3 + cat)e]
Form the complete solution of the given simultaneous equations.

Example 6: Solve: % + ﬂ +2x+y=0
dt dt

& +5x+3y=0.
dt
Sol: The Given equations are d—)t( + % +2x+y=0 ... D)
dy
E+5x+3y=0 (2 =5+ D+3)y=0 ... 3)
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(1)-(2):%-3x-2y20 ..... 4)=D-3)x-2y=0 ... (5)

Multiply (4) by 2 and (5) by (D + 3), we get,
10x+2(D+3)y=0
(D2—9)x—2(D+3)y=0}
Adding we get,

(D?-9+10)x=0= (D?+1)x=0 .. (6)
AE.isD?+1=0= D =+i
Solution of (6) is,x=c;cost+czsint .. (7)
X . .
= %=—C15Int+cz cost=>Dx=-c;sint+cycost ... (8)

From (5); y= %(Dx - 3X)

1 .
= y= > [(-cisint+czcost)
-3 (cicost+cysint)] [Using (7) and (8)]
= y= %(Cz - 3c1) cos't % (ci +3cz))sint L 9)

(7) and (9) form the required solution

Example 7: Solve % = 2y;ﬂ = 22;%= 2X
dt dt dt

Sol: Given equations are

& _, L ol
a7 Y o
Q:ZZ = Z:lﬂ
dt 2 dt
dz 1dz
—=2X = X=——
dt 2 dt
From (3)
(otdz_1dfidy] _1d% _1[1dx
2dt 2dt |2dt 4 dt? 4 |2dt

(1)

(2)

.(3)



1 d3x d3x
= X:——3:> 8X:—3
8 dt dt
d3x
= —3-8x=0:>(D3-8)x:OwhereD:£
dt dt

AE.isD*-8=0=(D-2)D?+2D+4)=0

. p-2 —2+/4-16 _ ) —2i|2\/§:> D=2 143
2 2
C. Solis
X =c1 e%+ et (c2 cos J3 t+cssin \/§t) ..(4)
From (1),y = %%z %[201 e+ et (—\/§c2 sin /3 t+ /3 cs cos \/§t)
+ (c2 cos /31t + ¢ sin/31)(-eY)] ..(5)
and z= 1 ﬂ ...(6)
2 dt

(4), (5), (6) give the required result.
Self-check Exercise-1
Q.1 Solve
(5D +4)y-(2D + 1)z =¢e",
(D+8)y-3z=>5e*

Q.2 Solve the simultaneous differential equations

dx

—=3x+2

dt Y

dy

— =5Xx+3

dt Y
Q.3 Solve

dx

—+2X-3y=t

at Y

7 -3x + 2y = e?

dt

Second Method. Method of Differentiation
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Sometimes x or y can be eliminated if we differentiate (1) or (2). From the resulting
equations, we can find the second variable and then the value of the first Variable can be found
from (1) or (2).

dx

Example 8.Solve : E+ wy =0
% -wx =0

Sol. The given equations can be written as

Dx +wy =0 ..(1)

Dy-wx=0 (2
Diff. (1) w.r.t. t we get D> x + wDy =0 ..(3)
= D2 x +w(wx) =0 [by (2) Dy = wx]
= D?x+w?x=0=(D*?+w?) x=0

AE.isD?+w?=0=D=zxwi

X = C1 COS Wt + C2 Sin wt ..(4)
- (1) givesciwsinwt + cowcoswt+wy =0

y = C1 Sin Wt - C2 COS Wit ...(5)
(4) and (5) form the solution

Example 9. Solve the simultaneous differential equations

xﬂ +z2=0

dx

dz
X—+y=0
dx Y

[Use Method 1]
Sol. Diff. (1) w.r.t. 'X', we get
2
X d y +Q+$:
dx* dx dx

2
= xzd—Z +xg+x%=0 ...(3)
dx dx  dx

(3) - (2) gives

0

2
xZM + xﬂ -y = 0 which is a homogeneous equation.

dx? dx
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Puttingx=e',we get AE.as[0 (0-1)+6-1]y=0
AE.is0?-1=0=0=%1
y=ciet+cye®

ie. y=cCi X+ cCax? ..(4)

. c
(1) gives xc1 - % +z=0
X

zZ=-CiXx+coxt ...(5)
Hence (4) and (5) give the solution

14.6 SIMULTANEOUS EQUATIONS IN DIFFERENT FORM
If the equations are given in the form

Pidx + Qldy +Rdz=0 (1)
P, dx + dey +R.,dz=0 (2)
where P1, P; etc. are function of x, y , z then (1) and (2) can be written in the form
dx dy
Pr—+Q:1—+R:1=0
"dz @ dz
P2%+ Q2—+ R.=0
dz dz
dx dy
dz _ dz _ 1
QR-QR RR-RRE RQ-RBQ
dx _ dy _ dz
Qle_Q2R1 R1P2_R2Pl Ple_Ple
which is of the form d— = ﬂ %
P Q R
where P, Q, R are function of x, y, z. Hence (1) and (2) can be put in the form (3).
14.5 Method of Solving Simultaneous equation of the form :d—PX = % = d—RZ
Sol. Method I. The given equations are d— = ﬂ = % (1)
P Q R

First take any two members of equations are (1)
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d—PX = d—RZ (say) ..(2)
Integrating (2), we get an equation
Again take other two members of (1)

% = d—RZ (say) ..(3)
Integrating (3), we get another equation.
These two equations form the complete solutions.

Note. One solution so obtained can be used to simplify the other differential equation in the
integrable form.

Method Il

We may be able to find two sets of multiplier (not necessarily constants) I, m , nand L, M, N
such that one of the equations

dx _dy _ dz _ ldx+mdy+ndz _ Ldx+Mdy+ Ndz
P Q R IP+mQ+nR IP+MQ+NR

can be easily integrated.

If I, m, n are such that iP + mQ + nR =0, and LP + MQ + NR = 0 then we get
ldx+mdy+ndz=0andLdx+Mdy+Ndz=0

which gives two equations on integration

These two equation so obtained form the complete solution.

Dear Students, lets us see what the method is with the following examples :-

Example 10.Solve :% = ﬂ = %
X y Z
Sol. The given equations are ax = dy = dz e
X y Z

From the first two members of (1), we have

dx _dy
— = —=logx=logy + log c:
X y
= log L log c1=> L C1 .(2)

From the last two members of (1), we have
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dy dz _
— = —=logy=logz+log c>
y z
= log Y- log co= Y- C2 ..(3)
z z

Then (2) and (3) form the complete solution.

Example 11.Solve :% = Q = %
yz X Xy
Sol. Given equation is % = Y = %
yz X Xy
2 2
From first two, % = ﬂjxdx:ydyz Y +&
yz X 2 2 2
= X2-y2=¢c1 (1)
2 2
From first and last, % = % xdx = zdz= x_Zz +&
yz Xy 2 2 2
=  X-22=0 (2)
(1) and (2) form the complete solution.
Example 12. Solve dx = dy = dz
mz—ny nX-lz ly—mx
dy _ dz

Sol. The given equation are

(1)

mz—ny nx-lz ly—mx

Choosing I, m, n as multipliers, we have each fraction = lox+ mgy+ ndz
l[dx+mdy+ndz=0
Integrating, we get | x + my + nz = ¢z ..(2)
Again choosing X, y, z as multipliers, we have each fraction = xdx+ y(o)ly+ 2z
= xdx+ydy+zdz=0=x2+y?+22=0¢; ..(3)
Then (2) and (3) form the solution of (1).
dx dy dz

Example 13 : Solve ;

Z(X+Y) - zZ(x-y) - X2+ y?
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dx _ dy _ dz
Z(x+y)  zZ(x-y) X+y
dx dy

From the first two members of (1), we have —— = ——
X+y X-Yy

Sol. The given equation are

_ (1)

= xdx-ydx=xdy+ydy
= x dx = (y dx + x dy) +y dy= x dx = d(xy) + y dy

X2 y2
Integrating, we have > =Xy + > +C1
= X2-y2-2xy =C1 ..(2)
Again each traction
xdx — ydy — zdz _ xdx+ ydy + zdz
X2(X+Yy) = yz(X—y—2(x* +y?) 0

xdx-ydy-zdz=0

. X2 yz 22
Integrating, we get — - — -— = constant

g g g 5 5> 5

= X2-y2-72=c¢; ..(3)

(2) and (3) give the complete solution of (1).
dy dz

Example 14Solve : = =
X(y-2)  y(z-%  z(x-Yy)

1 1 1
dy 4z ;dx+§dy+gdz

Sol. Given equation is = = =
X(y-2) y(z-x) zx=y) (Y-2+(z-x)+(x-Y)

1dx+1dy+1dz

X y z
0
= de+£dy+£dz=0:>Iogx+|ogz=|ogc1
X y z
= log xyz = log c1=>Xxyz = C1 ..(1)
Again dx _ dy _ dz _ dx+dy+dz _ dx+dy+dz
X(y-2) ¥(z-% zZx-y) X(y-2)+y(z-X)+zZ(x-y) 0
= dx+dy+dz=0=x+y+z=0C> ..(2)
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(1) and (2) form complete solution.

Example 15 : Solve % = d_>2/ = dz

oy Z(y-2x)
Sol. From first two members of given equation

dx _ dy
xy Yy
X oy

Integrating, we get
logx=logy +logc

= log x = log cy
= X =cy ..(1)
From last two members of given equation
dy _ dz
y*  zZ(xy-2x°)
dy _ dz
= 2 T i or2u2y
y"  zcyy-2c7y7)
_ dz
y*z(c—2c%)
or (c-2c?)dy= dz
z
Integrating, we get
(c-2c?)y=logz+cy
= —=2— |y=logz+c
y |y
X2
= X-—— =logz+c ..(2)

(1) and (2) together form a complete solution

Example 16 : Solve 2dx S 2dz

X-yz Y- Z-Xy

Sol. : From given equation, we have
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dx—dy _ dy—dz dz— dx
(C-y)+(x-y2) (Y -2)+(xy-29 (Z-X)+(yz—xy)
dx—dy 3 dy—dz 3 dz—dx
(X-Y)(z+y+2)  (Y-2(y+z+X) (z-X)(z+X+Y)
dx—dy _ dy—dz _ dz-—dx
X=y y—Z2 Z—X

= log (x -y)=log (y - z) + log ¢1 and log (y - z) = log (z - x) + log ¢

= log (%j = log c1 and log (E) =log c2

= ﬂ:clandu:

y-z Z—X

C2

which together form the complete solution.
Example 17 : Solve
dx _ dy _ dz
X(y'-2) y(Z-x)  2X-y)
Sol. : Given differential equations are
dx _ dy _ dz
X(y'=2)  y(Z-x) A~y
Taking X, y, z as multipliers, we get
ax _ dy _ dz _ Xdx+ ydy + zdz
X(y'=2)  y(Z-x) A~y 0
[As x? (y? - 2%) + y? (22 - X?) + 22 (x* - y?) = O]

(1)

xdx+ydy+zdz=0

Integrating,
2 2 2
XYy .,z _Gq
2 2 2 2
X2+y2+2z2=¢ ..(2)
Taking 1 i 1 as multipliers, we get
Xy z
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1dx+1dy+1dz
X

ax _ dy _ dz _ y z
X(y'-2) y(Z-x)  zZx*-y?) 0
[Asy?-z2+ 72 - X2+ x?-y?2=(]
1 dx + idy+ 1dz=0
X y z

Integrating, we get
log x +logy + log z = log c>
log (xy z) =log c2
Xyz = Gz -(3)
complete integral of (1) is
x2+y2 + 72 = ¢4, Xyz = 2, wWhere c1, ¢ are arbitrary constants.
dy dz
X +y° ) 2xy ) z(X+Y)
Sol. : Given differential equations are

dk _dy = dz
X+y? 2xy  z(X+Y)

Example 8 : Solve

Taking 1, 1, 0 as multipliers, we have

dx :dy: dz _ dx+dy
Xy 2xy  z(x+y) X4y +2xy

Taking last two members, we have

dz _ dx+dy
Z(x+y)  (x+Y)’
or dz _ dx+dy
z X+Yy
Integrating,

logz +loga=log (x+Vy)
X+y=az ..(3)
Taking 1, -1, 0 as multipliers, we get

dx dy dz _  dx—dy

= = py ...4
XC+y? 2xy  zZ(x+y) X4y -2xy @
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From (2) and (4), we have
dx—dy _ dx+ dy
(x=y)*  (x+y)

Integrating,
AU S
X—-YyY X+Vy
S R
X—Y X+Vy
or w:b
X -y
2
2 yz =b
X -y
or 2y =b (x%-y?) ...(5)

From (3) and (5), complete integrals of (1) are
X+y=dz, 2y =b (x*-vy?

where a, b are arbitrary constants

Self-check Exercise- 2

Q.1 Solve
x2(Z+xy)  —yAZ+xy) X
Q.2 Solve

dx _ dy _ dz
Y+Z Z+X X4y
Q.3 Solve

dx 3 dy dz

X+ Yy +yz - X +y*—yz - Z(X+Y)
146 Summary:

We conclude this unit by summarizing what we have covered in it:-
1. Defined different types of simultaneous differential equations.

2. Symbolic method and method of differentiation discussed for solving
simultaneous linear differential equations with constant coefficients.
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14.7

14.8

3. Find the solutions of simultaneous differential equations with constant
coefficients by symbolic method and method of differentiation.

4. Discussed the method of solution of simultaneous equations of the form d—: =
dy dz , . . . .
6 = R and find the complete solution of the differential equations.

Glossary:

Simultaneous differential equations, also known as systems of differential
equations, are a collection of equations and describe the relationship between
several unknown functions and their derivatives with respect to one or more
independent variables.

Answer to Self-Check Exercise
Self-Check Exercise-1
Ans.l y=cie*+ce?+2e*
and z = 3c; X+ 2c, e + 3 e,
given the required results

Ans. 2 x = [Cl geor ¢ ewﬁ)t]

AnS.3X=Clet+cze'5t-E_E+§e2t
5 25 7

andy=c1et-02e'5t-E +£eZt- 3t

25 7 5

Self-Check Exercise-2

14.9

Ans.l xy=c;

and x* - (z2 + xy)> = ¢
y—X_
ry_
and x+y+2z)(x-y)?=c

Ans. 2 C1

Ans.3 Xx-y-z=cy
and x2+y?=27%¢c;
References/Suggested Readings
1. Shepley L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984.
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2. Boyce, W. and Diprima, R., Elementary Differential Equations and Boundary
Value Problems, 3rd Ed., Wiley, New York, 1977.

3. Zill, D., A First Course in Differential Equation with Applications, 2nd Ed., Prindle,
Weber, Schmidt, Boston, 1982.

14.10 Terminal Questions
1. Solve
(D-17)y+(2D-8)z=0
(13D -53)y = 2z.
2. Solve

%+4x+3y=t
dt

& +2x+5y=¢€'
dt

3. Solve

d’y dz

z —2. == _4y-2x=0,
dx*  dx y

zﬂ +4%—3z=0
dx dx

4. Solve
dx _ dy dz

1 2 3Csin(y+29)
5. Solve
dx _dy _ dz
z -z X+(x+y)?
6. Solve
ax  dy dz
SX(X+Y) YY) (X=Y)(2x+2y+2)
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Unit - 15

Total Differential Equations

Structure

15.1 Introduction

15.2 Learning Objectives

15.3 Some Definitions

15.4 Necessary and Sufficient Condition for the Integrability of Single Differential Equations
Pdx + Qdy + Rdz = 0 where P, Q, R are Functions of x, y, z

15.5 Method to Solve Pdx + Qdy + Rdz = 0 (Inspection Method)
Self-Check Exercise-1

15.6 Method to Solve Pdx + Qdy + Rdz = 0 (Method of Auxilliary Equations)
Self-Check Exercise-2

15.7 Method to Solve Pdx + Qdy + Rdz = 0 By Taking one Variable Constant
Self-Check Exercise-3

15.8 Summary

15.9 Glossary

15.10 Answers to self check exercises

15.11 References/Suggested Readings

15.12 Terminal Questions

15.1 Introduction

An equation of the form Pdx + Qdy + Rdz = 0, where P, Q, R are function of x, y, z is

called a total differential equation. It is also known as single differential equation. The differential
equation Pdx + Qdy + Rdz = 0 is said to be integrable if there exists a relation of the form u(x, vy,
z) = ¢, where differentiation gives the given differential equation. The relation u(x, y, z) = c is
called the complete integral or solution of the given differential equation.

15.2

Learning Objectives
After studying this unit, you should be able to:-

. Define Pfaffion differential form, Pfaffian differential equation and total differential
equation.
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. Find the necessary and sufficient condition for the integrability of single
differential equation Pdx + Qdy + Rdz =0

. Discuss Inspection Method, Method of Auxiliary equations and by taking one
variable constant to solve equation of the form Pdx + Qdy + Rdz =0

15.3 Some Definitions
Pfaffian Differential form

The expression

Pfaffian Differential Equation

An equation of the form

D F dxi=0
i=1
is called a Pfaffian differential equation in n variables xi, Xz, ..... Xn, Which Fi,i=1,2,....,n

are functions of some or all of the n independent variables X1, X2, .....Xn.

Total Differential Equation (or Pfaffian Differential Equation in Three Variables)
An equation of the form
Pdx + Qdy + Rdz = 0,

where P, Q, R, are functions of x, y, z is called the total differential equation or single differential
equation or Pfaffian differential equation in three variables x, y, z.

If we are given a relation of the form
f (X, y, z) = constant (1)
then, we have

ﬂdx+ qdy+ ﬂdz=0
0z

OX
of of of . .
If —, — , — have a common factor, it may be cancelled throughout i.e. we can
oX oy 0z
express it in the form
Pdx + Qdy + Rdz=0 ..(2)

where P, Q, R are functions of x, y, z. Thus form any given relation of the form (1), we always
get a relation of the form (2), known as total differential equation.
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Integrating Factor

An integrating factor (abbreviated as I.F.) u of a differential equation Pdx + Qdy + Rdz =
0 is a factor such that if the equation is multiplied by it, the resulting equation is exact.

15.4 Necessary and Sufficient Condition for the Integrability of Single Differential
Equations Pdx + Qdy + Rdz = 0 where P, Q, R are Functions of x, vy, z

Sol. Necessary Condition

Let us take up the singlea differential equation Pdx + Qdy + Rdz =0 (1)
where P, Q, R are functions of x, y, z
Let u(x, y, z) = 0 be integral of (1) ..(2)
du = Pdx + Qdy + Rdz or a multiple of it.
But we know that du = a—d + @dy+ a—udz ..(3)
oX oy 0z

Since (2) is an integral of (1)
ou ou ou

P, Q, R must be proportional to —, — , — respectively.
ox’ 0z
au o
X _ O _ oz _
=2 = = === =y (X,V,2z)[say] (0
P -0 R p (X, y, z) [say] (= 0)
ou |
p=2=
# OX
ou
Then, we have uQ=— ..(4)
oy
ou
R=22
# oz |

From the first two equations of (4), we get

0 ou o4 o (ou )
N P) = = = — | — | = —
oy (P Oyox Oxoy  OX (ay] OX .

0
Mp

=Q — -pP= ..(5)



R
Similarly, we have @_8_ @ _Q == ...(6)
2 oy) "oy
(B E)p p )
oX 0z 0z oX

Multiply (5) by R, (6) by P and (7) by Q and then adding, we have

M[ (@_a_R]+Q(6_R_6_Pj+R[@_@]]
oz oy oX o0z oy OX

au ou )
=RQ S-RPTI+PROI-POCY +PQ T -ORT
Q_R| (R_P) (0 Q)

P[az aijrQ(ax azj R(Gy 8x]_0 Quz0] .. (8)

This is the necessary condition.
The condition is sufficient
Let us suppose that the co-efficientsP,Q,R of (1) satisfy (8). Then we prove that (1) is integrable.
Let z be treated as constant so that dz =0
(1) becomes Pdx + Qdy =0 (9)
Now Pdx + Qdy may be regarded as an exact differential
[Q if it is not so, then with the help of an integrating factor, we can make it exact.]
Thus without loss of generality, we can take Pdx + Qdy = 0 as an exact differential equation.

P = «Q (20)
oy OX
et [ Pdx+Qay=v (11)
= Pdx+Qdy-= dv-a—vd +ﬂdy
OX oy
p-2
Then we have 8\); [On comparingg . (12)
Q=—
oy
oV Q _ oV

From (12), we have o = and
0z 020X 0z azay
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By using (10) and (12), (8) becomes

[ﬂ_@] ov [@_ﬂ}m):o
ozoy oy 6y OX 0ZOX

ways) o)

ozdy oy) oy

v a[av Rj-ﬂ.i(ﬂ—Rjzo
ax oy oy ox\ oz

A (6_V_Rj
OX 0z

- oV
%)
0z

oV
. . oV :
= there exists a relation between V and i R independent of x and .
z

OX 0OX0z

OX
9
gy oy

a—V-R d(z, V)
0z
Now de+Qdy+Rdz—%—de+2—Vd +(——¢j
y

= a—Vd + 8_de+ 8_de $dz
OX oy 0z

=dV - ¢dz

. (1) becomes dV - ¢dz = 0 which is an equation in two variables. Hence its integration will give
an integral of the form F(V, z) =0

The condition (8) is sufficient.
Hence (8) is the necessary and sufficient condition for the inerrability of (1)

Note. Condition of exactness of Pdx + Qdy + Rdz = 0 can be written as

) §<)|Q) R
02> 0
T R[> T

=0
This is the same as (8)

To Clarify what we have just said, consider the following examples:-
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Example 1: Shows that (2x + y? + 2xz)dx + 2xydy + x?dz = 0 is integrable.

Sol: The given equation is (2x + y? + 2xz)dx + 2xydy + x*dz=0 ... 1)

Compare the given equation with Pdx + Qdz = 0, we get
P=2x+y?+2xz;Q=2xy;R=x2

Now P L@_%] H{@@) R R(@_@j
oz oy oX 0z oy 0OX

= (2x + y?+ 2xz)(0 - 0) + 2xy(2x - 2X) + X2 (2y - 2y) =0
. given equation is integrable.
15.5 Method to Solve Pdx + Qdy + Rdz = 0 [Inspection Method]

Sol: If Pdx + Qdy + Rdz = 0 is integrable, inspection method can be applied using standard
results like.

() d(xy)=xdy+ydx (il d(lj - Xdy;zydx
X X
i) d (|og¥j S L (tan‘lXJz xady— ydx
X Xy X X +y

(v) d(xyz) = yz dx + zxdy + xydz etc.

Example 2:Solve : (yz + xyz)dx + (zx + xyz)dy + (xy + xyz)dz=0

Sol: The given equation is (yz + xyz)dx + (zx + xyz)dy + (xy + xyz)dz=0 ... (D)
Compare the given equation with Pdx + Qdy + Rdz =0

P=yz+xyz. Q=2zx+xyz, R=xy+xyz

(22252
oz oy oX 0z oy 0OX

= (yz + xyzZ)[X + Xy - X - XZ] + (zx + Xyz)(y + yZ -y - Xy) + (Xy + Xyz)(Z + XZ - Z - y2)
= (yz + xyz)(xy - yz) + (z2x + xyz)(yz - xy) + (Xy + Xyz)(Xz - yz)
=xyz(L+x)(y-2)+xyz (1 +y) (z-X) +xyz (1 +2) (X-Y)
=xyzly-z+z-x+x-y+xly-2)+y(z-x) +z(x-y)]

=xyz (0 + 0) =0 .. given equation is integrable.

Now (yz + xyz)dx + (zx + xyz)dy + (xz + xyz)dz =0

1
Dividing throughout but by xyz, we get (1+lj dx + [; +1] dy + (E +1j dz=0
X z
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:% + ﬂ +% +dx+dy+dz=0
X y z
Integrating we get
logx+logy+logz+x+y+z=c
or log(xyz) + x +y + z = ¢, where c is an arbitrary constant, is the required solution.
Example 3: Verify that the equation is integrable and find the solution of
zydx = zxdy + y?dz
Sol: The given equation is zy dx = zxdy + y?dz

i.e. zydx - zxdy - y?’dz=0 . 1)
Compare (1) with
Pdx + Qdy + Rdkz=0 L (2)
P=zy,Q=-zx, R =-y?

(25l (58
oz oy oX 0z oy oOX

=zy(-x + 2y) -zx (0 - y) - y*(z + 2) = -Xyz + 2zy?> + Xyz - 2y’z =0
given equation (1) is integrable.
(1) can be written as

ydx—xdy dz

=0
y* z
X
= d{—j - % =0
y z
Integrating, we get
X
—-logz=-logc
y
X
= logz-logc=—
y
= log Z = e%’
C
= z= ceyy as the required solution.

Example 4: Verify that the equation is integrable and find the solution of
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(e*y +cosx)dx + (e*+e¥z)dy +e¥dz=0
Sol: Given equation is

(e*y + cos x) dx + (e* + e’2)dy + e¥dz=0 ... Q)
Comparing (1) with Pdx + Qdy + Rdz=0, ... (2
we get

P=ey+cosx,Q=e*+e¥z, R=¢Y
We can check that (1) is integrable by proving

P(@—%]+ Q(@—ﬁ)+ R(ﬁ—@j =0
oz oy oX 0z oy OX

Again (1) can be written as

(e*y dx + e*dy) + cos x dx + (e¥zdy + e¥dz) =0
= d(e*y) +d (sin x) + d(e¥z) =0
Integrating, we get

e*y + sin X + e¥z = ¢, is the required solution.

Self-Check Exercise
Q.1  Show that zdx + zdy + 2 (x + y + sin z)dz = 0 is integrable.
Q.2 Solve (y?+z?-x?) dx -2xy dy-2xzdz =0
Q.3  Verify that the equation is integrable and find the solution of

xdy - ydx - 2x?zdz =0

15.6 Method to Solve Pdx + Qdy + Rdz=0
(Method of Auxilliary Equations)

Let Pdx + Qdy + Rdz=0 L. (1)
be the given equation.

Its condition of inerrability is

pL@@}Q(@_@} R(ﬁ_@j o @
oz oy oX 0z oy oOX

Comparing (1) and (2), we obtain simultaneous equations, known as Auxiliary Equations
(A.E.) as
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ax  dy = dz 3
Q "R-®moop-o® 0 (3)

oz oy OX 0z oy OoOX

Let u =c; and v - ¢c2 be two independent integrals of (3). With these we formulate the
following equation.

Adu+Bdv=0 .(4)

Compare (1) and (4), we get values of A and B, putting in (4), and integrate the resulting
equation. Thus substitute values of u and v in the relation so obtained after integration. This will
give us the required general solution.

(0Q _OR R _oP P _Q

oz oy ox oz oy o

Note. This method will fail

This method is generally appeared when method of inspection is not applicable.
Let us see what the method is with the help of following examples:-
Example 5: Solve
xz3 dx - zdy + 2ydz =0
Sol: Given differential equation is
xz%dx - zdy + 2ydy=0 .. (1)
comparing it with Pdx + Qdy + Rdz = 0,we get
P=xz3Q=-z,R=2y

{5°5) (2-2) 5%
oz oy oX 0z oy OX

=xz3(-1-2) +(-z) (0- 3z°%x) + 2y (0 - 0)

=-3xz% + 3xz®

=0

Condition of integrability of (1) is satisfied.
Auxilliary equations are

dx  dy _ dz
0Q O0R 6R oP P d4Q

oz oy OX 0z oy OoOX

dx dy dz

or

1-2 0-3x2 _0-0
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dx d dz
-y %« )

1 x2 0
From (2), by taking the third member,
dz=0
z=a=u(say) . 3)
Taking first and second members of (2), we get
d_ dy
1 xz°
or xdx = iz dy
z
Integrating,
x> 1 b
27272
x%z2 - 2y = b = v (say) ...(4)
Now we find A and B in such a way that
Adu+Bdv=0 .. (5)

becomes identical with given differential equation (7).
Putting the values of u, v in (5), we get

Adz + Bd (x?z22-2y)=0
or Adz + B (x? 2zdz + z? 2xdx - 2dy) =0
or 2B z’xdx-2Bdy + (A+2Bx%?z)dz=0 ... (6)
comparing (6) and (1), we get

B=z=>B=2=1

2 2
A+2Bx?z=2yorA=2y-x°z22=-v

Putting values of A and B in (5), we get

- vdu + Edv =0
2
or 2 % - % =0
u %
Integrating,

2logu-logv=logc
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or — =c
Y
2
—— =C
X*z? -2y
or z? = ¢(x?z% - 2y), which is the required solution.

Example 6: Solve

(2xz - yz)dx + (2yz - zx)dy - (x2 - xy + y?)dz =0
Sol: Given differential equation is

(2xz - yz)dx + (2yz - zx)dy - (x? - xy + y¥)dz=0 .. 1)
Comparing it with Pdx + Qdy + Rdz = 0, we get

P=2xz-yz, Q=2yz-2zX, R=-(X?-xy +Vy?)

(23) o525
oz oy oX 0z oy 0OX

= (2x2 - yz)(2y - X - X + 2y) + (2yz - ZX) (-2x + Y - 2X +y) (¥* - Xy + ¥?) (-2 + 2)
= (2xz - yz) (-2x + 4y) + (2yz - zX) (-4x + 2y)
= -4x%z + 8Xyz + 2Xyz - 4y?z - 8xyz + 4y?’z + 4x°z - 2Xyz
=0
Condition of inerrability is satisfied
Auxiliary equations are

dx  dy _dz
Q_R™R P P_XQ

oz oy OX 0z oy OX

or dx _ dy _ dz
(2y-x)(x-2y) (-2x+y)-(2x-y) -z-(-2)
or dx _ dy _ Gz
2Yy—X—X+2y -2X+y-2X+y -Z+Z
* __ & _d @)
22y-x) 2(y-2x) O
From (2),dz=0orz=a=u(say) .. 3

Taking first and second members of (2), we get
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dxk  dy
22y-x)  2(y-2x)
ax dy

or =
2y—X y—2X

ydx - 2xdx = 2ydy - xdy
or (x dy + ydx) - 2xdx - 2y dy =0
d(xy) -2xdx - 2ydy =0
Integrating, we get
Xy - X? - y?>=b = v (say)

Now We find A and B in such a way that Adu+Bdv=0
becomes identical with the given differential equation (1).

Putting the values of u, v in (5), we get
Ad(z) +Bd(xy-x2-y?)=0
or A dz + B(xdy + ydx - 2xdx - 2ydy) =0
or (By - 2xB)dx + (Bx - 2By)dy + Adz =0
or (Y-2X)Bdx+ (x-2y)Bdy+Adz=0
Comparing (6) with (1), we get
(Y-2X) B=2xz -yz
i.e. (Y-2X) B=-z (y - 2x)
B=-z=-u
and A=xy-(xX*+Yy?
i.e. A=v
Putting values of A and B in (5), we get

vdu-udv=
r % - ﬂ =0
u \Y;
Integrating,

logu-logv=logc

u
_:C
Vv
or —Z =C
2 2
Xy—X -y
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or c(xy - X2 - y?) = z, which is the required solution.

Example 7: Solve
(yz-1)dx+(z-xX)xdy +(1-xy)dz=0

Sol: Given differential equation is
(yz-1)dx+(z-x)xdy+(1-xy)dz=0 ... (1)

Comparing it with Pdx + Qdy + Rdz = 0, we get
P=yz-1,Q=zx-x>,R=1-xy

{5-5) (2-2) 52
oz oy oX 0z oy OX

= (yz- DX +x) + (2x - ¥)(-y - y) + (1 -xy)(z - 2 + 2x)
=2x (yz- 1) - 2y (zx - X?) + 2x (1 - xy)
= 2XyZ - 2X - 2XyZ + 2X%y + 2X - 2X%y
=0
Condition of integrability of (1) is satisfied.
Auxilliary equations are

dx  dy _ dz
0Q OoR OR oP P oQ

oz oy oX 0z oy oXx

o _ dy _dz
-2Xx -2y 2X
dx dz
x_do _d& - @)
X -y X
Taking first and second members of (2), we get
ax_ gy
X -y
or logx=-logy + log a
Xy=a=u(ay) L 3
Taking first and third members of (3), we get
dx _ dz
X z
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or dx =dz

= X=z+Db
X-z=b=v(Eayy . (4)
Now we find AandBinsuchawaythatAdu+Bdv=0 ... (5)

becomes identical with given differential equation (1)
Putting the values of u, v in (5), we have
Ad(xy) Bd(x-z)=0
or A(xdy + ydx) + B(dx -dz) =0
or (Ay + B) dx + Axdy - Bdz=0 . (6)
Comparing (6) with (1), we get
Ay+B=yz-1, Ax=(z-X)Xx,B=xy-1
A=z-x=-v
B=xy-1=u-1
Putting values of A, B in (5), we get
-vdu+(u-1)dv=0

vdu — udv 1

or T + V_z dv=0
1
or d(gj + — dv=0
v v
Integrating, we get
u_l_
vV Vv
or u-l=cv
or xy - 1 = c¢(x - z), which is the required solution.

Self-Check Exercise-2

Q.1 Solve
(Y2 +yz +z29)dx + (22 + zx + x?) dy + (x* + xy + y?)dz =0
Q.2 Solve

z(z - y)dx + (z + X)zdy + x(x + y)dz =0

15.7 Method of Solving Pdx + Qdy + Rdz = 0 By Taking One Variable Constant

1. First of all check the condition of integrability.
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2. Treat one of the variables, say z, as a constant so that dz =0

.. given equation becomes Pdx + Qdy =0 (1)

Let its solution be u (x, y) = f (z) where f (z) is an arbitrary function of z. ...(2)
[Q z = constant = f(z) is constant]

Diff. (2) totally w.r.t. X, y, z and compare the result with the given equation

Pdx + Qdy + Rdz = 0, we shall get f and z.

Example 8.Solve : (2x2 + 2xy + 2xz? + 1) dx + dy + 2zdz =0

Sol. the given equation is (2x2 + 2xy + 2xz?> + 1) dx + dy + 2zdz =0

It is of the form Pdx + Qdy + Rdz = 0 where

P=2x2+2xy+2xz°+1,Q=1,R=2z

(92 o[22 (5
oz oy oX 0z oy oOX
=(2x2+ 2xy + 2xz?+ 1) (0-0) + 1 (1 - 4xz) + 2z (2x - 0)
=0-4xz + 4 zx =0 .. given equation is integrable
Put x = constant so that dx =0 ..dy + 2zdz =0
Integrating, we get
y + z2 = constant f (X) (say)
= dy + 2zdz = f' (X) dx = -f'(x) dx + dy + 2zdz =0
Compare with the given equation, we have
-f (X) = 2x% + 2xy + 2xz2 + 1
=22+ 1+ 2x(y + 2?) =2x2 + 1 + 2x f (X)

= g—f + 2X f = -(2x? + 1) which is linear in f.
X

LF. = ef> = g

the solution is
f.e =]’ (2¢-1)dx+c
=[x (2x€)dx- [ e“dx+c (2)

Now for | 2x&* dx, Put x2 = t so that 2xdx = dt .. | 2xe‘dx = [etdt=et=e"

(2) becomes
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fexz [xexz —Il.exzdx] -Jefdx+c=-xe +c

= (y+722) € +xe=c= (x+y+29)e" =cis the required solution.
Example 9. Verify that the following equation is integrable and find its primititve
zydx + (x?y - zx) dy + (x?z - xy) dz=0
Sol. The given equation is zydx + (x2y - zx) dy + (x?z - x?) dz=0 ..(1)
Compare equation (1) with Pdx + Qdy + Rdz =0 ....(2), we get
P=2zy,Q=x?y-2zx, Rx?Z - xy.

((2-5) ol 255
oz oy oX 0z oy oOX

= zy(-x - (-X)) + (X%y - 2x) 2xZ - y - y) + (X2 - Xy) (z - 2xy + 2)
= zy(0) + (X?y - zX) 2xzZ - 2y) + (X?z - xy) (2z - 2xy)
= 2x3yz - 2x2y? -2x%z2 + 2xyz + 2X?z% - 2x3yz - 2Xyz + 2x?%y?> = 0
given equation is integrable.
Take x = constant so that dx = 0 .. (1) becomes (x?y - zx) dy + (x?z - xy) dz =0

= x2 (ydy + zdz) = x (zdy + ydz)

2 2
. . z
Integrating (2) (x is assumed to be constant), XZ(%JFEJ = Xyz + constant

= % X2 (y? + 2% - xyz = f (X)

[Q constant = f(x) since x is constant]
Diff. (3), we get

% 2x dx(y? + z%) + % X2 (2ydz + 2zdz) - (yzdx + zxdy + xydz) = f' (x) dx.

= (X(y? + z?) -yz - f (X)) dx + (X?y - zx) dy + (X?z - xy) dz=0 ...(4)
compare (1) and (4), we get

zy= X(y*+2%)-yz-f (X) = x(x* +2%) - 2yz = f' (x)

= SRRz S XS
By (3) and (5), we get f (x) = % X ' (X)
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f (X)zz:logf(x)=2Iogx+logc=Iogx2+logcm=Iogcx2
f(x) x

= f (X) = cx? where c is arbitrary constant.

Putting in (3), we get % X2(y? + z%) - xyz = cx2

i.e. x?(y? + z? - 2c) = 2xyz as the required solution

Example 10.Solve : (x?+ y2 + z?) dx - 2xy dy - 2xz dz =0

Sol. Given equation is

(x2+y?+2z%) dx-2xydy-2xzdz=0 ..(1)
First check that (1) is integrable by using condition of integrability

Let x = constant so that dx =0

. (1) becomes - 2xydy - 2xzdz =0

= 2ydy + 2zdz=0 (2
Integrating, we get , y? + z2 = constant f (x) (say) ..(3)
Diff. (3), we get 2ydy + 2zdz = f' (x) dx

= X f'(x) dx - 2xydy - 2xzdz =0

Compare (4) and (1), we get

X () = x4+ y*+ 22 =x2+ £ (x) (by (3))

= xi-f=x2:>£-i=x,linearinf
dx dx x
1 1
LF. = ejf;dX = . el = g9 =xi= 1
Sol is

f.lzj' 1.xdx+c=x+c
X

= f(X) = x? + cx = y? + z%2 = x* + cx is the read solution.

Example 11.Solve :xdy - ydx - 2x?°zdz = 0

Sol. The given equation is

xdy - ydx - 2x?zdz = 0 ...(1)
First of all check that (1) is integrable by using condition of integrability

Now put z = constant =dz = 0
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.. (1) becomes

xdy—ydx=0:>g - % =
y X
= log y - log x = constant
= log % = constant :% = constant = f (z) (say)
xdy — ydx
% = 1 (2) dz

= xdy - ydx - x3f' (z) dz=0
Compare (1) and (3), we get
X2f(2) =-2xz =f (2) =2z

= f'(z)=22+c:>X=zz+c
X
= y = x(z? + c), is the require sol.

Example 12.Solve : 2yzdx + zxdy - xy (1+ z) dz=0
Sol. The given equation is
2yzdx + zxdy - xy (1+z)dz =0

First of all check that (1) is integrable by using condition of integrability

Now put z = constant ..dz=0
. (1) becomes

2yzdx + zxdy =0 = 2ydx + xdy =0

= 2_dx +ﬂ =0= 2log x +logy = log (const.)
X y
= log x?y = log (constant) = x? y = constant f (z) (say)

x2dy +y. 2xdx = f* (X) dz= 2xydx + x?dy = f' (z) dz

= 2ydx+xdy=mdz
X

= 2yzdx + xzdy = Ef' (z) dz
X

Compare (1) and (3), we get
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Zr@=xy(1+2)
X

= f'(Z)=ﬂ (1+2)=x% (EJF;Lj:f(Z) (EJrlj
Z Z z
E= 1+ 1
f(2) y4

Integrating, we getlog f (z) =z +log z + log c
= log E =z:>E=eZ:>f(z)=czeZ
cz cz

= X%y = cze? is the required solution.

Self-check Exercise-3

Q.1 Solve
xz3dx -zdy+2ydz=0

Q.2 Verify that the equation is
z(@Zz+y)dx+z(z+x3)dy-xy(x+y)=0
is ingegrable and find its primitive

Q.3 Solve
z2dx +cz?-2yz)dy + (2y?-yz-xz)dz=0

15.8 Summary:
We conclude this unit by summarizing what we have covered in it:-

1. Defined Pfaffian differential form, Pfaffian differential equation and total
differential equation or Pfaffian differential equation in three variables.

2. Find the necessary and sufficient condition for the integrability of single
differential equation Pdx + Qdy + Rdz = 0, where P, Q, R are functions of x, y, z.

3. Discuss Inspection method and method of Auxiliary equation to solve the
equation Pdx + Qdy + Rdz = 0 and performed some questions related to it.

4, Discussed the method of solving Pdx + Qdy + Rdz = 0 by taking one variable
constant and some examples related to it are also given.

15.9 Glossary:

1. The expression ZFi (X1, X2, ..... , Xn) dxi, inwhich Fi, i=1,2, ..... , h are functions
i=1
of some or all of the n independent variables xi, Xo, ..... , Xn IS called Pfaffian
differential form in n variables.

298



2. An equation of the form

n
Z Fi dx =0, is called a Pfaffian differential equation in n variable xi, X, ..... , Xn
i=1
where Fi, i = 1, 2, .... , n, are function of some or all of the n independent
variables xi, Xo, ..... , Xn.
3. An equation of the form

Pdx + Qdy + Rdz=0

where P, Q, R are function of X, y, z is called the total differential equation or
single differential equation or pfaffian differential equation in three variable x, y
and z.

15.10 Answer to Self-Check Exercise
Self-Check Exercise-1

Ans.1l P Q_R +Q(ﬁ_@]+R k_R =0
oz oy ox 0z oy Ox

integrable
Ans. 2 x2 + y2+ z? = cx is the required solution, where c is an arbitrary constant
Ans.3 Y -z2=c
X
Self-Check Exercise-2
Ans.l xy+yz+zx=c(X+y+2)
Ans.2 (x+y)z=c(X+2)
Self-Check Exercise-3
Ans. 1 2y = x?z? + 2cz?, where c is an arbitrary constant
Ans. 2 x (x+y?) =z (x+y) (1-cy)
Ans. 3 z (x +y) - y?>=cz?

15.11 References/Suggested Readings
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3. Boyce, W. and Diprima, R., Elementary Differential Equations and Boundary
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15.12 Terminal Questions

1. Check the integrability of the differential equation
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zydx - zxdy - y’dz =0

Varify that the equation is integrable and find the solution of
2yzdx + zxdy -xy (1 +z)dz=0

Verify that the equation is integrable and find the solution of
(y+z)dx+(z+x)dy+(x+y)dz=0

Solve

(Y2 +yz) dx + (2% + zx) dy + (y* - xy) dz=0
Solve

3x2dx + 3y?dy - (x*+y3+ez)dz=0

Find f (y) if

f (y) dx - zxdy - xy log y dz = 0 is integrable. Find the corresponding integral.
Solve
3x2dx + 3y?dy - (x*+y3+e??)dz=0
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Unit - 16

Basic Concepts and Formation of Partial

Differential Equations

Structure

16.1 Introduction

16.2 Learning Objectives

16.3 Some Definitions

16.4 Classification of First Order Partial Differential Equations

16.5 Formation of a Partial Differential Equation

16.6 Method to Form a Partial Differential Equation by Elimination of Arbitrary Constants
Self-Check Exercise

16.7 Summary

16.8 Glossary

16.9 Answers to self check exercises

16.10 References/Suggested Readings

16.11 Terminal Questions

16.1 Introduction

Partial differential equation (PDEs) are mathematical equations that involve multiple
variables and their partial derivatives. They are used to describe a wide range of physical
phenomena and mathematical models in various scientific and engineering fields, including
physics, engineering, finance and biology. In contrast to ordinary differential equations (ODES),
which involve only one independent variable, PDEs involve multiple independent variables. A
PDE typically relates the rates of change of a dependent variable its partial derivatives with
respect the independent variables. The dependent variable can be a scalar function, a vector
function, or even a function of higher dimension. PDEs can be classified into different types
based on their order, linearity, and the number of independent variables involved. Common
types of PDEs include elliptic equations, parabolic equations and hyperbolic equations.

16.2 Learning Objectives
After studying this unit, you should be able to:-
o Define partial differential equation, order and degree of partial differential
equations.
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. Give Classification of first order partial differential equations.

. Discuss the method of formation of partial differential equation by elimination of
arbitrary constants.

16.3 Some Definitions
Partial Differential form

If a differential equation contains one or more partial derivatives of an unknown function
of two or more independent variables, then it is called a partial differential equation. In case of
two independent variables and one dependent variable, we shall usually denote independent
variables by x, y and dependent variable by z. If z is a function of more than two independent
variables, then we denote them by x1, Xz, ....., Xn.

The first order partial derivatives % and % are denoted by p and q respectively. In

OX oy
case of n variables, these are denoted by p1, p2, ..... , pn. The second order partial derivatives
0’z o’z d%z .
and are denoted by r, s and t respectively.

ox? " oxoy oy?

The following are some of the examples of partial differential equations :-

: 0z o0z
) o =xExy
ox oy
2 3
i [Z] 022
OX oy OX
(iii) zg + % =X
ox oy
: ou ou _ adu
(iv) — + —+ — =Xyz
oXx oy oz
2 12
(v) 6_5: 1+2
OX oy

o v|(Z) 2] |2
YIWax) "lay) | %5y

Order of a Partial Differential Equation

The order of a partial differential equation is defined as the order of the highest partial
derivative occurring in the partial differential equation.
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Equations (i), (iii), (iv) and (vi) written above are of first order, (v) is of second order and
(ii) is of the third order.

Degree of a partial Differential Equation

The degree of a partial differential equation is the power of the highest order derivative
which occurs in it after making the equation free from radicals and fractions in its derivatives.

Equations (i), (ii), (iii) and (iv) written above are of first degree while equations (iv) and
(vi) are of second degree.

16.4 Classification of First Order Partial Differential Equations.
Linear Partial Differential Equation

A partial differential equation is said to be Linear if the dependent variable and its partial
derivatives occur only in the first degree and are not multiplied together in the differential
equation.

A first order partial differential equation f (X, y, z, p, q) = 0 is said to be linear if it is linear
in p, g and z i.e. if the given equation is of the form P(x, y) p + Q(X, y) d = R(X, y) z + S(X, Y)

For example, the equation x%y p + xy? q = xyz + x> y> and p + q = x + xy are both first
order linear partial differential equations.

Semi-linear Partial Differential Equation

A first order partial differential equation f (X, y, z, p, q) = 0 is said to be linear if it is linear
in p, g and the coefficients i.e. if the given equation is of the form P(x, y) P+ Q (X, y) =R (X, Y,

2).
2,2

For example, one equations xyp + x2yq = x?y?z? and yp + xq = are both first order

2
semi-linear partial differential equations.
Quasi-Linear Partial Differential Equation

A first order partial differential equation f(x, y, z, p, q) = 0 is said to be quasi-linear if it is
linear in p and q i.e. if the given is of form.

PX Yy, 2)p=Q (X Y,2)q=R (X, Y, 2)

For example, the equations x2z p + y?zq = xy and (x? -yz) p + (y? - zx) q = z2? - xy are of
first order quasi-linear partial differential equations.

Non-linear Partial Differential Equation

A first order partial differential equation f(x, y, z, p, ) = 0 which does not come under
the above types is known as non-linear partial differential equation.

For example, the equations p? + g® = 1, pq = z and x?p? + y?g? = z2 are all non-linear
partial differential equations.
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16.5 Formation of a Partial Differential Equation

In general, there are two method of forming a partial differential equation depending on
the given relation between the variables. The two methods are : -

0] By eliminating, arbitrary constants from the given relation between variables.
(i) By eliminating arbitrary functions from the given relation between variables.

16.6 Method to Form a Partial Differential Equation by Elimination of Arbitrary
Constants

Let z be a function of two independent variables x and y defined by

f(x,y,z,a,b)=0 ..(1)
where a and b are arbitrary constants differentiating (1) partially w.r.t. x and y, we get
ﬂ+ﬂ_%:0and@+ﬂlg =0
OX 0z OX oy 0z oy
. of of
i.e. — +p—=0 (2
oX P 0z @)
and i +q ﬂ =0 ...(3)
oy 0z

Eliminating a and b from (1), (2) and (3), we get an equation of the form

F(X,y,2,p,q)=0

which is the required partial differential equation. The order of this partial differential
equation is one.

Note : If the number of arbitrary constants is more than the number of independent variables,
then the partial differential equation then obtained will be of hither order than the first.

But if the number of arbitrary constants is less than the number of independent
variables, then we shall get more than one differential equation of order one.

For example, if z = K x +y, then we have

X

andq=1
Working Rule for solving problems
1. Differential partially the given equation w.r.t. x and y.
2. Eliminate the arbitrary constants from the given equation and the two new relations. we

shall get the required partial differential equation.

To clarify what we have just said, consider the following examples:-
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Example 1 : Form a partial differential equation by eliminating a, b from
(i) z=(x+ta)(y+h)

2 2
iy 2z=2+2L

a® b
Sol.: (i) We have
z=(x+a)(y+b) (1)

=xy +xb+ya+ab
Differentiating both sides partially w.r.t. X and y, we get

p=%=y+bandq=g=x+a
OX

Putting in the given equation (1), we get

Z=qp

as the required partial differential eqution.
(i) We have

2 2
X

2= 7 + é (1)

Differentiating both sides partially w.r.t x and y, we get
oz _ 2x

and

oy b2 Ty b

i.e. q=b—{:>b2=%

2 B 02 Y

Putting in (1), we get
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2 2

2z = X +
xIp ylq
= 2z=px+qy

as the required partial differential equation.

Example 2 : Form a partial differential equation by eliminating a and b from the equation
(x-a)?+(y-b)y?+2z2=K?

Sol. : We have
(x-a)2+(y-b)2+z2=K2 ..(1)

Diff. both sides partially w.r.t. x and y, we get

2(x—a)+22% =0 (2
OX
ie.x-a+zp=0
0z
and 2(y-b)+2z — =0 .. (3)
oy

From (2) and (3), we have
X-a=-pz
and y-b=-gz
Putting in (1), we get
p222 + qzzz + 72 = K2
— 72 1+ pz +C|2) = K2
is the required partial differential equation.

Example 3 : Form a partial differential equation by eliminating arbitrary constant from the
equation z = ax? + by? + ab

Sol. : We have
z=ax?+by?+ab ..(1)
Diff. both sides partially w.r.t. x and y, we get
0z
= — = 2ax
P OX
N =P
2X
and
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Putting in (1), we get
Y

Z:—.X2+i y2+£i
2X 2y 2x 2y

2 2 4y
= 4xyz = 2px2y + 2gxy? + py, as the required partial differential equation.

Example 4 : Form a partial differential equation by eliminating arbitrary constants from the
equation

z=ax+by+cxy
Sol. : We have

Z=ax+by+cxy (1)
Diff. partially both sides w.r.t. x and y, we get

0z oz
p=—=a+cy, g= — =b+cx
oy

)4
2 2
r:a—§=0+0, tza—fzo,
OX oy
_0z _
oxoy
Now z =ax+ by + cxy
X 9z +y oz = SXy = ax + cxy + by + cxy - cxy
OX oy
—ax+hy+cxy=1z
2
zZ=X % +y Q xyﬂ, as the required partial differential equation.
OX oy oxoy

Example 5: Show that the differential equation of all cones which have their vertex at the origin
ispx+qy=z
verify that yz + zx + xy = 0 is a surface satisfying the above equation.
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Sol. : The equation of any cone with vertex at the origin is
ax? + by? + cz2 + 2fyz + 2gzx + 2 hxy =0 ..(1)
where a, b, c, g, h are constants

Diff. (1) partially w.r.t. x and y, we have
2ax + 2czp + 2fyp + 29 (px + z) + 2hy =0

or ax+gz+hy+p(cz+gx+fy)=0 (2
and 2by + 2(zq + 2f (yq +z) +2gxg + 2 hx =0
or by +fz+hx+q(cz+fy+gx)=0 ..(3)

Multiplying (2) by x and (3) by y and adding, we get
(ax? + by? + gzx + fyz + 2hxy) + (cz + fy + gx) (px +2y) =0
- (cz? +fyz + gxz) + (cz + fy +gx) (px + qy) =0
[By (1)]
or (cz+fy+gx) (px+qy-2)=0
or px+qy-z=0 ..(4)
which is required differential equation.
Given surface is
yz+zx+xy=0 ...(5)
Diff. (5) partially w.r.t. x and y by turn, we get
up+px+z+y=0andz+qy+xgq+x=0 ...(6)
Solving (6) for p and q,
p=-@Z+ty)x+y);q=-+x)/(x+y)
X(X+y)  ¥(z+X) ,
X+Yy X+Yy
_ 2Ay+y+2))
= Ty
=0, by (5)

Hence (5) is a surface satisfying (4).

px+ay-z=-

Example 6 : Find the partial differential equation of all planes which are at a constant distance
‘a' from the origin

Sol.: Letlx+my+nz=a (1)
be the equation of a plane where I, m, n are d.c.'s of the normal to the plane.

Differentiating (1) partially w.r.t. x and y, we get
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[+np=0 adnmn+ng=0

Also P+m?+n?=1

(-np)*+ (-ng)*+n>=1

Or PP+ +1) x*=1

Or n= % (Assuming n > 0)
p +q° +1
|:_np: _—p
JPP+gP+1
m=-nq=- 94

P+’ +1

Putting the values of |, m and n in (1), we get

_ \/p2+q2+1 ) \/p2+q2+1+ \/p2+q2+1 i

qy z

a

or z=px+qy+ap +0°+1

Q.1

Q.2

Q.3

Self-check exercise

Form a partial differential equation by eliminating a, b from
Z=ax+by+ab
Form a partial differential equation by eliminating arbitrary constants from
2 2 2
b C
Find the partial differential equation of all sphere of radius 5 and having
their centres in the xy - plane.

=1

Q

16.7 Summary:

We conclude this unit by summarizing what we have covered in it:-

1.

Defined partial differential equation; order and degree of a partial differential
equations with examples.

Discussed classification of first order partial differential equations i.e. discussed
linear; Semi-linear; Quasi-linear and Non-linear partial differential equations.

Discussed the method of form a partial differential equation by elimination of
arbitrary constants. Some examples are also given to clarify this method.
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16.8 Glossary:

1.

If a differential equation contains one or more partial derivatives of an unknown
function of two or more independent variables, then it is called a partial
differential equation.

A patrtial differential equation is said to be linear if the dependent variable and its
partial derivatives occur only in the first degree and are not multiplied together in
the differential equation.

16.9 Answer to Self-Check Exercise
Self-Check Exercise-1
Ans.1 z=px+qy+ pq

2 22
Ans.22x6—f+x(6 _282_0

OX Ox ox
2 2
andxya—f +y % -%=Oaretwo
oy ay) oy

possible forms of the required equations.

Ans. 3 Z{l+ (sz J{%J ] =25
OX oy

16.10 References/Suggested Readings
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Edition, 1967.

Sharma, J.N. and Singh, K., Partial Differential Equations for Engineers and
Scientists, Narosa Publishing House.

16.11 Terminal Questions

1.

Form a patrtial differential equation by eliminating arbitrary constants from
z=ax+a¥y’+b

Find the partial differential equation of planes having equal x and y intercepts.
Find the differential equation of all spheres whose centre lies on z-axis.

Find the differential equation of the family of spheres of reduce 7 with centres on
the planes x -y = 0.
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Unit - 17

Formation of Partial Differential Equations by Elimination of

Arbitrary Functions

Structure

17.1 Introduction

17.2 Learning Objectives

17.3 Method to Form a Partial Differential Equation by Elimination of Arbitrary Functions
Self-Check Exercise

17.4 Summary

17.5 Glossary

17.6  Answers to self check exercises

17.7 References/Suggested Readings

17.8 Terminal Questions

17.1 Introduction

The formation of a partial differential equation involves determining the mathematical
relationship between the variables and their partial derivatives that govern the behaviour of a
system. This process typically involves combining physical laws, conservation principles and
empirical observations to establish a mathematical model. By eliminating the arbitrary functions
through additional equations or constraints, we can derive the desired partial differential
equation that governs the behaviour of the system. The process of eliminating arbitrary
functions from a PDE involves finding relationships among the partial derivatives such that the
arbitrary functions can be expressed in terms of the known variables.

17.2 Learning Objectives
After studying this unit, you should be able to:-

. Discuss method to form a partial differential equation by elimination of arbitrary
functions.
. Perform questions related to formation of partial differential equations by

elimination of arbitrary functions.

17.3 Method To Form A Partial Differential Equation By Elimination Of Arbitrary
Functions.

Let u and v be two functions of x, y, z which are connected by the relation
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f(u,v)=0

where f is an arbitrary function.

Regarding z as a function of x, y and differentiating (1) partially w.r.t. X' and 'y', we get

of 8u+8u 82) of (8v+8vazj
au OX 0Z OX OX 0Z OX
and af 8u 8u az av 8v az
ou 8y oz ay 8y 828y
. of (ou au j of ( j
ie. +— | —+—p| =0
au ax az ov\ox oz
af 8u 6u of 8v av
and +— =0
ou 8y oz ov 6y 82
—+—.p
From (3), of fou =. X oz
of 1 ov ou  ou
—+—.p
OX 0z
ov ov
oflou oy oz
From (4), =. Y
of flov. ~ou_ou q
oy oz
oV ov ov oV
—+ . ~+t4a
ox 2P oy ez
ou ou ou ou
+ —+—4

o 2P oyl
. [a_u@_@a_uJ +(@a_u_a_u@j _u o du v

ou ov oV du _ o(u,v)
oy 0z oy oz  0(Y,2)

_0u ov ouov _ 0(u,v)
0z ox ox ox  8(zX)
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_0u ov ouov_ 0(u,v)

X oy oy ox o(xY)
is the required partial differential equation.

To clarify what we have just said, consider the following examples:-

Example 2: Form partial differential equations by eliminating the arbitrary functions from the
following equations:

(i) z=F(x*+Yy? (i) z= f(XJ (i) fOE+y% z-xy)=0
X
(v) f*+y*+z%)=ax+by+cz (v)  fx+y+z, X2+y*-2%)=0
Sol: (i) We have z = F(x? + y?) ...(1)
Differentiating (1) partially w.r.t. 'X'. and 'y', we get
2z _ Foe+yd)(2x) 2
oX
=  p=FX+y) (2%
and % =F (X2 +y?) (2y)
oy
= q=Fxe+y)@2y) (3)
Dividing (2) by (3), we get
p_X =py - gx = 0, is the required partial differential equation.
q
(i) Wehave  z= f(XJ ..... 1)
X

Differentiating (1) w.r.t. 'X'. and'y', partially, we get

oz :f-(lj(_lzj (2)
oX X X

and 2 =p (Xj A 3)
oy X) X
Dividing (2) and (3), we get
0z/ ox y
=- - =>px=-qy
ozl oy X
= px + qy = 0 is the reqd. partial differential equation.
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(iii) The given result is

fe+y%z-xyy=0 L (1)
Put u=x?+y?andv=z-xy

We have

fuyvy=0 )
Differentiating (2) partially w.r.t. 'x'. and 'y', we get

of du 8f ov +@ oz _
u ox  ov\ox oz ox
of of of Iou p-y
—.2x+ —(-y+1p)=0 =- ...(3
- ou ov Cy P) - of lov 2X ®)
av ov oz
and ﬂléu af O:i.2y+ﬂ(—x+l.q)=0
ou oy 6’y oz’ 8y ou ov
., dou_g-x )
of [ov 2y
From (3) and (4), we get
_ Py _9=xX 2 = gx - X2
ox 2y =Py -y =4q
= gx - py = X2 - y? is the required partial differential equation
(iv) We have
fx2+y?*+z9)=ax+by+cz . (5)

Differentiating (1) both sides partially w.r.t. 'x' and 'y', we get

fe+y?+2z?)= (2x+ ZZQJ =—a+ cg
OX OX

0z 0z
f(e+y?+2%)= (2y+22—] b+c—
oy oy

Dividing, we get
X+pz a+cp
y+0z b+cq

= bx + bpz + cqx + cpgz = ay + aqz + cpy + cpgz

= (bz - ay)p + (cx - az)q = ay - bx
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is the regd. partial differential equation.
(v) The given result is

fx+y+z,x2+y*-z2=0 . 1)
Putu=x+y+z v=x*+y2-22 . 2

We have f(u,v) =0
Differentiating (2) partially w.r.t. 'X' and 'y' we get

of (au ou 82) of (Gv oV az)
— =+ —~—+==1=0

oulox oz ox) ov\ex oz ox)

= ﬂ(1+1.p)+ﬂ(2x-22p)20
ou ov

Similarly Z—L 1+1q)+ 2—]:/ (2y-2zg)=0

1+p 2x-2zp
1+q 2y-2zq

Eliminating i —f , we get
ou ov

= 2y - 2zq + 2yp - 2pzq = 2x - 2zq - 2zpq

Dividing throughout by 2 and cancelling - zpg from both sides, we get

= p(y + z) - (x + 2)g = X - y, which is the reqd. partial differential equation.

Find partial differential equations by eliminating arbitrary functions from the following relations:

(Examples, 2 - 4)
Example 3: z=xy + f(x* + y?)
Sol: z=xy + f(x2 +y?)

_ oz

p= — =y+f(X*+y% 2x
OX

0z
q=— =x+f (xX¥*+y?)2y
oy

From (2) and (3), we getp -y = f' (X2 +y?)2x g - X = f'(X* + y?).2y

Dividing, we get Py _X =py-y>=0gx - X2
y

= py - gx = y? - x? is the required partial differential equation.

Example 3: z=x+y + f (xy)
Sol. Sincez=x+y+ f (xy)
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0z !
p=—=1+fKxy).y . (2
OX
0z
q=—=1+f(xy).x .. (3)
oy
. -1
i.e. p—1=f'(xy).yq—1=f'(xy).x,.'.p—:X
q-1 X
= pX-X=qy-Yy=pX-qy=X-Y, is the required partial differential equation.

Example 4:z= f(x>-y)+g (x> +Y)
Sol. Since z = f(X2-y) + g (X2 +Y)

%f‘ 02 - y)2X + g (¢ +) 2%

%f‘ (x-y) (1) + g (€ +y).1
Yy

2
% S (P-y). 242X fU(XP-y). 2x+ g (X2 +y) 2+ 2x g" (X2 +Y) (2X)
X
=2f (X2 -y) + AXPf" (X2 -y) + 29" (X2 +y) 4x2 " (X2 +y)
0%z
FYa =CED -y (D) +g Y= (P-y) gt (P tY)
622 2 . 2 " 2 1 2 1 2
Now o =4[ (X -y)+ g (XE+Y]+ 2 f (X -y)+ g (X +Y)]
oz
=4x262 +2. X- g 20" +1%
oy? 2X oy? X OXx
2 2
xa—f = 4x3a—f oz
oy oy- ox

Example 5 Form partial differential equations by eliminating arbitrary functions from the
following relations :

i) z=fy+ax)+g(y+bx),azb

(i) z=fKy)+gx/y)
Sol. (i) We have

z=f(y+ax)+g(y+bx) (1)
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Again

and

oz ! |
&:f(y+ax).a+g(y+bx).b

622 ] n 2 2 A

_6 > =f'(ytax)a.a+g"(y+bx).b.b=af"(y+ax)+b°g"(y+bx)
X

02 pyra).1+g by 1
oy

622 i mn
— =f"(y+ax)+g" (y +bx)
oy
2
02 _py+axsa +g' (y+bx)b
O0yox

r=f"(y+ax).a’+g"(y+bx)b?,s=f"(y+ax).a+g"(y+bxb
t=s"(y+ax)+g"(y+bx)

Eliminating f" (y + ax), g" (y + bx) from these three equations, we get

r a® b’
s a b|=0=r(@-b)-s(@-b>)+t@b-ab?)=0
t 1 1
= r(a-b)-s(a-b)(a+b)+tab(a-b)=0
= r- (a+ b)s +tab =0, is the required partial differential equation.
(i) We have
X 0z x| 1
z=f(xy)+9(—}-'-—:f'(xy)-y+g'(—)-—
y) ox y)y
0°z x| 1
— = f"(xy).y*+g" | —|. =
PN frxy).y“+g [y] ¥
0z X) x
Again — = f'(xy) . x+g (—J —
oy y) y°

0%z X\ X X\ 2x
= f"(xy) . x*+g" (—j — 19 (—j-—
Y)Yy y

oy
X2
Xir= f"(xy) x*y* +g" v

< | <
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X)) x? X 2x
yt= f"(xy) xXy*+g" (;jx_z +g (—}-—

X2r - y2t——g( JZX
Y,y

Also, xp-yq=xyf (xy) + a g [Ej - Xyf'(xy) + X g [Ej: o X g [fj
y y y y y y

Xr-yt=-(xp-yq) = xr-ytt +xp-yq=0

Example 6 : Find partial differential equation by eliminating arbitrary functions from the relation.
z=f(x+iy).+g(x-iy)

Sol. Sincez=f (x +1iy) .+ g (X -1y)

p=Z = px+iy)+g (x-iy)

ox
= P pxriy) () + 0 (x- 1Y) ()
oy
0°z
= S r= (i) + g (x-1y)
ox?
o’z . e R,
v = (x+iy) ()7 + 9" (x - iy) ()
=-f"(x+iy)-g" (x-iy)
2 2
r+t=0 :a—f + a—f = 0, is the required patrtial differential equation.
OX oy

Example 7 : Find the partial differential equation from the relation by eliminating arbitrary
functions.

=f(xcosx+ysinx-at)+g(xcosx+ysin X+ at)
Sol. : We have
z=f(xcosx+ysinx-at)+g(xcosx+ysin x + at) ..(1)
Diff. (1) on both sides partially w.r.t. x, y andt, we get

oz
=f (xcosx+ysinx-at) cos x +

6x

+ g' (x cos x +y sin x + at) cos X

318



0°z " . 2
y:f (xcos x +ysin x - at) cos” x +
+g" (X cos X + y sin X + at) cos? X
Similarly,
522_ . : 2
a—yz-f (x cos x +y sin x - at) sin” x +
+g" (x cos x +y sin x + at) sin® x
o’z .
=/ (xcosx +ysinx-at) (-a) (-a) +
+g" (x cos x + y sin x + at) (a) (a)
= f" (x cos x +y sin x - at) a® +
+g" (X cos X + y sin x + at) a2

6—22 + ?yff“(xcosx+ysinx-at) (cos? x +

+sin?x) + g" (X cos X + y sin X +

at) (cos? x + sin? x)

= f"(xcosx+ysinx-at)+g"(xcosx+ysinx + at)
0%z

Also —
ot?

=a?[f" (xcos x +ysinx-at) +

+g" (X cos X +y sin x + at)]

0’z _ [0z 0%z
= 7 =a —2+—2

ot ox~ oy

Fz, 07 _ 1

ox:  oy*  a® ot?
Example 8 : Form partial differential equation by eliminating arbitrary functions from the relation
z=f(x+ay)+g(x-ay).
Sol. : We are given

z=f(x+ay)+g((x-ay) (1)
Diff. (1) partially w.r.t. x and y, we have

0z

> =f(x+ay)(L+0)+g (x-ay)(1-0)
X
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or ? Sf(x+ay) g (x-ay) (2
X
0z

and L=y o) 0+ g () 0-a
0z

or —=

, AU -g ) (3)

Again diff. (2) partially w.r.t. x and (3) w.r.t. y, we have

2

%f" (x+ay) (1+0)+g" (x-ay) (L-0)

o0’z , "
or yf (X+ay)+g (X'ay) (4)
0’z . "
and Fv =a[f" (x+ay) (0O+a)+g" (x-ay)(0-a)
0’2 _ i "
Fria a’[f" (x+ay) +g" (x-ay)]
0%z 0%z
or - 294 of (4
o ~ [Q of (4)]
0’z_ _,0°z
Y2
\ X

which is the required partial differential equation.

Example 9 : Form differential equation for cone with vertex at A (o, B, y) having equation of the

form.
f{x—a’y—ﬂ] o
Z—y Z-y
Sol. : We are given
X—a y-pf
2" 1=0 (2
f(Z—V Z—Vj @

Put xza =uandy;’3 =v
-y -y
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oXx z-y oy "oz (z-y)?
ov ov 1 ov_ (y-p5)

and — , ,
OX oy z-y 0z (z-y)

Now equation (1) becomes

f(u,v)=0
Diff. (2) w.r.t. x and y, we get

ﬂ_ﬁu 6u82_ +ﬂ_@+@g_:o
ou|ox 0zox| OV |OX 0zZO0X|

of [ou ouoz| of [ov ovoz| o
ou|oy o0zoy| oOv|oy 0zoy |

and

of | 1 X—a of y-p
— — >.p|+—|0- 5
ou|z-y (z-y) oV (z=p)

oV E

o ﬂ[o X-a p}af[ 1 y-p q}o

(z-y)? z-y (z-7)
of [(z-p)-px-a)| _at [ y-8 ]
ou | (z-y)? ov | (z=y) ]
o [ x-a }z @[(by)—q(y—ﬁ)_
ov | (z-7)° (z-y)?

and

ov
Dividing (3) by (4), we get
@—n—pa—a):{ (Y-8 }
p(x-a) (z=7)-aly-p)
or (z-v)(y-B)(z-v=pax-0)(y-p)-a(z-v)
(y-B)+pa(x-o)(y-p)
orp(x-o)(Zz-y+d(z-y)(y-p)=(z-v7
Dividing by z - y, we get
p(x-a)+qy-p)=z-vy
which is the required partial differential equation.
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Self-Check Exercise

Q.1 Find partial differential equation by eliminating arbitrary function from the relation

Q.2 The equation of any cone with vertex

Q.3 Form differential equation by eliminating arbitrary functions from the relation

z=xf(x+t)+g(xX+Dh).

at P (Xo, Yo, Zo) i< of the form

f(x—xo,y—yoj o
z-2, z-1,

Find the partial differential equation corresponding to it.

fUx+my+nz x2+y?+2%)=0

17.4

17.5

17.6

17.7

Summary:
We conclude this unit by summarizing what we have covered in it:-

1. Discussed in detail the method of formation of partial differential equation by
elimination of arbitrary functions.

2. Give examples for the formation of partial differential equations by the method of
elimination of arbitrary functions.

Glossary:

The formation of a partial differential equation involves determining the
mathematical relationship between the variables and their partial derivatives that
govern the behaviour of the system.

Answer to Self-Check Exercise

0%’z 0%z 0°z

Ans. 1 >+t —5 -2 =0
OX ot oxot

Ans. 2 P(X-X)+q(y-Yo)=2z-20

Ans. 3 (ny-mz)p+(Iz-nx)g=mx-ly

References/Suggested Readings

1. I, Sneddon, Elements of Partial Differential Equations, McGraw-Hill, International
Edition, 1967.

2. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, New
York.
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17.8 Terminal Questions

1.

Find partial differential equation by eliminating arbitrary functions from the
relation

x=f () +a(y).
Find the partial differential equation by eliminating arbitrary functions from the
relation

z=yf(X)+xg(y)
From differential equation by eliminating arbitrary functions from the relation
f(x-y),z+cosx)=0

Form partial differential equation by eliminating arbitrary functions from the
relation

fx+y+2z,xyz)=0

Form partial differential equation by eliminating arbitrary functions from the
relation

zZ=f(X*-y)+g(x*+y)
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Unit - 18
Solution or Integral of a Partial Differential Equations

Structure

18.1 Introduction

18.2 Learning Objectives

18.3 Solution or Integral of a Partial Differential Equation

18.4 Lagrange Linear Equation
Self-Check Exercise

18.5 Summary

18.6 Glossary

18.7 Answers to self check exercises

18.8 References/Suggested Readings

18.9 Terminal Questions

18.1 Introduction

In the last two units we have discussed method of forming partial differential equations.
In this unit we shall discuss some methods to solve a partial differential equation i.e. we shall
find a function which satisfies the given partial differential equation. A function which satisfies a
partial differential equation is called its solution or integral. In this unit and in next unit, we shall
discuss methods to find solutions of partial differential equations of the first order and also linear
in p and q.

18.2 Learning Objectives
After studying this unit, you should be able to:-

° Discuss four types of solutions of partial differential equation.

o Define and discuss Lagrange's linear equation and Lagrange's method of solving
linear partial differential equation of order one i.e. Pp + Qq = R.

18.3 Solution or Integral of a Partial Differential Equation

A solution or integral or a partial differential equation is a relation between the variables which
satisfies the given partial differential equation.

There are four types of solution of partial differential equation.

1. Complete Solution or Complete Integral.
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If from the partial differential equation f (x, y, z, p, q) = 0, we can find a relation F (x, y, z,
a, b) = 0 which contains as many arbitrary constants as there are independent variables, then
the relation F (x, y, z, a, b) = 0 is called Complete Integral or Solution of the given partial
differential equation.

e.g.,, z=(x+a) (y + b) is a complete solution of the partial differential equation
Z=pq
2. Particular Integral (or Solution).

A solution obtained by giving some particular values to the arbitrary constants in the
complete solution of a partial differential equation of the first order is called a particular solution
of the partial differential equation.

e.g.z=(z+ 2) (y + 3) is a particular solution of the partial differential equation
Z=pq
3. Singular Integral (or Solution)

Let £ (x, Y, z, a, b) = 0 be the complete solution of the partial differential equation F (x, v,
z,p,q)=0

The relation between x, y and z obtained by eliminating the arbitrary constants a and b
between the equations.

of of
] ] ] 1b:01_:o,_=0
foyzab=050"% %

is called Singular Solution of the partial differential equation

F(x Y,z p,q) =0, provided it satisfies the given equation.

This solution represents the envelope of the surface represented by the complete
solution of the given equation.

The singular solution may or may not be contained in the complete solution of the given
partial differential equation.

Rule to find singular integral

The singular integral of the given partial differential equation is obtained by eliminating a
and b from

/=0, 2—; =0, Z—L =0

where f (X, Y, z, a, b) = 0 is the complete integral of the given partial differential equation.
e.g. consider z = ax + by + ab as the complete solution of the partial differential equation
Z=pxX+qy+pq
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Let f(x,y,z,a b)=z-ax-by-ab=0 (1)
a =-x-b=0
oa

ie.X+b=0=>b=-x

and @z -y-a=0
ob
ie.y+a=0
—a=-y

- (1) gives

Z-(yx-(x)y-(y) (x)=0
= Z+xy+xy-xy=0
= z+xy=0
= z = -xy is Singular Solution of z = px + qy + pq
4. General Integral (or Solution).

Let f (X, Y, z, a, b) = 0 be the complete solution of a partial differential equation F(x, y, z,
p,a)=0

Let b= (I) (a)
fix.y.z,a,¢(@)]=0

is a one-parameter family of the surfaces F (x, y, z, p, q) = 0. The relation between x, y and z
obtained by eliminating arbitrary constant 'a’ between the equation f[x, y, z, a, ¢ (a)] = 0 and

f , , - : :
2— = 0 is called a General Solution of the partial differential equation.
a

F (Y, z p,q) =0, provided it satisfies the equation\.

This solution represents the envelop of the surfaces represented by the equation f(x, v,
z,a, ¢ (a)=0.

Note. We can say that general solution of F (x, y, z, p, q) = 0 is the set of equation

fIx.vy.z,a,¢6(@)]=0 (1)
of
and %a =0 ..(2)

where f is an arbitrary function if the elimination of 'a' between (1) and (2) is not possible or not
easy.
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Again if u, v are independent function of x, y, z and f (u, v) = 0 be an arbitrary function of u and
v, then elimination of f will give

Pp+Qg=R (1)
where Pzﬁﬁa—u@
oy 0z 0z oy
Q- UV udv
0Z OX OX 0z
_udv ou v
OX oy oy ox

(2) is partial differential equation of the first order.

Hence f (u, v) = 0 is a solution of the equation Pp + Qg = R. Since f (u, v) = 0 contains an
arbitrary function 'f'. ... it is the general solution of the equation (1).

18.4 LAGRANGE LINEAR EQUATION

A partial differential equation of the form Pp + Qg =R

where P, Q, R are functions of x, y, z is called Lagrange's Linear Equation.
It is the standard form of the linear partial differential equation of order one.
eg. (Y*+t7p+t(z+xq=x+y

is a Lagrange's Linear Equation.

Lagrange's Method of Solving the Linear Partial Equation of Order One i.e. of
Pp + Qg =R.

The general solution of the linear partial differential equation

Pp+Qg=R ..(1)
(where P, Q and R are functions of x, y and z)
is f(u,v)=0 ..(2)
where ¢ is an arbitrary functionand u (x,y, z) =aandv (X,y, z) = b ..(3)

from a solution of the equations

dx_dy _dz

50" R .(4)

Proof. We have already proved that by the elimination of f from (2), we get (1)

[Give its proof here f or complete proof of this]

So, we have to find the values of u, v.
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Differentiating (3), we get

o dx + @dy+ @dzzo
OX oy 0z

@ ov ov

and dx+ —dy+ —dz=0
OX oy 0z

Solving this f or dx, dy and dz, we get

dx B dy B dz
Ou v duov AUV dudv  ou v du ov

oy 6z 6z’ 6y 0z OX OXx 0z X dy Oy oX

dx_dy _dz

50 " R ..(5)

i.e.

Thus, (5) represents the differential equation whose solutions are u=aand v = b.
u and v are found out.
Hence the solution of the Lagrange's Linear equation Pp + Qq =R is
fu,v)=0
where f is an arbitrary function.

Note. The equation (3) is called Lagrange's auxiliary or subsidiary equation.

Method to solve Pp + Qq = R. (1)

1. Write down the auxiliary equation for (1) i.e. % = ﬂ = E ..(2)
P Q R

2. Find two independent integrals of the auxiliary (2) sayu=a,v="b

3. Thus general integral or solution of (1) is f (u,v)=0oru=¢ (v)

where f or ¢ is an arbitrary function.

To clarify this method let us look at the following examples :-

Type - |
In this case, solution of Pp + Qq = R is obtained by taking two members of auxiliary
. x _d z . . : . o
equation d— = ay = dE at a time and then integrating to have two independent solutions in

variables whose differentials are involved in equation.

Example 1 : Solve the following for general solution.
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— +X —=X
Y oy OX
Sol. : Given differential equation is
y%+x %z X (1)
oy OX
0z 0z
X—+y —=X
OX oy
or px +qy = X

comparing it with Pp + Qq = R, we get
P=x,Q=y,R=x
auxiliary equations are
dx_dy _dz
X y z

(2)

From first two members of (2), we get
o _ dy
X y
On integration, we get
logx=logy +log a

or log x = log ay
X = ay
or X a ..(3)
y
From first and last members of (2), we get
dx _ dz
X z
or dz = dx

On integration, we get
z=x+b
or Z-X=Db ..-(4)

From (3) and (4), we getu =a, and v=Db where u (x,y, z) = X andv (X,y,z)=z-X
y
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The general solution of (1) is given by

X
f[—,z— Xj = 0, where f is an arbitrary function.
y

Example 2 : Solve the following for general solution

X*p+y?q+z°=0

Sol. : We are given
X*p+y?q+z°=0

or X2p+y?q=-2z2

Comparing it with Pp + Qg = R, we get
P=x>,Q=y? R=22

.. auxiliary equations
d_dy a2

NG yz _ 72

Taking the first two members of (1), we get

dx dy
or xt dx = y2dy
Integrating we get
— =<2 =3
-1 -1
1 1
— - — =a
Xy
Taking the last two members of (1), we get

dy dz
=
or yldy = -z?2dz
Integrating, we get

-1 -1
Yy -z 4
-1 -1

or — +
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From (2) and (30, wegetu=aandv="hb

Whereu(x,y,z)zl-l,v(x,y,z): +
Xy

N |~

1
y
The general solution is given by

(1 11 1} _ _ _
f| =———,—+—=1 =0, where f is an arbitrary function.
X yvy z

Example 3: Solve the following for general solution.
(x-a)pt(y-pa=z-y

Sol. : We are given
x-a)p+(y-pa=z-y

Comparing it with Pp + Qg = R, we get
P=x-a,Q-y-B,R=z-y

The auxiliary equations are

dx dy dz

= = (1)
X—a y-p z-y
Integrating, log (x - a) = log (y - B) + log a
log (x—_aj =log a
y-p
o X% -, (2
y-p
Taking first and last members of (1), we get
dx _ dz
X—a Z-y

Integrating, log (X - a) log (z -y) +log b

X—a
log (—} =logb
Z—y

X2 (3

=y

From (2) and (3), we getu=aandv=>0

or
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X—a andv (x,Yy,2) = Xza

where u(x, y, z) =

The general solution is given by
X—a X—«a

f( ’—j i O
Y-8 z-y

- X—-a
or X—a _ f{ ] where f is an arbitrary function.
Z- y

Example 4 : Solve the following for general solution
p COS X + g COS y = COS Z

Sol. : Given differential equation is
p COS X + g COS y = COS Z

Comparing it with Pp + Qg = R, we get
P=cosx,Q=cosy,R=cosz

the auxiliary equations are

dx dy dz

cosX cosy " cosz )

Taking are first two members of (1), we get
dx _ _dy

COSX  Ccosy
or secx dx =secydy
Integrating, we get

log|secx+tanx|=log|secy+tany |+
or log|secx+tanx|=log(c)|secy+tany|
or [secx+tanx|= (c)|secy +tany |
or secx +tanx=(xc) (secy +tany)

—ziitii =o,wherexc=a (2

Taking first and last members of (1), we get

dx _ dz
COSX  COSZ
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Integrating, we get
J secx dx = j sec zdz +log |d]

log |sec x + tan x| = log |sec z + tan z| + log |d|
or log |sec x + tan x| = log |d| |sec z + tan Zz|
|sec x + tan x| = |d| |sec z + tan z|
or secx+tanx == d (sec z + tan z)
=b (sec z + tanz)
wherexd=Db

Sec X+ tan X

=b .(3)
secy+tanz

From (2) and (3), general solution is given by

secxX+tanx secx+tanx
secy+tany secz+tanz
Example 5 : Find the general solution of the linear partial differential equation

Y2 p-Xyq=x(z-2y)
Sol. : Given differential equation is

y? p-Xxyq =X (z - 2y) (1)
Lagrange's auxiliary equations are

dx d dz

-9 2

y°  —xy  x(z-2y)

Taking the first two members of (2), we have

ax _ dy
y: Xy
y X

xdx = -y dy

or 2xdx+2ydy=0
Integrating, we get

x2+y?=a ..(3)
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Again, taking last two members of (2), we have

dy _ dz
=Xy X(z-2y)
or & = dz
-y z-2y
dz _ -z+2y
dy y
or % =Y. 2
dy z
% + 1 =2
dy 'y

which is a linear differential equation of the form % +P2=Q

P=>-,Q=2

1
y’
1
Iy

dy
- eIogy - y

LE. ™ =
the solution is

szj<gdmw+b

zy = j 2ydy +b

or zZy=y?>+b ...(4)
zy=y?’=b

From (3) and (4), we get
u=aandv=>b

where u (X, y, z) = x? - y?

and v(X,Y,2z)=xy-y?

Then general solution of (1) is given by

f (X2 +y? zy - y?) =0, where f is an arbitrary function.
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Self-check Exercise

Q.1 Solve the following for general solution

Q.2 Solve the following for general solution

Q. 3 Solve the following for general solution

p +g=sinXx

X*p+y2q=2z°

(X+y)p+yq=z+x°

18.5

18.6

18.7

18.8

Summary:

We conclude this unit by summarizing what we have covered in it:-

1. Discussed different types of solution or integral of a partial differential equation.

2. Defined Lagrange's linear equation.

3. Discussed in detail Lagrange's method of solving the linear partial differential
equation of order one i.e. of Pp + Qq = R.

4, Type-I solution of Pp + Qg = R is demonstrated with examples.

Glossary:

1. If from partial differential equation f(x, y, z, p. q) = 0, We can find a relation F(x,

y, z, a, b) = 0 which contains as many constants as there are independent
variables, then the relation F(x, y, z, a, b) = 0 is called complete integral or
solution of the given partial differential equation.

2. A patrtial differential equation of the form
Pp+Qq=R
where P, Q, R are functions of x, y, z is called Lagrange's linear equation.

Answer to Self-Check Exercise

Ans. 1 f(x-y,z+cosx)=0
1 11 1 . .

Ans. 2 ———,———| =0, where f is an arbitrary constant.
X vy z

Ans. 3 f(é_yz_ij-o
y Uy oy

References/Suggested Readings
1. Shepley, L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984
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2. Sneddon, I., Elements of Partial Differential Equations, McGraw-Hill, International
Edition, 1967.

18.9 Terminal Questions

1. Solve the following for general solution
0z 0z
Y -t - =2
ox oy
2. Solve the following for general solution ptan x + qtany =tan z
3. Solve the following for general solution
e'p-e*q=0
4, Find the general solution of the linear partial differential equation

(X2 + 2y?)p - Xyq = XZ.
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Unit - 19
Solution of Lagrange's Linear Equation

Structure

19.1 Introduction

19.2 Learning Objectives

19.3 Solution of Lagrange's Linear Equation (Type-II)
Self-Check Exercise-1

19.4 Solution of Lagrange's Linear Equation (Type-III)
Self-Check Exercise-2

19.5 Solution of Lagrange's Linear Equation (Type-1V)
Self-Check Exercise-3

19.6 Summary

19.7 Glossary

19.8 Answers to self check exercises

19.9 References/Suggested Readings

19.10 Terminal Questions

19.1 Introduction

A linear partial differential equation of the first order is an equation that relates a function
and its partial derivatives of the first order. The Lagrange method also known as the method of
characteristics, is a technique used to solve first-order linear partial differential equations. It
involves transforming the given equation into a system of ordinary differential equations along
characteristic curves. In last Unit, we discussed solutions of linear partial differential equations
of first order (Type ). Now we go further for more type of equations to solve.

19.2 Learning Objectives
After studying this unit, you should be able to:-

. Define linear partial differential equation of first order
. Find the solution by Lagrange's method of the equation Pp + Qq =R
. Discuss Type-Il solution, Type-lll and Type-IV.

19.3 Solution of Lagrange's Linear Equation (Type-Il)

The solution of Pp + Qg = R is obtained by taking two members of the auxiliary equation
and integrate to have an equation (one independent solution) in the variables whose
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differentials are involved and another independent solution is obtained by making use of the first

solution (integral)

Let us look at the following examples to clear the idea:-

Example 1:- Solve the following Lagrange's Linear equation for general solution

Zp-zqQ=Xx+y
Sol: Given differential equation is
Zp-zq=XxX+y

Compare it with Pp+ Qq =R
Here P=z,Q=-zZ,R=x+Yy

The auxiliary equation are

o _dy _
p Q R

or I _dy_ dz
z -z X+y

Taking first two members of (1), we get
dx =-dy
Integrating, x =-y+aorx+y=a
Taking first and last members of (1), we get

dx _ dz
z X+Yy
dx dz
or — =
z a
adx = zdz

2
. z
Integrating, ax = Y +b

2

orax=Z—=b
2
Z2

X+y)x — =b

(x+y) >

From (2) and (3), we getu=aandv=>0

2
Whereu(x,y,z)=x+y,v(x,y,z)=(x+y)x-%
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.. the general solution is given by

2

f(x+y,(x+y)x=%)=0

Example 2 : Solve the following Lagrange's linear equation for general solution

pX+qz=-y
Sol. Given differential equation is
pX+qz=-y

Comparing it with Pp + Qq = R
HereP=x,Q=2z,R=-y
The auxiliary equations are

dx d dz
ox_gdy _ G (D)
X z -y
Taking last two members of (1), we have
ydy=-zdz
or 2ydy+2zdz=0
Integrating, y? + z2 = a ..(2)
Taking first and second members of (1), we get
dx _ dy
X z
d
o X9 [Q of 2)
X a— y2
Integrating, log x = sin'l% +b
a
log X - sint y =b ..(3)

’yZ + 22

From (2) and (3), we getu=a,v=>0b
where u (x,y, z) =y>+z?and v (X, y, z) = log x - sin‘lL
/yz P

The general solution is given by
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Yy
’y2+22

f is an arbitrary function

y*+ 7%, logx—sin™t =0, where

Example 3 : Solve the following Lagrange's linear equation for general solution.
p-g=log(x+y)

Sol. : Given differential equation is
p-q=log(x+y)

Compare it with Pp + Qg = R, we have
P=1,0Q=-1,R=log (x+vY)

The auxiliary equations are

ax _dy _dz
P Q R
Or % = Q = —dZ (1)

1 -1 log(x+y)

Taking First two members of (1), we have

dx+dy=0
Integrating, x+y=a ..(2)
Taking first and last members of (1), we get
dx _ dz
1 log(x+y)
or dx = £ [Q of (2)]
loga
logadx=dz
Integrating, (loga)x=z+b
orflog(x+y)]x=z+b
xlog(x+y)-z=b ..(3)
From (2) and (3), we getu=aandv=>b
whereu (X,y,z2)=x+Yy,v(X,y,z)=xlog (x +y) -z
the general solutionis f (x +y, xlog (x +y) -z) =0
or xlog (x+vy)-z=f(x+y), where fis an arbitrary function.

Example 4 : Solve the following Lagrange's linear equation for general solution:
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Xyp +y* q = xyz - 2x°
Sol. : Given differential equation is
Xyp +y? q = xyz - 2x?
Compare it with Pp + Qq = R, we get
P=xy, Q=y2, R=xyz-2x2
The auxiliary equations are
dx dy _ dz
oY w2
Taking the first two members of (1), we get

dx _ dy
Xy Y
or %:Q
X oy

Integrating, log [x| = log |y| + log |c|
or log |x| = log |y |c|
or log [x| = log |y c|

x| = [yc|
or X=xyc=ay (say)
X
—_ = a
y
Taking the first and last members of (1), we have
dx _ dz
Xy xyz-2x*
ax dz
or — =
i xy(z—ij
y
dx dz
— = of (2
T o [Q of (2)]
Integrating, x = log |z - 2a| +b
x-log|z-2 X|=b .3
y
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From (2) and (3), we getu=aandv=>0

X 2X
whereu (X,y,z)= — andv (x,y,z) =x-log 2—7‘
y

The general solution is given by

2X
Z__

J= 0, where f is an arbitrary function.

f{é’x_log
y

Example 5 : Find the general solution of the linear partial differential equation
pX (2 - 2y?) = (z - ay) (z - y* - 2x°)

Sol. : Given differential equation is
pX (z - 2y%) = (z - qy) (z - y* - 2X°)

or X(Z-2y)p+y(z-y?*-2x3) q=2(z-y?-2x3 ..(1)

Comparing it with Pp + Qq = R, we have
P=x(z-2y%,Q=y(z-y*-2x%,
R=1z(z-y?-2x%

The auxiliary equations are

dx dy B dz

X(z-2y%)  Y(z-V*-2x)  z(z-y?-2X)

Taking last two members of (2), we get

(2)

dy_de
y z
dz _ dy
z y
Integrating, log z =log y + log a
= log (ay)
Z=ayor X =a ..(3)

Taking first two members of (2), we have

dx _ dy
X(z-2y?)  y(z-y*-2xX°)
dx dy

[Q of 3)]

x@y-2y%)  y(ay—y?—2x)
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dx _ dy
ax—2xy ay-y>-2x°

or (ay - y? - 2x3) dx = (ax - 2xy) dy
or (ay - y?-2x3) dx + (2xy - ax) dy = 0 ..(4)
Comparing it with Mdx + ndy = 0, we get

M= ay-y?-2x3, N=2xy - ax

ﬂ :a-Zy,ﬁ :2y-a
oy OX
oM  ON
- 4+ —
oy  ox
equation (4) is not exact
oM _oN
Now oy OX _ a-2y-2y+a _ -4y+2a
N x(2y—a) x(2y-a)
—2(2y—-a 2
= M =-_ = f(x) (say)
x(2y—a) X
E e Jle
=2 logx
- elogx-z
= x?2
1
X

Multiplying (4) by iz we get
X

(ay_y2_2x3j s (2xy—andy:0

X2

or (ay X2 -y?x2-2x) dx + (ﬂ—éjdy =0
X X

which is a exact differential equation.

Its solution is
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J (ay x2-y?x2-2x)dx+0=b

y constant
Xt xt NG
Or ay | — |-y —|-2|—|=b
2
o - Y eop
X 2
y’ —ay
L= xe=p (5)
X

From (3) and (5), the required general solution of (1) is

2

z —a : : .

f[—, y y_ ij =0, where f is an arbitrary function.
y X

Self-Check Exercise-1
Q.1  Solve the following Lagrange's linear equation for general solution:
Xy?p - y°q = -ocxz
Q.2 Solve the following Lagrange's linear equation for general solution:
z(z* + xy) (px - qy) = x*
Q.3  Find the general solution of the linear partial differential equation

p+3q=z+cot(y-3x)

19.4 Solution of Lagrange's Linear Equation (Type-Ill)
Here, we find the solution of Pp + Qgq=R ... 1)
by the following formula (from algebra) i.e.
dx _dy _ dz _ Sdx+Tdy+Udz

P Q R PS+QT +RU

where S,T, U are some functions of x, y, z.

If S,T, U are chosen in such a manner that (known as multiploers) PS + QT + RU =0,
Then we have Sdx + Tdy + Udz =0

Now integrate it to get one independent solution of (1) as u(x, y, z) = a

And the other independent solution can be obtained either by selecting another set of
multipliers
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Or by taking two members of auxiliary equations.

Let us look at the following examples to clear the idea:-

Example 6: Find the general solution of the following Lagrange's linear equation:
X(y-2)p+y(z-x)g=z(x-y)

Sol: Given differential equation is
X(Y-2)p+y)(Zz-X)g=2z(X-y)
Compare it with Pp + Qg = R, we get
P=x(y-2),Q=Yy(z-x,R=2z(x-y)

The auxiliary equations are

dxk _ dy dz

X(y-2)  Y(z-%)  zx-Y)

Taking 1, 1, 1 as multipliers; each of fraction of (1)

: dx+dy+dz
Ix(y—2)+1y(z—x)+1.z2(x-y

_ dx+dy+dz
0
dx+dy+dz=0

Integrating, x+y+z=a . (2)

! : l as multipliers; each of fraction of (1)

Taking ! —
y z

X

1dx+£dy+1dz
y y A

Lay-2+tyz-n+i-zx-y)
X y z

dx dy dz
X ¥y Zz
0

v, &z,
V4

dx
—_ + —_—
Xy
Integrating,
log x| + log |y + log |z| = log |c|
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Or  log [X|lyl|z| = log |c]

Or log |xyz| = log |c|

Or Xyz =+ ¢ = b (say)

Xyz=b . 3

From (2) and (3), the general solution is given by
fx+y+z xyz)=0

Example 7: Find the general solution of the following Lagrange's linear equation
X(Y?-2) p+y(z2-x) =z (¥ -y?)

Sol: Given differential equation is
X(y?-Z2)p+y (2 -x)q=z (x*-y?)
Compare it with Pp + Qg = R, we get
P=x(y?-79),Q=y (22-X), R=2 (- y?)

The auxiliary equations are

dx _ dy _ dz
X(y'=2") y(Z-x) zZx*-Yy%)

Taking multipliers as i 1 \ l ; each of fraction of (1)
Xy z

1dx+1dy+1dz
_ X y z

Ly -2+ tyz )+ Lape -y
X y z

1dx+1dy+1dz
X y z
V- P+ X+ X -y

1dx+1dy+1dz
X y z

2

0

de+£dy+£dz:0
X y z

Integrating, log |x| + log |y| + log |z| = log |c|
Or  log Ix| Iyl Iz| = log |c|
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Or log |xyz| = log |c|
Or [xyz| = log |c|
i.e. Xyz =+ ¢ = a (say)
Xyz=a (2)
Taking multipliers as X, y, z ; each of fraction of (1)
_ xdx + ydy + zdz
XY =2°)+ yH(Z - X)+ 22 (X~ Y°)
xdx + ydy + zdz
0

xdx +ydy +zdz=0
Or 2xdx + 2ydy + 2zdz = 0
Integrating, we get  x*+y?+z2=b . (3)
From (2) and (3), we getu=aandv=>b
where u(X,y, z) = xyz and
v(X, Y, Z) = X2+ y? + 72
The general solution is given by
f(xyz, x2 +y? + z2) = 0, where f is any arbitrary function.

Example 8: Find the general solution of the following Lagrange's linear equation:

'B 7yzp+7IB XzQq = _'Bxy

Sol: Given differential equation is

'B yyzp+ 7/ qu_ _'Bxy
B /4

Compare it with Pp + Qg = R, we get

ﬂ7 -p

oC
Q= R=
v2), /3 == ), ()

The auxiliary equations are
dx _ dy _ dz )
B-r v " (x2) <=p (xy)
o B y
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Taking multipliers as e<x, By, yz ; each of fraction of (1)

_ oc Xdx+ Sydy + yzdz
< (B-7) yzx+ﬂ(7—oc) L (e=ph) ﬂ)
o B y
oc XdX+ Sydy + yzdz
(B-yry-ctx-p)Nyz
_ xdx+ Sydy + yzdz
0

oc Xdx+ Sydy+yzdz =0
Or oc(2x)dx + B(2y dy) + y(2zdz) =0
Integrating, we get
<X + By’ +y22 = a
Taking multipliers as o<2x, B2y, y?z; each of fraction of (1)

oc? xdx+ Bydy + y*zdz

(e 7 e 7 o
B y
oc? xdx+ S2ydy + yzd
[ (B=y)+B(y—o)+y(x —,B)]xyz
_oc® xdx+ Bydy + yzdz
B 0
oc® Xdx+ S2ydy +y*zdz =0

Or o<2(2x)dx + B?(2y)dy + y?(2z)dz = 0
Integrating,
o<?x? + BAy? +y°2% = 0
From (2) and (3), we getu=aandv=">b
where u(x, y, z) = o<x? + By? + yz2
and  V(X,Y, z) = o<2x2 + B?y? + y?z?
The general solution is given by
J(o2X2 + Py? + 722, o<'X2 + (Y2 + 122) = 0
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Example 9: Find the general solution of the following Lagrange's linear equation:
(xy® - 2x%)p + (2y* - x%y)q = 92(x® - y°)

Sol: Given differential equation is
(xy® - 2x%)p + (2y* - x%)q = 9z (x° - ¥°)

Comparing it with Pp + Qg = R, we get
P=xy®-2x% Q=2y*-x3%, R=9z (x3-y?

The auxiliary equations are

dx _ dy _ dz
xy*—2xt 2yt —xly  9z(x*-VyP)

Taking first and second members of (1), we get
(2y* - XPy)dx = (xy® - 2x%)dy
Dividing both sides by x3y?, we get

2y 1 1 2x
?—F dx = F—? dy

1 2 1 2X
or (—deer—g’]dx . {Fdx—dej =0

- ? - F - a
X
Or lz +—=a
X y
X+ y°
=a 2
5 @
, . 11 1 .
Taking multipliers as —, —, —; each of fraction of (1)
Xy 3z
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1dx+1dy+idz
_ X y 3z

2007 -2+ @y XY+ 2 (- y)
X y 3z

1dx+1dy+11dz
X y 3z

V-2 +2y° —x3+3x3 -3y°

1dx+1dy+11dz
_ X y 3z

0

%+g+1
X y 3

Integrating, we get

@
Y4

1
lot |x| + lot |y| +§ log |z| = log ||

log [x| ly| 1z** = log |c|

Or  |xyz**| =|c|
Or xyz**=+c=b (say)
xyz**=b (3)

From (2) and (3), the general solution is

f(ﬂ xyz”j =0

X2 y2 !

Self-Check Exercise - 2
Q.1 Find the general solution of the following Lagrange's Linear equation:
(Z-y)pt(x-2)q=y-x
Q.2  Find the general solution of the following Lagrange's linear equation:

[1 1j (1 1) 1 1
———|p+|=-=|g==-=
zy X z y X

19.5 Solution of Lagrange's Linear Equation (Type-1V)

Here we find the solution of Pp + Qg = R by the following formula
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P Q R PStQT+RU

where S,T, U are some functions of x, y, z.

If the multipliers S, T, U are selected in such a manner that Sdx + Tdy + Udz is exact

differential of a factor of PS + QT + RU.

Then we consider two members of (1)

Sdx+Tdy +Udz

and other suitably chosen to get

PS+QT + RU

one independent solution. And the other independent solution can be obtained either by
selecting another set of multipliers or by taking two members of auxiliary equations.

Let us look at the following examples to clear the idea:-

Example 10: Find the general solution of the following Lagrange's linear equation

px2 + qy? =z (X +y), where p = ?andq= z
X

oy

Sol: Given differential equation is
px? +qy? =2z (X +Y)
Comparing it with Pp + Qg = R, we get
P=x>,Q=y%,, R=z(x+Y)
The auxiliary equations

2 2

X yT zZ(x+y)

Taking first two members of (2), we have

dx _ dy
Or x2 dx = y2dy
Integrating,
-1 -1
-1 -1
Or - 1 = i +a
X y
1 1
—_— .- — = a
y X
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Taking multipliers as 1, -1, 0, each fraction of (2)

_ Ix-dy

X2 —y?
_ dx—dy
T (X=Y)(x+Y)

dz dx-dy
2(x+y)  (X=y)(x+Yy)
dz _ dx-dy

Or =
z X=y

dz dx-dy

z  Xx-y

=0

Integrating, we get

logz-log(x-y)=Iloghb

z
Or log (—j =logb
X-y

z

-——=b L. 4
X-y
From (3) and (4), we getu=aandv=">b
1
where u(x,y,z)=— - —
y X
and v(x,y,2)= _z
. o 1 1 z : : :
The general solution of (1) is given by f ;—;X—y =0, where f is arbitrary function.

Example 11: Find the general solution of the following Lagrange's linear equation:
pcos(x+ty)+qsin(x+y)=z

Sol: Given differential equation is
pcos(x+ty)+qsin(x+y)=z

Comparing it with Pp + Qg = R, we get
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P=cos(x+y),Q=sin(x+y), R=z
The auxiliary equations are

o o % (1)

cos(X+Y) ) sn(x+y) oz

Taking multipliers as 1, 1, 0; each of fraction of (1) is

dx+ dy
cos(X+ y)+Sn(xX+Y)

Taking multipliers as 1, -1, 0 ; each of members of (1)
_ dx+dy
cos(X+ y) —sSin(x+Yy)
dx+ dy B dx—dy

cos(X+ Y) +sin(x+Y) - cos(X+ Y)—sn(X+Y)

cos(X+ Yy)—sin(x+Y)
cos(X+ Y) +sin(x+Yy)

Or

(dx +dy) =dx - dy

cos(X+ Y)—Sin(xX+Y)
Ccos(X+ Y) +Sn(x+Yy)

Or

dx+y)=d(x-y)

Integrating, we get

sin(x+y) +cos(x+y)| _

log =X-Yy
C
or sin(x+y) +cos(x+y)| _ .
C
sin(x+y)+cos(x+y)=+ce
Or sin (x +y) + cos (x +y) = ae*y (say)

e¥*[sin(x+y)+cos(x+y)=a ..(3)
Now from (1) and (2), we have
dx+dy _dz

CoS(X+ Y) +Sin(X+Y) oz

Integrating, we get

J AN [ g
cos(X+ Y) +sn(x+Yy) z
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_[ Lz log z + log |K| [By putting X +y =1]

cost +sint
dt
| : = log k2l I
\/§|:COSt+S-nt:|
J2 V2
or dt =log |z| K|

ij
\/E cos%costdrsintsinz

| $= J2 10g I2] IK

or | sec (t—%jdt:log (1zlIk )"
sec(t—%j—i—tan(t—%j‘ =1og (12} (1k[)"

Or ‘sec(x+ y—%)+tan(x+ y—%)‘ =|og(|z|)\ﬁ (|k|)“/z

NS

Or log

Oor sec(x+ y—%)+tm(x+ y—%) =+ 22 k2

z V2 [sec(x+ y—%)+tan(x+ y—%ﬂ:b ..... ()

From (3) and (4), the general solution is given by
j{ey‘X {sin(x+y) +cos)x+y)}, z 2 {%C(X-l— y—%j+ tan(x+ y—%)H =0,

where f is any arbitrary function

Example 12: Find the general solution of the following Lagrange's linear equation
(X2-y2-2%) p+ 2xyq=2xz

Sol: Given differential equation is

(X2-y2-2%) p+ 2xyq=2xz
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Compare it with Pp, Qg = R, we get
P=x?-y2-72,Q=2xy,R=2xz
The auxiliary equations are

dx _ dy _ dz
X—-y*—-72 2xy 2xz

Taking multiplier as x, y, z; we get

dx _ dy _ dz _ xdx + ydy + zdz
X—y' =7 2xy 2xz2 X —xy*—xZ+2xy* +2x2°
_ xdx+ ydy + zdz
- x3—xy2—x22
_ xdx+ ydy + zdz

T X(C+ V2 +7D)

dz _ xdx+ ydy+ zdz

2xz2  X(X*+y*+7%)

dz _ 2xdx+2ydy+2zdz
Or e 2 2, 2
z X +y +z

dz _ d(xX*+y’+7°)
z X2+ y? + 7

Integrating, we get

log z = log (x?+ y? + z?) - log a (say)

Or log (x*+y2+2z?) -logz=loga
2 2 2
o0 (Mj 0ga
z
2 2 2
Xty +z _ a (3)
z

Taking last two factors of (1), we get
dy _
y z
Integrating, we get

log |y| = log |z| + log |c]
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Or  logly| =log |z| |c|
Iyl = [z [cl
Or y=+zc=2zbhb (say)

=b (4)

N <

From (3) and (4), we get
u=a and v=b
2 2 2
where u(x, y, z) = xry+z

and v(x,y,2)= Y
z

The general solution is
J- XC+y +722 y 0
z 'z

Self-Check Exercise-3
Q.1  Find the general solution of the following Lagrange's linear equation:
(Y+Z)p+(z+xX)g=x+y
Q.2  Find the general solution of the following Lagrange's linear equation:

L+y)p+(1+x)gq=2z

19.6 Summary:
We conclude this unit by summarizing what we have covered in it:-

1. Discussed in detail Type-Il, Type-Ill and Type-IV solutions by Lagrange's method
of the equation of the type Pp + Qg =R

2. Discussed each type of solutions with examples.

19.7 Glossary:

1. A linear partial differential equation of the first order is an equation that relates a
function and its partial derivatives of the first order.

2. The Lagrange method also known as the method of characteristics, is a
technique used to solve first order linear partial differential equations.

19.8 Answer to Self-Check Exercise
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Self-Check Exercise-1

X
Ans. 1 f[xy,oc—y2+ log | z|j = 0, where f is any arbitrary function.
Ans. 2 f(xy, x* - z* - 2xyz?) = 0, where f is any arbitrary function
Ans. 3 f(y - 3x, x-log [z + cot (y - 3x)] = 0, where f is any arbitrary function.
Self-Check Exercise-2
Ans. 1 f(x+y+2z x2+y?+2z% =0, where f is any arbitrary function
Ans. 2 f(x+y+z,xyz)=0
Self-Check Exercise-3
X_
Ans. 1 f[—y,(x+ Y+ z)(x—y)zj
y—-2z
Ans. 2 f((l+ X)? —(1+ y)2,X+—y+2j= 0,
z

where f is any arbitrary function.

19.9 References/Suggested Readings

1. Sneddon, I., Elements of Partial Differential Equations, McGraw-Hill, International
Edition, 1967.
2. Shepley, L. Ross, Differential Equations, 3rd Ed., John Wiley and Sons, 1984
19.10 Terminal Questions
1. Solve the following Lagrange's linear equation for general solution:
z(p-q) =22+ (X +Y)
2. Solve the following Lagrange's linear equation for general solution:

py + gx = xyz® (x* - y?)

3. Solve the following Lagrange's linear equation for general solution:
2. ,2( 4 4
Xy (X' -y)
3+2x3=
by 5z2*
4. Find the general solution of the following Lagrange's linear equation:

(Bz-vy) p + (yx - ><2) q = <y - BX
5. Find the general solution of the following Lagrange's linear equation:
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Bx+y-z)p+(x+y-2)q=2(z-y)
Find the general solution of the following Lagrange's linear equation:
(Y +yz +2%) p+ (22 + 2x + X°)q = (X* + xy +y?)

Find the general solution of the following Lagrange's linear equation:

z-px-qy = kX + Y +7Z°
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Unit - 20
Partial Differential Equations of Second Order

Structure

20.1 Introduction

20.2 Learning Objectives

20.3 Some Definitions

20.4 Solution of Partial Differential Equations of Second Order (Method of Inspection)
Self-Check Exercise-1

20.5 Reduction To Canonical Form

20.6 Classification of Linear Partial Differential Equations of Second Order
Self-Check Exercise-2

20.7 Summary

20.8 Glossary

20.9 Answers to self check exercises

20.10 References/Suggested Readings

20.11 Terminal Questions

20.1 Introduction

Partial differential equations (PDEs) are mathematical equations that involve multiple
variables and their partial derivatives. Second-order partial differential equations are a specific
type of PDEs where the highest derivative involved is of second order second-order PDEs can
be classified based on their characteristics. The classification helps in understanding the nature
of the equation and the methods used to solve them. The main classifications of second-order
PDEs are:

Elliptic PDEs, Parabolic PDEs and Hyperbolic PDEs. The behavior and properties of
second-order PDEs depend on the classification and the specific form of the coefficients. Each
classification has its own set of solution techniques and boundary conditions associated with it.
Analytical methods, such as separation of variables, Fourier series, and integral transforms, as
well as numerical methods, like finite difference and finite element methods, are used to solve
second-order PDEs and obtain solutions that satisfy the given boundary and initial conditions. In
this Unit, we shall study solution of partial differential equations of second order. We shall also
discuss classification of these types of differential equations.

20.2 Learning Objectives
After studying this unit, you should be able to:-
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. Define patrtial differential equations of second order.

. Define linear and non-linear second order partial differential equations.

. Discuss solutions of partial differential equations of second order (Method of
inspection)

. Discuss classification of linear partial differential equations of second order.

20.3 Some Definitions

Def. 1. A partial differential equation is said to be of second order when it contains
atleast one of the differential coefficient r, s, t but none of higher order.

A general partial differential equation of second order can be written as
Fx,y,z,p,q,r,s,y=0 .. (1)
oz 0z 0%z 0’z 0z
where p= —,q=—,r= —,s= = —
OX oy OX oxoy oy

Def. 2. A partial differential equation of second order is said to be linear, if it is linear
relative to the required function and all its derivatives that enter into the equation.

Def. 3. A partial differential equation of second order is said to be non-linear, if it is not
linear.

0’z 0’z
eg. 1 — t—==
OX oy
2. x2t-y?t=px-qy are linear equations
0%z 0z
3. 2y— +3x— +2°=0
OX oy
0%z z 0z . .
4. 22— + 38— + 4— are non-linear equations
OX OX

20.4 Solutions of Partial Differential Equations of Second Order (Method of Inspection)
Type | : When the given equations can be reduced to linear equations
Example 1:Solve : t - xq = x?

. , . 0
Sol: The given equation can be written as :—q -xg=x*> .. D)

sies(3)
oy" oy\oy) oy
which is linear in g and y.
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F=el¥=g

e Xy
its solution is
g.e”¥= J x2e™.dy + f(X)

[where f(x) is an arbitrary function of x]

2

: exxv +f(x) =-xe™ + f(x)

0z

—=eY(f(x) - xe™) = €Y f(x) - X
Y

Integrating both sides w.r.t. 'y (Keeping x as constant),

exy
z = f(x).— - xy + constant
X

= exy-@-xwg(x)

Hence the reqd. solution is
2= e 1 syt g0
X
where f(x), g(y) are two arbitrary functions of x.

Example 2:Solve :yt - q = xy

. , : aq 1 L :
Sol: The given equation can be written as L g = X, which is linear in g.

J-yo

IF.= ¢ ¥ =eloy= glogy ! =

< |k

Solution is

q.lz j x.ldx+f(x)=xlogy+f(x)
y y

0z
= 0|=><ylogy+yf(><):>a—y =xylogy+y f(x)

Integrating w.r.t. 'y', we get z = x I ylogy dy + f(X) j y dy + F(X)
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_ | Y 1y° y?
= x{?log y—j;.Edy} + Ef(x) + F(x)

1 X y?
z==xy?logy- —y?+ Z— f(x) + F(X
>y logy - oy 2f() )

Self-Check Exercise-1
Q.1 Solvexys=1
Q.2 Solverx=(n-1)p

X
Example 3:Solve : s -t= —

y

Sol: The given equation can be written as

P _oq_ X
oy oy Y
Integrating both sides w.r.t. 'y' (keeping x as constant),
X
p-q=-—+f(x)
y
which is of the form  Pp + Qq =R
Lagrange's A.E. are %z ﬂ = ” dz
1 Xt

From the first two,
dx+dy=0=x+y=a

Again from the first and last, we get

dz = - X dx + £(x) dx
y

X
a—Xx

dx + f(x)dx

(1— Lj dx + f(x) dx

a—X
Integrating we get

z=x+alog(a@a-x)+gkx) +b

362

(Qx+y=a

=y=a-X




z=alog(a-x)+h(x)+b [h(x) = x + g(x)]
= z-alog(@a-x)-h(x)=b
Hence the reqd. general solutionis F[x +y, z-alog (a- x) - h(xX)] =0
where F is an arbitrary function.

Example 4: Solve: p+r+s=1

2 2
Sol: The given equationisp +r+s= 1:Q+6_§+ 0z =
OX OX° oOxoy

Integrating both sides w.r.t. 'x', we get z + %+?= X+ f(y)
X oy

O X+ f()-2=p+a=x+ f() -2 1 p+La= X+ f() -2
oX oy
which is of the form Pp + Qq =R
A.E. are %:Q:L
1 1 x+f(y)-z
From the first two, dx = dy= x -y =a(constant) ... (1)

Again from Second and third, we get %z X+ f(y) -z
Yy

= %+ z=x+ f(y), which is linear in z.l.F. = efldy: ey
Yy

Solution is zeY = J [X+ f (y)] e¥dy + b = xe¥ +I eYf(y)dy + b

=xe’ + ¢ (y) + b [#(y)=[eT(yay]
zeY - xe¥ - ¢(y) = b (= constant)
=F(x-y) [Using (1)]

Type lll. Equations easily integrable by Inspection
Example 5: Solve: s = 2x + 2y

Sol: The given equation can be written as

2
0z =2X + 2y
oxoy
Integrating both sides w.r.t. 'x', we get [Keeping y constant]
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? = x? + 2xy + constant = x? + 2xy + f(y)
Yy
Integrating both sides w.r.t. 'y', (keeping x constant)

2

zZ=x%y+ 2xy7 + I f(y)dy + constant

= X%y +xy? + g(y) + h(x)
where g and h are arbitrary functions.
Example 6: Solve: logs=x+y

2
Sol: The given equationislogs=x+y=s= ex*yzﬂz exty
oxoy

Integrating both sides w.r.t 'x' % = e+ f(y)
y

Integrating both sides w.r.t.'y'z=e*¥ +y + I f(y)dy + F(x)

Hence, z = Y + ¢(y) + f(X) where ¢, f are arbitrary functions.

Q.4  Solve: t =sin xy
Q.5 Solve:yx+p=cos(x+y)-ysin(x+y)

20.5 Reduction To Canonical Forms
We now consider the equation of the type
Rr+Ss+Tt+ f(x,y,2,p,q) =0 (1)

in which R,S,T are continuous functions of x and y possessing continuous partial derivatives of
as high order as necessary.

By suitable change of independent variables, we shall show that the equation (1) can be
transformed into one of the three canonical forms which can be integrated easily.

Let the independent variables x, y be changed to u, v by the transformation equations

u=u(X,y),Vv=v(,Yy) ...(2)
Now we have

0z _ oz 8u+62 ov _0z_0z ou 0z oV

T Ny Ty vy
0 _o0u 0 ov 0 0_0ou 0  ov 0
= + nd —= +—

This shows —=—.—+ —.—and —= — . — .
OX OX Ou 0OX ov oy oy ou oy ov
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r:@ o ((ﬁj (a_u o o ﬁj(a_u o o %j

ox?  ox \ ox ox ou ox ov)\ox ou ox ov
_dz(auY ,, &z awav, dPz(av), oz du, oz ov
ou? \ ox ouov ox ox  ov? L ox au ra av o

_0z_o0(¢oz (ﬁu 0 ovoz QG_UJFQ@
oxdy  ox \ oy ox'ou ox ov)\ou oy ov ov

_d*zoudu | 0%z (8u v, ouov) dzovdv, oz du oz 3

+ N —

T aZox oy  ouv\oxdy oy ax)  ovE ox oy | ou oyex . ov Byox

%z 0 (82] [au o ov 8} ou oz oz av]
=22 -2 22 |2 20 =222

oy oy loy oy ou oy ov)lay ou ovoy
_dz(aY ,, 0z auv, dz(av), oz ou, @z o
ou® \ oy oudv oy ay e \oy) ou oy’ oy ay?
Putting these values of p, g, 1, s, tin (1) and simplifying, we get
2 2 2
Aa§+28az +Ca—+F(uvzggj—o ...... 3
ou ouov ov? ou ov
where
2
A—R(@j Sa—ua—u+T@ ..... 4)
OX oX oy oy
duov du ov
_pM VLV, cu T@@ ..... (5)
OX ox 2 8xay 6y8x oy oy
Y  _avov  _(ovY
CzR(—j +s¥N & (6)
OX oX oy oy
0z 0z).
and F (u,v, W—,—jls the transformed form of f(x, y, z, p, Q)
ou ov

Now we determined u and v so that the equation (3) takes the simplest possible form. The

equation (3) reduces to the simple integrable form when the discriminant S?- 4 RT of the
guadratic equation.
RA?+SA+T=0 @)

is either positive, negative or zero everywhere.
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Three cases are possible.

Case |. S? - 4RT > 0 In this case the two roots L1, A2 of equation (7) would be real and
distinct.

We choose u and v such that

au_ M@ ..... (8)
OX oy

and @ = XZ@ ..... (9)
OX oy

A=(R A2 +Sh+T) (au) =0
oy

Q R A% + Sh1 + T =0 as A is the root of equation (7). Similarly, C =0
For differential equation (9), the Lagrange's auxiliary equations are

dx _dy _du
1 -4 0

Given du =0 .. u=c; (Constant)

and Yirzo (10)
dx

Let f1(X, ¥) = ¢z (constant) be the solution of equation (10)
Solution of equation (8) can be taken as
u=f(x,y) L (11)
Similarly, if f2 (X, y) = constant, is a solution of

ﬂ +A=0

dx
then solution of (9) can be taken as

V=f2(XY)
Now, it can be shown that

2
AC-B?= = (4 RT - S?) 8u6v+6u v
oXoy oy ox
Or == (S2 4 RT) @@ @ @ ..... (13)
oxoy oy OX
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[QA=C=0]

Q S?2-4RT>0, .. B2> 0,
o We can divide both sides of the equation by it. Hence the equation (1) is reduced to the
form
2
z
oz ¢[u,v, z,ﬁ,gj ..... (14)
ouov ou ov

which is the canonical form of the equation (1)

Case Il. S? - 4 RT = 0. In this case the two roots of equation (7) would be equal (real).
Here we choose u, as in case 1.

i.e. & = 7\,15

Given u f(x,y)

Also we take v to be any function of x and y, which is independent of u.

As case |, A=0
Also, from (13), B2=0 Q S?-4RT=0
i.e., B=0
Putting A =0, B =0, in (3) and dividing by C (= 0), the equation (1) takes the form
0%z oz oz
— =oluv,z,—,— | 15
ov? ¢[ au GVJ (13)

which is the other canonical form of the equation (1).
Case Ill. S? - 4 RT < 0. In this case the two roots of equation (7) would be complex.

Proceeding as in case I, here the equation (1) will reduce to the same canonical form [equation
(14)] as in case | but here the variables u and v are not real but are infact the complex
conjugates.

To get a real canonical form

Let u=a+if,v=a-ip
1 1.
SothatazE(u+v)and[3=§|(u-v)

Now we transform the independent variables u and v to o and B with the help of these relations.

0z_ 0z da 0z 6,8_1(62 .azj

o 0p

u da ou 9B eu 2
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o 0z 1(o0z .oz
Similarly, 6_:5 F_Iﬁ
\ a

and . 622 —i Q —i i_|i 2_|Q
" ouv dulov) 4\oa 0B )\oa 0B

_1(o°z oz
=\ a2tz
4\ oa” Of

Putting in (14), the transformed Canonical form of the given equation is

0’z 0%z 0z 0z
—2+—2:\J/ 0{,,3,2,—+—
oa” Of oo 0Of

20.6 Classification of Linear Partial Differential Equations of Second Order

A general linear partial differential equation of second order for a function of two
independent variables x, y can be expressed as

Rr+Ss+Tt+f(X,y,2z,p,q) =0
where R, S, T are continuous functions of x, y defined in some domain D of the xy - plane.
The classification depends on the part Rr + Ss + Tt which is called the principal part of (1),
Definition. The linear partial differential equation (1) is said to be
I. Hyperbolic if S2 - 4 RT > 0
Il. Parabolicif S2-4RT =0
[Il. Elliptic if S2- 4 RT <0

e.g., 1. The one-dimensional wave equation

ox: o’
is hyperbolic with canonical form
o’z
ouov
2. The one dimensional heat equation
¥z _1ez
ox>  c ot
is parabolic

3. The two-dimensional Laplace's equation
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ox>  oy?

is elliptic.

=0

To Clarify what we have just said, consider the following examples:-
Example 7: Classify the following partial differential equation:-
0°z 0’z 8%z
+ + =0
ox? oxoy  oy?

Sol: Given patrtial differential equation is

622+ 0’z 8%z

v ox3y + Y. =0 . 1)
It can be written as
r+2s+t=0
Or r(l) +s(2) +t(1)+0=0
Comparing it with
rR+sS+tT + f=0, we get
R=1,S=2,T=1,f=0
Now S?-4RT=(2)?-4(1)(1)
=0
Given partial differential equation is parabolic
Example 8: Classify the following partial differential equation:-
0%z e 0%z .\ 202 = gy + o<x)
ox? oX oy oy?
Sol: Given partial differential equation is
2 2 2
02 9o 02 4 o202 _yysoey (1)

oc
ox? OX 0y oy
It can be written as
1.r-20cs+ oc?2t-g(y+o<x)=0
Or 1.r-20cs+ o<?t-g(y+ocx)=0
comparing it with

rR+sS+tT + f=0, we get
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R=1,S=-2c,T= ocz,f:_g(y+ ocx)
Now S?-4RT = (-29<)? - 4(1) (o<)?
= 4oc? . foc?
=0
Given partial differential equation (1) is parabolic

Example 9: Classify the following partial differential equation:

2 2Z 2
58 f +4 0 L0 f —o
OX oxoy oy
Sol: Given partial differential equation is
2 2Z 2
502,,02,02_
OX oxoy oy

It can be written as
5r+4s+t=0
Comparing it with rR + sS +tT + f = 0, we get
R=5,S=4T=1,f=0
S2-4RT = (4)?- 4(5) (1)
=16-20
=-4<0
Given partial differential equation is elliptic.

Example 10: Classify the following partial differential equation:

r-4s+ 5t=6 cos (2x + 3y)
Sol: Given partial differential equation is

r-4s + 5t =6 cos (2x + 3y)
It can be written as

l.r-4s+5t-6cos(2x+3y)=0
compare it with

rR+sS+tT + f =0, we get

R=1,S=-4,T=5, f=-6cos (2x + 3y)
Now S?-4RT=(-4)2-4() (5)

=16-20

=-4<0
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Given partial differential equation (1) is elliptic

Example 11: Classify the following partial differential equation:

0%z 0%z 0%z
6— =xy

2 S +
OX oxoy oy
Sol: Given partial differential equation is

0%z 0%z d%z
6— =xy

ox>  OXoy * oy
It can be written as

r-5s+6t-xy=0
comparing it with

rR+sS+tT + f =0, we get

R=1,S=-5T=6, f=-xy
Now S2-4RT=(-5)2-4(1) (6)

=25-24

=1>0

Given partial differential equation is hyperbolic

Example 12: Classify the following partial differential equation.

(DZ+3Dx Dy + D?)z = e2*¥
Sol: Given partial differential equation is
(D} +3DxDy + D})z = e>*¥
It can be written as
r+3s+t=e%¥
Or r+3s+t-e>¥=0
Comparing it with
rR+sS+tT + f =0, we get
R=1,S=3,T=1, f=-e>¥
Now S?2-4RT=9-4(1) (1)
=5>0
Given partial differential equation (1) is hyperbolic

Example 13: Classify the following partial differential equation
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2 2
65 ai 3%4.3%:92“)’
ox~ oy OX oy
Sol: Given partial differential equation is

0%z 0%z 302 207 _ oy
ox> oy* ox oy

It can be written as
r-t-3p+3q-e>*v=0

Or r(1) + S(0) +t(-1) + (-3p + 3q - e*") =0

Comparing it with
rR+sS+tT + f =0, we get
R=1,S=0,T=-1
S?2-4RT =(0)2-4(1) (-1)
=0+4
=4>0

Given differential equation is hyperbolic

Self-Check Exercise-2
Q.1 Classify the following partial differential equation:

2 2
y2r - 2Xys + X%t = y?p+ —q

y
Q.2 Classify the following partial differential equation:
0’z 0’z
ey
OX oy
Q.3 Classify the following partial differential equation

0%’z 9%z 0%z

+
ox2 oxoy  oy?

20.7 Summary:

In this Unit we have introduced you to the concept of partial differential equations of
second order. Specifically, we have covered in it:-

1. Definitions of second order partial differential equations, linear and non-linear
second order partial differential equations.

372



3.
4.

Discussed in detail the solution of partial differential equations of second order by
method of inspection for different types i.e. when the given equations can be
reduced to linear equations; Equations integrable by Lagrange's method,;
Equations easily integrable by Ispection.

Discussed in detail classification of linear pde of second order.

Examples are given in support of each type.

20.8 Glossary:

1.

A partial differential equation is said to be of second order when it contain atleast
one of the differential coefficients r, s, t but none of higher order.

A partial differential equation of second order is said to be linear, if it is linear
relative to the required function and all its derivatives that enter into the equation.

A partial differential equation of second order is said to be non-linear if it is not
linear.

20.9 Answer to Self-Check Exercise
Self-Check Exercise-1

ANs.

AnNs.

Ans.

Ans.

ANs.

z =log x log y + ¢(y) + F(x)

2= 2 4(y) + Fy)
n

F[x -y, ze* - ¢, (X)] = 0, where F is an arbitrary function

z=-§%?ﬂ+yﬂ@+yax

where f, g are arbitrary functions

yz=ysin (x +y) + ¢(y) + f(x),
where ¢, f are arbitrary functions

Self-Check Exercise-2

Ans.
Ans.

Ans.

Parabolic
Elliptic
Hyperbolic
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20.11 Terminal Questions

1. Solve r = 2y?
2. Solve xr + p = 9x?y?
3. Solve xyr + x%s - yp = x3¢¥
4. Solve S = X +a
y
5. Classify the following partial differential equation:
0’z _ oz
o oy
6. Classify the following partial differential equation:

x2r—2xys+y2t—xp+3yq=ﬂ
X

7. Classify the following partial differential equation:

0’z o°u 02U
+5 =

2
ox>  oxoey  oy?

8. Classify the following partial differential equation:
2 2
6_5 - 68_5 =0
OX oy
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