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1.1 Introduction

Dear students, let us briefly recapitulate about the idea of a set, real numbers and
functions which we feel is important to understand the concept of limit, continuity etc. The
understanding of these concepts will surely help you to learn and to build a strong foundation for
the theory of calculus.

1.2 Learning Objectives:
The main objectives of this unit are
0] to revisit the concept sets.
(i) to study different types of sets, notation for describing sets.
(iii) to revisit the concept of number system
(iv) to study order relation and geometric representation of rational number.
(v) to revisit the concept of functions
(vi) to study different types of functions
1.3 A Set.

Intuitively speaking a set is just a collection of well defined distinct objects. By this we
mean that given a set A and an object x, then we are sure that either
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() x is in the collection A.
or
(1) x is not in the collection of A.
That is there is no ambiguity about the element of A
Examples
0] The collection of all natural number is a set. We will denote it by N.
(i) The collection of all integers is a set. We generally denote it by Z.
(iii) The collection of all the letters of English alphabets.
(iv) The collection of all the integers n, n > 0 is a set.

Set A be a set. The any object x of A is also called an element of A or a member of A,
and we write X € A and read it as "x is an element of A" or "x belongs to A"

If an element x is not a member of A, we write X ¢ A and read as "x does not belong to
AII

Notation for Describing Sets

Sets are generally denoted by capital letter A, B, C, ...... The elements of sets are
denoted mostly by small letters a, b, c, ......

In our discussion we have to describe various sets within a given universal set X. Let us
first understand what do we mean by universal set.

A set containing all the possible elements of concern in each particular context or
application from which sets can be formed is called Universal Set. It is denoted by X or U.

Now, a set can be described in two ways.
1. Tabular or Roster Form

The eariest way available to us is by listing all the objects of the set within a curly
bracket { } separated by commas. This method can be used for finite sets as well as for infinite
sets.

For example, A set A whose members are ai, ay, .....a, are usually written as
0] A ={ai, az, .....an}
(i) A setofvowels: A={a, e, |, 0, u}.

In those cases where the number of elements are infinite but where listing a few
elements should suffice to know all the elements of the set under consideration, we can use the
above notation with slight modification, e.g.

N ={1, 2, 3, .... } denotes the set of natural number.

z={..-3,-2,-1 0,1, 2,3, ...... } denotes the set of all integers. The dots in these cases
indicates the existence of other objects in these sets.
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2. Set Builder Form

In this form a set is defined by a property satisfied by its members. A common notation
expressing this method is

A ={x|p (x)is true} or simply A = {x | p(x)}, where the symbol | (:) denotes the phrase
"such that" and p is a proposition and A is the set of all those elements for which proposition p is
true. For example.

() A={aecR|a®*-1=0}
(i) A = {x | x is a vowel in English alphabet}
Some lllustrative Examples
Ex. 1 Which of the following collections are sets?
0] The collection of positive multiple of 10.
(i) The collection of five talented students in India.
Solution : (i) Positive multiple of 10 are 10, 20, 30, .....
given Collection is a set.
(i) Since there is no definite rule to decide the talent of a student.

the given collection is not a set.

Ex. 2 Write the set lg§ﬂ§ in the set builder form
23456
) 12345
Solution: Let X=<—,—,—,—,—
{2 345 6}

n .
X={x|x= —1 n is natural number and n < [1, 5]}
n-+

14 Self Check Exercise-1
Q.1 Which of the following collection are set?
0] the collection of all girls in your class
(i) the collection of all even integers.
Q.2 Write the solution set of the equation

X? - 4x + 3 = 0 in the roster form
6 7 9
Q.3 Write the set {—,—,—,—} in the set builder form.

Different Types of Sets.

Finite Set : A set consisting of finite number of elements is called a finite set.
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For example
0) A={1,3,5 7}
(i) B={x|xe Nand3<x<9}
Infinite Set : A set having an infinite number of elements is called an infinite set.
For example
() X={1,23, ...}
Y ={x | x is an even integer}
Singleton Set : A set is said to be a singleton set (or unit set) if it has only one element in it.
For example
A = {x: xis perfect square and 20 < x < 30}
={5}
Empty set (Null Set or Void Set)
A set containing no element in it is referred to as empty set. It is denoted by ¢ (read as
phi) or { }
For example
0] X ={x : x is a positive integer satisfying x* = -1}
(i) X = {x : x is a fraction satisfying x? = 16}
Consequently, a set consisting of atleast one element is called a non-empty set.
Order (Cardinal Number) of a Finite Set

The number of distinct element of a finite set is called the order of a set. It is denoted by
0(A), A is a finite set.

For example
IfA={1, 2, 3, 4,5}, then
0(A)=5

Equivalent Sets

Two finite sets A and B are said to be equivalent if they same cardinal numbers i.e. 0(A)
=0 (B).

For Example
SetA={1,2,3,4}and B={3,4,5,6,}
Here O(A) = 4 = 0(B)
Therefore A and B are equivalent sets and we write A~B.
Equality of Set
Two sets A and B are said to be equal if both A and B have same elements.
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For example A ={1,2,3,4}
and B ={x:xis natural number and 1 < x < 4} we note here that A = B.
Some lllustrative Examples
Example 1: Which of the following sets are empty? Give reason.
() A={Y:Y+2=2}
(i) B={x:x2+2=0, xis real}
Solution: (i) Here A={Y:Y+2=0}
={Y:Y =0}
={0}=¢
A is not an empty set
(i) B={x:x2+2=0,xe R}=¢
Since thereisnox e Rs.t. x?=-2andx?+2=0
B=¢
Example 2: State which of the sets are finite or infinite.
0] A={x:xeN,(x-2)(x-3)=0}
(i) B ={x:x e Nandxis even}
Solution: (i) A={x:xeN, (X-2)(x-3)=0}
={2, 3} = Finite set
(i) B ={x:x e Nandxis even}
={2,4,6,........ } = Infinite set

Subset. Let A and B be two sets. If every member of a set A is also a member of the set
B, then A is called subset of B and we write A  B. In subset of A, we write A ¢ B.

Note: (i) A c Bisalsowrittenas Ac B

(ii) Since every element of A is contained in A of A — A i.e. every set is subset of
itself.

(iii) The empty set ¢ is subset of every set.
For example Let A={1,2,3,4,5,6}
and B={24,6}
= B — A since every element of set B is also a member of the set A.
Further if C={2,6,7}
ClearlyC ¢z A, since 7 ¢ A.



Proper Subset. If A< B and A = B we say that A is a proper subset of A. Clearly ¢ and A
are regarded as improper subset of A.

Note: 1. If A has n elements, then number of subsets of A is 2".

2. N, the set of natural numbers, Z, the set of all integers and Q, the set of rational
numbers, are some important subset of R (real numbers).

Union and Intersection of Sets.

Let A and B are two sets. Then A union B denoted by AUB is the set of all those
elements belonging to atleast one of A or B.

Symbolically AUB ={x| x € Aorx € B}
Note: If x € A and x € B then definitely x e A U B:

Al B = Shaded area

The set A intersection B denoted by A n B is defined to be set of those elements which
arein Aaswellasin B i.e.

ANnB={xeAandx e B}

ANEB =shaded area

If An B =¢ Then A and B are said to be disjoint.



Examples (i) Let A be the set of even integers and B be the set of odd integers. Then
AuB=Z
and AnB=¢
(i) Let A=(1,2,3,4,6,12} = positive division of 12.
Let B = set of all even integers ={2,4,6,.....,}
and AnB={24,612}

Complement of a Set: Let A and B sets we define A-B, complement of B in A or complement of
B w.r.t. A to be the set of all those elements of A which are not in B, i.e.

A-B{x|x € A, x ¢ B}

o

......l

SAs

If all the sets under consideration are subsets of a particular set called universal set then A° will
denote the complements of A in X.

Namely X-A




Examples (1) Let A ={2,4,6,8}
B ={1,3,4}
Then A -B ={2,6,8}
and B-A={1,3}
(i) LetA=2Z,B=N
ThenA-B={0-1,-2,-3,....... }
B-A=¢
Exercises
1. Find AuB,An B, A-BandB - Awhere

i) A= {0,1 2,3,%}

B= {Lé,&%,?ﬁ}

(i) A{X|x € z, x> 0}
B={xxez x<0)

2. Prove the following:

0) AUA=A

(i) AnA=A

(iii) AuB=BUA

(iv) ANnB=BnA

(V) AUA=X;ANA =

(vi) BcA<ANnB=B
1.4 Number System

The simplest numbers are the positive integers or natural numbers, 1,2,3,..... used for
counting. We denote this set by N, i.e.

This system of numbers is inadequate for the arithmetical operations of addition,
multiplication, substraction and division for example the sum of two natural numbers is again a
natural number and so is the product of two natural numbers. However the difference of two
natural numbers may not be a natural number. For example

2-7=-5¢N



In order to overcome this difficulty, we are forced to extend the system of Natural
numbers to a larger system which include all Natural numbers, their negatives and the number
zero,. We denote this new system by

Z={...-2,-10,12,........ } and we call this the set of integers.

The difficulty that we faced in Natural numbers has been removed as the sum, product
and difference of two integers is always an integer. But when we apply division the outcome

may or may not belong to Z. For example 1+2 = % ¢ Z. So there is a need to extend this

system so that the operation of division is possible. The collection of all these numbers is called
the set of rational numbers and is denoted by Q.

P
Q= {_l p,QEZ,q;tO}
q
This set is closed under the operation of addition, substraction and multiplication, i.e. if x,
y € Q then x+y, x-y, and xy €Q and also if y # 0 then Xe Q {Note X has meaning only when y
# 0}.
Since the rational numbers p/q is the same as the rational number _%q(q #0). So
every rational number can be expressed can be expressed in the form % where p an g are

integers and q is a positive integer. So with this assumption, rational number of the form %

where p is a positive integer, (q is assumed to be positive) will be called positive rational
number, and when p is negative, will be called negative rational number.

We recall the following facts

0] if X, y are positive rational numbers, then x+y, xy and —are also positive rational
X
numbers.
(ii) If x is any rational number then either x is positive or x = 0 or x negative.

Order-relation:- Given two rational numbers x and y, we say that X is greater than y and write x
>y if x - y is a positive rational number. This is equivalently also written as y < x and say that y
is less than x.

Theorem: If a and b are two rational numbers.

(1) If a<bthana+ c<b+cforall rational c.
(ii) If a < b and cis a positive rational number, then ac < bc.
(iii) If a < b and c is a negative rational number, then ac > bc.

(iv) Ifa<bandb<cthena<ec.



Proof: (i) Q (b+c)-(atc)=b-a>0[Q a<b]= at+tc<b+c
(i) Q (bc-ac)=(b-a)c>0][Q b-aandc are both positive]
(iii) Q bc-ac=(b-a)c<0,[Q b-ais positive and c is negative]
(iv) Q (c-a)=(c-b)+(b-a)>0asbothc-bandb - a are positive)
Geometric Representation of rational numbers

Let L be a straight line. We choose two arbitrary points O and A on L, we associate the
rational number o with the point O and rational number 1 with the point A. We use the distance
between the points O and A as a unit of measurement, and define the direction from O to A as
positive.

-
-

R R L o

e

X
| |
I !
X 0 A P

If x is a positive rational number, we associate with x the point P on L which is at a
distance of x units to the right of O. If x is a negative rational numbers, we associate with x the
point Q on L which is at a distance of -x units to the left of O.

Thus we have a geometric representation of rational numbers as points on the number
axis L.

The points corresponding to the rational numbers 0, + 1, + 2,...... subdivide the numbers
axis L into intervals of unit length. If

,’—\»'j - | ‘\ \‘T’/’L

1 0 1

We further subdivide every interval into q equal parts we obtain a subdivision of L into

intervals of length lby rational points. Now every point P on L is either a rational point or lies
q

between two successive rational points P and p_+1

aq q

Since successive points of subdivision are 1units apart, it follows that we can find a

rational point P whose distance from the point P does not exceed 1units. This number 1can

q q q
be made as small as we please by choosing q sufficiently large positive integer. This means that
given any point P on L, we can find a rational point which is arbitrarily close to the point P. This
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property of rational numbers is also stated as that the rational points are dense on the number
line.

My dear students this may lead you to think that every point on the line L corresponds to
a rational number. But we will show that this is not the case i.e. there are points on the line
which do not correspond to any rational number i.e. there are gaps in rational numbers.

_9L

P

We construct a square O ABC of side unit lengths. Then by Pythagoras theorem
OB?2=0A%?+ AB?2=12+12=2

-~ 0OB=42

Let P be a point on L to the right of O such that OP = OB. We shall show the P does not

correspond to any rational number. Suppose P corresponds to rational number Pie op =
q
P where p & q are positive integers we may assume that p & q have no common factors.

QP=or=0B=2
q

(4] = =2

thatisp?=2¢> .. 1

Now 2g? is even integer

= p? is an even integer

= p is an even integer [Q square of an odd integer is odd]
Let p =2m, where mis an integer ... (2

Hence 2q? = p? = (2m)? = 4m?

11



= g° = 2m?
= g? is an even integer.
= gis an eveninteger. ... 3)

Thus p & g have 2 as a common factor contradicting the hypothesis that they do not
have any common factor.

The conclusion, therefore, is that there is no rational number p/q whose square is 2. Or
there is no rational number which correspond to the point P on L.

Thus there is need to extend the rational humbers to a larger system in a way that the
points of the new system when plotted on the number line, no gaps are left. Such a system
exists and is called the system of real numbers and will be denoted by R.

Real Numbers :- The set of all points on a directed line is called the set of real numbers. So we
assume that to each point P on a directed line corresponds a real number and conversely. The
line is called the real lime.

Real numbers to the right of O will be called positive real numbers and those to the left
negative real numbers.

v

A~
-+

If X is a real number then either x is positive or zero or negative.

Real numbers which are not rational numbers are called irrational numbers (i.e. \/5)
Intervals Let a and b be two real numbers and a < b.

The set of all real numbers between a and b is called then open interval from a to b and
is denoted by (a, b) i.e.

(a, b) = {x € R| a < x <b} The number a is called the left end point of the interval and b
the right end point.

Note that both end points do not belong to the open interval

The closed interval from a to b denoted by [a, b] consists of all reals satisfying
[a.b]=x e Rla<x< Db}

The closed interval is represented on the real line as follows.

v

~t
—t
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Besides open and closed intervals we also have following semi closed intervals.
[a,b)={xe R|a<x<Db}
(a,b]={xe R|a<x<b}
All above intervals were finite. We also have infinite intervals.
(@, 0)={xe R|x>a}
[a, ) ={x e R|x2a}
or (-o,a)={x e R|x<a}
(-, 8] ={x e R|x < a}
The set R of real number is also denoted by (-co, o)
Absolute value of a real number
For any real number x we define the absolute value [x]| of x by
xifx>0
= {—x if x<0
Proposition : For all real number x
1) |x| = max (x, -X)
2) x>0
3)Ixl=0ifandonly if x=0
4) |-x| = |x|
5) Ix| = x.

These are simple results which follow from the definition and are left for you to prove.

Note : By \/_ we always mean the positive square root. That is each real number a > 0 «/5

denotes the unique non-negative real number x such that x2 = a. Also note that \/5 is not
defined (as a real number) if a < 0.

From this note it follows that

X = @

Theorem : For any two real number a & b.

ab| = |a||b] &
|ab] = [al[b] b

a
‘— if b=0.
b

_‘a

Proof : Jab| = +/(ab)? = v/a%? = Ja?? = Ja? Jb? =Ja]lb|

13



a

b

Exercises : 1) Find the absolute value of

a
b

0,3, -3,6- 52,75—3
(i) Is it true that

\X? =x for every real number x?
(iii) If X is rational and vy is irrational than what can you say about x + y and xy.
15 Functions

It is believed that the term function was first used by Leibnitz to refer to certain kind of
mathematical formulae. Since then the meaning of the word function has undergone many
changes. Here we give the modern meaning of the word function.

Definition : A function f from a non-empty set X to a set Y is a rule which associates to each
element x in X a unigue elementyin.

The unique element of Y which is associated with x in X is denoted by f(x). The symbol

f
f:X>Yor->X->Y

are usually used to denote that f is a function from X to Y.

The set X is called the Domain of the function f and set Y is called the co-domain or
range space of f.

The subset of Y defined by f(X) = [y]y = f(X) for some x € X] is called the range of f.
The range of f is a subset of Y which may or may not be equal to Y.

The element f(x) which f associates with x is called the image of x under f. The element
x is called the pre-image of y = f(x).

The function f : X — Y is also denoted by y = f (xX)/ x € X is called the independent
variable and y € Y called the dependent variable.

The functions whose domain and co domain are both subsets of R, the set of real
numbers, are called real valued function of a real variable.

Examples (1) Let X ={1, 2, 3, 4,}
&Y ={2,4,6,8, 10,12, 14}
f:X->Y
X—y=f(X)=2x
is a function from X to Y.
14



2) Let X =Y = Z, the set of integers
f:X->Y
X — f(X) = x?
Then f: X — Y is a function from Xto Y.

eg. f0)=0
f(-2) =(-2)’=4
f(2)=()?%=4
and so on

Graph of a Function : By the graph of a function f we mean the set {(x, f(x)) x € domain of f}.

Note : For real function given by a formula, we shall consider the set of all real number x for
which f (x) is defined to be the domain of f, unless domain is explicitly defined.

Let us study some frequently used real functions and also their graphs.

Constant function :- A function f : X =Y, X, Y ¢, R is said to a constant function if there exists
areal numberk e ys.t. f(x) =k V x e X.

leta,b,ce X

f(x) K k k

>

graph of y =k (k > 0)
15



Domain = Xi range = {k}

Identity function :- This is a function defined by

f:R—>R
X—>f(X)=xVxeR
i.e. it takes the element to itself

This is called identity function and is usually denoted by |

ie.l:R—=R

Xx—=Il(xX)=x,VxeR

"
/r*/

Jp—— —P x
graph of y = x
Domain = R
Range =R
X 0 1 2
f(x) 0 1 2
Modulus or absolute value function the function f : R — R defined by
xifx>0
X) = |X| = )
J =K —Xxifyx<0
Domain =R

Range Ro" = {X | x is a non-negative real number. To plot its graph

X

-1

0

1

f(x)

1

0

1
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graph ofy =y = [x|
Square root function : If x is a positive real number, then there are two square roots for x, of
which one is positive and is denoted by \/; :

A function f Re* - R

x— f (%) = Vx

is called the square root function.
To plot its graph

X 0 1 2 3 4

& 1 1 14 1.7 2

Plotting these value we get its graph

-’x

The greatest integer function :
For a real number x, we denote by [x], the greatest integer less than or equal to x
For example [4.5] =4, [1]=1,[5]=0,[-4.5]=-5
The function f : R — R defined by
x=f(X)=[x],xeR

17



is called the greatest integer function.

It is also called a step function because of the shape of its graph.

Domain =R
Range = Z
X -2<x<1 | -1<x<0 O<x<1 1<x<2 2<x<3
x] -2 -1 0 1 2
vt
2 > -

15.1:._:.1
D O

graph of y =[]

Polynomial function : A function f : R — R is said to be polynomial function if for each x € R
f(x) is a polynomial in x. For example

f(x) = x3 + 3x? - 2, g (X) +x* + 3x are example of polynomial functions. We will plot the
graph of the famous polynomial function y = x? which is a parabola.

X -2 -1 0 1 2

x2 4 1 0 1 4

[

=
Fy

h T ..
2 -1 °1£

graph of y = x?
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Signum function : The function f defined by
lifx>0
f(x):0ifx=0
-1if <0
is called the signum function
Domain = R
Range {-1, 0, 1}

X -2 -1 0 1 2

f(x) -1 -1 0 1 1

Even Function : Function f satisfying
f(-1) = f (x) is called an even function, For example
f(x) = x2, f(x) = x*- 3x2 +y

Odd function : function satisfying f (-x) = -f(x)
is called an odd function

For exampley = x,y =x°

One-one function or Injective function : A function f : X — Y is said to be one-one- or
injective if x! = x2 = f(x) = f(x?) i.e. different elements in the domain have different images.

or equivalently images are same only when elements are same.
i.e. f(X1) = f(X2) = X1 = X2

For example f(x) = x, f(x) = 3x + 5 are 1 - 1 functions where as f(x) = x?is not 1 - 1.
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Onto or Subjective Function:

A function f : X — Y is said to be onto or subjective if for yeY, there exists x € X s.t. f(x)
=vy. Clearly a function f : X — Y is onto if every element of Y is the image of some element in X.

i.e.range of f=Y
Algebra of Real functions
Let us first define the equality of two functions.

Equal functions:- Two function f : X — Y from a set of X to a set Y are said to be equal if f(x) =
g(x) for every x € X.

Thus, for two functions f and g to be equal, both f and g should have same domain and their
values at each point of the domain are identical.

In otherwordsif f: X—>Y &g: X—->Y
Then we say that f = g if (1) domain f = domain g (ii) f(X) = g(X) V x € domain.

Addition of two real function: Let f: X —» R and g : X — R be any two real function where X ¢
R.

Then we define
f+g:X—>Rby
(f +9)(x) = f(x) + g(x), VX € X.
Subtraction of real function from another
Let f: X —> Rand g : X — R be any two real functions then we define
f-g: X—Rby
(f-9) (¥)=f (X -9(x), vx eX
Multiplication by a scalar.

Let f : X — R be any real valued function and o be any scalar i.e. real number. Then the
product af is a function from X to R defined by

af: X—R
(af) () =af (x), ¥ e R
Multiplication of two functions:-
The product or multiplication of two real function f: X - Rand g : X — R is a function
g : X — Ris a function

g : X — R defined by
(fg) () = f(¥) 9(x), V x € X
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Quotient of two real functions:
Let f: X— Rand g : X — R be two functions. Then the quotient of f by g is a function.

i: X - (x:g(x) = (0) - R defined by -
9

fl - f®
[QJ(X) (%)

Composition of two functions:-

Let f and g be two functions such that he domain of f contains the range of g. Thus it
makes sense to talk of f(g(x)) for each x in the domain of G. In this case we can define a
function with domain X. We denote this function by fog, and call it the composite of f and g. In
other words if f: Y — Zand g : X — Y. Then fog : X — Z defined by

(fog) (x) = f(g(x)) for x € X. composite of two functions is also called function of a
function.

Note: given two function f & g, it is important to note that fog is defined only when domain f
contains range of g. and Similarly g of will be defined only when domain of g contains range of f.

Examplel.Let f:N—>N f(n)=2n, vne N
g:N—N
and
gn)=n%2,vneN
Then Q domain of g contains the range of f
Q gof:N—N
(gof) (n) = g(f(n)
=g(2n)=(2n)?=4n%?, Vn e N
also domain f contains range of g
Q fog:N—N
(fog) (n) = f(g(n))
=f(n>)=2n?, VneN
This example shows that gof = fog

Inverse of a function: A function f: X — y is said to be invertible if there exists a functiong : Y
— X s.t.

fog = Iy and gof = I, |y are respectively identity function on X and Y. The function g is
called the inverse of f and is denoted by g = f.
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Theorem: A function f: x — Y f will have an inverse if f is one-one and onto. Moreover when f
has an inverse, it is unique, we assume this result.

Some lllustrated Examples

Example 1: If A and B are two sets such that AUB = 60 members, A has 25 members and B
has 17 members.. Then find AnB.

Solution: We shall use the result
n(AuB)=n(A)+n(B)-n(AnB) ...(1)
Here n (AUB) = number of members in AUB = 60
n(A) = 25, n (B) = 47
From (1), we have
60 =25+ 47 - n (AnB)
- n (ANB) = 25 + 47 - 60 = 12

Example 2. How many subsets can be formed of the set X = {I, m, n}? List all these subset so
obtained.

Solution: We have X ={l, m, n}
= X has 3 distinct elements
= number of subsets of X is 2% i.e. B.
The subsets of X so obtained are as follows
¢, X, {1}, {m}, {n}, {Lm}, {m,n}, {n,I}.
Example 3: Write the following as intervals:
0] A={X|xeR,-3<x<5}
(if) B={y,yeR,-2<y<4}
(iii) C={XxeR,1<x<3}
(ivy D={ylyeR 5<y<9}
Solution: (i) A=][-3, 5]
(i) B =9-2, 4]
(iii) C=[1,3]
(iv) D=]5,9]
Example 4: Find the domain and range of the function

X+ 2
2X+1

fx) =
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2
Solution: f(x) = X+

2x+1
, -1
For f (x) to be defined, 2x +1#0 = x # >
, -1 -1
Domain of f = Df = Set R of all reals except ? =R- ?

To find Range, we put f(X) =y

X+2
x4l 7
2Xy +y=x+2
= XQy-1)=2-y
= xzﬂ
2y-1

-1
Now x € R except ?

2-y

e R excepty =
2y-1 pty

N |-

Ri=Rangeof f=R - {%}

1.7 Self Check Exercise
Q.1 Let U=1{1,2,3,4,5,6} and A ={3,4,5}, Find A' compliment of A.
Q.2 Find AUB and AB if
A ={1,2,3,4,5,6}
B ={2,3,4,5,6,7}
Q.3  Find the domain and range of the function f(x) = log (x - 1)
1.8 Summary
In this unit we learnt the following

(1) concept of a set, different types of ets, union and intersection of sets, Venn's
digrem etc.

(i) concept of number system, intervals (open and closed intervals)
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(iii) functions, domain and range of a function, types of functions etc.
1.9 Glossary:

1. cardinal number or order of a finite set - The number of distinct or different
element of a finite set is called order of a set

2. Length of interval - If (a, b), [a, b], [a, b] and (a, b] are intervals then b - a is
called length of any of the above intervals.

3. Comparable and non-comparable sets- Two sets are said to be comparable if
one of the two sets is a subset of the other.

4. Applications of sets in some important problems.
@) n (AuB) =n (A) + n (B) - n (AnB)
(b) 4 A, B are disjoint sets i.e. AnB = ¢ then n (AUB) =n (A) + n (B)

©  n(AUBY)=n ((Am B)“): n (U) - n (AAB)

(d) n (A)=n (A-B)+n (ANB).
1.10 Answer to Self Check Exercise
Self Check Exercise - 1
Ans.1 a set
Ans.2 {1, 3}

n
Ans.3 IX}x= ——,neNand6<n<9}
n+1

Self Check Exercise - 2
Ans.l A={1,?2, 6}
Ans. 2 AUB ={1,2,3.4,5,6,7}, ANB = {2,3,4,5,6}
Ans. 3 Ds= (1, »), Rc = Set of real = R.
1.11 References/Suggested Readings

1. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002.
2. G.B. Thomos and R.L. Finney, Calculus, Pearson Education, 2007.
1.12 Terminal Questions
1. Which of the following are sets? Give reason
(1) The collection of all natural numbers less than 50

(i) The collection of all odd integers

(i) The collection of all months of a year beginning with letter M.
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Which of these sets are equal?

{a, c, b}, {b, c, a}, {a, b, ¢}

Write the following intervals in set builder form:

(i) (-2, 1) (ii) {5, 107 (iii) (-6, 1)

For A, B two sets if

n (A) = 15, n (B) = 20, n (AuB) = 40, find n (AnB).

Find the domain and range of the following functions

) f)=+v2-X
(i) fx)=2%
(i) f(x) = L

X

(iv)  9(x) =log (-x)
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Unit - 2
Limit of A Function

(Epsilon and Delta Definition)

Structure

2.1 Introduction

2.2 Learning Objectives

2.3 Neighourhood of A Point

2.4 Limit of A Function (E-6 Definition)
2.5 Algebra Of Limits

2.6 Self Check Exercise-1

2.7 Squeeze Principle

2.8 Infinite Limits

2.9 Self Check Exercise-2

2.10 Summary

2.11 Glossary

2.12 Answers to Self Check Exercises
2.13 Reference/Suggested Readings
2.14 Terminal Questions

2.1 Introduction

Dear students, we have learnt some basic concepts in unit |. Surely the idea of these
concepts will help you to learn and to build a strong foundation for the theory of calculus. Limit
of a function is one of the most fascinating idea in whole calculus and analysis.

2.2 Learning Objectives
The main objectives of this limit are
@ to understand the concept of neighborhood of a point
(ii) to define limit of a function (e-definition)
(iii) to find the limit of some important functions
(iv) to study Cauchy criterion for the existent of limit.

(v) to study algebra of limit
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(vi) to study squeeze principle
(vii)  to study infinite limits.
2.3 Neighborhood of a Point

Let a, b € R and c be any real number such that a < ¢ < b then the open interval (a, b) is
called a neighborhood (nhd) of c. Thus any open interval (a, b) containing the point ¢ € R is
called the nhd. of c. The length of a nhd (a, b) is measured by |b - a|. The nhd. (a, b) is called
symmetric nhd of c iff |c - a]. For a given & (delta) >0,(c- d,c+ d)={Xx e R|.|x-c|< d}is
called & -nhd of ¢ and is symmetrical about the point c.

Deleted Nhd.- The set
{xeRlo<|x-c|< d}={xeR||x-c|< d and x # c}.
=(c- d,c)u(c,c+ d)isadeleted nhd of c.

Thus any nhd. of ¢ which does not contain the point c is called a deleted nhd. of c. That
is, if c € (a, b), then (a, c) U (c, b) is a deleted nhd. of the point c.

Remark: Let c e Randa,b € Rs.t.a<c<bthen]|a, c]is called a left nhd of ¢c and [c, b] is
called a right nhd. of c.

2.4 Limit of a Function (e- 6 definition)
Let us first understand what do we mean by x — a (x approaches to a).

X — a means that x # a but |x - a| is very small. So x — a means that there exists a
positive number & > 0, however small suchthat 0 < |x-a < d.In otherwordsx e (a- 8, a+
d)andx=aie.x6(a- o,a)u(aa+ d).

Now Let us explain the limit of a function with the help of an example
Example 1 : Consider the function f(x) = x + 3

The graph of this function is shown. It is clear that as x — 2 from left or right, the function
is approaching 5. That is when x is near to 2, f(x) is close to 5.
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Example 2: Consider the function f(x) = x? we have seen its graph earlier. It is plotted here also.

Yj

-

\ .
\ 5
Y 5 s |
ks |
3 | (2, 4)
2T |
1 -t | i
AN A X
[ T ol 1 —»2«
2 -1

Table x — 2 from left X — 2 from right

X f(x) X f(x)
1.5 2.25 2.5 6.25
1.6 2.56 2.4 5.76
1.7 2.89 2.3 5.29
1.8 3.24 2.4 4.84
1.9 3.61 2.1 4.41
1.95 3.80 2.05 4.20
1.99 3.96 2.02 4.08
1.996 3.996 2.001 4.004

Please observe that as x approaches 2 from left i.e. approaching 2 always remaining
less than 2, the graph of f(x) = x? approaches the point (2, 4) and the value of f(x) approaches 4.

Also as x approaches 2 from right, i.e. approaching 2 always remaining greater than 2,
the graph of the function f(x) = x? again approaches the point (2, 4) and f(x) approaches 4.
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1 x>0
Example 3. Consider the function f(x) = {0 x=0

-1x<0

This is signum function. We know its graphs

Table x — 0 from left x — 0 from right
X f(x) X f(x)
-1 -1 1 1
-0.5 -1 0.5 1
-0.1 -1 0.1 1
-0.01 -1 0.01 1
-0.001 -1 0.001 1

> X

We obwerve here

D as x approaches o from left f(x) remains at -1 here we say that f(x) approaches -1
as x approaches o from left.

(2) as x approaches o from right f(x) remains at 1.
Here we say that f(x) approaches 1 as x approaches zero from right.
Example 4. Consider the function
0if x<0
fx) =

siniif x>0
X
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graph of the function is

-» X

o0
2. 4 | JUU

91 -+

is Here we see that as x approaches zero from left f(x) approaches zero. However as x
approaches zero from right, the graph f(x) oscillates too much between -1 & 1 i.e. f(x) does not
stay close to any number.

1
Example 5: Let us consider another function f(x) = ;its graph is shown here

Table

x — 0 from left X «— 0 from right
: = " =
-1 -1 1 1
-0.1 -10 0.1 10
-0.01 -100 0.01 100
-0.001 -1000 0.0001 1000
-0.0001 -10000 0.0001 10000
-0.00001 | -100000 0.00001 1.00000
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Here we note that

(1)

(2)

as x approaches zero from left, we do not get a point of the type (0, y) on the graph of f. Rather
f(x) goes on decreasing as we near zero from left.

as x approaches zero from right, the function f(x) goes on increasing, it does not approach a finite
number.

In conclusion, we see

(i)

(ii)

(iii)

(iv)

that in example 1 and 2 f(Ox approaches a definite number whether we approach the point from
left, or right.

In example 3 f(x) approaches definite numbers when we approach the point from left and right but
these numbers are different.

In example 4 f(x) approaches a definite number when we approach the point from left but does
not approach any number when we approach the point from right.

In example 5 f(x) does not approach a definite point when we approach the point either from left
or from right

The above discussion shows that it is not only useful but also necessary to consider the limiting

behaviour of a function separately for points lying on the left and right of a given point. Let us define these
concepts now.

Definition: Let f be a real valued function and an arbitrary point in the domain of definition of f.

Left hand limit at a:- The function is said to have a left hand limit 1 (a real number) at a if given € >0
there exists a real number & >0 (8 depending on €) such that f(x) is defined for all x in (a- 3, a) and

[f (91| <e
The symbol lim f(x) = L or f(x) — o (x —a. - 0) are used to express that 1 is a left hand
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X — o
limit of f(x) at a. this is also called limit from below at a, and is denoted as f(a’) or f(a - 0)
Right hand limit at a:-
The function f(x) is said to have right hand limit 1 (a real number) at a if given € > 0 there exists a
real number >0 (3 depending on €) such that f(x) is defined for all x in (a, a + 8 ) and | f(X) —I| <e

The symbol lim f(x) = 1 and f(x) —» | as x — a+ (x — a + 0) are used to express that 1 is a
right

X — a*

hand limit of f(x) at a. This limit is also called limit from above at a and is often denoted by f(a*) or
fa+0)

Limit of a function at a:-

A function f(x) is said to approach a limit 1 (1 a real number) as x approaches a if for each >0,
there exists a positive number & (d depending on ) such that when ever 0 < |[x - a|] < &, f (X) is

defined and | f(X) —I| <e.
The symbol lim f(x) = 1 and f(x) — las x — a are used to denote the fact that f(x) approaches
X—a
1 as x approaches or tends to a.
If there exists no such 1, we say that f(x) does not have a limit as x approaches a.

Note: Since the statement "h approaches 0" is equivalent to the statement "a +h approaches a" if follows
that lime f(x) — | &f(a+h)— | as h — 0 We will use this fact many a time.

The following theorem follows obviously from the above definitions.

Theorem lim f(x) = | < lim f(x) = | and lim f(x) = |
XxX—a x—at X—a

Therefore in order to prove that lim f(x) does not exist, it is enough to prove that either one
X —a

of the one sided limits does not exist or both are not equal, in case they exist.

If f(x) —| as x — a, then theoretically, given >0 it should always be possible to find &> 0
satisfying the requirements of the definition of limit. But in practice most of the time for a given €>0 it is
not at all easy to find the required o . In other words while computing the limit it is not easy to apply the
definition directly. So we state below a theorem, without proof, which will simplify our effort in finding the
limit in a large number of cases without explicit use of the definition.

2.4 Algebra of Limits
Theorem: Let f and g be two real valued function such that
lim £(x) = | lim g(x) = m

X—a X—a
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Then
(i) lim (I f) () = a L, where a is a real number
X—a
(ii) lim (f +g)) = | +m
X—a

(iii) lim (fg) (x) = I m

X—a
(iv) |m1(%(mj:%ﬁl¢o

We are assuming here that both f and g are defined in some deleted neighborhood of a
From (iii) & (iv) it follows

lim ) im0 im 2 =ML
g(x) g(x) |

X—a X=>a X—a

We will consider examples using above theorem.
Example 5: lim (o + BX) = o + Pa, where a, B are cons tan ts
X —a
Solution: We will first prove that
imx=aandlima=a
X—a X—a
This we will prove by using the definition of Imit.
In the first case f(x) = x
Here f(x) = x
Let € > 0 be any real number however small. We choose & = . Then For all X,
O<|[|x-al]<d =€
lf(x)-al=|x-al<e(=3)
.. By definition of im it = limx=a .. Q)
X—a

In the second case f(x) = a, Let € > 0 be any real here [f(X) - a| = |a - a| = 0 < € for any number
o -0

~lime=a . (1)

X—a
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Now by applying the above theorem

lima + px lima+ lim  px
X—a X—a X—a
=o+pIlimx
X—a
=a+pa
Example 6: Show lim x" = a" for all integer n > 1.
X —a

Solution: We will prove by using the principle of mathematical induction forn=1
We have

limx* = limx = a (from previous example

X—a X—>a

Let it hold for n = m. That is we assume that lim xm=am ... (1)
X—a

Consider limx™* = lim (xm x)
X—a

X—a

= limx™ lim

X—a X—a
—ama= am+l

therefore by the principle of mathematical induction result hold for all n > 1.

ie. [imx" = an

X—a
Example 7: Limit of polynomial

Let ow,0t1,002,....... o be real number. Then

n n
i i|= i
Qﬂ > ax —Zﬁg
j=0 =0
Solution: Using the above stated theorem

i (Zn:ajxj} > lim(a, )

j=0 j=0 X—> ]

lim x’

X—a

M-
R

I
o

1
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N
L
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Thus what we have proved it

ie.if f(x)= D a,x! is a polynomial
i=0

=

Then f(a) = Y «,a’

j=0
.. from (1) we have
X—a X—>a

lim f (X) =lim [Zn: ajxj] = Zn: a;a' = f(a)
=0 i=0

x—a X—a

Example 8: Limit of rational function Let f and g be two polynomials and g(a) = 0. Then
m f0_ f(@
a2 g(x)  9(a)
Solution: This follows from the |1 f(x)ous example and using the theorem as
lim £(x)
Xx—>a _ f(a)

limg(x 9(a)

Example 9: Evaluate (1) |im2X (x-1)
X—
2
@iy lim XX
x>2 X+2
2
iy lim XX
X—3 X_2
. : X —3x+2
@ e
Solution: liIMxX(x-1) = limx lim(x-1)
X—2 X2 X—2
=2(2-1)=21
=2

X+4x_ X2 _ 2442 _ 448 _12_

Gy lim 2 12%2-_~7% -
X2 x+2 lim(x+2) 2+2 4 4

X—2
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lim -  =— = = — =13
x-3 X—2 lim(x-2) 3-2 1 1

(iii)

2 — — — _
(v) lim X =3X+2 _|im w = lim Mz 1-21
X1 x?—1 ol 5 (x-1)(x+1) =t (x+1) 1+1 2
Example 10: Evaluate
0 lim J1+X—+1-x
x—0 X
Gy lim —(2X2_3)‘/§_1
x>0 3X°+3x-6
Solution: 0] lim VI+x=vizx lim J1+X_J1_XXJ1+X+\/1_X
x-0 X x-0 X J1+Xx+1-x
_ (1+x)-(1-x)
=lim
x(\/1+x+ 1—x)
= lim 2x
x>0 x(«/1+x+ l—x)
- lim 2 2 2

ol Trx+1-x 1+0+41-0 2

(2x-3)x+1 _ i (ZX=9)Vx-1

(ii) im ~——~—— =1lim

x-1 (3X*+3x—6  x1 3(x2+x—2)
i (2x-3)Vx -1
i (2x-3)Vx -1
=1m
=1 3(x+ 2)(Vx-1)(Vx+1)
_ fim (2x-3) (21-3) -1 _ -1

x-1 3(x+2)(«/§+1): 3(1+2)(«/1_L+1): 332 18
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Theorem: Let n be any positive integer. Then
n n

lim X —2

h—0 X—a

= na™!

Proof: Letx=a+ hthenx — aiffh — O. Then

Xn_an_(a+h)n—a“_£ —_—
x—a  a+h-a _h[(a+h) —a]

% [a” +n,a " h+na*h*+..... h“] -a" [Q Using binomial Theorem]

1
b [nqa”’1+ncza”’l+n%a“’2h+ ....... + g”]
=na+na*h+...+h"

n n
= lim X =2 = |im ana”’1+ncza”’2h+ ....... + h”’lj
x—1 X—a h—0

= na " +n.a?0+.....+0

=na " +0+....+0

- n-1 —

= na [Q n, = }
Note: This theorem holds when a is any rational number and a is positive. We shall assume this.

3
Example 11: Evaluate lim X2 8
X2 X —-4

Solution: The given expression can be written as

x2-28  x*-22 x*-22

x?— 22 X—2 X—2

im S22 KR eim X2
3.2%1 + 2,221
=12+4 =3 Ans.

@+x)"-1

Example 12: Evaluate |jm
X—0 X

Solution : Puty =1+ xnow Thenasx — 0,y — 1
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II m (1+ X)n -1 | | m yn (_1?[” = n(l)“-l =n

x—0 X y—0

Limits of trigonometric function

We shall need following reslults to evaluate the limits of trigonometrically functions

Theorem : i) For 0 < |0 < % |sin 6]< [6]

ii) For 0 < [0 < % l|< | tan 6|

Y
? P(cos 9,sin &)

OR JA(1,0) X

Proof : (1) The result is obvious 6 = %

ForO0<6< > Let (cos 6, sin 6) be the coordinates of the point P on a unit circle.

Then sin 6 = length of PR < length of the chord PA which is less than the length of the

are AP that equals 6. Thussin 6 <6 for0 <0 < %

If-%<e<0then

[sin B] = -sin 6 = sin (-0) < -6 =|6|

completing the proof of (i)
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(i) for0<6< % Let (cos 6, sin 0) be the coordinates of the point on the unit circle

with centre (0, 0). Let PT be the tangent to the circle C at P. From the figure it is clear that Area
of

AOAP < area of sec 0AP < area of AOPT
2 Y

A
/ P (co®® , Sine)
[

/ \ \T

‘ >
OR /A(1,0) X
1 0 tand
i.e. =sinf< =<
2 2

= sin6<9<tan6foro<6<% ..(1)
If - % <0<o0,then0<0< % and hence

sin (-0) < -6 < tan (-0) ()]

since sin (-6) = - sin 6 = |sin O], |6] = -6 and tan (-6) = - tan 6 = |tan 9|
from (ii) it follows

|sin 6] < [6] < [tan 6] for - 7/, <0 <0

From (1) & (ii) it follows that
V4
for 0 < || < o we have

[sin O] |0] < |tan 6]
Example 13:

(i) lim sinx =0, (i) [jm cos x=1

x—0 x—0

(i)  |jmsinx=sinc (v)  ]jm cosx=cosc
X—=>C X—=>C
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Solution :

0] Let € > 0 be a given real number.

T
For |x| < e < E we have

: T . ,
[sin x|<|x| <e. For e>Ewe have [sin x| <x1 < e foralln. Thussinx - 0asx — 0

(i) We know that
cos X = 1-2 sin? x/2

. . . o X
limcosx=lim (1—2%25]

X—0

2
. . . X
lim1- z[gmsnﬂ

x—0
=1-20=1
(iii)  We know that
sin (c+h) = sin cosh + cosc sin h

limsin (c + h) = sin ¢ limcosh + cos ¢ limsinh
h—0 h—0 h—0

=sinc.l1+cosc.0
=sin c.

Since limsinx = limsin(c+ h)

X—C h—0

limsinc = limsin(c+h)=sin c

x=e h—0
(iv)  We know that

cos (c + h) = cos ¢ cosh - sinc shin h

limcosx= limcos(c+ h)==coslimcosh—sinc limsinh
h—0 h—0

X—>C hos0
=(cosc)x1l-(sinc)x0
=cosc
Limit of composite function
Theorem: Let f and g be two real valued functions such that domain of g contains range of f. If
lim f (X)=band limg(x)=1, Then

X—a x—b
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lim(gof )(x) =1

X—a

We shall assume this result without proof.
Example 14: Prove that
0] sin (ax + b) — sin(aa + b) as x — a
Solution: Let f(x) = ax + b and g(y) =siny
Then (gof) (x) = g(f(x) = g(ax+b)
= sin (ax+b)

Iim(ax+b) —aa+b

X—a

andlimsiny = sin (aa + b)

y—aa+b
so by composite rule sin(ax+b) = sin(aa + b) Ans
Example 15: Limit of Exponential functions

We shall prove that

. lime'=ec and (i) |t

X—>C h>0

Solution: We have a result which states that

1
<——"for0O<h<1

. ) h
now limh=0also lim ——=0
x—0" h-0 1—h

by squeeze principle from (1)
lime°-1)=o0or lime"-1 .. (ii)

h—0* h — 0*
Since h - 0" < -h — 0+, we have
. h o h 1
lime' = lime™ lim —=1 ... (iii)
h—0" h—0" x—a @

from (ii) and (jii)
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limer=1
h—0

Now lime* = lime"™™ ec lime"=ec.1 = ec
h—0

X—C h—0

(i) Foro<h<1, we have

h-1

1

1< eTEl n e (IV)
. 1
lim — =1
h-0 1—h

=1 (V)
If-1<h<0,then0<-h<1and
-1 1 (eh—l)

h e" -h
.oe-1 1 -1
s dim = lim — lim
h—0 h h-0" @ " x>0
=11=1

from (v) & (vi) it follows that

Example 16: Prove that

(i) Iirrol (e*-e® =0

. g-e* -1
i lim =
R 1 g+ €+l

(e+1)2
(e*+e*+2)=
2
(iii) Ix|gl1
Solution:
@ lim(e*-e)
x—0
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= lime* - lime
x—0 X—0
| (1J
=1-Ilim|=
x—0 e*
1
=1--=0Ans
1
. e-er e
(ii) lim ———= o
w1 @ +e -0 e 41
(lime¥)?-1
Xx—1 e -1
= 5 == 1 Ans.
(Iimex) 41 ©F
x—1
. <y o y .
iy ~lim(e+e*+2) = lim e+ o o lim 2
x—>1 X—1
? e+1)
I e (e+1)
e e e

2.6 Self Check Exercise - 1
Q.1 Evaluate
Lim x*-1
Xx—>1 x—>1
Q.2 Evaluate
Lim 1
— X
X—>1 x
Q.3 Evaluate

. sinax
lim

x—0 X

,az0

2.7 Squeeze Principle

Theorem: Let fi(x) < g(x) < f2(x) for all x in some deleted nhd of a, i.e., for all xe (a- A, a + 1), X
+a

If limfy(x) =1=lim fy(x), then
X—a X—a
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lim g(x) =
X—a
Proof: Let € > 0, then their exists 01, 82> 0 s.t.

0< %1, d2<iand

O<|x-a|<d1=fiX)-l|<e

= l-e<fiX)<l+e ... D
and
O<|x-a]< 02 = [f2x) - | < €
= [-e<fh(X)<l+e ... (2)

Let d =min{d, 82},then0<|x-a)< d.
Therefore, from (1) and (2), we have
[-e<fiX)<g(x)<fu(X)<I+ e
= lgx) -l < e for O<|x-a|<d
i.e. lim g(x) =1
x—>a
Hence the proof
Some lllustrated Examples
Example 17: Show that
sinx _

im —=1
x—0 X

Solution: We confine our attention to those x for which 0 < |x| < 2

We know that

[sin x| < |x| < |tan X|

= 1< |X| <|t§\nx| for0<|x|<Z
sinx|  |sinx| 2
I I I
|sinx| cosX|
= |cos x| < Smx<l

Now since |cos x| — 1as x — 0 and liml=1

x—0
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By Squeeze Principle

Example 18: Show that lime* =1

x—0

Solution: We know that

e-1 1
1< < — for O0<x<1
X 1-x
X
= x<e-1<-—— forO<x<1

1-Xx

X

= XxX+1l<e*X<l+ ——

- - 1-x

Now Ilimx+1=1

x—0

and |im (1+Lj =lim + lim X

x—0 1-X x—0 x>0 1—X

By squeeze Principle

[imex=1

x—0

2.8 Infinite Limits

A function f is said to have limit | as x — o if for given € > 0, however small, there exists
0<MeRs.t.

[f(x) - I| < e V (for all) x > M and we write this as limf(x) = |
X—>0

Some lllustrated Examples

Example 19: Prove by using definition that

. 1
lim ==0

X—00 X
. 1 .
Solution: Let f(x) = — and € > 0, however small be given
X

1

X

1 1
= — < e whenever x > —

then [f(x) - O] = ‘1_0‘:
X X S
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1
Thus for given e >0EM = — >0s.t.
€

If(x) - 0] < €
lim f(x) = 0

X—>00

. 5x*+3x+1
Example 20 Evaluate lim ———
x>0 B+ 2x+1

. . BX®+3x+1
Solution: lim ——
x>0 By 4 2x+1

2.9 Self Check Exercise-2

Q.1  Evaluate the limit
sin™x
x—0 X

.at-1
Q.2  Find lim
Xx—0 X

1 bx
Q.3  Evaluate lim (l+—j
X—00 aX

. 4 -3x+6
Q4 Evaluate ||m — 3 -2 =
x>0 By 4+ 2%x°—3

Q.5 Using squeeze Principle, prove that

e -1
=1

[im
Xx—0 X

2.10 Summary
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In this unit we learnt the following:
0] The concept of limit of a function

(i) The limit of rational function, limits of trigonometric functions, Limit of composite
functions and limit of exponent rat functions.

(iii) The Squeeze Principle
(iv) The infinite limits etc.
2.11 Glossary:
i. Cauchy's Criterion - The IXi_rgf(x) exists if given € > 0, however small, 3 a
positive real number & (€), s.t.
[f(x1) - f(x2)| < € for O<|xi-al]< d

wherei=1, 2

i@ lim [ £ g = lim 16 + lim g(x)

®  lim [f00. 9091 = [lim (9| [limg(x ]

lim f (x)
(c) lim f(x) = Xox , provided lim g(x) = 0.

<o g limg(x)

2.12 Answer to Self Check Exercise
Self Check Exercise - 1
Ans.1 2
Ans.2 2
Ans.3 a
Self Check Exercise - 2

Ans.1 loga,a>0

Ans. 2 e%
Ans. 3 %

e -1
Ans. Use the result 1 <

X

1
<_
—1-x

2.13 References/Suggested Readings

1. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002.
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2. G.B. Thomos and R.L. Finney, Calculus, Pearson Education, 2007.
2.14 Terminal Questions

1. Using definition of limit, prove that

lim (3-2x)=-1
X—2

. 1
2. Prove that lim —— =~
-2 X°—-4 4
o x=1
3. Evaluate lim —— (if exists)
-1 2(x-1)
. 1-cosx
4. Evaluate lim ———
xZ 1+ cosx
5. Using Squeeze Principle, prove that
. a-1
lim =loga:a>0
x—0 X
6. Using definition, prove that
. 3x+4
lim =3
X—»00 X_l
1
X
7. Evaluate lim e1+4
X—00 =
ex—-4

8. Evaluate lim (1+ gj

X—>0
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Unit - 3

Continuity of Function
&
Types o Discontinuity

Structure

3.1 Introduction

3.2 Learning Objectives

3.3 Continuity of a Function

3.4 Types of Discontinuity

3.5 Self Check Exercise-1

3.6 Algebra of Continuous Function
3.7 Self Check Exercise-2

3.8 Summary

3.9 Glossary

3.10 Answers to Self Check Exercises
3.11 Reference/Suggested Readings
3.12 Terminal Questions

3.1 Introduction

Dear students, we have already discussed various types of functions and sketched their
graph in Unit 2. We have seen that graphs of some function are continuous (without any break),
whereas, some of them are discontinuous in nature for instance, sin x, cos x and |x| are
continuous functions whereas [x], tan X, cot x etc are discontinuous functions for all x. The
smoothness of a graph of a function varies about a point of its domain that predicts the
behaviour of a function and is of great importance. Obviously, limit of a function helps us to
study the above said course.

3.2 Learning Objectives

The main objectives of this unit are :

() To study the continuity of function

(i) To know the types of discontinuity

(iii) To study the algebra of continuous function
3.3 Continuity of a Function

Definition : A function f is said to be continuous at a point X, if it is defined in some
neighourhood of xo and
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lim £ (x) = f (xo)
X%

i.e. f is continuous at x = Xo if given € > 0, however small, 3 a +ve real number & ()
such that
| £ (X) - f (Xo)l < € for[x-xo) < 3.

Now llj\(o f (x) exists iff
lim f ()= lim f (x)
X=X X—%g

Hence f (x) is continuous at x = Xo if it is left as well as right continuous at Xo.
Consequently a function which is not continuous at a point is said to be discontinuous at the
point.

Note : 1. A function f is said to be continuous on a set A if it is continuous at every point of
A. If A'is the domain of f, then f is called a continuous function on A.
2. A function f is discontinuous at X = Xo in the following cases:
(1) f is not defined at x = Xo i.e. f (Xo) does not exist.
(i) lim £ (x) does not exist. This is due to following three cases.
X=Xy
Case 1. lim £ (x) does not exist
X=X
Case 2. lim £ (x) does not exist
X=Xy
Case 3. lim £ (x) and lim £ (x) both exist
X=Xy X—>X§

but are not equal.
(iii) lim £ (x) exists but [im f (x) # f (xo).
X—>Xg X—>Xg
3.4  Type of Discontinuous

| Removable Discontinuous

It may happen sometimes that f is not defined at X = Xo or f (Xo) is defined in such a way
that lim £ (x) = f (xo).
X=Xy

In such cases, the discontinuity can be removed by redefining f (xo) in such a way that
lim f (x) = £ (o).

This type of discontinuity is referred to as removable discontinuity
Il Discontinuity of First Type (kind)
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If 1im £ (x) or 1im # (x) both exist finitely but they are not equal, then f (x) is said to
X—>Xg X=X

have discontinuity of firs type or first kind or ordinary discontinuity at Xo.
i Discontinuity of Second Type (kind)

If lim £ (x) or lim £ (x) does not exist, then £ (x) is said to have discontinuity of second
X=Xy X=X

type or second kind.

Note : 1. A real valued function f defined on an Open Interval (a, b) is said to be
continuous on (a, b) iff f is continuous at x = c for all ¢ € (a, b).
2. A real valued function f is continuous on the closed interval [a, b] iff
0] fis right continuous at x = ai.e. lim 1 (a)
X—a

(ii) f is right continuous at x = b i.e. lim £ (b)

x—b~

(iii) fis continuous atc vV c € [a, b] i.e. Ixiggf(x) =f(c)Vvcela, b

Importantly that such a function has continuous graph on [a, b]

3. The polynomial functions, the rational functions, constant function, sin X, cos x
and e* are continuous functions.

Some lllustrated Examples
Example 1 : Examine the continuity of the function

f(X){ Lx<0

3-%x,x=0

atx=0.
Solution : Let us sketch the graph of the function

1Lx<0
f(X){ )

3—-x,x>0
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In this case

f(0)=123=f(0)=7(0)

Therefore f is not continuous at x = 0. We cannot do anything to remove this
discontinuity.

Example 2. Examine the continuity of the function

X, x>0

F9= l,x<0
X

atx=0

Solution : The graph of the function is as follows :

— ’ X

—

f =1

Here f(0") = 0 f (0), but f (0") does not exist.

Hence f is not continuous at x = 0.
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Example 3 : Consider the function
x* -1

f(x)=19 x-1
3 x=1

X#1

Check the continuity of the function at x = 1.

Solution : Now, |_im/X)

x—1

=Lim

x—1 X—=
=1+1=2
But f(1)=3= Lim/®

x—1

-1 . (x+D) ey
T L=

x—1

f (X) is discontinuous at x = 1.

. . . sin x
Example 4 : examine the continuity of the function f (x) = B atx=0

_ snx , . : L :
Solution : We not that f (x) = —— fails to continuous at x = 0 since it is not defined at x = 0,
X
sin x
X

though Lirgl =1.

However if we define f (0) = 0, the function so obtained viz.

&, X=0
fX=4 X
1 x=0

is continuous at x =0
Self Check Exercise-1
Q.1 Examine the continuity of the function
X, 0<x<1
fx)=+4 =2 atx=1
—, x>1
1+ X
Q.2 Examine the continuity of the function

L X rational
F 0= ~1, xirrational
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at any point c.
3.6 algebra of Continuous Functions
If f and g are two continuous functions at a point a then following results hold.
0] a f is continuous at x = a for any real a.
(i) f +giscontinuous atx = a
(iii) f giscontinuous atx = a
(iv) is continuous atx=1ifg (a) =0

Note : 1. We assume, without proof, the above results to hold true. These results also hold
good if continuity is replaced by left as well as right continuity.

2. Continuity of composite function let f and g be two functions such that range of f
is a subset of the domain of g. Set f is continuous at x = a and g be continuous at
f(a). the gof is continuous at x = a.

3. Absolute Function : the absolute function of f, denoted by |f] (X) = |f (X)] ¥V x € Df.
It fis continuous at x = a, then |f] is also continuous at x = a.
3.7 Self Check Exercise-2
Q.1 Show that |f (x) | is continuous for all x € R if

_ -1 x<1
fx¥)= 1 x>1

1
Q.2 Iffp=1¢" x*0
1, x=0
Check whether f is continuous at x = 0 or not.
Some more illustrated Examples
Example 5 : Examine the continuity of the function

_ 1+x Xx<£2
F )= 7-2X X>2

atx=2
Solution : Here

Now le =f(x)= |_| m(1+x)

X—2" X—2"
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and

Lim®=Lim@-2x)=7-4=3

x—2" x—2"

Also f(2)=1+2=3
Lt f)=Lim/@

X—2" x—>2"
Hence f (x) is a continuous function at x = 2

Example 6 : Examine the continuity of the function

X
AN 0
00 = vix

4 x=0
atx=0

Solution : We have

X
- 0
o= mixvx
4

' x=0

Now Lirpf(x) = Lim

X
x>0 14+ X —~/1-X
- Lim X \/1+x+ 1-X

X
0 1+ x—1-X 1+ x+1-X

x(»\/1+x+«\/1—x)
Lim
-0 (1+x)—(1-X)
_ X(«/1+x+ 1—x)
= Lim
Xx—0 2/%

_ 1+0+\/1—0_1+1_E_1
2 2 2

But f(0)=4= I;irglf(x)

Hence f is discontinuous at x = 0
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2, X<3
Example 7: Let f(x) = <ax+b, 3<x<b5
4, 5<x
Find a and b so that f become continuous.

Solution: Now f is continuous V x = f is continuous at x = 3,5.

Lim 0= Lim (ax+b)=3a+b=2=7(3) ... (1)
and LiEr_)pf(x)z Lirgnf(x)zf(S)

= Lim (ax+b)=5a+b=4 ... 2

X—5"
From (1) and (2) we have
3a+b=2
and b5a+b=4
On subtraction, we get
S5a+b=4
a+b=2 = a=1
2a=2
From (1) we get
3 +b=2 = b=2-3=-1
Thus a=1, b=-1for f to be continuous at all points.
Example 8: Examine the continuity of the function.
Xsin 1 -1 x#0
f(x)= X
0, x=0
at x = 0. Give the nature of discontinuity if otherwise
Solution: Here
Xsin L -1,x#0

f(x)= X
0, x=0

1
Let g(x) = x, h (x) = sin %
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Now Lirpg(x)z Lirgl x=0

and |h(X)| = <1 VXxeR,x=0

1
sin—
X

= h(x) is bounded in a deleted nhd of 0.
Lirp gx) h(x) =0

. 1
= Lim xsin — =0
x—0 X

Thus Lim (xsinl—ljz 0-1=-1

x—0 X
= I;Irp f(x) =-1and also f(0) =0
Hence I;Irgl F(X) = f(0)

= f is discontinuous at x = 0

The above discontinuity is removable discontinuity as f becomes continuous if we define
f(0)=-1

Example 9: Examine the continuity of the function

J1-cos2x
fx= X ’
0, x=0

#0

at x = 0. State the kind of discontinuity of f is discontinuous.
Solution: We have

J1-cos2x
fx= X ’
0, x=0

#0

5 :
Now «/1—c032x = m= \/5 ﬂxx
X
J2|sinx| w20

fx= X
0, x=0

57



. . in X
Limf (x) = leﬁs—
x—0" x—0" X
Put n=0-h, = h—0asx—0,h>0

2|sin(-h)|

Lim f(n) = IHLT

x—0"

Y TR ALY - S

h—0 h

Similarly : Lim £(x) = I;”p (Putx=0+h . h—0isx—0"h>0)
x—0" —>

V2]sin(h)|
h
=J2.1=42

Thus Ligljf(x);t Lig[l f (X
Iﬁirp f(x) does not exist

= f is discontinuous at x = 0 and this discontinuity is of first kind.
3.8 Summary

In this unit we have learnt

0] continuity of a function

(i) discontinuity of a function

(iii) kind of discontinuity

(iv) continuity of a function in an interval

(V) Algebra of continuous function

(vi) continuity of composite functions

(vii)  continuity of absolute value functions

3.9 Glossary

1. Domain of continuity - The set of are points where the function is continuous is
refereed to as domain of continuity

2. A rational function is continuous at every point of its domain

3. A constant function is continuous everywhere.

3.10 Answers to Self Check Exercises
Self Check Exercise - 1
Ans.1 Discontinuous
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Ans. 2 discontinuous
Self Check Exercise - 2
Ans. 1 To be proved continuous
Ans. 2 discontinuous
3.11 Reference/Suggested Reading

1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
2. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002
3.12 Terminal Questions
1. Examine the continuity of the function
u, X=0
fxX)=19 Xx atx=0
0, x=0
2. Examine the continuity of the function
1-cosx
>—, X=0
fx) = X atx=0
1, x=0
3. Show that the function
- [X=2]+[2-X],x#2 disconti iy =2
X) = is discontinuous at x =
/ 0, X=2
4, Find A for which

X2+ 2%+ A, Xx#0 _
f(x) = is continuous at x = 0

-3 x=0
5. Find a, and b so that
2,Xx=2
f(x) = 1 2ax—bifx < 2 is continuous
ax® +bifx > 2

6. Find a if f given by
2x-1 x<2

f(x)=<a x=2
n+l, x>2
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Unit -4

Differentiability of Functions

Structure
4.1 Introduction
4.2 Learning Objectives
4.3 Differentiability of A Function
4.4 Algebra of Differentiable Function
4.5 Self Check Exercise-1
4.6 Successive Differentiation
4.7 Leibnitz's Theorem
4.8 Self Check Exercise-2
4.9 Summary
4.10 Glossary
4.11 Answers to Self Check Exercises
4.12 Reference/Suggested Readings
4,13 Terminal Questions
4.1 Introduction
Dear students, so far we have learnt the concept of limit and continuity of a function in
Unit-1 and Unit-2 respectively. The definition of continuity and derivatives are based on unit of a
function. You must have observed serial phenomenon where changing are taking place

continuously, for example, temperature at a final point in a room, speed of railway train etc. To
answer above questions we need the concept of derivatives (differentiation).

4.2 Learning Objectives
The main objectives of this unit are
0] to define differentiability of a function
(ii) to give interpretation of derivative at a point
(iii) to give physical interpretation of a derivative
(iv) to study algebra of differentiable function
(v) to find derivatives of some important functions
(vi) to study successive differentiation

(vii)  to prove Leibnitz's Theorem
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4.3 Differentiability of a Function

Definition: Let f be a real valued function defined on an open interval (a, b). Let c be
any arbitrary point of (a, b). The function f is said to be differentiable at the point c or is said to
have the derivative at the point c if the limit.

f(c+h)—f(c)

h—0 h

exists and is finite ... D

Note: The derivative of f at the point x of its domain D is defined as the
f(x+h)—f(x)

h—0 h

, provided the limit exists and is finite. This derivative (or

d
differential coefficient) is denoted by f'(x) or dx f(x).

If the above limit (1) does not exist, then the function f is said to be non-differentiable at
the point c.

The derivative or differential coefficient of f at the point c, if exists will be denoted by

o [
rou(g).

When we write y = f(x) for the function, then the differential coefficient of f at the point c

is also denoted by (d—f]
o
Remark: (1) Itx — c+ 0, then the derivative is called the right handed derivative, denoted
by R /" (c)
(2) If x — c -0, then the derivative is called left-handed derivative, denoted by Lf
(©)
(3) The derivative at a point exists iff
RHD = LHD

(4) The process of finding the derivative of a function is called the differentiation.

(5) A function f is said to be differentiable at a point c iff the derivative of f exists
atc.

Example (1) Lety = f(X) = a, VX, o constant
Then for any c in the domain of definition of f

. f h) — f
r©=lim HER=H

x—0 h
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a—-o

=|lim — 0  (exists and is finite)

x—0
Thus the derived function f' is defined for all real numbers and f' (x) = 0 Vx
This is also expressed by saying that if y = f(X) = a

dy df
then —= —=f(x)=0
en dx dx /)

Example 2: Lety = f(x) = x Then
f(x+h)—f(x)

') =
feo=lim h
. X+h-Xx ) o
= ||m T exists and is finite
h—0

Thus ify = f(x) = x

Then f'(x) = % =1, VX

Let f(x) = x? Then
. f h) — f
o= lim TR

h—0 h

. x+h)’ = x2
=I|m—( r)1

X% +h? 4+ 2hx — X

h—0 h

=|im (h+2x) =0+ 2x = 2x

h—0

Thus if y = f(x) = x?
d
Then Y f(X) = 2x ¥x.
dx
Interpretation of derivative at a point

We give the geometrical and physical interpretation of a derivative at a point

Geometrical Interpretation:- Let f be a function defined by y = f(x). Let P and Q be point on
the graph of the function corresponding to x = a and x = a + h respectively.
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Draw PM 1 to the ordinate through Q.
f(a+h)— f(a)
h

can be interpreted as tan £ MPQ which is the slop of the chord PQ. When h — Q will approach
P and £ MPQ will eventually become the angel 6 that the tangent TP at the point P makes with
the x-axis, thus f'(a) represents the slop of the tangent to the curve y = f'(x) at the point a and is
f'(a) = tan 6 where 0 is the inclinations of the tangent to the curve at (a, f(a)) with the x-axis.

Then the ratio

Physical Interpretation: Let a particle move in a straight line OX starting from O towards X.
Clearly, the distance of the particle from O will be some function f of time.

P Q
i B P
t=t, =t +h

Let at any time t = to, the particle is at P and after a further time h it is at Q so that OP =
f(to) and OQ = f(to+h). Hence average speed of the particle during the journey from P to Q is

PQ. . flt+h)—f(t)
h h

taking the limit h — 0, we get its instantaneous speed to be

. f(t,+h)—f(t,)

lim — :

h—0 h

which is f'(to)

Thus if f(t) gives the distance of a moving particle at time t then the derivative of f att =
to represents the instantaneous speed of the particle at the point P i.e. at time t = to.
: . , : d
Differentiate f(x) with respect to (w.r.t.) x means find f' (x) or d_y .
X
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4.4 Algebra of differentiable function

Theorem: Let f and g be real valued function defined in an interval containing the point a Let
f'(a) and g'(a) exist. then

(@ If a is a constant, then (a f) is differentiable at a and (af)'(a) = af* (a).
(i) The sum f+g is differentiable at a and (f+g)'(a) = f'(a) + g(a).
(iii) The product fg is differentiable at a and

(f9) (&) = f'(@)g(a) + f(a)g'(a)

1
(iv) If £ (c) =0 then T is differentiable at a and

1 —f'(a)
—|@=—=
(o= G
Proof: (1) We note that
(af)(@+h)y—(af)(a)

= of (a+h) - of (a) {f(a+h)—f(a)}

h h
Hence (af)(@+h)—(ah)(a) a{ f(a+h)— f(a)}
h h
lim lim [Q using algebra of limit]
h—0 h—0

i.e. (of) (a) = af (a)
(i) Again, we have
(f+o)a+h)-(f +9)(@ _ [f(a+h)+g(a+h)-(f(a)+g(@))]
h h
_ fla+h)-f(a) N g(a+h)-g(a)
h h
Hence by algebra of limits
(f+o)a+h)-(f+g)(@ f(a+h)—f(a) g(a+h)-g(a)

h h h
lim lim ie) |im

h—0 h—0 h-0
ie. (f+g)l(@) =f"(a) + g (a)

(iii)
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(fg)(a+h)-(fg)(a) _ f(a+h)g(a+b)-f(a)g(a)

h h
_ f(a+hg(a+h)-g(a+h)f(a)+g(a+h)f(a)-f(a)g(a)
h
_ flarg)-f(ag(a+h) f(a(gla+h)-g(@)}
h h
taking limit, using algebra of limits we get

. 9g(a+h)—g(a)
m h
= f(&)g(a) + f(a)g' (a)
[Q here we have used lim g(a+h) = g(a) h — 0 we will prove this later]
(V) We assume that f(a) # 0

We know that if f is continuous at a and f(a) # O then there exists a neighborhood (a-
d,a+0) of ain which f(x) has the same sign as f(a). Thus in the nbd. of a, f(X) # 0 Let us now
0<|h|< d.Then

1 1 1 1
L a+h) |-+ _
(f(a+ )j (@ e @

h h
_ 1 {f(a+h)—f(a)}
~ f(a+h)f(a) h
1 1
Hence (f(am)]_f(a) ) 1 | f(a+h)—f(a)
h " f(@lim(a+h) ! h
— 1 {
" ifar’®

Corollary: Under the hypothesis of the above theorem

9=l .1 @=gm| @
[fj(a)—[f-fj(a)—g(a)(f](awg(a)[ [f(a)]zJ
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_9@f@-g9@f (@
[f@]

Theorem: (differentiability implies continuity)

If a real valued function f has a derivative at a point a of the domain of f, then f is
continuous at a.

Proof: We are assuming that
f(a+h)—f(a)

f@=1im h
h—0
We can write

fa+h) - f(a) = h( f(a+h)—f (a)j

h

taking limit as h — 0 on both sides

lim (@+h-f@)=]limh lm‘ [f(a+h)—f(a)J

h—0 h—0 h
=0. f(a)=0
Hence lim f (a+h) = f'(a)
h—0

In other words f is continuous at a.

Note:- This theorem gives us another way of checking lack of differentially at a point, namely, if
a function is not continuous at a point it cannot be differentiable at that point.

Derivative of some important functions
(2) Derivative of x", where n is any integer

case (1) when x is a positive integer,

we will show that %(x”) = nxn*t ... (1)

We will prove this by the principle of mathematical induction. When n = 1.
We have %xl = %(x) =1=1x"

.. theresultis trueforn=1

Let us assume that the result is true for n = m i.e. we are assuming that

% xX™\mxmt L (11)
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consider
d

d
M+l = T m
dxX dx %)

d ., - ax
= —Xx" | x+x" —
(dx j dx

= mx™! x + x™

= (M+1)x™ = (m+1)x™*+-1
Thus result holds forn=m + 1
Hence by the principle of mathematical induction the result (1) is true for all n > 1.
(i) When n is negative letn=-m, m >0

1
Thenx"=x-m= —

m

= -mx™1
= nx"™!
d N .
d—(xm) = nx"* for any integer.
X

Note: This result is true when n is any real exponent.

d d
Examples 3;: — x= — (x}) =1x*1=1
ax dx

(i) ix5 = 5x>1 = 5x*
dx

iy 2 (ljz 9 s ez - L
X

dx dx NG

o e il 1
™) dx(\/;)_ o XTI NE 2%

Derivative of exponential function.
If £ (x)=e* then
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f(x+h) - f(x)

i X = .
Fx=lim ™
_ |Im ex-*—h_ex
h—0 h
- lim <2
h—0 h
g1
=e'l ~lim 1
h—0 h
d Xy — X
P (e =e
Derivative of logarithmic function
0] Let f(x) =loge x (x > 0) Then
. log,.(x+h)—log, x
769=lim 9. ( Q 9.
h—-0
Ioge(1+hj
X
h
=lim
h—-0
h
Iog(1+j
.1 X . log.(1+h) }
= -~ /7 —~ev ‘-1
|pr h QHQ‘ h
X
1
=—.1
X

d 1
Thus — loge X = —
dx
(i) We have i(Io X) = i(Io X loga €)
dx | O9a %) T gy 109 X100

=loga € i (loge X)
dx

= loga €
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Hence
d llog, e
0 = ——
dx d
Derivative of sin x
Lety = f (x) =sin x

Then% :% = f' (X) = cos X

By definition
sin(x+h)—sinx

f=1im

h—0 h

sin xcosh+cosxsinh =sin x

h—0 h
. . cosh—1 sinn
= |im|sinx +COSX——
h—0 h h
. . cosh-1 . in h
=sinx |im +cosx ||m—
h—0 h—0 h
=sinx,0+cosx.1
. cosh-1
Qlim—,—=0
x—0
- COS X . snh
& lim=—-1
x—0 h
Derivative of see x
dy .
Lety=cosx, — =-sinX
dx
By definition
dy _ i cos(x+ h) —cosx
dx h—0 h
_ sinxh cosxcosh-sin xsinh—cosx
" h h

: (cosh—l} . __sinh
lim | cosx —SinX——
h—0 h h
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X sinh

. cosh-1
=cosX ||m ——— -sinx
hos0 h cosx h

=cos X. 0- sin x.1

=-sinXx
d ,
Hence —(cos x) = - sin X
dx

Derivative of tan x
Let f (x) =tan x. Then
tan(x+ h) —tan x

7o lim .
ot 1| sin(x+h) sinx
- 11m cos(x+h) cosx

h—0

[ sin(x+ h) cosx— cos(x+ h)sinx}

) lrl,m | hcos(x+ h) cosx
. sin(x+h-x)
= lim
o | NCOS(X+ h)cosx
Y sinh Y 1
,!m h Hp cos(x+ h) cosx
1 1
=1 = = sec? X

COSXCOSX  COS? X

Hence if f (x) = tan x then f' (x) = sec? x
i.e. — tan x = sec? X
dx

Derivative of Sec x
Let f (x) = sec X. then

sec(x+ h) —secx

£ lim

h—0 h

i 11
Hp cos(x+h) cosx
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= cosX—cosx+h
h-0 NCos(X+ h)cosx

. ( hj. h

29n| X+ — [sn—

=[im 2/ 2
oo Ncos(X+ h)cosx

: ( hJ . h
SIN| X+ — SIiN—
= lim 2 lim —2
hso COS(X+h)cosx 'hoo N
2
sinx
= >— . 1l=secxtanx
COS” X

Let us do some examples now
o dy
Example 4 : Find d_ if y =x*+ sin x

Solution : We have y = x* + sin x

% = %(x4+sin X)
d , .
= —x*+ — sinx
dx dx
= 4x3 + cos X

d 1
Example 5 : Find d_i wheny =3tan x + 5l0oga X + /X +—
X

: 1
Solution : Here y = 3 tan X + 5 loga X + \/; +—

Then ﬂ = i(3tanx+5|ogax+ \/; +1)
dx  dx X

= dX:«’;tanx+ %(5 loga X) + % (X}/Z) + %(X'l)

—3—tanx+51lo X+1X%_l+(l)X'l'l
dx dx d 2

2/x X

1 1
=3sec’x+5 — Iogae+i-
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Example 6 : Differentiate (x?+7x+2) (e* - sinx)

Solution : Lety = (x>+7x+2) (e* - sinx)

Then % [X2+7x+2) (e* - sinx)]

= (X2+7x+2) d (e* - sinx) + (e* - sinx) a4 (X2+7x+2)
dx dx

= (X2+7x+2) {% e" —%si n x} + (€% - sinx) {% x4 (73 + % (2)}

dx

= (X2+7x+2) (e* - cos X) + (e* - sin x) (2x + 7.1+0)

= (e* - cos X) X2 + (9e* - 7cos X - 2sin X) X + 9e* - 2 cos n - 7 sin X

Example 7 : Ify = e*log «&tan X, Find d_
X

dy

Solution : Lety = e*log \/;tan X

1 ¥ _
Ee log x. tan x [Qlogxz_%logx}

yz 1 i[eX log x tan X]
dx 2 dx

1
2

1

1
2

Example 8: Lety =

Solution: Giveny =

d d
€ log x— tan x+ tan x— (€* log X
9x OIX( og)}

e*log x.sec’ X+ tan x{exilog x+log xiex}
dx dx

e*log x.sec® X+ tan x(exi+ log xexﬂ
X

1 5 fan x
2eX log x.sec” x+ —— +tanxlog X | Ans.
X

sinx+cosx _. . dy
- Flnd —
Sin X —CoS X dx

Sin X+ cos X
Sin X—CoS X
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_dy _i[sinx+cosxj
T dx  dx \ sinx—cosx

(sin— cosx)o(lj(sin X+ COSX) —(Sin X+ cosx)(;j(sin X—COSX)
- X X

(sinx—cosXx)?

_ (sin—cosx)(cosx—snx) — (sin X+ cosX)(Cos X+ SN X)
(sin x—cosx)?

SiNCOSX—COS” X—SiN” X+SiN XCOSX — (SiN® X+ COS” X+ 2SiN XCOSX)
(sinx—cosx)®

= _—2 Ans
(Sin X—cosx)? '

Theorem: (Chain Rule) It is a function at a point xo and let g be a function differentiable at f(xo).
Then the composite functions gif is differentiable at xo and

(gof)' (xo) = g' (f(Xo) /" (X0)
Proof is omitted
Note: If we replace f(x) by z iny = g (f(x)), the above theorem can be expressed as
dy dy dz
dx  dz dx
We will use this chain rule in the following examples.
Examples 9: Consider the function
y = cos (x*)

We put z = x4 so thaty = cos z. Then

% = % (cos z) =sinz and $= % (x?) = 4x®
Consequently

dy _dy gz _ (-4x3) sin x* Ans.

dx dx dx

Example 10: y= et
Let z=x3theny =e? Then
dy _d

gl (e*) = e? and %z (x3) = 3x?
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.. By Chain Rule

dy dy dz .

— = — —=(3x?) & Ans.
dx dz dx (39

Example 11: Let y = log sin x

put z = sin x, then y = log z. then

%: % log z = %and %: % (sin x) = cos x
.. By Chain Rule

dy dy dz 1

-2 =2 " ——=cot Ans.

dx dz dx cos sin x cotx ns

Derivative of inverse trigonometric function
Derivative of sinx
Lety = sinx then siny = x

differentiating w.r.t. x we get

dy
-2 -1
cosy o
Therefore ﬂ = i = 1 = 1
dx  cosy \/l—sinz y V1-%
Thus i(sin'1 X) = !
dx 1-x2

d
Exercise: Show similarly that ™ (costx) =-

1-x°
Derivative of tan™ x
Lety =tan' x Thentany = x
differentiating both sides w.r.t. x
d
sec? yd—i =1
dy 1 _ 1 1

or = = 2 2 2
dx sec’y 1+tan’y 1+X

d
Thus — (tan! x) =
N dx( X) 1+ x?
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Show similarly that

d
_ t'l = -
dx (cot™x) 1+ X2

Derivative of sec™ x
Lety =sec? x, then secy = x
differentiating both sides w.r.t. x

dy _
secytany dx_l

dy 1 1 1
or —= = =
dx secytany gecy\/secz y—1 xyx*-1

d 1
Thus — (sec! x) =
dx XX -1

d 1
Show similarly v (cos ect x) =

X x% -1

d
Example 12: Lety = sin* (&), Find d_y
X

Solution: ﬁz i(sin'l (€) = _ i(ex) - Ans.
dx dx 1-(e)? dx 1—e*

Example 13: Differentiate cos{—j

. X
Solution: Lety =cos® | ——
X+1

dy d X
Then —= = — cos?| ——
en dx dx cos (x+1]

W_H

-1 X.1—-(x+1).1

\/1=(Xj2 (x+1)
x+1
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= JA+ X2 - % (xil) Ans.

Logarithmic differentiation

To facilitate the differentiation of complicated function we use a device called logarithmic
differentiation. which we illustrate below.

Example 14: Ify=x*, aarealand x > 0

d
Then Y ox&t
dx

Solution: For a real and ....... is positive and hence log y has a meaning.
Taking log on both sides
log y = log x* = a log x
differentiating with respect to x, we have

Example 15: Fory=a*,a>0 e (1)
dy
—=a’log a
dx J
Solution: Since a* is positive log y is defined taking log both sides of 1
logy =log a*=xlog a
Differentiating w.r.t x we get

1ﬂ=|0ga

y dx

dy
or —=yloga=a?log a
dx

d
Example 16: Lety = x*, x > 0 Find d—y
X

Solution: Taking log on both sides as it is defined
log y =log x* = x log x
differentiating w.r.t x both sides
77



gle

X
=logx+ —=logx+1
X

< |k

d
Therefored—i =x?(logx +1) Ans.

4.5 Self Check Exercise - 1
Q.1  Afunction f is defined as

_ 1+x,x<2
)= 5—X,X<2

Show that f is not differentiable at a = 2.
4.5 Successive Differentiation
Derivatives of Higher Order and Notation

Let y = f(x) be a function of x, which is derivable at any point x of its domain. Then its
derivative w.r.t. x.

generally, this derivative is again a function x and may be derivable itself at any point x
d
of the domain of the original function f. The derivative of d—ior f'(x) is called second order

derivative, and is denoted by f"(x). The process of differentiation may be repeated again, if
d’y

possible, and its derivative is called the third order derivative, and is denoted by o
X

or by

f"(x). In general, suppose the n" order derivative exists, n being a positive integer. Then it is

n
denoted by %or ™ (x) and we say that the function f is n-times differentiable or derivable.
X
This process of repeated differentiation is know as successive differentiation.

Other notation for the successive derivatives of the function y=f (x) are y,y?, y°,....... y" or

vy " or df d?f df d"f .,
VY o al aE T o~
d? d? d"
Dy, D2y, Ddy,......... D'vwhereD= —,D?= — ,D3= — ....... n=
i Y d dx? dx® dx"
2
Example 17: Let y = x", where x is a positive integer, then we know that — = nx"! and (cji ¥=
X
d . :
— (nx"!) = n(n - 1)x"2
dx
: . dmy _ m
By induction o =n(n-1)(n-2).......... (n-m+ 1) x"ifm<n
X



obviously ((jj Y- nn-1)n-2) ... (n - n+ 1) x™ for m = n = n! which is a constant
X

n

dx+ly d dx+2y d

and therefore =—mnhH=0, —==—(0
dx** dx( ) dx*?  dx ©
d"y _

More generally Oifm>n+1

Hence if y = x", then
n(n-H(n-2)......(n—-m+D)x""if m<n

=4{n! if m=n
0 if m>n

Example 18: Lety = (ax + b)", n being a positive integer and a and b are arbitrary constants.

Then 7 =n(ax + b)"* a
dx

d?n dy
= n(ax + b)"?, a/na — (ax + b)™*
v ( ) dx ( )
= na(n-1)(ax+b)*t.a
= n(n-1)(ax+b)™t.a
By induction
dmy —_ n-maam ;
v n(n-1)(@a+2)...................... (n-m+1)(ax+b)™™a™ ifm<n
X
: d"y _ _
Obviously ——=nla" form=n
X+1
And ™y _ i(n!a”) =0 [n!a"is constant]
dx**  dx
dn+2y d
= —(0)=0
dx"? dx( )

m

y=0ifm>n+1

m

More generally

Hence ify = (ax + b)", then
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n(n-2)(n-2)......(n—-m+Y(ax+b)""a"if m<n
d’y n'a" if m=n
dx™ '

0 if m>n

Example 19: Lety = €%,

2
Then yze”=> dy_ i(ex) =es
dx dx* dx
By induction prve = e* for all positive integer n.
X
dn

Or (e*) = e*for all positive integer n.

Example 20: If y = sin (ax + b).
, V4
Then y, = a" sin (ax+b+5], neN.
Solution: We shall prove by induction

y =sin (ax + b)

" dy = cos(ax+b) a = asin (ax+b+£j
dx 2

[. cos O =sin (/2 + 0)
This proves the resultforn=1
Let it be true for n = k

i.e. yk = aksin (ax+ b+ k%j
Diff. both sides w.r.t. x. we have,

Yi+1 = ak cos (ax+ b+ k%j .a

= a**! cos (ax-i- b+k§]

=a“sin (ax+b+k—ﬂ+£j
2 2
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= a1 sin {ax+ b+(k+1)ﬂ
This proves the result for n = k + 1 too
. . . 74
Hence by induction y, = a" sin (ax+b+7j, v neN.

Example 21: if y = e®* sin(bx + c), then

yn = (@2 + b?)"? 2" sin (bx+c+ ntan™ Ej
a

Solution: We shall prove it by induction
y = e*sin (bx + ¢)

Diff. w.r.t. X, we have.
dy .
_x = e cos (bx + ¢).b + sin (bx + c).e*.a
=e*Jasin (bx +c) + bcos(bx+c)] ... (1)
puta=rcosa,b=rsina, r>0
Squaring and adding, we have, a2 + b2 = r2 or r = ya’+b® and on dividing, we have
b
tana= —ora=tan! —.
a a

- from (1). y = e®[r cos a sin (bx + ¢) + r sin a cos (bx + ¢)]
= e [sin (bx + ¢) cos a + cos(bx + ¢) sin a]
=e*sin (bx +c + a)

1
Oryl = (a°+b?)2e™sin [bx+ c+tan‘19j
a

This proves the result for n = 1.

Let it be true for n =k

X b
i.e., k= (@®+b*)2e**sin (bx+ C+ ktanl—j
a
oryk = r‘e® sin (bx + ¢ + ka)
Differentiating w.r.t. X, we have,
Yke1 = ¥ [cos(bx + ¢ + ka).b + sin (bx + ¢ + ka) e**. a]

= rke® [a sin(bx + ¢ + ka) +b cos (bx + ¢ + ka)]
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=rke® [r cos a sin (bx + ¢ + ka) + r sin a cos (bx + ¢ + ka)]
= r**1 @ [sin(bx + ¢ + ka) cos a + co (bx + ¢ + ka) sin a]
=r**1 e*sin (bx + ¢ + ka + a)
1 e sin [bx + ¢ + (k + 1)a]
Putting the values of r and a, we have,

ket b
Yier = (@2 +b?) 2 e sin (bx + ¢ + (k + 1) tan™ 5)

.. this proves the result f or n = k + 1 true.
Hence, by Induction, it is true for all positive integral values of n.

a b
i.e., yn = (a°+b?)2e* sin (bx+c+ ntanl—j, vneN.
a

Example 22: lety = , X =0, a, b are arbitrary constants.

Then, we know that
d
d_o a0
dx (ax+b)? a

2
d y: i - a :_ai(ax+b)-2
dx*  dx (ax+b)? dx

= (1) (2) (-3) & (ax + b)*?, x = g

d’y _
dx®

('1) ('2) ('3) as (aX +b)'41 X # _g

n

By Induction (cji 2’: (-1)(-2)(-3) .eeernneee (-n) an (ax + b)™?, x ¢g
X

n _n|n
rdy:(l)n.a y b

" (ax+b)™ 7 a

dx[ 1 jz(—l)”n!an

o (ax+b) ) (ax+b)™*’

b
- —
a

b
Example 23: Lety =log (ax + b),a=# 0, x > - 2

Then we know that,
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2
ax+b dx

=a(-1l) (ax+b)?-a

=(-1)a? (ax + b)?, x> - g

Y _ (1) (ax+ b, x> g

e
. d"y ) b
By Induction = (-1)(-2)..ccenee (n+la'(ax+b)", x>-—
dx" a
n-1 n
_ ()71 b
(ax+b)" a
n N\ n
Or d [|Og(ax+b):M,x> 9
dx” (ax+h)" a

Note: If a function f has a derivative of order n at a point, it is not necessary that the (n+1)th
order derivative at ¢ must exist.

X%, if x>0
For example, Let f(x) = f(x) = ,
—x%,if x<0
2x if x>0
then f'(x) = 10if x=0
-2xif x<0

Thus f'(x) exists for all x € R
Now /() = {2, iT x>0
—2if x=0
=  f'(0)=-2and f'(0.) =2
= f(0)=f(0)
= f" does notexistatx =0

Theorem 1: Let f and g be two real valued functions defined in a neighborhood of a point c.
Let f*(c) and g"(c) exist.

83



n

d
Then (a
@ o

d n
dax"

(exercise for you, use induction method)

[(f)(X)]x=c = af" (), a is a constant

(b) [(f £9) K)x=c = /" (c) £ " (C)

Example 24: Lety = asin x + b cos X, a, b are constants.

d?y d?y
Prove that (1 +y=0 (2 =
(1) e Y 2) o
Solution: y =asin x + b cos x, a, b being constants
d d d
" —y=—(a sin xX) +— (b cos x) = a cos X - b sin x
dx dx dx
. d’y_d d _ :
Again =—(a cos x) -— (b sin X) = -a cos x - b sin x
d dx® dx( ) dx( )
=-(acos x + b sin x)
=-y
d’y
> 1y =0, this proves the required result (a).
X
. d’y _ : L
Similarly —-=-(-a sin x + b cos x) = a sin x - b cos X
X

4
And z i/=acosx+bsinx
X

=y, this prove the required result (b).

1

Example 25: find the derivative of ———
(X+2)(x+3)

S
(X+2)(x+3)

1 1

Y= 5" a

X+2 X+3

e
X" dx" \x+2) dx" \ x+3

Solution: y =
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_=D)"'n! (=D"n!
C(x+2™ (x+3)™

1
(x+D™ (x+3"™

Example 26: find the derivative of sin?x cos3x.

= (-1)*n!

. . 1
Solution: y = sin?x cos®x = i (4 sin®x cos?x) cos x

1 1
= —CO0S X - — (2 cos 4x cos X)
16

8
1 1
= —C0S X = -— (cos 5x + cos 3x)
8 16
1 1
= —CO0S X -—C0S 3X -— C€O0S 5x
8 16 16
dly_ d 1Cosx(— d icos 33X | - d icos 5X)
dx" dx" | 8 dx" | 16 dx" ) 16
1 g" 1 4dn 14"
=— d— (cos x) -— d— (cos 3x) -— d (cos 5x)
8 dx" 16 dx" 16 dx"

=lcos X+n_7r —iS“cos 3X+n—ﬂ —i5“cos 5x+n_7r
8 2 ) 16 3 16 2

4.7 Leibnitz's Theorem
Leibnitz's Theorem for the nth derivative of product of two functions.

Statement. Let u(x) and v(X) be two real valued functions, each of which possesses nth
order derivatives in any interval.

Then (Uv)n = N, Uvi + NClU1VNL + N, Uzvnz +

HNerUrvnr + .. + NcnUnv
Proof: We shall use method of induction to prove the above theorem.
L Forn=1
(Uv)l = uUiv+uvi = CaU1v+C1 Uvy
= theoremis true forn=1

Let us assume that it is true for n = k, k being positive integer
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So(Uv)e= K Ukv + K Ukals + K UkaUz +

Differentiating both sides w.r.t. + x. we get

(UV)k+1 = kco Uk+1v+ kco uvi

+ kq Ukvy + kq Uk-1V2

+ kCr Uk-r+1Ur + kcr Uk-rUr+1

+

+
|(Cl U1Vk |(Cl UVk+1

kcD Uk+1V + (kco + kcl) Ukvi t+ (kcl + kc2 JUkove + ........
+ (K, K Juk-r+lovr+. + (K, + K, Juvie+ K, Nviss
Hence yiea = (Uv)ksa = K+ I Ukeav + K+ 1 1 UkvaK + 1 Ukave +....+
k + I, Ukszerve o, +k+ 1, Uavk + k + 1, uvnn

This proves the theorem for n = k + 1 too.
Hence, by mathematical induction, it is true for all n € N.

Note. How to choose the first or second function for applying Leibnitz's theorem. If in the
product of two functions one is a polynomial in X, choose it as the second function except in
cases when the other function is inverse trigonometric, inverse hyperbolic or logarithmic
functions in that case take that function as the second function.

Note. The nth derivative of uv can also be written as :

(uv)n = N, Uvn+ N, Uivna+ N Uavaa+....... +N, Uavnz +...... +N. Unv.

Example 27: Find the nth derivative of (1) e* sin x
Solution: y = e* sin x

Take u=e*and v = sin x

. T
SLup=eX,vi=sin | X+—
2

. /4
Uz = €%, v, =Sin (x+ 25]
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. T
Un = €%, vp = Sin (x+ nEj

By Leibnitz's Theorem, we have,

Yn = (UV)n = N Uvn + N Urvniat N UzVnat

2.1

« . 7y n(n-1 . Vs e /4
=|1e'snx+ne*sn X+E +——>=9n X+E + +1.e"9n x+n§

[ : ( ﬂ') n(n—l).( ;zj
=e¢¥|l.sinx+n.sn x+§ + sin X+E +

2.1

Example 28: Find the nth derivative of e* log x
Solution: Puty = e* log X

Take u=e*and v =log x

1
Un1=€x, V1= —
X
1
Un1=©€x, V2= —
X
2
Un2=€x, V3= —3
X
-)"[n-1
b = o G

X

By Leibnitz's Theorem, we have,

Yn = (UV)n = N Uvn + N Urvnaat N Uavnot.....

1
= n, exlogx + ncl;+ n62?+n% — o

n(n—l)+ n(n-1)(n-2) i+

n
eXlog x +—-
X X 3

X3
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Example 29 : Find the nth derivative of y = x sin?x

. , 1-cos2x
Solution : Take u = sin®x = T and v = x

Oru=— - — cos 2X vi=landvza=v3=..=vp=0

N~
N |-

1
S Un=0-—.2"cos(2x + n_;r)
2 2

1 n-1
Uni=- —.2"2 cos(2x + —
1= ( > )

By Leibnitz's Theorem, we have,

Yo = (Uv)n = N, Uvn+ N, U Vo + N UzVnz + ...t Ny Uzvnz + .ot N Uny

(n-DHr

1, nz 1 .
n, [- > 2" cos(2x + 7)] +n, [ > 2"1 cos(2x + T).l +0+0+...+0

(n-DHr

)]

n
=-2"2 [cos(2x + ?ﬁ)+ n cos(2x +

Example 30 : If y = (sin’ x)?, find yn(0).
Solution : Here y = (sin? x)? ...(1)

Differentiating w.r.t.x, we have

(2)

Yn = (sin? x).

1
Ji-x
Squaring and cross multiplying,
(1 - x?) y1?2 = 4(sint x)? = 4y
or(1-x?)y:?-4y=0
Differentiating w.r.t.x., we have,
(1-x2) 2y1y1 - 2xy12=4y; =0
Dividing by 2y1, we have
(1-x2)y2-xy1-2=0 ..(3)
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Differentiating n-times by Leibnitz's theorem, we have

n(n-1)

‘:1'yn+2 (1_ X2) +g yn+l(_2X) + yn(_z)j| - [l'ymlx_g ynl:l -0=0

Or (1 - x?) Yns1 - (20 + 1)XYn+1) - N2 yn =0 ..(4)
Putting x = 0, y1(0) = 0, y2(0) = 1 ...(5)
Yn+2 (0) = N2 y,(0) = 1 ....(6)
Puttingn=1,2,3, ... ... ... ... ... ... ... in (6) and using (5), we have,
ys (0) = 12 y1(0)=0
ya(0) =22 y,(0)=2.2"
ys (0) = 32 y3(0)=0
ye (0) = 42 ya(0) = 2.2242

And so on.
Hence
2.2242...(n—2)2 _
yn (0) = . whennisevenand n =2
0, whennisodd
Example 31 : If f (X) = tan x, then prove that
n
n, f"(0)+ n, f?(0)+ n_ " (0)-.... = sin ?ﬁ

Solution : f (x) = tan x
- f(X) cos x = sin x
Differentiating n-times w.r.t.x by Leibnitz's theorem, we have,
[f (X). cos X]n = (Sin X)n

or n. f" (x) cos x
+ 0, f"(X) (-sinx) + n, "2 (x) (-cos x) + n,_ f™3(x) (sin X)

+n, f"*(x) cos x + n_ f*°(x) (- sinx) + n_ ™ (x) (- cos x) + ...
e
=sin (x + > )

Putting x = 0 and using sin 0 = 0, cos 0 = 1, we have,
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4.8

4.9

4.10

4.11

412

n. f"©)+n,f?©0)+n, f*0)-.... =sin n77r

Self Check Exercise-2

Q.1 Using Leibnitz's theorem, find the nth derivative of e*logx

Q.2 Using Leibnitz's theorem, find the nth derivative of x?a*.

Summary

In this unit we have studied the following :

0] Differentiability of a function

(i) Derivative of function at a point and its interpretation

(iii) Geometrical interpretation and physical interpretation of derivative at a point
(iv) Algebra of differentiable function

(V) successive differentiation

(vi) Leibnitz's theorem

Glossary
d
0] d—y is the differential coefficient of a function y f (x) and is called first differential
X

2
coefficient of y w.r.t.x. Likewise d Z is the second differential coefficient of y

w.r.t.x.

n

(ii) The symbol — written before a function of x indicates that the function is to be

dx
differentiated n times in succession.

Answers to Self Check Exercises
Self Check Exercise - 1

Ans.1 fis not differentiable at x = 2
Self Check Exercise - 2

n-1,

1
Ans. 1e* [logx+n, —+..(-)"—;
X X

Ans. 2 a [xz.(log a)" +2nx(loga)™™* + n(n—l)(loga)”’2.2]

Reference/Suggested Reading
1. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002
2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
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4,13 Terminal Questions

1.

. . 1+2x
Differentiate y = , X >0 w.r.t.x.

Find the third order derivative of " cos .

If y = (log x)?, find 7 .
dx

2

Find 97Y ifx = a2, y = 2at

dx?

Find the nth order derivative of vJax+b

Find the nth order derivative of e3¢ sin?2x

Ify = find yn

x*+a?’
Find nth derivative of

-
(X+D)(x+2)
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Unit-5

Indeterminate Form

Structure

51 Introduction

5.2 Learning Objectives

5.3 Indeterminate Form

5.4 L' Hospital Rule

5.5 Self Check Exercise-1

5.6 Summary

5.7 Glossary

5.8  Answers to Self Check Exercises
5.9 Reference/Suggested Readings

5.10 Terminal Questions

5.1 Introduction

. o .0
Dear students, you must have noticed that no meaning is given to the expression like 6

(o8]
— o0 - oo, loo, Qoo etc.. While evaluating the limit of such expressions. Infact they are called
o0

indeterminate Form. Obviously we need to develop new techniques for dealing with such
situation. In this unit we shall study to evaluate the limit of above said indeterminate forms. We

. . 0
not here that a famous rule called L' Hospital Rule is used to evaluate the form6 :

5.2 Learning Objectives

The main objectives of this unit are
(1) to study indeterminate form

(ii) to know about L' Hospital Rule

(e 0]
(iii) to study indeterminate form —
o0

(iv) to learn about indeterminate form oo, -oo

(V) to study indeterminate form 0°, 1*, «° etc.
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5.3 Indeterminate Forms

Theorem 1 : If f(x) and g(x) are two differentiable functions at x = 1 and

0) f9%)=0=g(a)
(i) g' (a) # 0 then
00 @ eavao
LLm gx) 9'@ @
f(x)-f(a)
proof . 100 - f-0_ f(0-f@ _  x-a .
gx) f(X)-0 g(x-g@ 9X¥-9@
X—a
f(x)—f(a) li f(x)—f(a)
¥ X—8 _ xsa X-—a
M g9 M g -0@ = | 90-9@
X—a X'H‘ X—a
_ '@
9@ ,g(@) =0.

f.g aredifferentiableat x=a

Iirp—f(x))( 18 _ 1)
and |im 29 g 9(@)=0

X—a

This completes the proof.
5.4 Theorem 2. L' Hospital Rule for Indeterminate from

Statement. Let f (x) and g (x) be differentiable in a neighbourhood N of a point a except
perhaps at the point a.

Suppose
(1) |j£pf(x)=o I!ng (x)=0
@ g M=0forxeN, x=a
@ O exists.

9'(x)
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. f . f
Then |im = 983 lim g'E;(;:L

Proof : Since in the definition of limit as x — a, the value of the function at the point x = a is
immaterial, therefore, without the loss of generality we can suppose

f@=0=|jm/®andg@=0=]im 9(x)

X—a X—a
This makes the function f and g continuous at x = a.

Forxe N=(a- 8,a+ d), Xx# a, we can now apply Cauchy's Mean Value Theorem to
the functions f(x) and g (x) in the closed interval [a, x], since all the hypotheses as satisfied.
Therefore, there exists a real number ¢, a < ¢ < x such that

fx-f(@ _ f'(o)
9(¥0-g(@ g'©’
Since f (a) = 0 = g (a) by our assumption
X - f(©
90 g'©
Obviously, as x — a, ¢ — a,

Aim 2 im D < im LY 2 exists

xsa 9(X) “csa 9'(0) x>a 9'(X)

. f f
Hence ||m£ = g'ggz I

a<c<X

,ya<c<X

1-sinx

x->7  COSX

Example 1: Evaluate lim

Solution: Let f(x) =1 - sin x and g(x) = cos X
Obviously both are defined for all real values of x

Now lim  f(x) = lim@-sinx)=1-1=0

2 s
2

and |jm 9 = |jm cos x=0

X x—>=
2 2

@is of the form 9
a(x) 0

Further f'(x) = - cos x and g'(x) = - sin x # 0 in the nhood of %
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amolllm”x)—llm_coS

= |Im cot x = 0, exists
g'(x) —sinx Ilrp
X—)Z

S
2

.. L' Hospital rule

09 T09_ g
"mg(x) 'X'D? a'(x)

. 1-sinx
Hence |im =0

z COSX
X—>=
2
log x

x—/x

Solution: Let f(x) = log x and g(x) = x \/;

Example 2: Evaluate lim,_;

Obviously both are defined for x > 0

Now |jm log(x) =0

X—1

and |jm 9(x) = |im(x+\/;)=l—1=0

x—1 X—1

LG = is of the form 0
- g(®) 0

1 1 ,
Further f'(x) = —and g'(x) =1 1 - ——= 0 in the nhood. Of 1

X 2%

1
f'(x) .
and |im =lim 5= lim—==7—--=2 exists
x—1 g( ) x—1 1 x—1 \/_(2\/;— )
X

f(¥)_ ') _
.. by L' Hospital's rule, 2
M =M g

Hence |im logx =2.

x—1 X—\/;

Note. L' Hospital's rule is applicable only if the conditions are satisfied, in particular, the

existence of the limit f EX; as x — a whether finite or infinite, is a must.
g'(x
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If this limit i.e. |[jm F'( does not exist, we should not conclude that |imwalso

1
X—a X—a

does not exist. It may not exist.

1
x’sin=
X

Example 3: Let us consider the limit, |
P lIm s

1
Let us take f(x) = x? sin —, and g(x) = tan x.
X
Obviously both are defined for x = 0
. . 1
Now |im/¢) = |im x? sin S =0
x—0 x—0

and |imo®) = |[jmtanx=0

x—0 x—0
" w is of the form 9
9(x) 0
1 1 1
Further f'(x) = x? cos — (——Zj + 2x sin —
X\ X X
1 1
=2XSsin — -cos —
X X
and g'(x) = sec? x
.1 1
£1(x) 2xsm;—cos; 1
Now || = |i does not exist, because |jm cos — does not
M gy~ Mo lim eos 5

exist. Therefore we cannot apply the L' Hospital's rule. But it does not mean that the given limit
also does not exist.

In fact this limit does exist. We prove it as follows:

1 1 1
x2sin= xsin= ||mXSln;
: X : X x=0 ;
lim =lim = = =0, exists.
o  tanx 'L, tanx . tanx 1
X X—0 X

Note. Suppose f(x) and g(x) are twice differentiable in a deleted nbd. of a and g'(x) = 0, g"(x) #
0 in this nbd.
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Suppose
@) lim /) =]jmg® =0

X—a

@ limf®=[imgx=0
3) g"(x) = 0 in the deleted nhood. of a
@  |im w= |, exists then

f(x) f*(x)
lim——=lim— <=
xa (X)) x5a 9'(X)
Now, we state the following more general theorem.

Theorem 3: If f(x) and g(x) are differentiable function of order n in a deleted neighborhood N of
a point a such that

O |[imf®=0=||my®. 1<ks<n-1

X—a X—a

2) g"(X)#0Xx-N,x#a

(3) lim La ; E ;— l, exists
f(xX) _
Th — 7=
e lImgey

We again stress that if in the repeated application of L' Hospital's rule, we get that

. f'(x
lim ”E ; does not exist, it does not imply that || m E ; does not exist. It may or may not
x»a g (X xoa  G(X

exist.
Example. Evaluate the following limits:

@ 1Mo 22 ) [im, e 280X () | XX
Mo log(1+ x%) ’ M2 1 gnx x>0 X—sinx
1
_ 2tan ' x.
(tan™* x)* . 1+%% _ gy tanx
Solution: (a —_—T = —_— =
@ Miogaee M= = lim=,

1+ x°

0
is again of the form 0 atx=0
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Therefore again by L' Hospital's rule

1
. (tanx)* _ 1+x _
limy = lim~-=1
x—0 |Og(1+X) x—0
. logsin 0 V4
b |s formof —atx = —
(b) “T 1-sinx 0 2
". by L' Hospital's rule
: ———COSX
lim 225X i S i e
L l=sinx © 'z 0-cosx |z sSInX
2 2 2

-1
m is of the form of —

(©) ' :
||mx40 X—SinX
L' Hospital's rule
1
||mL“rlX—||m _lex |sagainoftheformof9atx=0
0 X—8NnX x50 1+C0SX 0
L' Hospital's rule,
2X
0+ 5
2
iy 00)
I X—sinXx Lo O+sinx

. _ 0
=lim —X_lsagaln — atx=0
(1+x?)?sinx 0

x—0
[.. Applying L' Hospital's rule again]
lim ; =2
w0 (L4 X%)? cosx+ 2(1+ x?).2xsin X

L' Hospital's Rule for the Indeterminate form —
o0

Theorem 4. (Statement): let f(x) and g(x) be two functions defined and differentiable in a
deleted neighborhood N of the point a and g'(x) = 0 for x € N. Suppose
@) [imf® = [imaXx =

X—a X—a
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£1(x) _ f(9)_ UG
) ILran 300 [, exists then |Lran 9(x) |)!£an 9'(x) .

[we accept it without proof].

log x
Example 4: Evaluate ||m——

X—>00

. logx
Solution: ||mi is of the form hd
X

X—0 &Y

{limlogxmo,limxmo}

X—>00 X—00

". by L' Hospital's rule

1
lim —X =lim$=0
2%+ X% —3x+1

Example 5: Evaluate
IXLTS —2x* +x-1

23 + x> —3x+1 .

Solution: ||m 3C 2+ %1 is of the form ; therefore, by L' Hospital's rule,
2x +X°=3x+1_ . 6X*+2x-3. . e
lim = ————is again of the form of —
om =2 +x-1 5. X —4x+1 o
" by applying L' Hospital's rule,
in of the form —
is again of the form —
'-Hﬂn 154 °% »

". by L' Hospital's rule

] 12 2
Lim 5= 3
tan x
Example 6: Evaluate -
P le log cosx
an X Q0
Solution: —— = isof the form —
LIJ[T] Iogcosx 0
2
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L imtanx=o, | jmlogcosx= -

T T
X—>= X—>=
2 2

.. by L' Hospital's rule

. tanx _ . Sec” X
Lim; Lim———
xe% 0gcosx xag 7(—S|n X)
COSX
_Li 1 Li sec’ X
I!;n SiN XCOS X ”;n 1 :
x> x5 7(—S|nX)
COSX
_Li L sec’ X
I!;n Sin XCoS X '[,“ :
x> x5 7(—S|nX)
CoSX
. . 2
—'LILTI sinXxcosx LIET] sin2*
X_)E x—>§

Indeterminate form « - co and 0. « Indeterminate forms of the type « - « and 0. « can
. 0 : : . .
often be evaluated by transforming these into 0 or — form to which L' Hospital's rule is easily
o0

applicable.

e 1
Example 7: Evaluate the limit ||m (Cot2 X_Fj'

x—0

: : 1.
Solution: obviously cot? x = — is of the form oo - w0 at x = 0
X

. ,, 1 1 1 x*—tan®x
. we write cot® X - — = T T TS
X tan“x X X“ tan® X
2
. 1 . X—tan®Xx _ . X—tan®x [ X
2 _ —
|Im(00t X__zj_ lim—_=—=1 .
x—0 X x—0 X“tan”® x x—0 X tan X
2 2
. X° —tan” X . X
=lim ——— -'-I|m—=1}
I)!—I:I] X4 |: x—0 tanX
. 0 .
is of the form 6 : by L' Hospital's rule,
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2x—2tan xsec® X _ I X—tan x(1+ tan® x)

I)!—[p 4X3 x—0 2X3
_ —tan? 0
= | X—tanx—tan" X is of the form of —
x—0 2X3 0
o+ 1-sec® x—3tan® xsec® X , L
=lim . [by L' Hospital's rule]
x—0 6X
- i 1— (1+ tan® X) — 3tan® x(1+ tan” X)
Ll'p 6x°
. —4tan® x—3tan* x
=
Im 6x*
i tanx )’ ( 4+ 3tan? x
I—':on X 6
-y 4+3.0
6

4
6
2
3

. 1
Example 8: Evaluate || « x sin =.
X

x—0

) 1
Solution: x sin — is of the form 0. .
X

1
Sin—
. 1 X . 0
.. we write x sin —= —= | is of the form — forx >0
x 1 0
X
1 1( 1)
an— COS— Y
limxsins = [im—%= lim —5
X—>0 X X—>0 1 X0 —i
X NG
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) 1
= ||mcos; =cos0=1

X—0
Indeterminate form of the type Q°, o°, 1

Limits involving exponential expressions of the above type are evaluated taking logarithms and

. 0 o
reducing them to one of standard forms —or —.

o0
LetF = [f(0]° .. (1)
Now three cases arise:
(1) lim 70 =0=|jm 9(). in this case it is of the form 0°.
(2) lim 7 =, |jm 9(x) = 0, in this case it is of the form oc°.
(3) lim 760 =1, |[jm 9() = =, in this case it is of the form 1~.
x—1 X—>a

In all these cases, we proceed like this:
From (1), log F(x) = g(x) log f(x)
[imlog F(x) = | jmg) log £(x)

X—a X—a

0 o
The R.H.S is of the form 0.0 and therefore can be easily converted into —or — form to
(o8]

which L' Hospital's rule is applicable.

Suppose || ma(x) log f(x) =

X—a

Then |jmlog FX) =1= |imF® =el= |im (f(x))gmzel.

X—a X—a X—>a

Example 9: Evaluate ||mx****

X—>0+
Solution: x*°9% f or x > 0 is of the form 0°.

Let F(x) = x°9% taking logs on both sides, we have,

log F(x)=$.logx=l

~limleg F) = lim1=|limFx =e'=e

x—>0+ X—>0+ Xx—>0+
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hence || mx*"** =e

X—0+

1
Example 10: Evaluate |jm(sinx/ x)<

x—0

_ sSinx \< .
Solution: (—jx is of the form 1” f or x = 0
X

1
sinx ¥
Let F(x) = (—jx ,
X

Taking logs on both sides, we have,

Iogsmx
1 sinx
log F(x) = — log ( j 2
X X X
sinx
Iog— 0
=~ limlog F(x) = |jm——=~— s of the form 0
x—0 x—0
X Xcosx—sinx.l
- . 2
=lim SnX 5 X [by L' Hospital's rule]
x—0
- i XCOSX—SinX I 1
n 2x° Lronsnx
. 0 :
is of the form 0’ by L' Hospital's rule
- i —XSIN X+ C0SX—COSX _ I —Xsinx
m 6x° M 76
_ 1| sinx_ 1
6 x—0 X 6

1

-1 -1
~im Fx) = e® hence ||m(smxj = eb

x—0 x—0

Example 11: Evaluate ||m(cot x)*.

Xx—0+

Solution: (cot x)* for x > 0, is of the form oo®.
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Let F(x) = (cot x)*.
Taking logs on both sides, we have,

log F(x) = x log cotx, .. |jm log F(x)

X—>0+

= |impx log cot x is of the form 0. o

X—0+

. . log cot x
Or [imlog F(¥) = |im gTis of the form z

x—>0+ x—>0+ -

X

1
=~ (-coec’x
=Im COLX [by L' Hospital's rule]
X—0+ _)3-2

NG x Y
=lim .tanx=|im(—j.|imtanx=1.0—0
n

X—>0+ S 2X X—>0+ SinX X—>0+

limFx) =e°=1

X—>0+

Hence |jm(cot x)* =1

X—0+

55 Self Check Exercise

Q.1  Evaluate || sinax
' Lrpsinbx

. log(1+x°)
Q.2 Evaluate — 7
ILm sin® x

n

Q.3 Evaluate ||m X—X ne N.
e

x>a
Some lllustrated Examples
Example 12: Evaluate the Limit
. 1-cos’x
lim =5

. . 1-cos’x 0
Solution: ||mM——— — form
|>I<—>O S.nz X (0 J
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l. 2SN XCOSX
1M Sz
w0 2XCOSX
=lim
x—0

- (lim™™) [lim=*

2
x—0 X x—»0 COS X

(L' Hospital Rule)

SiN XCOS X
XCOSX*

sinx .
—— =1|jmecosx=
X

x—0

=1.

A

x—0

:1[Q|im

Y _ay

Example 13: Find | | _
LIMm~5ny

Solution: We have

Y _ Y
Lim €-€ (gformJ

y—0 Smy
. e —-e”’
=Lim —
y—0 Sny

e+’ _1+1

cos0 1
2
===2
1
Example 14: Show that
i X —X
EA——N
LXLI;T'I x—1-logx
_ i X —X 0
Solution: We have | i m————— — form
w1 X—1—logx 0
. X(1+logx)-1
- le 1
x—1 1_7
X
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Put y=x"
= Log y = xlog x
Lo

—= = x.l+ logx.1
y dx X

= b =X*(1+logx)
dx

X" x)1<+ (1+1og x).x*(1+log X)
=Lim 1

X—1

X2

_ 1x1+(1+0)x1(1+0)
1
1+1_ 2 _

=——=Z=»
1

. .1

sin" =

Example 15: Evaluate | im 1X
X—0 tani

X

.41

Sn " —

Solution: |_|m 1X
X—0 tan*

X

. sin™h . 1
= fx==(h>0)=as h—0
I]LI;n anh (QI X h( >0)=asx—>o h—> j

Now || sinh (9 formj
erc;n tanh 0

1

. 1-h? 1 1
= =___ =-=1
LM e ™ o 1

n
Example 16: Evaluate |_|mx—x n e N.

X—00
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. . X" 0
Solution: — — form
olution HLD16X ~
“Lim ™ ® form
B LXL[.T] e* o0
. n(n-)x"? (o ¢
= — 7= | — form
Lxll;n e o0
1 n(n=D(n-2)....21x°
= Lim =
] n!
B LL[on e
. 1
=n! f—
LL[On "
.1 ) »
=nl.0=0 (QL|m§:L|me =
Example 17: Evaluate | 1 —1
Per Limle=iy
Solution: | | t 1 (c0—oo form)
' LyIJ;n -1y

. y—e’+1 0
= T | =f
'-ylﬁn[y(ey—l)] (o ormj
- Li 1-€'+0
yLI:)n yey+(ey—l).l

. 1-¢ 0
=Lim v ro 1 (6 form)

. —e’
- LyLI;n ye'+e’ +¢’
_ 1 1
0+1+1 2
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Example 18: Evaluate |_jm x*

Xx—0+
Solution: Let y = x*.

= Log y = x Log x

Lim'ogy= Ljm xlog x (0.0 form)
x—0 X—>0+
. log x ©
= — = f
Lim =% |2 form|
X
1
— . X
“Lim—;
s
= Lim®)=0
X—0+
X—>0+

= Limy=e’=1

X—0+

= Limx=L

x—0+

5.6 Summary

In this unit we have learnt

0] indeterminate form

(i) L' Hospital Rule

(iii) to evaluate the limit of the form
f, o0—00, 0°, 1%, oo® etc

(o 0]

5.7 Glossary

Some standard expansions

2 3
() ex=1+x+X—+X—+ ................
21 3l
3 5
() sinx=x-2 + X
31 5



2 4

(i) cosx=1-2 +2X .

2! 4!

3 5
(iv) tanx=x+x—+2l+ .....................

15
. x* x* x
v log(l+x)=x- —+—- —+..........
(iv) g(1+x) > 32
1 ex ex?

(v) (1+x)x=e- 7+ 11 Z+ .............. (near x = 0)

5.8 Answers to Self Check Exercises

Ans. 1 a
b
Ans.2 1
Ans.3 0
5.9 Reference/Suggested Reading
1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
2. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002
5.10 Terminal Questions
1. Evaluate |_|m ten x
-z tan3x
2
2. Find LimL(:(?X,x>l
3. Evaluate |_|mM
0.  COtX

4. Find || m[cosecx—a

x—0

5. Find |_| mx*

x—0
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Unit - 6

General Theorems Rolle's And
Lagrange's Theorem

Structure

6.1 Introduction

6.2 Learning Objectives

6.3 Rolle's Theorem

6.4 Geometrical Significance of Rolle's Theorem
6.5 Lagrange's Mean Value Theorem

6.6 Geometrical Significance of Lagrange's Theorem
6.7 Self Check Exercise

6.8 Summary

6.9 Glossary

6.10 Answers to Self Check Exercises

6.11 Reference/Suggested Readings

6.12 Terminal Questions

6.1 Introduction

Dear students, by now you must have become familiar to classify to classify between
theorems applicable to a class of functions such as logarithmic functions, trigonometric
functions etc. The theorems applicable to class of functions are known as General Theorems.
The most fundamental theorem is Rolle's theorem which play an important role out of these
theorem. As the name suggests this theorem was given by the French Mathematician Michal

Rolle in the year 1691.

6.2

6.3

Learning Objectives
The main objectives of this unit are:
(1) to state and prove Rolle's theorem
(i) to give geometrical interpretation of Rolle's theorem

(iii) to state and prove Lagrange's mean value theorem

(iv) to give geometrical interpretation of Lagrange's mean value theorem

Rolle's Theorem.

Statement. Let f be a function defined on a closed interval [a, b] such that
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f is continuous in a closed interval [a, b]

f is derivable in the open interval (a, b)

f(@)=7(b)

then there exists at least one real number c € (a, b) such that f' (c) =0

Proof : If f is a constant function in [a, b] then obviously f'(x) = O for all x € € (a, b) so that the
result is trivially true in this case.

Let f(x) be a non constant function in [a, b]. Since f is continuous is the closed interval
[a, b], therefore, it is bounded there in and attains its maximum and minimum value in [a, b] i.e.
if M and m respectively denote the maximum and the minimum values of f (x), then there exists
two real points ¢ and d in [a, b] such that f 9c) = M and f(d) = m.

Since f is not constant on [a, b], therefore M = m. This implies that at least one of M or m
is different from the common value f (a) = f (b) at the end points.

Let M = f(a) = f(b), then f (c) = f(a) = f(b) because M = f(c) or some ¢ < [a, b], but f(c)
# f(a)=f(b)=>c=a,b=>c e (a, b).

Now we claim that f'(c) =0
f(c) =M =max. of f(X) V X € [a, b]
fX)<flc) Vxelab]
=  f¥-fe)s Vxelab]
f(x)—f(c)
X—C
f(x)—f(c)
X—C

>0ifx<c
<0ifx<c

>0and lim M <0
X—C+ X—C

= [im

f(x)-1()
X—>0= X—C
= fi(c-)>0and f'(ct) <0
Since f is differentiable at x = ¢
- () = fi(c-) = f(ct)
Consequently f' (c) =0,
Similarly if m = f(a) = f (b), then f or some d € (a, b), f' (d) = 0.
This completes the proof.

Note 1. It immediately follows from the above theorem that between two consecutive zeroes a
real polynomial f(x), there exists at least one zero of f* (x).
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Note 2. The condition of Rolle's Theorem are sufficient but not necessary, i.e. f'(c) = 0 for some

. " - 1 1
¢ € (a, b) even if the conditions of Rolle's Theorem are not satisfied e.g. f(x) = — + T does
X - X
not satisfy the conditions of Rolle's Theorem in [0, 1] but f' (%}: 0.

Note 3. For the validity of Rolle's Theorem the existence of the derivative of f(x) at the end point
a, b is not required.

For example, The function f(x) = ¥1—X*, x € [-1, 1] not differentiable at the end points -1 and
1,but f'(x)=0atx=0and0 e (-1, 1).

Note 4. Though the existence of the derivative at the end points is not required, all the three
conditions stated in the theorem are essential for the validity of Rolle's Theorem i.e. if any one
of the three conditions is not satisfied, while the other two conditions are satisfied, Roll's
Theorem need not be true. We give examples in support of this assertion.

Example 1: Let f(x)=1x1,x¢e/[-1,1]
Obviously, fis continuous in [-1, 1] and f(-1) f(1) =1

But f is not differentiable at x = 0 and 0 € (-1, 1). Thus f satisfies the (1) and (3) conditions of
Rolle's Theorem while the (2) condition is not satisfied by f, therefore Rolle's Theorem is not
valid, since f' (x) = 0 for any x € (-1, 1)

Example 2 : Let f(X) = {X' if.Os X<l
0,ifx=1
be a function defined on [0, 1].
Obviously, f(a) = f(1) = 0 and f is differentiable in (0, 1)
But f is continuous in [0, 1] as f is not continuous to the left at x = 1. {limy_1 - f(X) = lLTX =1=
0=f(1)}

Thus f satisfies the (2) and (3) conditions of Rolle's Theorem, while the (1) condition is not
satisfied by f. Hence Rolle's Theorem is not valid, since f'(x) = 0 for any x € (0, 1)

[f'(®)=1,xe(0,1)]

Example 3 : Let f(x) = x?, x € [1, 2}
Obviously f is continuous in [1, 2]
and f is differentiable in [1, 2]

But f(1)=1=4+ f(2)

Thus f satisfies the conditions (1) and (2) of Rolle's Theorem while the condition (3) is not
satisfied by f. Hence Rolle's Theorem is not valid, Since f'(x) # 0 for any x € (1, 2)

[f'(x) =2x, x € (1, 2)]
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6.4 Geometrical Significance of Rolle's Theorem

QD f(x) is continuous in [a, b] implies that the graphs of y = f(x) does not break
anywhere fromx =atox =b.

2) f is differentiable in (a, b) implies that the tangent to the curve y = f(x) exists at
each point of (a, b).

3) f(@) = f(b) implies that the chord joining the points A (a, f(a) and B [b, f(b)] on
the curve y = f(x) is parallel to the x -axis.

Hence geometrically speaking if the curve y = f(x) satisfies all the above first three
conditions, then there exists at least one point ¢ € (a, b) where the tangent to curve at the point
(c, f(c) is parallel to x - axis. The point ¢ need not be unique. See figures given below. In figure
(3) there are four points in (a, b) where the tangent to the curve y = f(x) is parallel to the a -
axis.

P
A e
A B8 o
Jia) ftc) |S(0) fia) i) &)
[» M xec N X O M Xz N x
xX:a XL X von xXshb
Fig. (7} Fig. ()
Y P
AizL—gS- T
Ka $(c) Ead 2]
.c N X
G I-vx;a = x=h
Fier

Example 4 : Verify Rolle's Theorem for the function
fX)=x-a)"(x-b)"infa, b] ; m,n e N.
Solution : Here f(x) = (x - a)™ (x - b)" .-(2)
Obviously f(x), being a polynomial function is continuous in [a, b] and derivable in (a, b).
Also f(a) = f(b)=0
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Thus f(x) satisfies all the three conditions of Rolle's Theorem in [a, b]
.. there exists at least one ¢ e (a, b) such that f' (c) =0, ..(2)
Differentiating (1) w.r.t. X, we have,
f'xX) =-a)m™n(x-b)"+ (x - b)"m(n - a)™*
= (x-a)™ (x - b)™ [nx - na + mx - mb]
= (x-a)™ (x - b)™[m +n) x - (mb + na)]
~f(©)=(c-a)™t(c-b)"[(m+n)c-(mb+na)]=0 ...(3)
From (2) and (3), we have,
(m+n)c-(mb+na)=0 [c=a, c=b]
mb+ na
m+n

Orc=

.. Ccis a point in the interval (a, b) dividing the [a, b] internally in the ratio m : n.
Thus the Rolle's Theorem is verified.
Example 5 : Use Rolle's Theorem to find the position of real zeros of
f (X) where f(x) =x(x-1) (x-2) (x-3).
Solution : f(xX) =x(x-1) (x-2) (x-3) [given] ....(2)

Since f(x) is a polynomial function, therefore, it is continuous and derivable for all real x. Also
f0)=11)=72)=fB)=0

Thus f(x) satisfies all the three conditions of Rolle's Theorem in each of the closed intervals [0,
1], [1, 2] and [2, 3] separately.

Hence f'(x) = 0 for some x € (0, 1), x € (1, 2), X € (2, 3) separately.

Since f(x) is a polynomial function of degree 4, therefore, f'(x) is a polynomial function of
degree 3 and hence f'(x) can not have more than 3 zeros.

Combining the statements 2 and (3) together, we see, that f'(x) has exactly 3 distinct zeros, one
in each of the open intervals (0, 1)] (1, 2) and (2, 3).

This completes the solution.
6.5 Lagrange's Mean Value Theorem

Statement. Let f be a function defined on a closed interval [a, b] such that

Q) f is continuous in the closed interval [a, b]
2) f is derivable in the open interval (a, b) then there exists at least one real number
¢ € (a, b) such that
f(b)—f(a
e SLRIAC
-a
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Proof : Let us consider a new function ¢(x) define by
o(x) = f(x) + Ax
Where A is a real constant to be determined such that ¢(a) = ¢(b)
i.e. f(a) + Aa = f(b) + Ab
or A(a - b) = f(b) - f(2a)
_ f(o)-f(a)
b-a

Since ¢(x) is the sum of two function f(x) and Ax, both of which are continuous in {a, b} and
derivable in (a, b), therefore ¢(x) is,

orA (2

(2) Continuous in [a, b]
(2) Derivable in (a, b)
(3) @) =o(h).
.. ¢ satisfies all the three condition of Rolle's Theorem.
.. there exists at least one real number ¢ € (a, b) such that
$'(c)=0 ..(3)
Differentiating (1) w.r.t.x, we have
o' (X) = f(x) + A
Putting x =c, 0 = f' (c) +A

L A=-f(c) (8
From (2) and (4), we have,
fi(c) = T =@ pere ¢ (a, b).

b-a
This proves the theorem.
Another from of Lagrange's Mean Value Theorem. Let f be a
function which is
D Continuous in the closed interval [a, a+h],
(2) Derivable in the open interval (a, a+h).
Then there exists a real number '0' between 0 and 1 such that f (a+ h) = f (a) + h f' (a + 6h).
This can be proved from the above theorem by replacing b by a + h.
Obviouslyb-a=hand c e (a, b)

:>c=a+9h,0<9<1
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If we replacing b by x and a by xo, we can express the Lagrange's Mean Value Theorem by the
formula.

f(X) = f(Xo) + (X - Xo0) f' [Xo+ O(X-X0)],0<6<1

6.6 Geometrical significance of Lagrange's Mean Value Theorem
If y = f(x) be curve defined on the closed interval [a, b] such that
(2) The graph of the curve does not break any where from x = ato x = b and,

(2) The tangent to curve y = f(x) exists at each point in (a, b), then, there exists a
point ¢ in (a, b) where he tangent at the point P(c, f(c)] is parallel to the chord
joining the points Ala, f(a)] and B[b, f(b)] on the curve y = f(x). The point ¢ need
not be unique. See figure below.

f
!

o-’ N
X oo = =b

-
b4

Example 6 : If f(x) is a quadratic polynomial and a, b are any two numbers,
a+b .
show that > is the only value of ¢ which satisfies the Mean value theorem in (a, b).

Solution : Let f(x) = px? + gx + r (p # 1) be a quadratic polynomial in x.

Obviously f(x) is continuous in [a, b] and derivable in (a, b). Therefore by Lagrange's Mean
Value Theorem, there exists at least ¢ € (a, b) such that.

) = f(bt))—f(a)
—a
- 2pc+q= (POErdbrr)—(pa’+ga-r)

b-a
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[f'(X) =2pc +q] .. fi(c)=2pc+q]

q= p(b*—a*)+q(b+a)

or 2pc +
P b-a

or2pc+q=pb+a)+q
or2pc =p(b + a)

a+b
orc=——,
2
. a+b.
obviously, c € [a, b] [T is the A.M. between a and b]
a+b . . . .
¢ = — s the only value of ¢ which satisfies Mean Value Theorem in (a, b).

Example 7: If f(x) = 2x3, a = -1, b = 1, show that there is no real number ¢ which satisfies
the Lagran ge's Mean Value Theorem. Explain.
Solution: f(x) = 2x’3, x € [-1, 1]

Obviously f(x) is continuous in [-1, 1]

But f'(x) = g.i}/does notexistatx=0,0 e (-1, 1)
X 3

f is not differentiable in (-1, 1)
= One of the two conditions of Lagrange's Mean Value Theorem is not satisfied.

= That Lagrange's Mean Value Theorem is not valid.

there exists no real number ¢ € (-1, 1) for which Lagrange's Mean Value
Theorem is satisfied.

i.e. sz'((:)
b-a
o fO-fCD _4 1
1+1 3 an
2 3k
1 _
or g_o,
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Obviously, there is no such real c.

This completes the solution

Some lllustrated Examples

Example 8: Verify Rolle's theorem for

fX)=x2-5x+4inl<x<4

Solution: We here have

(i)

fx)=x*-5x+4 ... Q)

Since (1) is a polynomial in x, therefore it is continuous function everywhere and

in particular for 1 < x < 4.

(ii)

=

Now

=

f'(X) =2x -5, which existsin 1 <x< 4

f(x) is differentiable in (1, 4)

f satisfies all the conditions of Rolle's theorem

there must exist atleast one real ¢ € (1, 4) such that f'(c) =0

f(c)=2c-5=0

c= %which lies in (1, 4)

Hence Rolle's theorem is verified.

Example 9: Verify Rolle's theorem for

F(¥) = N1-X%in [-1, 1]

Solution: We have

or
=

i.e.

F(¥) = V1-%%, x € [-1, 1]

f is continuous for those x for which \/1—7 >0
1-x2>0

x?<1

x| <1

-1<x<1

Thus f is continuous in [-1, 1]

(ii)

—2X

=X
21— %2 B NG

f)=

, Which exists in (-1, 1)
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f is derivable in (-1, 1)
(i) f(1)=+1-1=0
and f1)=1-1=0
= f(D=/Q1)

all the conditions of Rolle's theorem are satisfied.

there must exist atleast one real ¢ € (-1, 1) such that f'(c) = _ =0

= c=0
clearly c =0 liesin (-1, 1)
Hence Rolle's theorem is verified.
Example 10: If f(x) = |x]|, x € [-1, 1], discuss the applicability of Rolle's theorem.
Solution: We have
fO) =Ix[, x e [-1, 1]

Here we shall show that f is not derivable at x = 0.

L. H. Derivative = |_| m M
x—0" X—O
- 1x]-10]
Lim =
_ _ h|
LXLE” x LhLo h
le _le =-1 (QX:O-h,h>03h—>OaSX_>O-)
h—0 h—0
and similarly
. f(x)-1(0)
R.H.D. = TX)- 1)
Lim =%
IR b |0+h| _
=Lim~ =Lim——=1

x—0" x—0"

Left hand Derivative # Right hand derivative

= f(X) = |x| is not differentiable at x =0 < (-1, 1)
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Hence Rolle's theorem cannot be applied to f(x) = |x| in [-1, 1].
Example 11: Verify Lagrange's mean value theorem for f(x) = x® + x? - 6x in [-1, 4]
Solution: Here f(x) =x3+x?-6x .. (1)

0] clearly (1) is a polynomial in x therefore continuous for everyvalue of X, in
particular in [-1, 4]

(i) f(x) = 3x2 + 2x - 6, which exists in (-1, 4)

= f(x) is derivable in (-1, 4)

Thus f(x) satisfies both the conditions of Lagrange's mean value theorem.
there must exists alteast one ¢ € (-1, 4) s.t.

f(4)-1(=D

CRE

(64+16—-24) - (-1+1+6)
5

or 3c2+2c-6=

or 3c2+20-6=£5_6

or 3c?+2c-16=0

c= —2+y4+192 _-2+14 8 5
2.3 6 3’
c=2¢e(-1,4)

Hence Lagrange's theorem is verified
Example 12: Verify Lagrange's mean value theorem for the function
f(x) =log xin[1, €]
Solution: We have
fx)=logx ... D
0] (1) is continuous in [1, €]

(i) )= % exists in (1, e)

= f is derivable in (1, e)
Both the conditions of LMV (Legrange Mean Value) theorem are satisfied.

there must exist atleast one ¢ € (1, e) s.t.
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po= 1010

[EE
o

1
c

[EEY

e_
c=e-1=273-1=173€(1,e)(e=2.73 (app.)
Hence LMV theorem is verified.

Example 13: Verify LMV theorem for the function
f(x)=sinx, x € [O,”Z]

Solution: Here f(x) = sin x

(1) Since the curve of sin x is a continuous one

f is continuous in [0, 772]
(i)  f'(x) = cos x, which exists in [0, %}
f is derivable in [O’EZJ

both the condition of LMV theorem are satisfied.

= there must exist atleast one c e [0,”2] such that

(7)o
f(C)— 7[—0
/2_
sn”z—sno
or cosczﬁ—
i
or COSC_E
7
2
or cosc=—
T

or c =cos* (Ej € (O,z)
T 2
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Hence LMV theorem is verified.
6.7 Self Check Exercise
Q.1  Verify Rolle's theorem for
f(x)=-4x+ 3, x € [1,3]
Q.2  Verify Rolle's theorem for
f(x)=x?in[-1, 1]
Q.3  Verify LMV theorem for
f(x) =2x-x%in [0, 1]
Q.4  Verify LMV theorem for
fx)=x3-3x-1in[1, 3]
Q.5 InLMV theorem f(at+h) = f(a) + h f'(a + 0) h.
Find 0 if f(xX) = Ax?+ Bx+ C, A= 0.
6.8 Summary
In this unit we have learnt
0] Rolle's theorem and its geometrical significance
(i) Lagrange's mean value theorem and its geometrical interpretation.
6.9 Glossary

0] Lagrange's mean value theorem is also known as first mean value theorem or
mean value theorem or Law of mean.

(ii) Application to mean value theorem
(a) If fis
(@ contiguous in [a, b]
(i) derivable in (a, b) and
(i)  f'x)=0Vxe(ab)
then f is constant in [a, b]
(b) If £(x), g(x) are two functions s.t.
0] f, g are continuous in [a, b]
(ii) f; g are derivable in (a, b)
(i)  f(¥)=9g(X Vxe(ab)
then f(x) and g(x) differ by a constant in [a, b]
6.10 Answers to Self Check Exercises

Ans. 1 -4 (Q1-Q4) Rolle's Theorem is verified.
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Ans. 6 = %

6.11 Reference/Suggested Reading
1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007

2. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002
6.12 Terminal Questions

1. Verify Rolle's theorem for the functions;
() f(X)=x?-11x+28in4<x<7
(i)  fX)=19-xin[-3, 3]
R 4
i X)=cos 2Xin | —,—
(i) f(x) [ 4 4}

2. Verify Lagrange's Mean value theorem for the functions:
0) fx)=x+ 1 in FB}
X 2
(i) fX)=(x-1)(x-2)(x-3)in [0, 4]
(iii) fX)=x(x-1)(x-2)in [Oﬂ
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Unit-7

General Theorems (Cont) Cauchy's
Mean Value Theorem (CMVT)

Structure

7.1 Introduction

7.2 Learning Objectives

7.3 Cauchy Mean Value Theorem

7.4 Geometrical Significance of Cauchy's Mean Value Theorem
7.5 Self Check Exercise

7.6 Summary

7.7 Glossary

7.8  Answers to Self Check Exercises

7.9 Reference/Suggested Readings

7.10 Terminal Questions
7.1 Introduction

Dear students, in this unit we shall continue with our study of General theory Cauchy's
Mean Value Theorem is a powerful generalization of the more familiar mean value theorem. It
provides a relationship between the change of two functions over a fixed interval with their
derivatives. Cauchy mean value theorem is a special case of Lagrange Mean Value Theorem.
Cauchy Mean Value Theorem is also called the Extended Mean Value Theorem or the second
mean value theorem or the Generalized Mean Value Theorem.

7.2 Learning Objectives
The main objectives of this unit are :
(@ to state the Cauchy Mean Value Theorem (CMVT)
(i) to prove CMVT
(iii) to give geometrical significance of CMVT
7.3 Cauchy's Mean Value Theorem

Statement. If two functions f, g are defined on a closed interval [a, b] such that both f
and g are

(1) Continuous in the closed interval [a, b];

(2) Derivable in the open interval (a, b) and
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3) g'(X) does not vanish for any x e (a, b), such that
f(b)-f(a)_ fc)
gb)-g@@ g'©’

Proof: Let us consider a new function ¢(x) on [a, b] defined by
d(X)=fx)+Agx) ... (1)
Where A is a real constant to be determined such that ¢(a) = ¢p(b)
ie. f(@) + Ag(a) = f(b) + Ag(b)
or  Alg(b)-g@]=-[f(b)-f@] ... 2
We claim that g(b) - g(a) = 0 [if g(b) = g(a), then g being continuous in [a, b] and
derivable in (a, b) will satisfy all the conditions of Rolle's Theorem and thus g'(c) = O for at least
one ¢ € (a, b). This is not true, because it is given that g'(x) = 0 for any x € (a, b)]
f(b)-f(a)
g(b)—9(a)

Since ¢ (x) is the sum of two functions f(x) and g(x), both of which are continuous in [a,
b] and derivable in (a, b), therefore, ¢ (x) is

wherea<c<h.

Now form (2), A= -

1. Continuous in [a, b]
2. Derivable in [a, b]
3. ¢ (a) = ¢ (b).

Thus ¢ satisfies all the conditions of Rolle's Theorem. Therefore, there exists at least
one ¢ € (a, b) such that ¢'(c) = 0.

Differentiating (1) w.r.t. X, we have,
¢'(x) = 1) = f'(x) + Ag'(x)

Now ¢'(c) =0 = f'(c) + Ag'(c)=0orA= MACEE 4
g'(c)

From (3) and (4), we have,

fb)-f(@_ f'0)

gb)-g@ g

This prove the theorem.

wherea<c<b ... (5)

Note. Lagrange's Mean Value Theorem is a special (particular) case of Cauchy's Mean
Value Theorem.

If we take g(x) = x in the Cauchy's Mean Value Theorem then
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g(x) =x
=f(c)a<c<b|=g(b)=b,g(a)=a
and g'(c) =1

f(b)-f(a)
b-a

7.4 Geometrical Significance of Cauchy's Mean Value Theorem

Cauchy's Mean Value Theorem has geometrical significance similar to that of
Lagrange's Mean Value theorem.

Let a curve be defined parametrically on the closed interval [a, b] by x = g(t), y = f(t), t
being parameter, a<t<hb.

g(t), f(t) are both continuous in [a, b] and derivable in (a, b) the curve is continuous from
A to B and has a tangent at each point between A and B, also g'(t) = 0 for any tin (a, b).

The slope of tangent at a point (g(t), f(t)) is given by

dy
ﬂ - d f :(t) and slope of the chord AB = M
dx A g'(t) g(b)-g(a)
dt

Cauchy's Mean Value Theorem asserts that there is atleast one point ¢ € (a, b) i.e. point
P(g(c), f(c)) lying between A and B, the tangent at which is parallel to the chord AB.

. fo)—f(a)_ f'c) ce(ab)
g)-g(@ 9’
The point ¢ € (a, b) need not be unigue.

See figures given below:

g == _‘./.--//.’
| = g
1 P
1 e Blgsm)
| RS e
{ ! ‘
1, ! P 3
| : '
| ! 1
34 S Z=9(0 "% ) . —
9 l:0 teg 1} -

Example 1. Verify Cauchy's Mean Value Theorem for the functions

f(x) = cos x and g(x) = sin x in the interval {—% %}
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Solution: Here f(x) = cos x and g(x) (1)

1. f and g are both continuous in {_Z E}

4 4

2. f and g are both derivable in (—% %j and

T T
3. 'X)=cosx=0forany xin| ——,— |.
9'(x) y (4 4}

Hence f, g satisfy all the conditions of Cauchy's Mean Value Theorem.

f @_ f [_Zj _f©
HESIR

[by Cauchy's Mean Value Theorem.]

o _cos(_”j 11
Or 4 4) _ —sinc or\/z \/Ez-tanc

ot o 7| oo U1 1

4 4 J2 2

orO=-tancortanc=0

Hence the Cauchy's Mean Value Theorem is verified.
Application of Mean Value Theorem.

Theorem 1. If f(x) is a differentiable function in the open interval (a, b) and f'(x) = O for all x in
(a, b) then f(x) is constant in (a, b).

Proof: Let x1, X2 be any two points in (a, b) such that
a<xi1<x2<b

Now on the closed interval [xi1, X2], the function f(x) satisfies both the conditions of
Lagrange's Mean Value Theorem; since a function which is differentiable at point is also
continuous there at. Therefore, there exists a real ¢ € (x1, X2) and hence c e (a, b) such that

fO0)— (%)
X=X

=1 [fora<xi<c<xa<b]

fx)=0 vV X e (a b)
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S fi(e)=0
hence f(x2) - f(X1) = 0 = f(X2) = f(X1)
= fis constant in (a, b).

Theorem 2. If f(x) is continuous in the closed interval [a, b] and f'(x) = 0 for all x in (a, b), then f
is constant in [a, b]

Proof: Let x be any point in [a, b] such that a < x < b. Now on the closed interval [a, X], the
function f(x) satisfies both the conditions of Lagrange's Mean Value Theorem; since f(X) is
continuous in [a, b] and f'(x) = O for all x € (a, b) implies that f is differentiable in (a, b).
Therefore, there exists a real ¢ € (a, X) and hence ¢ € (a, b) such that

sz’(c) [fora<c<x<b]
X—a
f(X)=0V x e (a b) [given]
- fi(e)=0
hence f(x) - f(a) =0 [fora<x<Db]
= f(x) = f(a)

= fis constant in [a, b].

Theorem 3. Let f(x) and g(x) be differentiable in the open interval (a, b) and f'(x) = g'(x) for all x
in (a, b) then there exists a constant ¢ such that f(x) = g(x) + ¢

For all x in (a, b)
Proof: Let F(x) = f(x) - g(X)

Since f(x) and g(x) are differentiable in (a,b) ... D

. F(x) is also differentiable in (a, b)

Further F(x) = fx)-gx .. (2)
=0Vxe(ab) [f'(X) =g'(x) V x € (a, b) is given]

Combining (1) and (2), we have,
F(x) is constant in (a, b)
= 3 a constant c, that

F(x)=c VvV x e (a b)
ie. fx-g(x)=cVxe(ab).
or fX)=g(x)+cVxe(ab)

Theorem 4: Let f(x) and g(x) be continuous in the closed interval [a, b] and f'(x) = g'(x) for all x
in (a, b). Then there exists a constant ¢ such that f(x) = g(x) + c for all x in [a, b]

Proof: Let F(x) = f(X) - g(x)
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Since f(x) and g(x) are continuous in [a, b]
F(x) is also continuous in [a, b]
Further FF(x) = f/(x) -g'(x) =0 VvV X e (a, b)
Combining (1) and (2), we have,
F(x) is constant in [a, b]
= 3 a constant ¢, such that F(x) =¢c, V x € [a, b]
= fX)-g(x)=c Vxela,b]
= fX)=9g(xX) +c V x € [a, b].

Theorem 5: Let f(x) be differentiable in the open interval (a, b).

8} If £'(x) >0 fora<x<Db,then f is strictly monotonnically inveasing in (a, b)
2) If £'(x) >0 fora<x<Db,then f is strictly monotonnically inveasing in (a, b)
3 If f'(x) <0 fora<x<Db,then f is strictly monotonnically inveasing in (a, b)
(4) If f'(x) <0 fora<x<Db,then f is strictly monotonnically decreasing in (a, b)

Proof: Let x1 and x» be any two arbitrary points in (a, b) with a < x1 <Xz <b.
f(x) is differentiable in (a, b),

f(X) is continuous and differentiable in [x1, X2]

f(X) satisfies all the conditions of Lagrange's Mean Value Theorem in [x1, X2] and,

therefore, there exists at least one point ¢ € (X1, X2) such that
f(%)—f(x)
X=X

or f(X2) - f(x1) = (X2-x1) fi(c)fora<xi<c<x2<b ... Q)

= f(c)fora<xi<c<x2<b

D Since we are given that f'(x) >0V x € (a, b)
f'(c)>0andalso x2-x1>0
R.H.S. of (1) is +ve = L.H.S. of (1) is +ve
= f(X1) < f(x2) for x1 < X2 and X1, X2 € (a, b)
= f(x2) ism.l.in (a, b)
(2) Since we are given that f"(x) >0 V x € (a, b)
f(©)=0
Also X2 - X2 >0
RH.S.of(1)is>0=LH.S.of (1) >0
= f(x2) - f(x1) >0
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= f(x2) > f(x1) where x1 < X2
= f(x1) < f(x2) where x; < x2 and X1, X2 € (a, b)
= f(x)is m.l.in (a, b).
3) Since we are given that f'(X) <0 V x € (a, b)
f(c)<0
Also x2 - x1>0
RH.S.of (1)is<0=LH.S. of (1) <0
f(x2) - f(x1) < 0 where X1 < X2
= f(x2) < f(x1) where x1 < x2 and X1, X2 € (a, b)
= f(x)iss.m.d in (a, b)
(4) Since we are given that f'(x) <0V x € (a, b)
(<0
Also x?-x1>0
R.H.S.of (1) is<0= LH.S.of (1)< 0
=  f(x2)-f(x1) <0
f(x2) < f(X1) where X1 < X2
= f(x1) > f(x2) where x1 < x2 and X1, X2 € (a, b)
= f(x)is m.d. in (a, b)

Theorem 6. If a function f is continuous in [a, b] derivable in (a, b) and

Proof:

Q) If f'(x) >0V x e (a, b) then f is strictly increasing in [a, b]
(2) if f'(X) >0V x € (a, b)then fis increasing in [a, b]
3) If f(x) <0V x e (a, b) then f is strictly decreasing in [a, b]
4) if f'(X) <0V x e (a, b)then fis decreasing in [a, b]

Let x1, X2 be any two arbitrary points in [a, b] such that a < X1 < X2 < b. obviously [x1, XJ]
[a, b]

f is continuous in [x1, X2] and derivable in (X1, X2)
f satisfies both the conditions of Lagrange's mean Value Theorem in [X1, X2]

Hence there exists at least one real number ¢ € (X1, X2) such that

M:f’(c) [fora<<xi<c<xz<h]
X~ %
O flx2) - fx1) = (xe - 1) /(C) forasx<c<x<b]l ... @)
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(2) Since f'(x) >0V x € (a, b)

f(©>0

Also x2 - x1>0

R.H.S.of (1)>0=L.H.S.0of (1)>0
f(x2) - f(x1) >0

f(x2) > f(x1)

f(x1) < f(x2) where x1 <Xz, VX1, X2 € [a, b]

U

R

= f is strictly increasing in [a, b]
Note. The converse of the above theorems need not be true.
Theorem 7: If a function f is derivable in (a, b) and
8} If fis increasing in (a, b), then f'(x) > 0 for all x in (a, b)
(2) If fis decreasing in (a, b), then f'(x) <0 for all x in (a, b)

Proof: let ¢ be any real number in (a, b), choose a real number h suchthata<c+ h <b (such a
choice of h is always possible).

8} Since is increasing in (a, b), therefore we have,
forh>0, c+h>c= flct+th)>f(c)=flcth)-f(c)>0
And forh<0,c+h<c=f(c+h)<f(c)= f(c+h)-f(c)<O
Thus, in both cases, we have,
f(c+h)—f(c)

>0,h=0
h
I f(c+h)—f(c)20
h—0 h
= f(c)>0 [f is differentiable in (a, b) = f'(c) exists]

= f(c)>0V x e (ab)
(2) f is decreasing in (a, b) therefore we have,
forh=0,c+h>c=flc+th)<f(c)= f(c+h)-f(c)<O
And forh<0,c+h<c=f(c+h)>f(c)= f(c)= f(c+h)-f(c)>0
Thus in both the cases, we have,
f(c+h)-f(c)
h

<0,h#0
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i fle+h-f() _,

h—0 h
= f(c)<0 [f is differentiable in (a, b) = f'(c) exists]
= fc)<s0Vvxe(ab)
Example 2: If x > 0, prove that

2

X
2(1+ %)

XZ
>log (1 +Xx) > [X_EJ

2

X
X —_
2(1+Xx)

Solution: Let f(x) = ( ] log (1 + X)

2
and g(x) = log (1 + x) - (X—XEJ

obviously both f(x) and g(x) are derivable in [0, «]
1(@+x2x-x1 1

Now f'(x) =1 -

2 (@+x)? 14X
o X@+x) 1 204 %)°-x(2+X) -2
21+x)? 1+x 2(1+ x)?
2K 4+242X-2x—X* -2 X S
2(1+ x)? 2(1+ x)?
For all x>0
f(x) is s.m.i. in [0, o] [see theorem 6]

= fX)> f(0) forx>0

X ~
= (x—2(1+x)j-Iog(1+x)>0,forx>0 [f(0) = 0]

2

= X - >log(l+x) forx>0 ...(1
20+ %) g@+x)f 1)
2 2
Alsog,(X):i_lJrX:l—l—XWLXer _ X
1+ x 1+x 1+x
> forallx>0
= f(x) is s.m. i. in [0, 0]
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= g()>g(0), forx>0

2

N Iog(1+x)-(X—XEj>Oforx>O [9(0) = 0]

2
= Iog(1+x)>x:X?forx>0

Combining (1) and (2), we have,

2 2
X - >Iog(1+x)>x-x—forx>0
21+ x) 2

This completes the solution.
Example 3: Find the interval of increase and decrease of the following functions:

1. f(X)=xlogx -x,x>1
2. f(x) = x*- 4x

Solution : 1. f(x) =xlog x - x, x> 1
1
S f(X)=x. —+logx.1-1=1+logx-1
X

= log X, x>1
>0 x>1=logx>logl=0
Also f is continuous and derivable for x > 1
Hence f (X) x.m.i. forx>1

i.e. f(X)is s.m.i. in [1, «).

2 f(x) = x* - 4x
L) =4x3-4
=4(x3-1)

=4(x-1) (x> +x+1)

2
1
Nowx2+x+1=(x+§) +>0V X

L X)>0if fx>1
Orfi(x)>0ifx>1
And f'(x) <0ifx<1
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Also f(x) is s.m.i. in [1, o] and is s.m.d. in (-o0, 1].
Example 4 : Use Mean Value Theorem to prove the following inequalities :

(a) l+x<e*<l+xeXforallx>0

(b)

X
<log(l+x)<x forallx>-1,x#0
X

Solution: (a) forx=0

l+x=e*=1+xe*=1 (1)
the result is true with equality
Letx>0

Consider the function f(x) = ex
Obviously f(x) is continuous in [0, X] and derivable in (0, x)
Therefore, by Lagrange's Mean Value Theorem,

f(x)— f(0)

“_0 =1 (x), c € (0, x)

= = e (2)

Since0<c<x
soel<et<e [e*is a s.m. function]
Orl>ef<e ..(3)
From (1) and (2), we have,
e -1
X

1<

< e [f or x> Q]

Multiplying by x which is +ve, we have,
X <e*-1<xe [f or x > Q]
Adding 1, we have, 1 + x<e*<1l+xe*, x>0 ...(4)
Combining (1) and (4), we have,
l+x<e*<1l+xeX forx>0
b. case 1. When x>0

We apply we Lagrange's Mean Value Theorem to the function log (1 + x) on the interval [0, X].
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= f(X) =log (1 + x),

1
And f'(X) = m

f(x)-f
Nowsz'(c),o<c<x
x—-0
logl+x)—logl 1
X 1+c
log(1+ X 1
o( )= ..(1)
X 1+c
Since0<c<x
Ll<l+4c<1l+x
1 1
orl>—>—
1+c 1+x
ori<i<1 ..(2)
1+x 1+c

From (1) and (2), we have,
1 log(1+x)
1+x X
Case 2. When-1<x<0

<1 forx>0

Again applying the Lagrange's Mean Value Theorem to the function log (1 + x) on the interval
[x, O], we have,

f(0)- f(x)
Now —— = = f(c), 0
ow 0—x f'(c),0<c<x
O—Iog(1+x): 1 forx<c<0
—X 1+c
Iog(1+x)= ! forx<c<0 ..(3)
X 1+c

Sincex<c<0

Ll+x<l+c<l

= l1+x<l+c<l1
1 1

orlr> — > ——
1+c 1+x
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1 1
or—>—>1 ..(4)
1+x 1+c
From (3) and (4), we have,
1 . log(1+ Xx)
1+ X X

>1 for-1<x<0

Multiplying by x which is -ve, we have

X <log (1 + x)
X

<efor -1<x<0

Combining both the case, we have

<log (1 +x) <x

for x>-1,x=0
Some lllustrated Examples
Example 5 : Verify Cauchy's Mean Value Theorem for

-7 n
X) = COS X, g(X) =sin X, — <x< —
fx) 9(x) 4 4

Solution : Here f(x) = cos X, g'(x) = sin x
= f'(X) = -sin x, g'(X) = cos x
We are that f, g are two functions s.t.
- T

i are continuous in —
(i) ) [ 12

| I

(i) £, g are differentiable in (—” fj

(iii) g'(xX) # 0 for any x in [%%)

f, g satisfy all condition of CMVT in [Tﬂ

|

NG

by Cauchy Mean Value Theorem
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1.1
= \/E \/E =-tanc
1 1
74_7
2 2
= tanc=0
= c=..n0m,...

Butc e | = %
4 4

.. CMVT is verified.
Example 6 : Verify CMVT for the function
f(x) =€, g(x) e*in [a, b]
Solution : Here
f(x) =€, g(x) e™
= f(¥=e g'(x) -e
f(x), g(x) are two functions such that
0] f, g are continuous in [a, b]
(ii) f, g are derivable in (a, b)
(iii) g'(x) = 0 for any x € (a, b)
f, g satisfy all the condition of Cauchy Mean Value Theorem (CMVT)
by CMVT
f(b)-f(a _ f'(c)
gb)-g@@ g
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e —e e
- e’-e* —€°
-6 ¢
- =
1 1 1
e € e°
= _ea+b - eZC
= a+b=2c
a+b a+b. ,
= c= > e (a, b) as T is arithmetic mean between a and b.

Hence CMVT is verified
Example 7 : Discuss the applicability of CMVT to the functions.

2 a<x<b
f 0= 4, x=b

and

gXx) ={x, xe [a,b], X € [a, b]
Solution : We see that

lx'l[)n fx) =Lim2=2

x—b~

and also f(b) =4
< Lim £(x) = f(b)
= f(x) is not continuous at x = b
= f(x) is not continuous at [a, b]
Clearly, CMVT is not applicable to f(x) and g(x) in [a, b].
Example 8 : Use CMVT to Evaluate

X
COS——

2

log—
X

Lim

X—1

1
Solution : Let f(x) = cos x % g(x) = log ” a=x(>0)b=1.

= f, g are two function such that
@ both f, g are continuous in [x, 1]
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(i) both f, g are differentiable in (x, 1)
(iii) g'(x) = % #0in(x, 1)

all the conditions of CMVT are satisfied
Using Cauchy Mean Value Theorem
fO-f(x) _ f'(c)

g0-99 g

T TX 7w . nC
COS——-Ccos— ——-sin-——
2 2 __2 2 y<c<1
logl-log x 1
c
X
0-cos™  ¢r e
—— £ =- — sin —
logl-logx 2 2
X
COS? cr . 7C
1 =+ 7 sSin 7
log=
X

Taking limitx — 1, ¢ — 1, we get

7.5

cos”—x
Lirln % :%sin%
X! |ogi
X
cosﬁ—x
S
X! Iogi
X

Self Check Exercise
Q.1 Verify CMVT for

() =2, g(x) = Vxin [1, 4]
Q.2  Discuss the applicability of CMVT.
for f(x) = x3, g(x) = x4 in [-1, 1]
Q.3  Discuss the applicability of CMVT
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For f(x) = 2x, g(x) = x4 in [-1, 2]
7.6 Summary
In this unit we have learnt about
0] Cauchy mean value theorem
(i) geometrical significance of CMVT
(iii) some application to CMVT.
7.7 Glossary

QD Cauchy Mean Value Theorem cannot be deduced from Lagrange's mean value
theorem because 6 may be different for f(x) and g(x) in [a, b]

(2) CMVT is slightly more general form of Lagrange's mean value theorem.
7.8 Answers to Self Check Exercises

Ans. 1 Verified

Ans. 2 CMT is not applicable

Ans. 3 CMVT is not applicable
7.9 Reference/Suggested Reading

1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007

2. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002
7.10 Terminal Questions

1. Verify CMVT for the functions

() f(x) =x3, g(x) =2-xin [0, 9]

) 0= X, 909 = % infa, b, a>0
X

2. Discuss the applicability of CMVT for

fx)=x2-1,9(x) =x3in [-1, 2]
3. Discuss the applicability of CMVT for

1, a<x<b
X) =
) {2, b

g(x) = 2%, in [a, b]
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Unit - 8

Taylor's Theorem With Lagrange's And
Cauchy's Form Of Remainder

Structure

8.1 Introduction

8.2 Learning Objectives

8.3 Taylor's Theorem With Lagrange's Form Of Remainders
8.4 Maclaurin's Theorem With Lagrange's Form Of Remainders
8.5 Taylor's Theorem With Cauchy's Form of Remainders
8.6 Self Check Exercise

8.7 Summary

8.8 Glossary

8.9 Answers to Self Check Exercises

8.10 Reference/Suggested Readings

8.11 Terminal Questions

8.1 Introduction

Dear students, in this unit we shall study Taylor's Theorem and explore its Lagrange's
and Cauchy form of remainders. Taylor Theorem provides a way to approximate a function
using its derivatives at a specific point. It expresses a function as a polynomial centered around
that point. The remainder term in Taylor's theorem can be expressed more conveniently using
Lagrange form. One practical use of the Lagrange form of the remainder is to provide an upper
bound on the error when approximating a function using a Taylor polynomial for instance, of we
want to approximate a function f(x) using its third degree Taylor polynomial centered at (x=2).
The Lagrange's form of remainder would help us to estimate the error in this approximation.

8.2 Learning Objectives
The main objectives of this unit are
0] to study Taylor's theorem with Lagrange's form of remainder
(i) to learn Maclaurin's theorem with Lagrange's form of remainder
(iii) to study Taylor's theorem with Cauchy's form of remainder
(iv) to study Taylor polynomial
8.3 Taylor's Theorem With Lagrange's Form Of Remainder
Statement: If f is a function defined in [a, b] such that
(1) Fo s e, ™1 (x) are continuous in [a, b]
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2) f"exists in (a, b), then there exists at least one real number

ce(ab)
f®= @+ -2 r@+ C D PO sy gy o A
2 [n-1 [
Proof: Consider a function ¢ defined on the closed interval [a, b] as
. (b-a)® ,b-a™ (b—x)"
= +(b- + Foonn D) +—— . 1
¢(x) = f(x) + (b -x) f(X) 2 ') -1 /") I (1)
Where A is a real constant to be determined such that
¢(a) = ¢(b)
ie. f(a) + (b - a) fia) + O a)° 7(a) +...... NGk )nlfnl() b=x" . ) (2)
2 [n-1 [n

Since  f(x), f'(X), f"(X),eeerery f0U(x) and (b - X)", (n = 1,2,......(2), are continuous in [a, b]
and derivable in (a, b), therefore

We see that.
1. $(x) is continuous in [a, b]
2. d(x) is derivable in (a, b)
3. o(a) = ¢(b)

Hence ¢(x) satisfies all the three conditions of Rolle's Theorem in [a, b] and therefore
there exists atleast one real number ¢ € (a, b) such that ¢'(c) =0

Differentiating (1) w.r.t X, we have,

§00 = F09+ 700 + (b-x) £00] + {—(b— 0 £+ L= (x)}

12
(b-a)"? ., . (b-a) (b—x™
{‘m—zf(X”Ll”)H n-1 A}
. (b—x)"* (b-x""
= vo= | A
mdm-(_'rnﬁ()ﬂ
In-1
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(b—x""

Oor¢'(c)= ———— -1 [f" (x) - A] [by putting x = ¢]
(b_ )nl ] ' ~
-1 [/" (c) - Al [¢'(c) = 0]
Orff(c)-A=0
OrA=f"(c)

Putting this value of A in (2), we have,

I PN . LR .

f@)+((b-a)f(a)+ —— 2 -1 n

—— ()

This proves the Theorem.

(b—a)"
- n

Note. For n = 1 Taylor's Theorem reduces to Lagrange's Mean value Theorem.

Note f" (c) is called Lagrange's remainder after n terms and is denoted by Rq.

Another form of Taylor's Theorem with Lagrange's form of remainder.
If a function fis defined in [a, a + h] such that

1. f.ff",....f"are continuous in [a, a + h]

2. fMexistsin {a, a + h),

Then there exists at least one real number 0, 0 < 0 < 1, such that

n-1 n

h
(@) + Ef” (a + 6h)

fla+h)=f@)+hf(a)+ hEzzf"(a) to +|:__1

(in the proof of above Theorem 6.7.1takeb=a+handc=a+6h) for0<06<1l,a<a
<+6h<a+h

n

h
Here R" = E f"(a+6h),0<6<1,isthe Lagrange's remainder after n terms.

Another form of Taylor's Theorem with Lagrange's form of remainder after n terms.
If a function f is defined on [xo, X] such that

1. A . Y are continuous in [Xo, X]

2. f" exists in (Xo, X)

Then there exists at least one real number 0, 0 < 0 < 1 such that
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8.4

F(%) = £(x0) + (X - Xo) f' (x0) + %f"(m) T %f”‘l (xo)
+%f“ [Xo + 0 (X - Xo)]

[In the proof of above Theorem 6.7.1take a=Xpoand b =X, c=Xo+ 6 (X - Xg), for0 <6<
Xo < Xo+ 0 (X - Xo) <X]

(X=%)"
[n

Maclaurin's Theorem with Lagrange's form of remainder after n terms.

Hence R, = ———— f" [x0 + 0) is the Lagrange's form of remainder after n terms.

Statement. If a function f is defined in [0, x] and

1. fo S ™ . Y are continuous in [Xo, X]

2. f" exists in (Xo, X)

Then there exists at least one real number 0, 0 < 0 < 1 such that

n-1

_ : X . X
f(x)—f(0)+Xf(0)+|_2f(0)+ ....... +|n__1

[In the proof of above Theorem 6.7.1 take a=0andb=x,¢c=0(x), for0<6 <1,
0<6(x)<x]

-1 X_n n
)+ |ﬂf (6x)

Hence Ry = f" [6x] is the Lagrange's form of remainder after n terms in Maclaurin's

()"
[n

expansion of f(x).

Taylor's Theorem with Cauchy's' form of remainder.
Statement: If a function f is defined in [a, b] and

1. fofs [ . f™* are continuous in [a, b]
2. fMexists in (a, b)

then there exists atleast one real number 6, 0 < 6 < 1 such that
)

(b-a)® a) , -3

2 TR EAC

=f@+((b-a) f@)+ —-—
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, (-3

1-6)™f"(a+6(b-a)

In-1
Proof: Consider a function ¢ defined on the closed interval [a, b] as
000 = 160+ 03 7 09+ L g
2
+(k)|£]—2_“f(”'l) X)+(b-x)A (1)
Where A is a real constant to be determined such that
o(a) = ¢(b)
ie. fa) + (b-a) fia) + L |_2a) @)+
(bl_ a)l_l fM@+b-aA=fb . ()
Since f(X), f'(X), f'(X), ......, f0D (x) and (b - X)", (n =1, 2, .....n-1), are continuous in [a,
b] and derivable in (a, b), therefore
We see that,
1. d(x) is continuous in [a, b]
2. d(x) is derivable in (a, b)
3. o(a) = ¢(b)

Hence ¢(x) satisfies all the three conditions of Rolle's Theorem in [a, b] and therefore
there exists atleast one real number 6 € (0, 1) such that ¢'[a - 6(b - a)] =

Differentiating (1) w.r.t. x, we have,

b_ 2
O'(X) =f'(X) + [-f(X) + (b -x) f'X)] + {—(b— X) f"(X)+ ( |_2X) f (x)} +....

o R _
{ TR f(X)}[A]
o [ (=X

= ¢(X)—{ -1 f (X)} [Al
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[b-a—(b—a)g]™*

Or¢la+ (b-a)b] = [f'la+ (b-a)d]-A

In-1
Or ¢'(c) = o a)|n£_1 511_ i [fTa+(b-a)0]-A  [by putting x=a+0(b - a)]
ora=E=8 C=0 trta s - oy
Putting this value of A in (2), we have,
: (b-a)* (b-a)"" |
f@+(b-a) f(a)+ 2 f'@+...+ -1 f
b_ n
(a) + % (1-0)™ ffa + 6(b - a)]

8.5 This proves the Theorem.
Taylor's Theorem with Cauchy's form of remainder.
1. £ f"tare continuous in [a, a + h]
2. fMexistsin (a, a+ h).

then there exists atleast one real number 0, between 0 and 1 such that

(h)’

f(a+h)=f(a)+hf'(a) + Ef"(a) +oee
(h)n_l (n-1) ﬂ _ n-1 ¢n
+ |n_—1f (@) + |n_—1(1 o)™ f" (a + 6h)
Here R, = ﬂ (1 -0)™ /" (a + 0h) is called Cauchy's form of remainder after n terms.
[n-1

[take b =a +hi.e. b - a = hin the above Theorem].
Another form of Taylor's Theorem with Cauchy's form of remainder after terms.
If a function f is defined on [xo, X] such that

1. fo fof e, 0 are all continuous in [Xo, X]

2. M exists in (Xo, X)

Then there exists at least one real number 6, 0 < 06 < 1 such that

146



F(X) = f(Xo) + (X - Xo) f* (Xo) + % "(Xo (X=%)™"

+% (L- )™ /7 [xo + 6 (X - X0)]

Hence

X_ n
Ry = ﬂ(l - 0)™ /1 [Xo + O(X - Xo) is the Lagrange's form of remainder after n terms.

n
Is the Cauchy's remainder after n terms.
[take a = Xo, b = x in the above Theorem 6.8]
Maclaurin's Theorem with Cauchy's form of remainder after n terms
Statement. If a function f is defined on [0, x], such that
1. VA . 0 are all continuous in [0, X]
2. f" exists in (0 x)

Then there exists a real number 0, 0 < 0 < 1, such that

n-1 n

x> X
= f(0) + £'(0) + — (0) ........ + "1 (0) + 1-0)" fM(ex),0<06<1
f(xX) = f(0) + f(0) |_2f() f() ( )™ 1 (6x),

X"
n-1

Is the Cauchy's form of remainder after n terms in the Maclaurin's expansion of f(x).

Hence R, = 1-0)"Mm@Ox),0<0<1

[take a = 0, b, = x in the above Theorem]
Taylor's Polynomial

If a function f(x) has derivatives of order n at xo, then

(X=%p)? , Oex)”

f(X0) + (X- Xo) f'(Xo) + 2 ['(%o) + ... I " (%)
is called nth Taylor's Polynomial of f at Xo and is denoted by Pn(x).
Thus,
P = 16) + 630 £ ) + 0 0% sy ., _fo’) 109
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is nth Taylor's Polynomial of f at Xo.

Some lllustrated Examples

Example 1: Apply Taylor's Theorem with Lagrange's form of remainder to the function

Solution: Let f(x) =cosx X € (%xj

Now

f(x) =cos xin (%xj

By Taylor's Theorem with Lagrange's form of remainder we have from (1)

() = f@ ¥

3

fn

n!

where 0<0<1

f(x) = cos X,

f'(X) = -sin x,

n
=cos | X+~
[ 2)

f"(X) = -sin [X+—

;)

= cos (x+ Z.EJ
2

T
X —
2

210
| 2

[

T
X——
2

)

)2

—7T

7]
n (n-Yr
2 2



fn(x) = cos (x+n§j, f”{%+9[x—%ﬂ = cos {%_kg(x_%ﬂ

from (2)

2
T
(X‘zj
cosx:O+(x—zj+—.0+ ........
2
n-1 n
T T
X—"= X——
( zj (nﬂj ( 2)
+ cos|— | +

(n=-1)!

X COS {wﬂé{x—zﬂ
2 2
or
i) )
_r X——_ )
COSX:_(X_EJ+ 2 L2 r, U2
3' ............... (n—l)l 2 n[

where 0<6<1
Example 2: Apply Taylor's Theorem with Lagrange's form of remainder to the function

fX)=sinx xe (%x}

Solution: Here f(x) = sin x, % <X<Xx L. Q)

By Taylor's Theorem with Lagrange's form of remainder to (1), we have

T

oo 5)(3)- Ll
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Now

or

WhereO<6<2 . (2

f(x) =sin x, f(%j =sin % =1

f(x) = cos x sint =0 =sin (x+%j

~
7 N\
NS
N—
1
%23
=)
7\
N
+
[N
N——
1

sin 3—” =-1=sin| X+ 2.£
2 2

~
—
>
N
11
(@]
o
(%]
7\
X
+
[N
N—
4
7 N\
NN
N—
1l
%]
>
I
+
T
N—
1l

7(x) = sin {xﬂ%’”] m Bw(x—%ﬂ = sin {(n+1)%+e(x—%ﬂ (3)

from (2), we get

( 7[}2 ( ﬂ_jn—l

X—— X—=

sinx=l+(x—£j.o+—2(-1)+ ......... +—Zsin[”_”j+
2 ! 2
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S+ +~— =2 sin —
21 (n-1)! 2

Example 3: By Maclaurin's Theorem with Lagrange's form of remainder expand f(x) = sin x as
for as nth terms of absconding power of x.

Solution: Here fx)=sinx ... D

By Maclarrin's Theorem with Lagrange's form of remainder to (1), we have

, N X2 X o X
) = f(0) +x f(0) + Ef (0) + gf 0) + ..ot (n—l)!f (0) + P
f'ex,0<6<2 L. (2
Now
f(x) = sin x - f(0)=sin0=0
f'(X) = cos x = sin (x+%j S f'(0)=sinnt=0

(x) = 27 37 . moy=sin F =
f(x)—cos(x+2j sm(x+2j..f(0) sin > 1

™) = sin {x+—(n_1)”} - ) =sin D7
2 2
J7(x) =sin (H%ﬂj o f"(6x) = sin {exﬂ%”}
. from (2), we have
o X2 x? "t (n=1"
smx-0+x(1)+E(0)+§(-1)+ ________ + (n_D] 5



+ x sin [9x+n—”}
n! 2

or
. X "t (n-Dx
SINX=X-"— + —+ ... + sin
3! 5l (n-1! 2
+ x sin [9x+—ﬂ]
n!
0<o6<1

Example 4: Use Maclaurin's Theorem to prove that

eX=1+x+—2+—3+ ..... + X" +X—ne9”,
20 3 (n=-1)! n!
0<6<1
Solution: Here fx)=e .. 1)
f(x) =¢* = f(0)=e’=L
f(x) = e fO=1
f'(x) = e* f'o)y=1
fr=e . fO)=1
fH(x) = e fMm@O)=1
(X) = e* f(6x) = e*

by Maclaurin's formula, we have

3

2
£(x) = £(0) + x £(0) + % (0) + % F°0) + oo

Xn—l Xn
+ 1(0) + — " (Ox
i/ O 1 1
2 3 n-1 n
eX:1+X+—+— ....... X +X_ SX,
2! 3! (n=-1! n!
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Inequalities:
We shall make use of theorems to prove

Some important inequalities.

Example 5: Use mean value theorem to show thattan x > x > sin x, X € (0,—}.

Solution: Let us consider the function
f(z)=tanz-z

and
9(z) =z-sinz, ze[0,x],xeR,xe (o,%)

f'(z) =sec?z-1=tan?z>0
and
g'(2)=1-cosz>0 Vze(0,X
clearly, f and g are strictly increasing in [0, X]
= fx>f0) and g(x)>9g(0)
= tanx-x>0 and x-sinx>0 (Q f(0)=g(0)=0)

= tan X > x and Xx>sinx
. V4
= tan X > X > sin X, X e (OEJ

Example 6: By examining the sign of the derivatives of an appropriate function, prove that

tan x > X V(O,Zj

Solution: Let f(y)=tany-vy,y € [0, X]
f'ly)=sec’y-1=tan’y>0
= f is strictly increasing function in [0, X]

f(xX)> f(0),i.e.tanx-x>0

U

or tan x > x V Xe (O%} Hence proved.

Now you can try the following exercises
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8.6

8.7

8.8

8.9

Self Check Exercise
Q.1  Apply Taylor's Theorem to expand in the form

2 4
T T
(X_ZJ (X_Zj z
eCOSX:l_ (X_zj-*- - + -

Q.2 If f(x) =x3-6x2+7, find the value of f(g—;[j by Taylor's Theorem

Q.3  Show that

2

log(n+l)=x- —+ —+......
9 (n+d) 2 3 n @+eox)"

by using Maclaurin's Theorem

Summary

Dear students let us summarize what we have learnt from this unit:
0] Taylor's Theorem with Lagrange's form of remainder

(i) Maclaurin's Theorem with Lagrange's form of remainder
(iii) Taylor's Theorem with Cauchy form of remainder

(iv) Application of the above theorem to some important inequalities.

Glossary

| (b-a)’ | | .

0] Rn = Tf(n) (c) is called Lagrange's remainder after n terms in Taylor's
Theorem.

n

N X . . : .
(i) Rn = —If” (6 x) is called Lagrange's remainder after n terms in Maclaurin's
n!

Theorem.

n

X
(n-1!
n terms in Maclaurin's expansion of f(x).

(iii) Rn = (1-0)™f"(0x),0<06<1,is called Cauchy form of remainder after

Answers to Self Check Exercises
Ans. 1 Apply Taylor's form of remainder
Ans. 2 1.542625

Ans. 3 Apply Maclaurin's theorem
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8.10 Reference/Suggested Reading

1.
2.

H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002
G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007

8.11 Terminal Questions

1.

Expand tan x in power of (x—%j up to four terms.

Using Taylor Theorem, express the polynomial 2x3 + 7x% + x - 6 in power of x - 2.

. . a3x3 a.5)(5 n-1
Show by Maclaurin's Theorem that sin ax = ax - + oo 2
3! 5! (n-1!
. (n-1 X"
x”‘lsln( )ﬂ+ax n E+au9x,0<6<1.
n! 2

tan x X . : —

Prove that ——> ——, 0<x < % by examining the sign of the derivatives of
X sinx

an appropriate function.
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Unit-9

Taylor's Series And
Maclaurin's Series

Structure

9.1 Introduction

9.2 Learning Objectives

9.3 Taylor's Series of Function

9.4 Macsaurin's Series of Function
9.5 Self Check Exercise

9.6 Summary

9.7 Glossary

9.8  Answers to Self Check Exercises
9.9 Reference/Suggested Readings
9.10 Terminal Questions

9.1 Introduction

Dear students, in this unit we shall study two important series, namely, Taylor's series
and Maclaurin's series. The Taylor's series or Taylor's expansion in an infinite sum of terms that
are expressed in terms of the function's derivatives at a single point. For most common function,
the function and the sum of its Taylor series are equal near this point. The Taylor series are
named after Brook Taylor who introduced then in 1715. A Taylor's series is also called
Maclaurin series when 0 is the point where the derivative are considered, after Colin Maclaurin,
who made extensive use of this special case of Taylor series in 18th Century. The partial sum
formed by the first (n+1) term of a Taylor series is a polynomial of degree n that is called nth
Taylor polynomial of the function.

9.2 Learning Objectives

The main objectives of this unit are

0] to define Taylor's series of real function

(i) to deduce Maclaurin's series of real function

(iii) to find Taylor and Maclaurin's series of sin x, cos x, e, log (1+x), (1+x)™.
9.3 Taylor's Series.

The Taylor's series of real function f(x), that is infinitely differentiable at a real point a, is
the power series.
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f f " _ 2 f m _ 3
f(a) + @ 1(Ia) (x-a)+ (a)(2>!< 3 + (a)g( 3 + o
B fn
b =Y n(la) (x- )"

Here n!, denotes the factorial n. The function f"(a) denotes the derivative of f evaluated

at the point a. The derivative of order o if f is defined to be f itself and (x - a)° and 0! are both
defined to be 1.

We have seen that remainder R, after n terms in the Taylor's expansion of f(x) at Xo is
given by

@ Rn= & nxo) " X0+ ¢ (X-X0), 0<¢<1]
(Called Legrange's Form of remainder)
@ Rz E20C 0 g s (x-x), 0< 6 < 1)

n-1
(Called Legrange's Form of remainder)

Now if R, — 0 as n — o, then the Taylor's expansion of f at Xo is called Taylor's Series.
In view of above, the Taylor's series can also be defined as :

Let a function f has derivative of all orders in a neighbourhood (nhd). N of a real number
Xo. Lt Ry be the remainder after n terms in the Taylor's expansion of f at Xo.

Further, Let R, — 0 as n — oo, then the infinite series.
(X —><0)

J(x) = f(X0) + (X - Xo) f* (Xo) + f'(xo) +

X—
W XO) FU(X6) + s + o i infinity
is called Taylor's Series of f around Xo (or at Xo)
9.4 Machaurin's Series

If we take xo =0, the Taylor series becomes Machaurin's Series of f around 0 (or at xo =
0). Thus, Machaurin's Series is a special case of Taylor's Series.

Note : From the definition of Taylor Series it is quite obvious that it does not matter whether we
take Rn, the reminder after n term in the Lagrange form of remainder or in the Cauchy Form of
remainder (because R, — 0 as n — ). But it is always convenient to take Rn in the Lagrange's
form of remainder after n terms.
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Example 1 : Use Taylor's Theorem (with Lagrange's form of remainder) to the function f (x) =

Cos X in (% , xj . Hence find the Taylor Series of Cos x around z

Solution : We have

_ _ 7 T o_
f(x) =Cosx o f (—2) Cos 5 0

' - _ Qi . ' _ﬂ =_Sj _ﬂ. = -
f (x) =-Sinx S f (2} Sin > 1

" =- : " Z = - Ez
f"(x) =-Cosx o f (2) 0052 0

(il —_ H . m z = H z -
" (x) =Sinx o f (2) Sin > 1
mnmn — . mnn Z - Z =
f™x) =Cosx o f [2) Cos > 0

™ (X) =-Sinx SofM (% = .sin Z

(n-1) — _12 (n-1) Z
™Y (x) = cos (X+n 2) and f [2]

s T nz
=cos| —+n-1— [=cos —
(2 2)

{ 0 if nisodd

-1’2 if niseven

n(x) = nz
f(x) =cos (x + 2)

= r=[3eowg)|ref5rol-5) 5]
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— z _r
=f {(n+1)2+¢9(x Zﬂ

. : |
By Taylor's Theorem with Langrange's form of remainder after n terms in {E , X:l , we have,

T

(g2 5 UL g Bl i

+ 3 + n-1 CoS —
3
+ Tzcos {(n+1)%+9(x—£ﬂ,o< 0<1

To find Taylor Series at Xo = %

T
X -

Here anucos (n+1)£+t9(x—£j ,0<06<1
[n 2 2

Since |cos (n + 1) % +0 [X—%]E 1

AndXG[%—ﬁ,%+§j,6>O:> <d<l1

T
X——
2
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hence Rnh—-0asn— o

: T
.. Taylor Series of cos x around By is

n—o0

. X .
[lim m = 0 provided |x| < 1]

Example 2 : Use Maclaurin's Theorem (with Lagrange's form of remainder to expanded sin x
and hence deduce the Macalurin Series.

Solution : f(x) = sin X S~ f0)=0
'™ =cos x L fO=1
£7(X) = - sin x S f0)=0
"% = -cos x SO =1
fM(x) = sin x -~ f™0)=0
f™"(X) = cos x f™0O)=1
74(x) = sin (x+(x—1)%j - [70) = sin (n- 1) %

n-1

0 if niseven
(-2 if nisodd

7 (x) = sin (x+%”} - f" (6x) = sin (0x + %)

By Maclaurin's Theorem with Lagrange's form remainder to the function f(x) = sin x, we have,

X3

3

n-1 n

(n-1) X_ n
m—lf (0)+mf(ex),0<e<1 ..... D

ﬂ@w@+v@+%f@+ £(0) + ...
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2 X3 Xn—l _ Xn
Hence sin x = 0 + x(1) +X— O+ —(D+...+ sin (n=Dz + —sin (6x + n—ﬂ), 0<6<1
213 n-1"" 2 n 2
3 X5 Xn—l . (n—l)ﬂ Xn

. . n
Orsinx=x- — +—sm(6x+7ﬂ),0<6<1

|§ + E vt |ﬂ_lSIﬂ > |£l

To find Taylor Series around xo = 0

X" nr
Here R, =—sin (6x + 7), 0<6<1

[n
. . Nz
Since sin (6x + ?)<1andXE(-6, %), >0

= |x]<d <1

n
S lim— =0

N—o0 m -

=Ryn—0asn—w

.. the Maclaurin Series of sin x (Taylor Series of sin x around xo = 0
SINX=X- —+ —- —+ ...,

Example 3 : Write the Taylor's formula f or f(x) = log(1+x).f or - 1 < x < 1 with xo = 0. Hence
deduce the Taylor Series of log(1+x) around xo = 0

In particular, log 2 =1 - % + % + %+ )
Solution : f(x) =log(1 + x) ~f(0)=0

fx)= % ~f(0)=1
+ X

o= )=
(1+x)

0= ) =2
(1+x)

= (0) =6

(1+x)



(-)"?*[n-2
(1+x)"*

(-)™n-1
@+x"

By Taylor's formula at xo = 0

() =

)=

_ 0+ X
I = SO+ X7 O+ 15 /" O+ 13

|__

Where R, is the remainder after n terms.

f(” Y (0) + Ry

2 3 4

- log(14x) = 0 + x(1) +XE (1) + =2+ X (6)+..+

3 4
2 X3 4

X
2B

|£- —+
X" (1_ 0) n-1 (_1) n—lm -1
n-1

@+ox)"
()" x"(@-0)"*
@+ex)"

Since -1 <x<1,

Orlog(l +x) =x -

OrRn=

,0<0<1

OrR, = ,0<0<1

Therefore, forx >-1and0<6<1
-1-6x<1-0<1+6x
or-(1+6x)<1-6<1+6x

1-6

1+6x

I |<1

(_1)nflxn (1_ g)nfl _ Xn |
@+ox)" 1+ 9x|

- (1+ex]”_4

| +9x|

IRn| =

(11+_ egx)n_]‘
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3
X o)+

- f7(0x) =

n-1

X
In-1

- f"H0)= (-1 |n-2

(-)™|n-1

@+ox)"

.(-1)™ [n-2+ R



1-6
1+6x

LY {
~ |1+ 6x|

<1}
Some lllustrated Examples

Example 4 : Approximate the value of \/E to four decimal places by taking the first four terms
of an appropriate Taylor's expansion.

Solution : Let

fix+h)=Jx+h = =X (Put h = 0)
i e i = 1 7%
f'x) = 2dx 5 X
F=-3 X

= X

By Taylor's Theorem
2 3

h h
fOxh) = f(x) + h fi(x) + o )+ 3 )+

h h? h?
NX+h =x + - + + ...
Vx 2% 8x'x  16x3x

Substitute x =9 h = 1, we get

J0=3+ 2.+ , 1t
2.3 893 16x81x3

i1, 1
6 216 3888
=3+ 0.16666 - 0.00463 + 0.00025 + ....

= 3.16228 nearly

= 3.1623 (nearly). up to four decimal places.

Example 5 : Find an approximation value of sin 31° and estimate the error term.

Solution : Let f(x) = sin x

Take the interval [% ,Z + l}
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T

180

Here xo = = + =310

oy

Clearly f(x) is derivable in N (%j

- f(X) = cos x exists in N (%)

.. By Mean Value Theorem

F(x) = f(x0) + (X - Xo) f(Xo)

. T T . T T T
= sn|{—+—| =SIn — + — C0OS —
[6 180} 6 180 6

7 3

= sin310;1+—><—

2 180 2
= sin 310 = 0.5 + 0.015 =0.515
Now |R(X)| < (X - X0)? | f"(X)], Xo <C <X

(. f'(x) = -sin ¥)
2
~R(X)| < T | -sin4|, z <c, < Zz L
180 6 180 6
2
= (ij 1 (~1-sinG|<1)
180

Which is the required error.

Example 6 : Approximate «/1_7 up to four decimal term by taking first three terms of Taylor's
expansion.

Solution : Let's take f(x + h) = \ﬁ +h

h=0= f(x) = VX

YU

f(X)—Z\/;—2 X
f"(x)=-% U

By Taylor's expansion

2

h
fOxh) = f(x) + h fi(x) + o o)+ .
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Put

Example 7 : Show that f(ax) = f(x) + (a- 1) f'(x) +

h h?
Ix+h = X + — - — 4+
2Jx  8x/x

x =16, h=1, we get
\/]7 =4+ 11
8 512
=4+0.125-0.00195 + ....
= 4.12305 (app)
=4.1231 (nearly)

2
L

Solution : f(ax) = f[x + (an -x)] =[x+ (a-1) X]

9.5

9.6

9.7

f@ax)=f(a+h),a=x,h=(a-1)x
2

h
= [ =f@+hf(a)+ > 1)+

2
S f@)= 00+ @-1) £+ %xz 709

Hence the result.

Self Check Exercise

Q.1  Evaluate the Taylor's Series for
fx)x3-10x*+6atx=3

Q.2  Write the Taylor's series for f(x) = tan x

Q.3  Find the Machaurin's series expansion of f(x) = e*

Summary

In this unit, we have learnt that

(@ Taylor's series.

(ii) Maclaurin's series

(iii) Application of Taylor's and Machaurim's series for sin x, cos x, €%, lot (1+x)
and (1+x)™

Glossary

(1) Maclaurin Polynomial : A Taylor polynomial centered at 0, the nth degree

polynomial for f at O is the nth degree Maclaurin's polynomial for f.
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9.8

9.9

9.10

(i) Taylor Series : A power series at the point a that converges to a function on
some open interval containing a.

(iii) Maclaurin's Series : A Taylor series for a function f at x = 0 is known as
Maclaurin series for f.

Answers to Self Check Exercises
Ans. 1 [-57 -33 (x - 3) - (x - 3)2 + (x - 3)7]

3 5
X 2X
Ans. 2 [ X+ — + — + ... ]
3 15
2 X3 X4 X5
Ans. 3 [1+X+ — + —+ — + — + ... ]
2 6 24 120
Reference/Suggested Reading
1. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002
2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007

Terminal Questions

1. Find the Taylor Series for
fx) = 1 atx=1and
X

determine its interval of convergence.

. . 1 L
2. Find the Taylor series for f(x) = > at x = 2 and determine its interval of
convergence.
3. Use the fourth Maclaurin polynomial for cos x to approximate cos (%)
4, Find the first and second Taylor polynomial for f(x) = \& atx =4.

Use these polynomial to estimate \/6 Use Taylor Theorem to bound the error.

5. Calculate the approximate value of «/ﬁ to four decimal places by taking first
three terms of a Taylor expansion.
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Unit - 10

Concavity And Convexity
Structure
10.1 Introduction
10.2 Learning Objectives
10.3 Concavity And Convexity of A Curve
10.4 Point of Inflexion
10.5 Working Method For Convexity And Concavity
10.6  Self Check Exercise
10.7 Summary
10.8 Glossary
10.9 Answers to Self Check Exercises
10.10 Reference/Suggested Readings
10.11 Terminal Questions
10.1 Introduction

Dear students, in this unit we shall first define what we mean by concavity and convexity
of a function (curve). To have a clear understanding of the concept concavity and convexity, w
shall see that a curve is reported by two parts, one the convex part and the other is concave
part and here comes the existence of point of inflexion.

10.2 Leaning Objectives
The main objectives of this unit are
0] to know what we mean by concavity and convexity of a curve.
(ii) to learn about the point of inflexion
(iii) to learn the method to locate the point of inflexion
(iv) to know the working method for concavity and convexity
(v) to know the working method to find the point of inflexion
10.3 Concavity And Convexity of A curve

Let us consider a curve which is the graph of a single valued differentiable function y =
fx)
Definition

A curve is called concave downwards (or convex upward) on the interval (a, b) if all the
points of the curve lie below any tangent to it on that interval (see fig. 1) It is said to be concave
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upward (convex downward) on the interval (a, b) if all the points of the curve lie above any
tangent to it on that interval (see Fig. 2)

= . f

Fig. 1 , Fig. 2

A curve which is convex downward (or concave upward) is called a concave curve and a
curve which is convex upward (or concave downward) is called a convex curve.

We now prove a problem
Theorem: The curve y = f(x) on an interval (a, b) is convex upwards or concave downward,
according as at all points of the interval (a, b) the second derivative is negative or positive

respectively.
Proof: Take an arbitrary point p(x=xo) on the curve y = f(x) in the interval (a, b) - (1)

In the tangent line line PT at P to the curve y = f(x) is

Y - f(X0) = f'(X0) (X - X0) - (2)

%

L ---.---.-

Fig. - 3
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Let Q (o + h, f(Xo + h) be a point on the curve in the neighborhood of P in (a, b)
Let the ordinate of QM of Q meet PT in R.

Since the abscissa of R = abscissa of Q = Xo + h

2

MQ=F(Xo+h)=f(Xo)+hf(Xo)+%—f”(xo+6h)0<9<l

h?21

MQ-MR = =

xo+Oh) L. 3)

Let us assume f'(X) to be continues at p and is non-zero at that point, so that the same
sign as that of f'(xo + 6h) when |h| is very small hence from (3), MQ-MR has the same sign as
that of f'(xo) for positive as well negative value of h, provided h is sufficiently small in magnitude.

Now to cases arise
Case when f'(xo) is negative
Then, MR - MR is negative

= MQ < MR for Q on either side of P and in the nhd. Of P, so that portion of the
curve on both side of a lies below the tangent at p(see Fig. 3)

Thus, the curve is convex upward (or concave downwards) in the ndd. Hence the curve
2

d%y

y-f(X) is convex upwards (or concave downwards) when F is negative at all points of (a, b).
X

Case 2. When f" (xo) is positive
Then, NQ-MR is positive

= MQ > MR for Q an either side of p and in the nhd. Of p, so that the portion of the
curve on both sides of P lie above the tangent at p (see Fig. 4)

Thus, curve is convex downwards (or concave upwards) in the nhd. Of p. Since, p is
2

d7y

arbitrary, the curve is convex downwards (or concave upwards) When Fis positive at all
X

points of (a, b). This completes the proof of the theorem.
Let's now do now example to have better ides of the concept.
Example 1. Establish the intervals of convexity and concavity of the curve
Y=2-x2

2
ﬂ =-2xandd—¥=-2<0vXeR
dx dx
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Hence curve is everywhere convex upwards. Let us draw this curve.

Y

4

10.4 Point of Inflexion

A point that separates the concave part of the curve from the convex part of the curve is
known as a point of inflexion. For example consider the curve y = x2.

It is easy to se that O is point of inflexion for the curve y = x2

You can see that at the point of inflexion, the tangent line, if it exists, cuts the curve,
because on one side, the curve lies below the tangent and on the other side the curve lies
above it.

We now prove a theorem to find the conditions so that a point becomes a point of
inflexion of the curve.
Theorem: A point of P of curve y = f(x) is a point of inflexion if

d?y

i. F at P | zero (or does not exist)
X
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2
ii. d—gchange sign white passing through P.
X

d2
Proof: Lety = f(x) be a curve and xo be the abscissa o a point p on the curve. We have d—Z:
X
f"(x) = 0 or it does not exists.
J y
T P t y
> . >
0 x. 0 x'
(Fig 5) (Fig 6)

iil. Let f" (x) <0 for x <xe and f" (x) > 0 for x > Xo.

We notice that the curve is convex upwards for x < Xo. Hence P (Se Fig. 5, 7) of the
curve separates the convex upwards parts from concave upwards part, therefore P is a point of
inflexion (see Fig. 5, 7)

Y

4 . 4’

N =T

> >
0O X, (§) X,

(Fig 7) (Fig 8)

Let /" (x) >0 or x < xo an f" (x) < 0 for x > Xo.

171



We notice that the curve is convex upwards for X < Xo hence p (Se Fig 5, 7) for he curve
separates the convex upwards part from concave upwards part, therefore p is a point of
inflexion (see Fig 5, 7)

— - > .
0 Xe 0 X,

(Fig 7) (Fig 8)

Let " (x) >0 or x < Xo an f" (x) < 0 for x > Xo.

In this case we see that the curve is concave upwards for x < Xo and convex upwards for
X > Xo. Hence, the point p (see fig 6, 8) of the curve separates the concave upwards p part form
convex upwards part. Therefore, p is a point of inflexion (see Fig. 8)

This completes the proof of the theorem.

Below we give method to find the point of inflexion of the curve y = f(x).

2 2
, . d
1. Evaluate d—zl and find all possible values of x say Xi, X2, Xs....... where d_zl: 0
X X
. . d?y .
2. Also find all values of x (if any) F does not exist. Let these values be a,B,y....X
X
= X1, X2, X3, eres o, By Veeeen are possible points of inflexion.
. . o . . d?y .
3. X = x1 will be a point of inflexion of the given curve if either Fz changes its
X

. d? . . .
sign at x = x;. Or d—zl exists and is non is non zero at x = X;.
X

Now, let us do one example.
Example 2: Find the points of inflexion and also determine the intervals of convexity and
2
concavity of the curvey = €~

2
Solution: We havey = € * as the eq = n of curve.
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% - e* . 2xand
X
dzy _x? —x2
Go =287 @2-n=2e" (Y2x-1) (V2x-1(2))
d?y 1 1
Now —5 =0 = —zandxz =-
ow dX2 = X1 \/Ean X2 ,\/E
2
For x < % de <0 (From (2))
2
And for x > % %: 0  (From (2))
1

For x1 = ﬁ there is point of inflexion on the curve and its coordinates are

1 = 1 2 1 2 2
——,e2 Hence | ——e? | and | ——e? |are two points inflexion fory = € *
V2 J2 2

d2
Since 2—y

1 . 1 1
for x > —= or x < —= of curve is convex downwards X <- —=, Or X >—
>0 V2 2

VRN

. 1
= curve is concave for |[X| > —=

2

d?y 1 1 { 1 1 }
Again —5-< 0 for - —= <x < —= of course is convex upwards in | ——=,—= | Or curve
¢ N7 NG

. : 1 1
is convex in | ——=,—F=|.
{ V2 JE}

10.5 Working Method for Concavity and Convexity
Lety = f(x) be a curve in [a, b]

d%y
i Evaluate —-
@ valuate o

d2
(i) Find the interval (a, b) such that d—¥> 0
X

Then (a, b) is the interval for y = f(x) of being concaves downwards (concave upwards)
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d2
(iii) Find the interval (a, b) for which d—Z< 0.
X

Then (a, b) is the interval of being convex upward (concave downwards)

10.6  Working Method for Locating Points of Inflexion

°y
' Evaluate —5-
0] valuate o

2

dy

(i) Find the values of x for which F: 0, and those valves of x (if any) for which
X
d’y . . o
Wdoes not exist. X = a, b, ¢ may be possible point of inflexion.
(iii) If x = ais a point of inflexion then either
d2
D) —Zchanges signatx=a
dx
d’y .
(2) F exists and is non-zero at x = a
X
d’y . - ) . .
Note: 1. Fz 0 is not a sufficient condition for the graph of f to have point of inflexion.
X
2. If f"(c) # 0 at a point c, n even, then x = c is not a point f inflexion.
3 If f"(c) = 0 at a point ¢, n even and fn+1(c) = O then the curve has a point of

inflexion at x = c.
Some lllustrated Examples

Example 3: Examine for the function y = 2 - x?, concavity upwards, concavity downwards and
the points of inflexion.

Solution: We have y = 2 - x?

d? d?

= g:-2x and —Z:-z,—Z:o.

dx dx dx

°y
Now —5 =-2<0 VxeR
dx
= the given curve is concave downwards V X € R
d?y

Again F> 0 is not possible for any real x.
X
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the given curve is not concave upwards for any real x.

2
Also —Z #0foranyx e R
dx

the given curve has no point of inflexion.

: . : 4 , :
Example 4: Examine the concavity and convexity of the curve y = x + —. Also find point of
X

inflexion if any.
Solution: The given curve is

y=x+—
X
dy 4 d’y 8
= — =1-— and — = —
dx x? x> x°
d? 8
Now —¥>0 = — >00rx*>0 = x>0
dx X
curve is concave upwards in (0, «)
d2
Again —¥<0 = £3<0 orx®<0orx<0
dx X

Curve is concave downwards in (-, 0)

Now, domain of the given function is the set of all real values except zero.
d2
—zl;t 0 for any real x,
dx
’y
also —- does not exist at x = 0 and 0 does not belong to domain of the function.
X

given function has no point of inflexion.

Example 5: Examine the concavity and convexity of the curve y = sin x in (0, 2x). Also locate
point of inflexion.

Solution: Given function is
y =sinXx, x € (0, 2n)

dy d?y d®y

—— =CO0S X, —2=-sinx, —3 = - COS X
dx dx dx
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2
Now F=—sinx>0whenn<x<2n
X

given curve is concave upwards in (rn, 2n)
2

dy

Further—- <0 when 0<x<mx
dx
given curve is concave downwards in (0, r)

Now —5 = = -sinx=0 or sinx=0
X

Points of inflexion are x = nx, n € z.
Example 6: Determine the point of inflexion on the curve

x=a(20-sinB),y=a (2 - cos 0)
Solution: We here have

x=a(20-sinB),y=a (2 - cos 0)

ﬂzasine
do
d
- dy _ %g_ asng _  sné
dx X 40 a(2-cosf) (2-cosh)
Also d*y _ (2—cosf)—cosfd-sind(sind do
dx’ (2—cosb)? " dx
_ 2(:056?—12 1 _ 2c056?—13 (@ sin - cos? 0 = 1)
(2—cosf)” a(2-cosd) a(2-cosh)
d’y

Now —2=Oiff20039-1=0
dx
iff cos § = 1=cos£
2 3

iff9=2nni%,nez.
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2 2
d
Now —2/<oifcose<E and —2’>0ifcos€)>1
dx 2 dx 2

g d’
—Z changes sign at points where 2/: 0
dx dx

= curve has points of inflexion where 6 = 2nr +

Then x=a {4n7r12§ m%}

w|y

_a@
2

points of inflexion are {a<4n7zir? m— >

2

83

Example 7: Prove that the origin is a point of inflexion on the curve a™! y = x™, if m is odd and
greater than 2.

Solution: The given curve is

am-l = xm
= y= a.m—l
dy_ m . dy_ mm-1) .
dX a.m—l ! dXZ am—l
d’y  m(m-1)(m-2) L d"y  m!
v N o Al
d? -
Now —2/: 0 = —m(mm_l Y X2 =0
dx a
xm2 = Xx=0ifm>2
d2 d3 dm—l dm
and atx=0,—¥=—¥= ............ m}l/=0and nY;tO
dx dx dx dx

Hence origin is a point of inflexion of m is odd and greater than 2.
Example 8: Show that the curve
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X =Log (%)

has a point of inflexion at (-2, -2e?).

Solution: Here X = Log (Xj
X
= ex= %or y=e¢e*
d2
d—Z=xeX+eX.1=eX. (x+1)
X
d2
and d—gzex.1+(x+1)e>‘=ex(x+2)
X
’y
and F=ex.1+(x+2)exzex(x+3)
X
d2
Now d_Z:O = e“(x+2)=0
X
= x+2=0 or X=-2
Now
d3
When x = -2, d_Z =e?(-2+3)=e?%0
X

Also atx=-2y=-2¢?
Hence (-2, -2 e?) is the point of inflex) on
10.7 Self Check Exercise
Q.1  Show that the curve y = e* is concave upwards for all real values of x
Q.2  Determine the point of inflexion on the graph of the function y = x*

Q.3 Examine the concavity upwards and concavity down words for the curve y = x3 -
Ox?+ 10x + 5

Q.4  Find the points of inflexion on the curve xy = a? log Y
X

10.8 Summary
Dear students, in this unit we have learnt

() concavity and convexity of a curve
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10.9

10.10

10.11

10.12

(i) concavity upwards and concavity downwards of a curve
(iii) the point of inflexion on the curve

(iv) working method for finding point of inflexion on a curve.

Glossary

0] M a point of inflexion the curve changes from concave upwords to convex
downwords and vice-versa, so at a point of inflexion f"(x) =0

(i) A point that separates the convex part of the curve from the concave part of the
curve is called a point of inflexion.

Answers to Self Check Exercises

dy d%y

Ans. 1 find —, —- and then proceed.
dx dx

Ans. 2 0 is not a point of inflexion

Ans. 3 concave upward for (3, «) and convave downwords for (-0, 3)
Ans. 4 (%ae_%,ae%)

Reference/Suggested Reading

1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
2. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002
Terminal Questions
1. Prove that the curve y = log x is everywhere concave downwords for x > 0
2. Show that the origin is the point of inflexion of the curve y = x’3
241
3. Find the values of x for which the curve y = 7 7 is concave upwords and

concave downwords. Also find the points of inflexion.

4, For the curve y = (x? + 4x + 5) e-x, find the intervals of concave upwords or
concave downwords. Also locate the points of inflexion.

2

X
5 » has three points of inflexion. Also find the point.

5. Prove that the curve y = ———
a +x
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Unit - 11

Curvature
Structure
11.1  Introduction
11.2 Learning Objectives
11.3  Curvature
11.4 Radius of Curvature
11.5 Self Check Exercise- 1-2
11.6  Centre of Curvature
11.7 Self Check Exercise - 3
11.8 Summary
11.9 Glossary
11.10 Answers to Self Check Exercises
11.11 Reference/Suggested Readings
11.12 Terminal Questions
11.1 Introduction

Dear students, we have already introduced the concept of concavity, convexity and the
point of inflexion of a curve in our previous unit. In this unit, we shall introduce the concept of
curvature, radius of curvature and centre of curvature etc. The concept of curvature in geometry
intuitively measure the amount by which a curve deviates from being a straight line or by which
a surface deviates from being a plane. In 14th century philosopher and mathematician Nicole
Oresme introduced the concept of curvature as a measure of departure from straightness. For
circles he has the curvature as being inversely proportional to the radius and attempted to
extend this idea to other curves as a continuously varying magnitude.

11.2 Learning Objectives

The main objectives of this unit are

() to define curvature

(i) to study circle, centre and chord of curvature

(iii) to study radius of curvature at the origin

(iv) to find radius of curvature at the origin by the method of expansion and Newton

method.

(v) to find centre of curvature and rule to find centre of curvature etc.

180



11.3 Curvature

Definition: Let AB be a curve and P, Q be any two neighboring points on it such that are
AP = s and are AQ = s+ & s so that are PQ = & s. (as shown in fig.)

\
A
5 XS
P P
\ p+E¥
j . 4 L X_X >
Ot— = R X

Let us draw tangents to the curve AB at the points P and Q respectively. Let these
tangents at P and Q make angles y and y + & y with the x - axis so that <RST = & y. Then,

() d v (measured in radians) is called the total curvature or total bending of the arc

PQ.

()} the ratio i—"yis called the average curvature of the arc PQ.
S

(1 |_| mé—"[/ if exists, is called curvature of the curve at p and is denoted by K.
Is—0

(IV)  the reciprocal of curvature at any point P is called the Radius of curvature and is
denoted by P.

[ _.1_ds
dy  dy
ds

Note: (1) The curvature at P is the limiting value, when it exists, of the average curvature
when Q — P (from either side) along the curve as a limiting position.

(2) The curvature is the rate of change of direction of the curve with respect to the
arc at that point

3) The curvature of the curve is independent of the coordinate system.
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(4) Circle, Centre and chord of curvature - The centre of curvature of a curve at a
point P is the point C which lies on the positive direction of normal at P and which is at a
distance P from it.

The circle with centre C and radius CP = P is called circle of curvature of the curve at P.

Any chord of circle of curvature at P passing though P is called chord of curvature
through P.

Art. 1. Show that the curvature of a circle is constant and is equal to reciprocal of the
radius

Proof: Let us consider a circle with centre C and radius r. Let P, Q be any two points on it such
that are PQ = ds. Let y and y +d y be the angels which the tangents PT and QR make with x-
axis so the <RST = d y.

<PCQ=23dvy
|
!
l
/. 48y
W L N
v T R
Now <PCQ = archQ
CP
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dy=—

r

. oov_1
os r
. oy _1
LImes

L . 1
ds r

= curvature at any point P of a circle is the reciprocal of its radius and so is
constant

We note here that
Radius of curvature = radius of circle.
11.4 Radius of curvature for Cartesian curve

Art.2. Obtain the formula for radius of curvature of the curve y = f(x) (Cartesian explicit
equation)

Proof: We have the equation of curve as

y = f(x)
From our knowledge of tangents and normal, we have
ﬂ =tany ... (2
dx
L @y _dx_ L, dy
dx* ds d
dy d%y dx
or sec? y —= — cOoS —=2co0s
Ly v Q IS )
ds s’y
dy dzy
dx?
3
ds (1+ tanzz//)é
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27%
=
_ dx

[ =t—7— (Q of (2)
dz%xz
%
1+ y? 2
= J' =—( +;/21) ,whereylz%,yzz%

Remark: We know that curvature of the curve at why point is independent of the coordinate
system. Therefore interchanging x and y, we have

(@8)* s
J = x, o dy' dy

Art.3 Parametric Equation : Find the radius of curvature at any point of the curve x = f(t), y =
a(t)
Proof : Let's Find the radius of curvature at any point of the curve

x=f(t),y=9()

d_ o dy
', p g'®

at

o Y. Ya o0

©odx '
dx & T

d’y _ f(0)g"0-9'®f ") © dt _ i)
dx? [F 'O dx (1)

d
{1+( %X) }
d2
Vo
g'® Y | e ira
{1{%)} }[f )]
I ©g" M) -g'®O ")

I [F'O] +[9'®)]
f(t)g"(t)-g'®) f"(t)

Also j
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Art 4. Obtain the formula for finding the radius of curvature when x and y are function of s.

Proof: Let equation of curve be x = f(s), y = g(s) we know that

%—cos y—sin
ds Y v
% g, v
2 “ds | d? v
- __sny a0V s
_ cosy

2 2
o[ e

jz ds? ds?
J‘ _siny _ d%s

Cor.

d’x ~ d?
s ds’
cosy _ d%s

also j a7y - d?y
ds2 ASZ

Art. 5. Radius of curvature for implicit Function
Proof: Let f(x, y) = 0 be an implicit equation of the curve

for implicit equation f(x y) = 0, we have

j (507 + ()]
fxx(fy)Z—Znyfxfy+ fW(fX)2
where fx = 2—];
o
fy= oy
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2

oxoy

Art.6. Radius of curvature for polar curves.

and fy=

respectively.

Obtain the radius of curvature at any point p(r, 6) of the curve r = f(0).
Proof: Let p(r, 6) be any point on the curve r = f(0).

It v is the angel which the tangent at p makes with the positive direction of Ox and let
be the angle between tangent and radius vector, then

y=0+0¢

dy _do d¢
ds ds ds
:% 1+d¢ ds
ds | ds d¢

_d¢ [y, dq
Cds | do

From our knowledge of differential calculus, we have

t = —
ang=r r;
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Also  — = r +r

1 1 r2—r .
f_: N {1+ rl,_, " r";} (using (1))
1 1

(r2+r12)%

Or J. =
r>+2r7—rpr,

Some lllustrated Examples
Example 1: find the radius of curvature at any point of the curve xy = ¢2

Solution: We have

Xy = 2
CZ
or y=—
X
2 202
y1=- 3z’ Y2 = —5
%
C4
R
Now J. = = >
Y, 2c
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_ (xre)”
C2e

Example 2: Find the radius of curvature at the point (s, y) of the curve
S =asec ytan y + alog (sec y + tan y)

Solution: The given equation of curve is

s =asec ytan y + alog (sec ++ tan v)

ds )
d—= a (sec y sec” y + tan y sec y tan y)

+ ————sec y (sec y + tan y)
(sec+tan)

=asec y [(1 +tan? y) + sec? y)
=asec y (2 sec? y)
=2aseciy
ds 5
J. =—=2asec’y
dy/
11.5 Self Check Exercise - 1

Q.1 Find the radius of curvature at the point (X, y) on the curve y = a log sec (ZJ
a

Q.2  Find the radius of curvature at any point of the curve ay? = x3
Q.3  Find the radius of curvature at any point (s, y) on the curve s = c tan .
Art.7. Radius of curvature at the origin

In this article we give two direct method to find the radius of curvature at the origin to the
curvey = f(x) i.e. at x =0, y = 0 to the curve y = f(x)

Method 1. (Method of Expansion by Maclaurin)
We have

2
y = f(0) + x f(0) + % FO) + oo

Since the curve passes through origin

f©)=0
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2

—  y=x/(0)+ % FHO) + oo

= y:pX+q?+ .................

2
where p=f'(0) = (ﬂj andq=f"(0) = d’y
dX Jio0) A%, J o0
{1+ pz}%

j (at the origin) =

Note: We give rule to find radius of curvature at the origin

. X . .
0] Puty=px+q E S in equation of curve

(i) Equate the coefficient of like powers of x on both side and find p, g.

3
{1+ P
(iii) j (at the origin) = ———
Method 2. (Newton's Method)

If the curve passes through origin and the axis of x is a tangent to the curve at origin,
then we have at the origin

x:O,y:O,ﬂ=O ie.p=0
dx

by Maclaurin's expansion, we get

=0+ 0x+ X—2+
y= X+ q o s

or 2—2/=q+termofx
X
.2y o
|_ 7 =q (Taking limitx — 0 .. y — 0)
x—0
3
R R
Also I = = - =
q q q
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[ = Um

x—0

Like wise, if the curve passes through the origin and the axis of y is the tangent, then the
value of I at the origin is

[ = Um

x—0
Note: We give rule to find radius of curvature at the origin
(@ obtain the equation of tangent (s) at the origin

2
(i) thenj (at origin) = |_|m—y|fx axis is tangent at the origin

x—0

2
and j (at origin) = |_|m—|fy axis is the tangent at origin

x—0

(iii) if neither x-axis nor y-axis is tangent at the origin then put

and proceed as above.
Some lllustrated Examples
Example 3: Find the radit of curvature at the origin to the curve
a(y?-x?) =x°
Solution: We have equation of curve as
a(y?-x?)=x3
Equating to zero the lowest degree terms,
y?-x*=0  or (y-x)(y+x)=0
= y=-X,y=X
Here neither x-axis nor y-axis is the tangent at the origin,

X2
putting y = px + qE Foeeeeee in (1) we get

or
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a[(IO2 —D)X + PO + e ]z = )
Equating coefficient of x? in (2), we get
a(p>1)=0 = p=-1,1

and on equating coefficient of x3 in (2), we get

apq=1
whenp =1, q=E
-1
and when p =-1 q=z
3
14 p?)? 141172
J'z{ Z} ={+_1} = 2J2a (in magnitude)
a
Whenpzl,q=1
a
% %
el ey
J. = q = 1 22\/5
a

Example 4: Apply Newton's method to find radius of curvature at the origin for the cycloid
x=a (0 +sin0)
y=a(l-cos60)

Solution: We have

x=a (0 +sin 0)

y=a(l-cos60)
ﬁza(1+cose)=2coszg
do

and ﬂzasine=2asin§ cosg
do 2 2

dy
o Yao_ 0
dx dx/ 2
de
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dy _

Nowwhen6=0=x=0y =0, =0
dx
curve posses though the origin and x-axis is the tangent at the origin
. . a’(@+sinp)?
at origin) = —= _—
j ( o = I_xl—!(;n 2y LHLI;TI 2a(1- cosb)
y—0
_a L 2(60+sin@)(1+ cosd)
2 7, sing
- 0+(1+D)(1+D
1
=4a

Self Check Exercise - 2
Q.1  Find the radii of curvature at the origin of the curve
y2-3xy +2x2-x3+y*=0
Q.2  Find the radius of curvature of the curve
3x2+4x3-12y=0
by Newton's method
11.6 Centre of curvature

If a length PCI to p is measured from p along the positive direction of the normal, then
the point ¢ is called the centre of curvature at p, and the circle with centre cp (=p) | called the
circle of curvature at p. Any chord of this circle through the point of contact is called chord of
curvature.

A)’ T

(%,5)
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The locus of the centres 0 curvature of a curve is called the envolute and the given curve
is called involute the coordinate of centre of curvature is given by

2 2
- x- yl(1y+2y1),y+ 1+yzyl]

and the equation of the circle of curvature is
(X- %)%+ (y-y)* = p?

2
Where x = X - —yl(lt %)

Yy
1+y?

2

andy =

Also the length of chord of curvature is

2
w (parallel to x - axis)
y
2
and 2(1;2)/1) (parallel to y - axis)
y

Let us do some examples to understand the above concepts.
Example 5: Find the radius of curvature at origin for the curve
Xt -xt-4xPy +xy-x2+y=0
Solution: Tangent at origin are obtained by equating to Zero the lowest term i.e. y = 0 or x-axis

Hence p = Lim

2
x—0 (X—J
2y

y—0
Dividing equation by 2y, we get
2 2 2
X M_ y__2X2+ 5_ X_+ 1:0
2y 2 2 2y 2

X2
X—-0y—-0..——>P
2y

Let.'.OP-0+O+O-P+%=0
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Of::>P==l
2

Example 6: Apply Netwon method of find the radius of curvature at the origin for the curve
X=a(t+sint)
Y=a(l-cost)
Att=0:x=0.y=0
curve passes through origin.

dx dy .
Now —=Q(1+costand — =asint
W at

dy ¥y asnt st
= dt= =
dx A . a(l+cost) 1+cost
dx 1+cos0

X axis is tangent at the origin.
Hence, by Newton's method
p (at origin) = lim

2

X—>0 —
2y
oy _ad(t+sint)
B LXL[Jn ~ 2a(1-cost)
. a(t+sint 0
=lim _ altvsnh (= form)
0 2(1-cost) 0
=im = 2a(t+sm.t)(1cost) (9 form L' Hospital Rule)
-0 2sint 0
= | _ a(t+sint) —(—sint) + (1+ cost)(1+ cost)
tI—>rOT] costt
=4a

Example 7: Find centre of curvature at the point (x, y) on the parabola y? = 4ax
Also find evolute of the Parabola.

Solution: We have y? = 4x
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Y =2+a/x
Ja 1 Ja

Yi=—F=andy,=-—

Jx 2 x3/2

Let (a, B) be center of curvature
y,(1+yT)
y2

a=X=

(

K

2

1+ 2)

X
 1va
3

X

Orc=x=2(x+a)=3x+2a

Similarly
By + 1+ 2yf
y
1+‘:(1
Y= E
2xg

om0

2\Jay/x - 2 %(X- a)

2\ax - 2/x(x+a)
Ja

3
2/ 2
= \/2 ..... 3

(2)
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2./x2 )
Ja

(a, B) = (Bx + 24, -

Do find evolute
We have from (2)
o —2a
X= 3 4
and from (3)
B = 4_X3= 4 (a—ZaT
a a 3
= 27 ap? =4 (o - 2a)®
locus of (a, B) is
27 ay? = 4(x - 2a)?
which is required evolute.
11.7 Self Check Exercise

2 2

. . . X N
Q.1  Find the centre of curvature at any point of the ellipse —2+§ = 1. Ans. find its
a
evolute
X2 y2
Q.2  Find the centre of curvature at any point of the hyperbola ? F =1.

Also find its evolute.
11.8 Summary
In this unit we have learnt the followings
0] curvature
(ii) circle, centre and chord of curvature
(iii) curvature of a circle

(iv) radius of curvature for Cartesian curve, parameter equation and for polar
coordinates

(v) radius of curvature at the origin and different method to find it.
11.9 Glossary
() Evolute - The locus of the centre of curvature of a curve is called its evolute

(ii) Involute - The curve having evolute itself is called involute.
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11.10 Answers to Self Check Exercises - 1

X
Ans. 1 asec —
a

1 (4a+9x)%
Ans. 2 x2 ~————“~2
6a

Ans. 3 c sec? y
Self Check Exercise - 2

55

Ans.1 —
2

Ans. 2 ﬂ
5

Self Check Exercise - 3

(az _bz)"3 ys(bz _az)x
a4 ’ b4

3

Ans. 1 = evolute(ax) + (by)’® = (a2 —b?) 3

a’-b? a’+b?

0, -

Ans. 2 Centre ( tan® 0]

evolute is (a2 + b2) (a° +b2)% = (ax)%— ax)%

11.11 Reference/Suggested Reading

1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007

2. H. Anton, L. Birens and S. Dovis, Calculus, John Wiley and Sons, Inc. 2002
11.12 Terminal Questions

1. Prove that the curvature of a straight line is zero

2. Find the least value of |p| for y = log x

3. Find radius of curvature at any point of the curve

x=acos®0,y=asin®0
4. Find radii of curvature at the origin of the curve
x=1-1,y=t-t

5. Prove that the evolute of the curve x% + y% =ad
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is2 (X+ y)%+ (x— y)%= 2a’3
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Asym ptotes
Structure
12.1 Introduction
12.2 Learning Objectives
12.3 Asymptotes
12.4 Rectangular Asymptotes
12.5 Obligue Asymptotes
12.6 Asymptote of the General Rational Algebraic Curve
12.7 Special Methods for Finding Oblique Asymptotes of Rational Algebraic Curve
12.8 Asymptotes By Inspection
12.9 Intersection of a Curve And Its Asymptotes
12.10 Self Check Exercise
12.11 Summary
12.12 Glossary
12.13 Answers to Self Check Exercises
12.14 Reference/Suggested Readings
12.15 Terminal Questions
12.1 Introduction

Dear students,in this unit we shall study the concept of asymptor. In analytical geomerty,

on asymptote of a curve is a line such that the distance between the curve and the line
approaches zero as one or both of x or y coordinates tends to infinity. In projectile geometry and
related content, an asymptote of a curve is a line which tangent to the curve at a point at infinity.
The word asymptote is derived from greek work 'asumptotos’, which means not falling together".
This term was used by appallonius of Perga in his work on conic section, but in contrast to its
modern meaning, he used it to mean any line that does not interest the given curve.

12.2

Learning Objectives
The main objectives of this unit are
(1) to define asymptote
(i) to study rectangular and oblique asymptotes
(iii) to study asymptotes of general algebraic rational curve.
(iv) to study asymptotes by inspection.
(V) to study asymptotes by inspection
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(vi) To learn about intersection of a curve and its asymptotes.
12.3 Asymptotes

A straight line | is called an asymptote of an infinite branch of a curve iff the
perpendicular distance of a point P on that branch from the straight line | tends to zero as P
moves to infinity along the branch.

12.4 Rectangular Asymptote

If an asymptote to a curve is either parallel to x-axis or parallel to y-axis, then it is called
a rectangular asymptote. An asymptote parallel to x-axis is usually called horizontal asymptote
and an asymptote parallel to y-axis is called a vertical asymptote.

Asymptotes Parallel to the Axes
(a) Asymptotes parallel to y-axis

Y
¥ x=k
A t
=K +¥)
X P(x’y) P(x y M
—p X
—p X 0
0
Y y | o
A x=k x=k
—p
__) X )
= M 7P (x,Y)

Let x = k b an asymptote of the curve y = f (x) parallel to the y-axis. We determine k. Let P(X, y)
be any point on the curve. Draw PM perpendicular on x = k.

PMO =[x -k [
Let P (x, y) move to infinity along the curve.
.. y alone tends to + o Or -

Lim=% o0

x—k

equivalently k = Limx

Y40

Thus k is determined.
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N(x)

Case |. Let the equation of the curve be of the form y = m where N(x) and D(x) are
X

polynomials in x without any common factor.
Let x = ky, ko, ........ k: be the roots of D(x) = 0
Now — as x — ki, D(x) — 0
= y—owasXx— ki

- X = Ky is a vertical asymptote of the curve y = f(x)

Similarly X = kz, X = ks, ..... are the vertical asymptotes of the curve y = %
X
By factor theorem, (X - k1), (X - k2), ..., (X - kn) are the linear factors of D(x).

Thus, linear factors of D(x) equated to zero determine the vertical asymptotes of the curve.
N(x)

Case Il. If the equation of the given curve cannot be put in the form y = D(X)
X

, then we arrange

the equation of the curve in the descending powers of y so that it is
Y o (X) Y™ o1 (X)F . o0 (X) =0 (1)
When ¢ (X), ¢1(X), $2(X), .... are polynomials in x.

Dividing (1) by y", we get,
1 1 1
O+ — 1 () — 2 ()t ...t —dn (X) =0 -(2)
y y y

We already know, Lt Limx =k

y—>doo
proceeding to the limits, (2) gives ¢(x) =0
which shows that k is a root of ¢(x) = 0

Let kq, ko, .....kn, be the roots of ¢(x) = 0, then vertical asymptotes are given by x = ki, X = kz, ... X
=kp

By factor (x - ki), (X - k2), .... , (X - kn) the linear factors of the coefficient of the highest
degree term in y, equated to zero gives vertical asymptotes.
(b) Asymptotes parallel to x-axis

As above, for asymptotes parallel to x-axis.... if equation of curve can be put in the form
N(y)
X = —

D(y)
to zero give the asymptotes parallel to x-axis.

[Where N(y) and D(y) have no common factor] then the linear factors of D(y) equated
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In case, the equation cannot be put in the above form, then we arrange it in descending
powers of x. Then, the linear factors of the coefficient of the highest power of x equated to zero
give the asymptotes parallel to the x-axis.

Note 1. Rule to find asymptotes parallel to x-axis.

Equate to zero the final linear factors in the coefficient of highest power of x in the
equation of the given curve.

It should be noted properly that if the coefficient of highest power of x in the equation of
the given curve is a constant or has not real linear factor, then the curve has no asymptote
parallel to x-axis.

Note 2. Rule to find asymptotes parallel to y-axis.

Equate to zero the real linear factors in the coefficient of highest power of y in the
equation of the given curve.

It should be noted properly that if the coefficient of highest power of y in the equation of
the given curve is a constant or has no real linear factor, then the curve has no asymptote
parallel to y-axis.

Now, let us do some examples.

Example 1 : Write down, by inspection or otherwise, the vertical and horizontal asymptotes of
the curve 3xy + 5x -4y -3 =0

Solution : The equation of the given curve is 3xy + 5x - 4y - 3=0 (1)
The coefficient of highest power of x In (1) is 3y +5
3y + 5 = 0 is the only asymptote parallel to x-axis
.. horizontal asymptote of given curve is 3y +5=0
The coefficient of highest power of y in (1) 3x - 4
.. 3x - 4 =0 is the only asymptote parallel to y-axis
Vertical asymptote of the given curve is 3x -4 =0
Example 2 : Find the asymptotes parallel to the axes of the curve x?y? + y2 =1
Solution : The equation of the given curve is x%y? + y? = 1. (1)
The coefficient of highest power of x in (1) is y?
y2=0i.e., y = 0is the only asymptote parallel to the x-axis
The coefficient of highest power of y in (1) is x? + 1. Now x? + 1 has no real linear factor.
.. given curve has asymptote parallel to y-axis.
12.5 Obligue Asymptotes

An asymptote which is neither parallel to x-axis nor parallel to y-axis is called oblique
asymptote.

Find the condition that y = mx + ¢ be an oblique asymptote of the curve y = f(x).
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Let y = mx + c be an oblique asymptote of the curve y = f(x) where m and c are finite.
Let us determine m and c.
Take a point P(x, y) on the curve
Draw PM on the asymptote
y=mx+c D
|ly—mx—c|

1+ m?

1
As X — +o0 or X — -0, | PM| -0

The |PM| =

Y
ES
y =mx +¢
P(x, y)
M
= Vi —»X
Ol
y-mx-c > 0asx —» + o
lim(y-mx-¢c)=0
lim(y-mx =C
Again Lt [X—m} e ™ 1S oo
X X X
X — * X — * X — *

So if y = mx + c is an obligue asymptote of curve, then

Lt sz and Lt (y-mx)=c
X
X — * X — +

Note. Rule to find oblique asymptote

() Find lim y in the equation of the curve and denote it by m

X—0 X
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(i) Find lim y (y - mx) in the equation of the curve and denote it by c.
X—wo X

12.6 Asymptote of the General Rational Algebraic Curve
Let the equation of the curve be

X by [zj W(z} W[z} xq,{z} ¢o(zj ~0 )
X X X X X

Where ¢n (Xj represents a polynomial in y of degree n.
X X

Dividing, (1) by x", we get,

n (¥]+ : ¢n.1(ij+ %4)”.2(!} o ¢{XJ+ 1 ¢o(ij =0
X X X X X X X X X

Let x — « along the curve, we get,

éon (M) =0 .(2)

[ Lt Y- m, (slope of the asymptote)]
X

X—t o
Roots of (2) determine slopes of various asymptotes of the curve (1).
Let m1 be one of the roots of (2)
Let y = mix + ¢; be the corresponding asymptote.
Suppose y - mix = p1

X'mlzﬂ S.Ppr—Cias X —
X X
y -mlzﬂ where — p;1 Ciasx— ©
X X

Substituting the value of y in (1), we get.
X

Xgn M1+ P14 X0 g [m+ Ppex02 goofmy + Pope ot xulma + B34 gofm + P2 0,(3)
X X X X X

Expanding each term by Taylor's Theorem, we get
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X"on (M) + x™* [P1 ¢'n (M) + dna (M1)] +

X" %¢"n(m)+ P’ o(M) +¢n_2("1)} =0 ()

Putting ¢n(m1) = 0 and dividing the remaining terms of (4) by x™* we get,

12
[P1 ¢'n (M1) + dna (Ma)] +% {%qﬁ"n(m) +pg’, . (m) +¢n2(m)} +...=0 ..(5)

Letting x — o0 and using P1 — C; (5) gives

C1 ¢'n (M1) +¢n1 (M1) =0

C1= ¢“‘1—(ml) (provided ¢'s (my) # 0)
¢'(m)
Corresponding asymptote is
_ (M)
y = mx - =t
T (m)
Similarly if mz, ms ..... are the roots of (2), we have corresponding asymptotes
— — ¢n—1(mz) — — ¢n—1(rn$)
y=mpx = 2y = mpx =S
T pm) T gm)

Provided ¢'» (m2) # 0, ¢'n (M3) =0, ....
Exceptional Case. When ¢'n (my) = 0
Suppose ¢n1 (M1) #0

C1d'n(mM1) + ¢n1(M1) = O does not determine any finite value of ci. Hence there is no
asymptote corresponding to the root m; of (2).

Now suppose ¢'n (m1) = 0 and ¢n-2(mM1) = 0 becomes an identity.
[using p1 — c1]
Letting x — oo (4) gives
ClZ
<> ¢"n (M1) + C1 ¢'na(M1)+¢n2 (M) = 0

205



1
Which is quadratic in c; and determines two values Ci, C," (say), provided

¢"n(m1) =0

Then y = miX + ¢y and y = mix+c," are the two parallel asymptotes corresponding to the
slope m;.

Note 1. Rule to find oblique asymptotes of a rational algebraic curve:

Step I. Find ¢n(M), ¢n-1 (M) by putting x = 1 and y = m in nth degree terms and in the (n-1) th
degree terms respectively of the given curve f(x, y) = 0.

Step Il. Find all the real roots of ¢, (m) =0

Step Ill. If ms is non-repeated root of ¢n(m) = 0, then the corresponding value of c is given by
cd'n(m) + ¢n1 (M) = 0, provided ¢', (M1) = 0.

If o'» (Mm1) = O, then there is no asymptote to the curve corresponding to the value m; of m.

Step IV. If m1 is a repeated root occurring twice, then the corresponding value of ¢ are given by
c1? .

- $"n (M1) + €1 ¢'n-1(M1)+dn-2 (M1) = 0, provided ¢"(m1) = 0.

In this case there are two parallel asymptotes to the curve.

Similarly we can proceed when m; is repeated three or more times.

Note 2. Rule explained above does not give us vertical asymptotes.

Note 3. A rational algebraic curve of degree n cannot have more than n asymptotes.

Let us do some examples.

X2+ 2x+1
X

Example 3 : Find the asymptotes of the curve y =

X2 +2X+1
X

Solution : Here equation of Curve isy =

orxy=x>+2x-1

orx>-xy+2x-1=0

The coefficient of highest power of x is 1, which is constant.
Given curve has no asymptote parallel to x-axis

The coefficient of highest power of y is -x

The asymptote of given curve parallel to y-axisis -x =0 or x =0
Let us now find obliqgue asymptote y = mx + c.

To determine m and c :
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2
m= Lt X:th+—22X+1: Lt [1+2_i2]:1
X—t0 X X X—>o0 X X
2
X*+2x+1
c= Lt (y-mx)= Lt [ZXT2
X—>+o0 X—>t00 X
Zp2x—1-x* . - : 1
= Lt X +eX X . lim 2x 1= lim [2=]=2-0=2.
X—>to0 X X—>+oo X X—>*to0 X

Therefore oblique asymptote is given by y = x + 2
Hence the given curve has two asymptotes given by x =0 and y = x+2
Example 4 : Find all the asymptotes of the curve

X3+ 2x2y - xy? - 2y3 + 4y? + 2xy +y - 1 = 0.
Solution : Given equation is

X3+ 2x2%y - xy? - 2y3 + 4y? + 2xy +y - 1 =0.
D) is an equation of degree 3 in x and y

Since coefficient of x2 is 1, which is constant
So there is no asymptotes parallel to x-axis
Similarly coefficient of y2 is -2, which is constant

there is no asymptote parallel to y-axis.

For oblique asymptotes, put y = mx + cin (1), we get,

(1)

x3 + 2x%(mx + ¢) - x(mx + ¢)? - 2(mx + ¢)* + 4(mx + ¢)? + 2x(mx + ¢c) + (mx +¢) - 1 = 0.

x3 (1+2m - m? - 2m?3) + x2 (2c - 2mc - 6 m?c + 4m? + 2m) + x (-2 - 6mc? - 8mc + 2¢ + m)+

(-2c®+4c?+c-1)=0.

Equating the coefficient of x3 and x2 to zero, we get,
1+2m-m?-2m3=0 .(2)
2c-2mc-6m?c +4m?+2m=0 ...(3)

From (2), 1(1+2m) - m?(1+2m) =0
(1+m?) (1+2m) =0
@-m@+m)y@2+2m)=0

Whenm =1, from (3), we have
2c-2c-6c+4+2=0
6c=6o0rc=1.

Corresponding asymptoteisy =x + 1

When m = -1, from (3), we have

207



2c-2c-6c+4-2=0
2c=2orc=1

Corresponding asymptote isy =x + 1

Whenm = _71 from (3), we have,
3
2c+c-§c+1-1:O orc=0
. . 1
Corresponding asymptote is y = "5 X.

. . 1
.. given curve has three asymptotes givenbyy=x+1,y=-x+landy=-—Xx.

12.7 Special Methods for finding Oblique Asymptotes of a Rational Algebraic Curve

Now we discuss some special methods of finding asymptotes of f(x, y) = 0 when the
equation f(x, y) = 0 is of some special types.

Method I. If the equation of the curve is of the form

(ax+ by +C) fna (X, ¥) + Gna (X, ¥) =0
Then the asymptote parallel to ax + by + ¢ = 0 is given by (ax + by + ¢) +

t 901V _ g brovided the limit exists
X fn—l(X! y)
y_ a
X b

Method Il. If the equation of the curve is of the form
(ax +by)2 foa (X, y) + gn2 (X, ¥) =0
then the two asymptotes paraliel to ax + by = 0 are given by

(ax + by)? + Lt M = 0 provided the limit exists
X—>o0 fn—Z(X’ y)

a

X— —

Method lll. If the equation of the curve is of the form

(ax +by)? faz (X, y) + (@x + by)* gn2 (X, y) + hn2 (X,y) = 0
Then the two asymptotes parallel to ax + by = 0 are given by
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(ax + by)2 + (aX + by) Lt gn72(x’ y) + Lt han(X’ y) + = 0
X—>+0 fn—Z(X’ y) X—>7o0 fn—z(x1 y)

y a

X— — - —

b X b

provided the limit exist.

Note. Working Method to find asymptotes
We now give

() Factorize the highest degree terms

()} Retain one linear factor and divide by the product of other factors

(1 Take limits when x — o, y — o in the direction of the retained factor.
Note. If limits do not exists, then there is no asymptote parallelto ax + by +c =0
12.8 Asymptotes by Inspection

If the equation of the curve can be written as

Fn(X,y) + Fa2 (X, y) =0

where Fy (X, y) is a rational Integral function in x and y of degree n and Fnz (X, y) of
degree (n-2) at the most then every linear factor ax + by + ¢ of F, (X, y) equated to zero
determines the asymptote of the curve, provided no two asymptotes so obtained are either
parallel or coincident.

Let us do some examples.
Example 5: Find all the asymptotes of the curve
X3-2y3 +xy (2x-y)+y(x-y)+1=0
Solution: The equation of the curve is
X3-2y3+xy(2x-y)+y(x-y)+1=0 (1)
X3-2x3%y -xy?-2y3+y(x-y)+1=0
or (X-y(x+y) (x+2y) +y (x-y)
[.-. of factorizing third degree terms]
.. possible asymptotes are parallel to the lines
X-y=0,x+y=0and x+ 2y =0.
() The equation (2) of the curve can be written as
yx-y)+1 _
(X+y)(x+2y)

asymptote (if it exists) parallel to x -y = 0 is given by
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y(x=y)+1

X - =
o= (X+Y)(X+2y)
y=X
1
or X-y+ Lt L=Oorx-y+ Lt — =20
x>0 (X4 X)(X+ 2X) x>o  BX
or X -y =0, which is one asymptote

()} The equation (2) of the curve can be written as
Y-y +1 _

(X=y)(x+2y)

asymptote (if it exists) parallel to x + y = 0 is given by

x+y+ Lt y(x-y)+1 _
x> (X+Y)(X+2y)

X+y+

y=X

or X+y+ Lt M =0
e (29(=x)

NG 2
or x+y+ Lt - =0o0r x+y+ Lt =0
x—0  —2¥ X—w —2
-2
or X+y+ =0
or X +y + 1 =0, which is second asymptote.

(I the equation (2) of the curve can be written as

x+2y+ YXNFL
(X=y)(X+Y)
.. asymptote (if any) parallel to x + 2 y = 0 is given by
X+2y+ u.ﬁ@&jQiL—Q

o (X—Y)(X+Y)

N | X<
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orx+2y+ Lt

3—Xg+1
4 _ 4-3x°
orx+2y+ Lt =0or x+2y+ Lt =0
y X—0 37)(2 y X—0 3X2
4

43

X2 -3
orx+2y+Lt 3 =0 orx+2y+?=0

or X + 2y - 1 = 0, which is third asymptote.
.. asymptotes of the given curveare x-y=0,x+y+1=0andx+2y+1=0
Example 6 : Find all the asymptotes of the following curve:
X3+ X2y - Xy? -y +2xy +2y?-3x+y=0
Solution: The given equation is x3 + x2y - xy2 - y3 + 2xy + 2y?-3x +y =0
Or X2(X+Yy)-y?(X+y)+2xy +2y?-3x+y=0
or (X+y) (X2+y?) +2xy+2y?-3x+y=0
or(X-y) (x+y)2+2xy+2y?-3x+y=0 ...(1)
The equation (1) can be written as
2Xy + 2y 43X+
T

asymptote (it if exists) parallel to x - y = 0 is given by

X-y

2Xy+2y* +3x+Yy 0

X-y+ Lt
TS T ey
2
x-y+ Lt 2xy + 2y +23x+y —0o
s (X+Y)
4x% —2x
or XxX=y+ Lt ————=0
y X—>00 4X2
42 4-0
or x-y+ Lt —X=0 or X-y+ =0
y X—0 4 y 4
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x =y + 1 =0 is one asymptote.
The equation (1) can be written as

(ryp ey 2 XY g
X-y X=Yy
asymptotes (If they exist) parallel to x + y = 0 are given by
(ryfr ey L2 Y g
X—>00 X_y X_y
y=X
or (X+y)2+(x+y) Lt —2X Lt 3XJFX:O
xom X4+ X xo0 X+ X
X — o© X — o©
or X+y)2-(x+y)-2=0 or X+y-2)(x+y++1)=0

X+y-2=0,x+y+ 1=0 are the other two asymptotes
Example 7: Find all the asymptotes of the following curve:
Xy (X% - y?) (X2 - 4y%) + 3xy (X* - y?) + X2 +y?-7=0
Solution: The equation of given curve is
Xy (X% - y%) (X - 4y%) + 3xy (X2 - y?) + X2 +y?-7=0
The given equation is of the form
Fe (X,y) + Fa(x,y)=0
where F6(X,y) = Xy (X2 - ¥2) (X2 - 4y2), Fa(X, y) =3Xy (X2 -Yy2) + X2 + Y2 -7
Also Fs(X, y) is the product of 6 linear factors (non-repeated) and Fa(X, y) is of degree 4.
asymptotes are given by Fe(x, y) =0
or  Xy(X2-Yz) (X2-4y2) =0 or  Xxy(x-y) (x+y)(x-2y) (x+2y)=0
asymptotes of the given curve are
Xx=0,y=0,x-y=0,x+y=0,x-2y=0,x+2y=0
12.9 Intersection of a Curve and its Asymptotes

Prove that an asymptote of a rational algebraic curve of the nth degree cuts the curve in
atmost (n - 2) points.

Proof: Lety=mx+cy ........ (1) be an asymptote of the curve

X"On (zj + Xn_l(l)n—l (XJ +Xn—1(|)n—l (Xj to =0 . (2)
X X X

We are to find the points of Intersection of (1) and (2),
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From (1), Y my + G
X X

Substituting the value of y in (2), we get,
X

X"Pn (ml %) + X" na (ml %j X" .1 (ml %j Frovoen =0

Using Taylor's Theorem, we get
X"On(M1)+X"C1¢'n(M1) + dn1 (M1)] + X”'Z{C%%l(nl) +¢n2(rr!|_)i| +..,=0 ...(3)
Since ¢n(m1) =0 and cidpn(M1) + dn-1 (M1) =0, (3)

becomes X2 [c%¢n1(n1)+¢n2(n1)} Fovn =0

which is an equation of degree (n-2) and correspondingly (1) and (2) Intersect in (n-2)
points.

.. asymptote (1) cuts the curve (2) in at the most (n-2) points.
Hence the result.
Cor. 1. Prove that all asymptotes of a curve of nth degree cut the curve in almost n(n-2) points.

Proof: We know that a curve of nth degree has atmost n asymptotes and each asymptote cuts
the curve in atmost (n-2) points.

all the asymptotes of a curve of nth degree cut the curve in atmost n(n-2) points.

Cor. 2. If the equation of the curve of nth degree is of the form F, + Fn,. = 0 and curve has no
parallel asymptotes, then the points of intersection of the curve and its asymptote lie on the
curve Fro =0

Proof: The equation of curve is Fn + Fn2 =0
The equation of asymptote is F, =0

the points of intersection of the asymptote and the curve satisfy the equations Fy
+ Fn2 = 0 and F, = 0 and therefore they will satisfy.

(Fn + Fn_2) - Fn = 0 |e, Fn-2 = O
Hence the result.
Let us do some examples

Example 8: Show that the asymptotes of the cubic curve x® + xy? - 2xy + 2x - y - 1 = 0 cut the
curve in atmost three points which lies on the line 3xy -y -1=0

Solution: The equation of given curve is x® + xy? - 2xy + 2x-y-1=0
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Coefficient of highest power of y is -x.

asymptote parallel to y-axisis -x=0orx=0
The equation (1) can be written as X(x -y) (X +y)-2xy +2x-y-1=0
The asymptote (If it exists) parallel to x - y = 0 is given

=2Xy+2x—-y-1 —o

by x-y+ Lt
oo X(X+Y)
y=X
2X% +2x—x—-1
or X-y+ =
x>n  X(X+X)
21 1
2 x— e T2
or  x-y+ Lt 2)(;;(1:0 o x-y+ Lt —X X =9
X—>00 2)( X0 2
-2+0-0
or X-y+ —— =0
2
X -y -1=0is the second asymptote.
The asymptoe (If it exists) parallel to x + y = 0 is given by
x+y+ Lt —2xy+2x—y—1:O
= X(X+Y)
y=-X
2X% + 22X+ x+1
or x+y+ Lt =
X300 X(X+ X)
21 1
2 1 3x— o« 2
or x+y+ Lt 2X+—?;X1=O or x+y+ Lt X X -9
X—>00 2X X—>00 2
2+0-0
or X+y+ > =0

X +y + 1 =0 is the third asymptote.
The joint equation of the asymptotes is
X(X-y-1)(x+y+1)=0orx3-xy?-2xy-x=0 ...
Subtracting (2) from (1), we get,
3x -y -1=0, which is a starlight line
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Now curve (1) is of third degree and has 3 asymptotes. Therefore the curve and the
asymptotes intersect in atmost 3(3-2) = 3 points which lie on the straight line 3x -y-1=0

Example 9: Show that the asymptotes of the curve
X*-5x%y2 + 4yt + X2 -y2 + X +y+1=0
cut the curve in atmost eight points which lie on a rectangular hyperbola.
Solution: The equation of given curve is
X4 - 5x%y2 + 4y* +x% -y2 + x +y+1=0 ..(2)
Coefficient of highest power of x is 1, which is constant
there is no asymptote parallel to x-axis.
Similarly there is no asymptote parallel to y-axis
Puttingx =1,y =min (1), we get
¢a (M) =1-5m2+4m*=4m*-5m? + 1

¢'a (M) = 16m3 - 10m

hs(m) =0
Now ¢a(m) =0 = 4m*-5m?+1=0 = (m?-1)(4m?-1)=0
m2:1,1:>m:-1’1,_£’1 |:C= ¢2(m):|
22 ¢, (M)

Whenm=-1,c=- 30 =0
16(-1)° —-10(-1)

corresponding asymptote isy =-x+0orx+y=0

Whenm=1,c= 30 =0
16(-1)° -10(-1)

.. corresponding asymptote isy=x+0-y=0
0 _

()

corresponding asymptote is y = 2 Xx+0orx+2y=0

Whenmz—l,C—
2

The joint equation of asymptote is
(x-y) (x+y) (x-2y) (x+2y)=0
or (X>-y?) (x*-4y?) =0
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or (X2-y?) (x2-4y?) =0
or Xa-5X2y2+4y.=0 . )
Subtracting (2) from (1), we get
x?-y2+x+y+1=0, which is a rectangular hyperbola.
Now curve (1) is of 4th degree and has 4 asymptotes. Therefore the curve and the

asymptotes intersect in atmost 4(4-2) = 8 points which lie on the rectangular hyperbola
X2-y?+x+y+1=0.

12.10

12.11

12.12

12.13

Self Check Exercise
Q.1  Find the asymptotes of the curve x3 +y*>-3 axy =0
Q.2 Show that the parabola y? = 4ax has no asymptotes.
Q. 3 Find all asymptotes of the curve
y2+xy+2xy?-y+1=0
Q.4 Find the asymptotes of the curve
3X3 + 2x2y + Txy? + 2y® - 14xy + 7y? + 4x + 5y = 0.

Show that the asymptotes meet the curve again at three points which lie on a
line. Find its equation.

Summary

In this unit we have learnt the followings :

0] Asymptote

(i) Rectangular and oblique asymptote

(iii) Asymptote by inspection

(iv) Intersection of a curve and its asymptote

(V) Besides above, special method has been given to find rectangular asymptote
and oblique asymptote of rational algebraic curve.

Glossary
0] Horizontal Asymptote - As asymptote parallel to x-axis is called horizontal
asymptote.

(i) Vertical Asymptote - An asymptote parallel to y-axis is called vertical asymptote.
Answers to Self Check Exercises

Ans.1 x+y+a=0

Ans. 2 Prove it

Ans.3y=-x+1l,y=-x-lorx+y-1=0,x+y+1=0

Ans. 4 Asymptotesare : 6x-6y-7=0,6x-2y-3=0,3x+6y+5=0
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and equation of line is 381x - 106y - 105 =0
12.14 Reference/Suggested Reading

1. H. Anton, L. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2002
2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
12.15 Terminal Questions
1. Find the asymptotes to the curve
X°+2x-1
- X
2. Find all asymptotes to the curve

ay?=x3(a-x)
3. Show that the asymptotes of the curve
x2y? = a2 (x2 + y?)

Form a square of side 2a.

4, Find all asymptotes of the curve
fY)=x(y-x)°-x(y-x)+2=0
5. Find the asymptotes of the curve

X2y + Xy? + 2x2 - 2Xy - y? - 6X - 2y + 2= 0.

Also show that they cut the curve in atmost three points which lie on a straight
line2x-3y-4=0
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Unit - 13
Singular Points and Double Points

Structure

13.1 Introduction

13.2 Learning Objectives

13.3 Singular Points, Double Points
13.4 Classification of Double Points
13.5 Tangents at the Origin

13.6 Working Rule for Finding the Nature of Origin which is a Double Point
13.7 Self Check Exercise

13.8 Summary

13.9 Glossary

13.10 Answers to Self Check Exercises
13.11 Reference/Suggested Readings
13.12 Terminal Questions

13.1 Introduction

Dear students,in this unit we shall study what we mean by singular point and double

point. In geometry, a singular point on a curve is one where the curve is not given by smooth
embedding of a parameter. The precise definition of a singular point depends on the type of
curve being studiesd.

13.2

13.3

Learning Objectives

The main objectives of this unit are to-

0] study singular point, double points

(i) study multipoint

(iii) learn about classification of double point

(iv) study tangents at the origin

(v) to know the working rule for finding the nature of origin which is double point.

Singular Points, Double Points

Singular Point

A point on the curve at which the curve behaves in an extraordinary manner is called a

singular point.

There are two types of singular points :
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() Points of inflexion
(i) Multiple points

We have already discussed point
of inflexion. Now we discuss multiple
points.

Multiple Point : A point on the
curve through which more than one
branches of the curve pass is called a
multiple point.

In this chapter, we are mainly
concerned with double points. Now we
define double point.

Double Point : A point on the
curve through which two branches of the
curve pass is called a double point.

13.4 Classification of Double Points

There are three kinds of double
points.

() Node :

A node is a point on the curve
through which two real branches of the
curve pass and two tangents at which are
real and distinct. Thus P is a node.

(i) Cusp:

A double point on the -curve
through which two real branches of the
curve pass and the tangents at which are
real and coincident is called a cusp. Thus
P is a cusp.

(iii)  Conjugate Point :

A conjugate point on a curve is a
point in the neighbourhood of which there
are no other real points of the curve.

The two tangents at a conjugate
point are in general imaginary but
sometimes they may be real.

Note 1. Conjugate point is also called
isolated point.

—Pp<

— X
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Note 2. the determination of the nature of double points depends basically on the nature of the
two branches of the curve passing through it and not on the tangents to the curve at that point.
Generally when the tangents at a double point are real, the branches are also real. But there are
cases, when the tangents may be real, yet the branches may be imaginary.

13.5 Tangents at the Origin

If a rational algebraic curve f (x, y) = 0 passes through the origin, then the equation (or
equations) of the tangent (or tangents) at the origin is (or are) obtained by equating to zero the
lowest degree terms of f (X, y).

Proof : Let the equation of curve be
fy)=(ax+ay)+ (b x*+b2xy +bsy?)
+(C1x3+cax2y+Caxy?+cayd) + ... ..(1)
[.. the curve passes through origin, so its equation does not
contain any constant term]
Let : (a, B) be any point in the nbh. of O (0, 0) on the curve (1).

Slop of chord OP = H = ﬁ
a-0 «a

Now chord OP becomes atangentatOasP - Oie.a— 0, —0

PLto é , where m is the slope of the tangent at O.
-0 o

m=

Q P (o, B) lies on curve (1)

(al(x+azl3)+(b1a2+bz(XB+b3B2)+ ..... =0
Dividing throughout by o (# 0), we get
(a1+a2§j+(bla+bz [+hb ﬂ.g] +..=0 ...(2)

LetP - Osothata — 0,3 —0and Lt ﬁ =m
P-0 ¢

from (2), we get

aat+tam=0

8

Ifaa#0,thenm = - g and hence the equation of the tangent at the originisy = mx ory
=- & X oraix+ay=0

&,

If a, = 0 and a: # 0, then (1) reduces to
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(b1 X2 +hboxy+bsy?) +(Cax¥+cCoxX2y+cCaxy?+cay’)+...=0 ...(3)
Proceeding as above, we get

by + bom +bs;m2=0

Putting for m, the equation of the two tangents at origin is

b1 +x2+byxy+bzy?=0

If b1 = b, = bs = 0, we proceed as above and so on.

It follows that equation of tangent (or tangents) is obtained by equating to zero the
lowest aegree terms in (X, y).

Note. Equating of tangents at any point

That the origin to the given point and find the equation of tangents at the new origin. The
transform this equation to original axes.

13.6  Working rule for finding the Nature of Origin which is a Double Point.

Find the tangents at the origin by equating to zero the lowest degree terms in x and y of
the equation of the curve. If the origin is a double point, then we shall get two tangents which
may be real or imaginary.

0] If two tangents are imaginary, then origin is a conjugate point.
(i) If two tangents real and coincident, then origin is a cusp or a conjugate point.

(iii) If the two tangents are real and distinct, then origin is a node or a conjugate
point.

To be sure, examine the nature of curve in the nbd. of origin. If the curve has real
branches through the origin, then it is a node, otherwise a conjugate point.

To be sure, we test the nature of curve in the nbd. of the origin as above.
Note. Test for nature of curve at origin.

If the tangents at origin are y? = 0, solve the equation of the curve for y, neglecting all
terms of y containing powers above second. If the value of y, for small values of x are found to
be real, the branches of the curve through the origin are real, otherwise imaginary.

If the tangents at origin x2 = 0, solve the equation for x and proceed as above.
Art-4. Show that the necessary and sufficient conditions for any point.
(x, y) on f (x, y) = 0 to be a multiple point are that fx (X, y) =0, fy (X, y) = 0.
Proof : The equation of curveis f (x,y) =0 (1)
Differentiating (1) w.r.t. X, treating y as a function of x, we have
oL A A

x oy o (2)
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where % is the slope of the tangent at the point P (X, y)
X

If P (x, y) is a multiple point, there must be atleast two tangent which may be real,
coincident or imaginary.

. .. d .
Thus must have atleast two value at (X, y). But (2) is first degree equation in d—y and is
X

satisfied by atleast two value of % , Which is possible only when it is identity.
X

ﬂ =0 and ﬂ =0
OX oy

necessary and sufficient conditions for any point (X, y) on the curve f (x,y) =0to
be a multiple point is

2—; =0 and %z 0
ie. fx(x,y)=0and fy (x,y)=0
Classification of Double Points
Differentiating (2) w.r.t. X, we get

62_f+82f Q+ o°f +82fg ﬂ+ﬂ d2y_0
X2 oxoy dx  |\oyox oy* dx ) dx oy  dx?
2 2
of = of and at a double point @ =0
oxXoy  0yox oy
above equation becomes
2 2 2 2
% ﬂ +28fﬂ+2=0 ....(4)
oy® \dx oxoy dx  ox

It is a quadratic in Q and gives the two slopes of the tangents at the double point (X, y).

The tangents at (X, y) will be real and distinct; real and coincident or imaginary points as
roots of (4) are real and different, real and equal or imaginary for which

2¢ )2 2 2
4220, 2 2 20 {Q disc, b2—4aci0}
oxoy ox- oy" < <
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o2t ' 2 2f >
or - —0
oxoy )  ox* oy <

Hence, in general, a double point will be a node, a cusp or a conjugate point according

AR A i) 5
oxoy | < ¢ oy

as

at that point.

Note. The condition (5) is not a sure test for the node, cusp or a conjugate point. This in fact is
the condition for the two tangents at the double points to be real and distinct, coincident or
imaginary. This result lead us to wrong conclusion. We explain it by an example.

Example 1 : Find the position and nature of the double points on the curve.
aty?=x*(2x%-3a?.

Solution : The equation of given curve is

f(xy) =2x°-3a%x*-a*y?=0 ..(2)
ﬁ =12x5-12a? x3, ﬂ = -2a%y
OX oy
Now for the double points, ﬁ =0, ﬂ =0
0 oy
of
x =0=12x°-12a?x3= 0= x3(x*-a%) =0
X
= Xx=0,a,-a

and i=O =-2a%y =0 =y=0
oy

the possible double points are (0, 0), (a, 0), (-a, 0)
But (a, 0) (-a, 0) do not satisfy (1)
(0, 0) is the only double point.

2 2 2
Now g = 60x* - 36a? x?, 2 =-2a% ﬂ =0
OX oy oxoy
2 2 2
At (0, 0), 2 =0, 2 -2at, 01 2o
OX oy oxoy
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2¢ \? A2 2
o't _61; .62 =(0)?(-2a)*=0
oxoy ox- oy
origin will be a cusp

2

Bu from (1), y = + X—2 V232 —-3a?
a

For small enough value of x (+ ve or - ve), 2 x? - 3 a?is -ve and so y is imaginary. Hence
no portion of the curve lies in the neighbourhood of the origin.

origin will be conjugate point.

above method gives a wrong conclusion. So for greater accuracy, we must proceed as
explained in working method given below.

Working rule for finding the Position and Nature of Double Points of the Curve
fx,y)=0
2 2 2
Stepl.Findﬂ,ﬂ,az,af,az
OX o0y oxX° oOxoy oy

Step Il. Solve the equations Z_f =0 and %z 0 to get possible double points.
X

Reject those points which do not satisfy the equation f (X, y) = 0 of the curve. Remaining
are the double points.

2
o° f 2§ 2
Step lll. At each double point, calculate D = ( j o°f o°f

oxy) e oy
(a) If D is positive, double point is a node or conjugate point
(b) If D = 0, double point is a cusp or conjugate point.

In this case (a) and (b), find the nature by shifting the origin to the double points and
then testing the nature of tangents and existence of the curve in the nbd. of new origin.

(© If D is negative, double point is a conjugate point.
Example 2 : Examine the nature of origin for the curves :
(i) x*-ax?y+axy’+a’y?’=0,a>0
(i) x*+y*-4axy=0
(i) y*=x*+ax?a>0
Solution : (i) The equation of curve is x* -ax*y+axy?*+a?y>=0 ..(2)
Equating to zero, the lowest degree terms, the tangents at the origin are given by

a’y?=0ie.y?=0 i.e.y=0y=0
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there are two real and coincident tangents at the origin
origin is either a cusp or a conjugate point
To be sure, we study the nature of given curve near the origin.

From (1), a(x+a)y?-ax?y +x*=0

axZiJa2x4—4ax4(x+ a) y ax + x2y/—4ax—3a?
= : =

y 2a(x+a) 2a(x+a)

Now, for small values of x # 0, - 4 a x - 3 a? is negative and so y is imaginary in the nbd.
of origin.

origin is a conjugate point
Note. Here (0, 0) is a conjugate point and tangents at (0, 0) are real.
.. tangents at a conjugate point can be real
(i) The equation of curve is x*+y*-4axy=0 (1)
Equating to zero, the lowest degree terms, the tangents at the origin are given by
-4axy=0 orxy=0o0orx=0,y=0
Q the tangents are real and distinct
origin is a node or a conjugate point
From (1), neglecting y*, we get

1
x*-4axy=0 ory=— x3
da

y is real for values of x near origin
origin is a node
(iii) The equation of curve is y® = x3 + a x? (1)
Equating to zero, the lowest degree terms, the tangents at the origin are given by
ax?=0 orx*=00rx=0,0
Q the two tangents are real and coincident
origin is a cusp or a conjugate point

From (1), neglecting x3, we get

ax’=y> orx=zty %

Since a > 0, therefore x is real for small positive values of y

the two branches of the curve near the origin are real and so the origin is a cusp.
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Example 3 : Examine the nature of origin for the curves :
() y2=2x2y+ xty-2x
(i) y*(@+x)=x(@*-x%
(i)  x*(x-y)+y*=0
Solution : (i) The equation of curve isy? =2 x>y + x*y - 2x* ..(1)
Equating to zero, the lowest degree terms, the tangents at the origin are given by
y?=0ie.y=0,y=0
there are two real and coincident tangents at the origin
origin is either a cusp or a conjugate point
From (1), y?-(2x2+x%)y+2x*=0

- (2% +x*) £(2¢ + x*) - 4(D)(2x")

2

(2 + X £ ¢ +4x* + 4x° —8x*

B 2
S - (25 + x4 £ 32X +4x2 -4

2

Now for small values of x # 0, x* + 4x2 - 4 is negative and so y is imaginary in the nbd. of
origin.

origin is a conjugate point

(i) The equation of curve isy? (a2 + x?) =x? (@®-x?) ... (1)

or a%y? + x?y? = a2 - x* or X*+x2y? +a%y?-a’2=0

Equating to zero, the lowest degree terms, the tangents at the origin are given by

a’y?-a’x>=0ie.  y?*-x*=0 ie.  y=+X

there are two real and distinct tangents at the origin

origin is either a node or a conjugate point

From (1),y =+ x #

a“+x

When x is small, a2 - x? and a2 + x? are both positive and so y is real.
o values of y near the origin are real and so the branches of the curve through the origin
are real.

origin is a node

226



origin.

(iii) The equation of curve is x? (x -y) +y>=0 .. 1)

or X2-x2y+y?=0

Equating to zero the lowest degree terms, the tangents at the origin are given by
y2=0 i.e. y=0,y=0

there are two real and coincident tangents at the origin

origin is either a cusp or a conjugate point

From (1), y?-x2y +x3=0

X -4 X E(XC(x—4)
2 2

When x = 0 is small and negative, then x® (x - 4) is positive and so y is real in the nbd. of

y:

Hence there are two real branches of the curve near the origin

origin is a cusp.

Example 4: Find the nature of origin of semi-cubical parabola y? = x®

Solution: The equation of curve isy?=x®* .. (1)

Equating to zero, the lowest degree terms in (1), the tangents at the origin are given by
y2=0 or y=0,y=0
there are two real and coincident tangents at the origin

origin is either a cusp or a conjugate point

3
From (1),y =+ X2

y is real for small positive values of x
real branches of the curve pass through the origin.

origin is a cusp

Example 5: Show that origin is a node, a cusp or a conjugate point on the curve

y? = ax? + bx3, according as a is positive, zero or negative.

Solution: The equation of curve isy? =ax?+bx®> ... (1)

Equating to zero, the lowest degree terms in (1), the tangents at the origin are given by

y? = ax? or y=++ax L. (2)
Since there are two tangents at the origin

origin is a double point

Case |. When a is positive
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from (2), the tangents are real and distinct.
origin is a node or a conjugate point
From (1), y=+ m
For small positive values of x, y is real
there are two real branches of the curve near the origin
origin is a node.
Case ll. Whena=0
From (2), tangentsarey =0,y =0
two tangents are real and coincident
= origin is a cusp or a conjugate point
When a =0, from (1),
y?=bx3ory= +x+/bx , which gives real values of x when b and x have like signs.
y is real for values of x near the origin
origin is a cusp
Case lll. When a is negative
From (2), two tangents at origin are imaginary

origin is a conjugate point

. X . . .
Example 6: Show that the curve y?> = bx sin —has a node or a conjugate point at the origin
a

according as a and b have like or unlike signs.

. . : . . X
Solution: The equation of given curve is y? = bx sin —
a

3 5 3 5
or y2:bX 5—1)(—34‘1)(—5— ..... aneze_a_+9__ -----
a [3a’ [ba 3 [5

b X
R S S 1
oY a{ 6a’  120a" } W

Equating to zero, the lowest degree terms, the tangents at the origin are given by

y2=9x20ry=ix\/E
a a

there are two distinct tangents at the origin
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origin is a double point

Lo b. iy :
Case |. When a and b have like signs, then 3 is positive and so \/EIS real
a

two tangents are real and distinct
origin is either a node or a conjugate point

For small values of x # 0, the behaviors or R.H.S. of (1) is the same as that of its first
. b : b . " . "
term i.e. (1) behaves as y? = —x2. Since — is positive, so y? is positive for small values of x
a a

whether positive or negative.
y is real in the nbd. of origin

origin is a node
. . b. : b . . .
Case Il. When a and b have unlike signs, then —is negative and so ,[— is imaginary.
a a

two tangents are imaginary

origin is a conjugate point

X : . .
Example 7: Show that the curve y?> = b x tan — has a node or a conjugate point at the origin,
a

according as a and b have like or unlike signs.

. . : . X
Solution: The equation of given curve is y? = bx tan —
a

4 6
or yzzg{x2+x—+ 2X4+ ....... } ..... 1)

Equating to zero, the lowest degree terms, the tangents at the origin are given by

yzzgxzoryzix\/E
a a

there are two distinct tangents at the origin

origin a double point.

Case I.When a and b have like signs, then E is positive and so \/E is real.
a a
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two tangents are real and distinct

origin is either a node or a conjugate point

For small values of x = 0, the behavior of R.H.S. of (1) is the same as that of its first term
i.e. (1) behaves as y? = gxz. Since gis positive, so y? is positive for small values of x whether
positive or negative.

y is real in the nhd. of origin

origin is a node.

Case Il. When a and b have unlike signs, then E is negative and so \/Eis imaginary.
a a

two tangents are imaginary

origin is a conjugate point
Example 8: Show that the curve y? = 2x sin 2x has a node at the origin.
Solution: The equation of curve is y? = 2x sin 2x

. (29° L (20°
or y? = 2X [Zx 3 + 5 }

4 6
or y2=4 {XZ—A'L+16X ....... } ..... 1)

6 120

Equating to zero, the lowest degree terms, the tangents at the origin are given by
y? = 4x? or y =+ 2x

two tangents at origin are real and distinct

origin is either a node or a conjugate point

For small values of x # 0, the behaviour or R.H.S. of (1) is the same as that of its first
term i.e. (1) behaves as y? = 4x%. Now y? is positive for small values of x whether positive or
negative.

y is real in the nhd. of origin

origin is a node.
Example 9: Prove that the curve y? = (x - @) (X - b)

has at x = a, anode if a> b, a cusp if a = b and a conjugate point if a < b.
Solution: The equation of curve is y? = (x - a)? (x - b) (1)

When x = a, from (1),y =0

point under discussion in (a, 0)
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Shifting origin to (a, 0) by transformationsx=X+a,y=Y+0=Y

(1) becomes Y2=X2(X+a-b) .. 2
Equating to zero, the lowest degree terms, the tangents at the new origin are given by
Y2=X2(a-b) or Y =+ X+a-b ...(3)

Casel.Whena>b
From (3), two tangents at new origin are real and different

new origin (a, 0) is a node or a conjugate point

From (2), Y =+ X /X +a-b
For small non-zero value of X, Yisrealasa-b>0
S new origin (a, 0) is a node
Case ll. Whena="Db
From (3), tangentsare Y =0,Y =0
two tangents are real and coincident
origin is a cusp or a conjugate point
From (2), Y2=X3 or  Y=+XJX
For small positive values of X, Y is real
. new origin (a, 0) is a cusp.
Case lll. Whena<b
From (2), two tangents at new origin are imaginary
(a, 0) is a conjugate point
Example 10: Determine the position and nature of the double point on the curve
X2-y?-Tx>+ 4y + 15x - 13 =0
Solution: The equation of curve is
fx,y)=x3-y?2-7x>+4y +15x-13=0 ... (1)
of

of
—=3x?-14x+ 15, —=-2y+4
OX oy

For the double points @ =0, ﬂ =0, f(x,y)=0
OX oy

f
Now a—=O = 3x2-14x+15=0

OX
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(X-3)(3x-5)=o:>X:3,§

and q=O:>-2y+4=0:>y=2
oy

the possible double points are (3, 2), gZJ

But (gZJ does not satisfy (1)

(3, 2) is the only double point

Nature of the point (3, 2)

Shifting the origin to the point (3, 2) by transformations x =X+ 3,y =Y + 2

(N become (X +3)3- (Y +2)2-7(X+3)2+4(Y+2)+15(X+3)-13=0

or X2+ 9X2+27-Y2-4Y -4-7X?-42X -63 +4Y +8+ 15X +45-13=0

or X3+ 2X2-Y2=0 .(2)

Equating to zero, the lowest degree terms, the tangents at the new origin are given by
2X2-Y¥2=0 or  Y=+2X

which are real and distinct

new origin is either a node or a conjugate point

From (2), Y = + X</X +2

which gives real values of Y for small values of X, positive or negative

real branches of the curve exist in the nbd. of the new origin (3, 2)

(3, 2) is a node.

Alter. The equation of the curve is

fO,y)x3-y3-7x2+4y + 15x - 13=0

of

—=3x2-14x+15,q=-2y+4 ..... 1)
OX oy

For the double points @ =0, ﬂ =0, f(x,y)=0
OX oy

Now%zo = 3x2-14x+15=0
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= x-3)(3x-5=0 = x:3,§
of
and —=0=-2y+4=0 = y=2
oy
: . 5
the possible double points are (3, 2), 5,2

But [SZJ does not satisfy (1)

(3, 2) is the only double point
Nature of the point (3, 2)

2 2 2
of =6x—14,£ =-2, ot =0
ox? oy? OX 0y
At (3, 2)
2 2 2
of :18—14:4,ﬂ=—2, of =0
ox? oy* OX oy
2¢ V2 A2 2
A LT - @=850
oxoy ox~ oy
(3, 2) is node.

Example 11: Find the position and nature of the double points on the curve

(x-2)*=y(y-1)

Solution: The equation of curve is
Jy)=(x-27?-y(y-1)*=0 (1)
of

&ZZ(X-Z)

of
— =2y (y-1)-(y-1)>2=-(y-1)(3y-1
: yy-1)-(y-1)°=-(y-1) @y-1)

For the double points i =0, ﬂ =0, f(x,y)=0
OX oy

Nowﬂzo = 2x-2)=0 = X=2
OX
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and —=0= -y-1)@y-1)=0 = y

1]
L
Wl

1
the possible double points are (2, 1) (2, éj

Now (2, :—13) does not satisfy (1)

(2, 1) is the only double point
Nature of the point (2, 1)
o*f o°f o’ f

:2, =-3 —1-3-1,
o Y (y-1)- @y )axay

=0

2 2 2
0 ]; =2,2=-3(1-1)-(3-1)=-2 o't
OX oy oxoy

2
(aZf ] - 62]; .62]; =(0)-(2)(-2)=4>0
oxoy ox~ oy

there is a node at the point (2, 1)
13.7 Self Check Exercise

Q.1  Find the position and nature of double points of the curve

y(y-6) =x2 (x-2)%-9
Q.2 Find the position and nature of double points on the curve

=0

x3 + y3 = 3axy
Q.3 Show that the curve
y2 = 2x sin 2x
has a node at the origin
13.8 Summary
In this unit we have learnt
(1) What a singular and double point is
(ii) How to classify double points on a curve
(iii) to find the equation of tangent at the origin

(iv) the method for finding the nature of origin. Which is a double point.
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13.9 Glossary

0] Node - A node is a point on the curve through which two real branches of the
curve pass and two tangents at which are real and distinct.

(i) Cusp - A double point on the curve through which two real branches of the curve
pass and the tangents at which are real and coincident

13.10 Answers to Self Check Exercises

Ans. 1 Only double points are (0, 3), (2, 3) (0, 3) is a conjugate point and (2, 3) is a
cusp.

Ans. 2 (0, 0) is the only double point (0, 0) is a node.
Ans. 3 Prove it.
13.11 Reference/Suggested Reading

1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
2. H. Anton, L. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2002
13.12 Terminal Questions
1. Find the position and nature of the double points of the curve
x?y? = (a+y)? (b*- y?)
2. Find the position and nature of double point for the curve

(x+Y) -V2(y-x+22=0

Show that (0, 0) is a conjugate point on the curve (x - y)2 +x*=0
Find the position and nature of double points on the curve
y?=(x-1) (x-2)
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Unit - 14
Curve Tracing
Structure
14.1 Introduction
14.2 Learning Objectives
14.3 Curve Tracing
14.4 Working Method For Tracing Parametric Curve
14.5 Self Check Exercise
14.6 Summary
14.7 Glossary
14.8 Answers to Self Check Exercises
14.9 Reference/Suggested Readings
14.10 Terminal Questions

14.1 Introduction

Dear students, we have done curve tracing in our lower classes by giving different
values to x and finding the corresponding values of y. Now, we will do curve tracing using idea
of asymptotes, monotonicity, maxima and minima etc.

14.2 Learning Objectives
The main objectives of this unit are

(@ to trace the curve by using the ideas of multiple points and in particular double
points.

(i) to use the idea of tangents at the origin to trace the curve.

Before moving on to curve tracing, we assume that the students are aware of multiple
points, classification of double points and tangent at the origin (unit-13).

14.3 Curve Tracing

Following points should be kept in mind for tracing the graph of the equation f (x, y) = 0.
1. Symmetry-

The curve f (x, y) = 0 is symmetric about

(1) x-axis if it remains unchanged on changingy to -y i.e. y

f&-y)=fY)
(i)  y-axisif f (-x,y) =1 (X, y)
(i)  the originif f (-x, -y) = f (X, y)
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(iv) theliney=xif f (x,y)=f(y, X)

(v) the liney =-xif f (-y, -X) = f (X, y)
2. Domain and Range

Find the domain and range of the function.
3. Origin

See whether origin lies on the curve. If so, then find the tangent at the origin and also
determine whether origin in node, cusp or an isolated point (conjugate point)

4. Asymptote

Determine all the asymptotes of the curve and the position of the curve relative to its
asymptotes.

5. Points of Intersection

Determine all the points of intersection of the curve with coordinate axes and find the
equation of the tangent of these points. Find the nature of double points if any of these points is
a double point.

Find also some other points on the curve by giving suitable values to x.
6. Maxima and Minima

Find the points where the function has maximum and minimum value. Also find minimum
and maximum value at each point.

7. Points of inflexion
@ Find the intervals of
0] Increase and decrease of the curve
(i) Concavity and convexity of the curve
(b) Find the points of inflexion, if any
8. Discontinuities

Find the points where the function is discontinuous. Examine the behaviour of the
function near these points.

Some lllustrative Examples
Example 1 : Trace the curve
y=x3+5x2+3x-4
Solution : The given equation of the curve is
y=x3+5x>+3x-4 ..(1)
(1) Symmetry
The curve is neither symmetrical about axes nor about the origin. Also it is not
symmetrical about y =xory =-x
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(ii) Origin

The curve does not pass through origin
(iii) Domain

D f = (-0, )
(iv) Points of intersection
The curve meets x-axis when y =0
From (1) x3+5x2+3x-4=0 ..(2)
= X = -4 satisfies (2)
Other roots of the equation (2) are given by
x2+x-1=0
. ~1+\1+4 _ -1+5

21 2
Curve meets the x-axis at (-4, 0), (-1.6, 0) and (0.6, 0) resp.
Similarly, the curve meets the y-axis when x =0

From(1)y =-4

= Curve (1) meets the y-axis at (0, -4).

=0,6,-1.6

(V) Asymptotes

The curve has no asymptote

(vi) Increasing and decreasing
2
ﬂ =3x%2+ 10x + 3, d_z/ =6x+ 10
dx dx

d
Nowd—y =0=>3x*+10x+3 =0
X

=>Bx+1)(x+3)=0
or x=-1/3, -3

1
Tangents at x = -3, 3 are parallel to x-axis.
dy .
Also i >0if (x+3)(3x+1)>0
X

1
i.e. if x does not lie between -3 and -—.
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function is increasing in (-o, -3) U (-% , 0)

dy

Also —
dx

<0if(x+3)(3x+1)<0
R 1
i.e. if x lies between -3 and §

function is decreasing in (-3, —%)

(vii)  Points of inflexion

d? : S
Now _2/ >0when6x+10>ie.x>-—
dx 3

graph of function is concave upwards for x > %

2

Also d—z <0when6x+10<i.e.x< E
dx 3

graph of function is concave downwards for x < g

d’y . 5
And —- changes signas x = -—
dx? 98 S8 3
graph of function has a point of inflexion at
X:_§,y:_ % + %_5_4: l
3 27 9 27
(51 is a point of inflexion.
7 27
(viii)  Maxima and Minima
7 =0=x=- 1 -3
dx 3
2
atx:-l, d 2/ = —6+ 10=8>0
3 dx 3

. - 1
Function has local minima at x = §
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and the local minimum value = _—1 + 5 -1-4= i21
27 9 27

At X =3, ﬂ =-18+10=-8<0
dx?

.. Function has local maxima at x = -3

and maximum value = -27 +45-9-4=5
(ix) Additional Points

The curve passes through

(1, 5), (2, 30), (-1, -3), (-2, 2), )-3, 5).
Alsoy > oasx —owandy — -0 as X — -w

Now Let us draw a rough sketch of the curve

Example 2 : Trace the curve y = x3- 3x* + 3
Solution : The given equation of the curve is
y=f(X)=x3-3x>+3 ..(2)

(1) The given curve is neither symmetrical about x-axis nor y-axis and not origin.

240



(ii) The curve does not pass through origin.
(iii) Domain of the function is (-o0, o)
(iv) The curve meets y-axis at (0, 3).

The curve meets x-axis between -1 and 0, 1, and 2, 2 and 3, since f (-1) = -ve, f (0) =
+ve, f (1) = +ve, f (2) = -ve, f (3) = +ve.
(V) The curve has no asymptote.
2 3
o) Yooze e LY zexes, d—g
dx dx dx

d
Nowd—y = 0= 6x2-6x = 0= 3x (x-2) = 0
X

=6

orx=0,2

= tangents at x = 0, 2 are parallel to x-axis
2
Atx=0, d_z/ =-6<0
X
Curve has local maximaatx=0,y=3

2
Again at x = 2, d—Z =6>0
dx

Curve has local minimaatx=2,y=-1

dy

=3x?-6x>0if3x (x-2)>0
dx

Now

i.e. if x does not lie between 0 and 2
Curve is increasing for x <0 and x > 2

Likewise, curve is decreasing for 0 < x < 2.

d2
—z =6x-6>0forx>1
dx
Curve is concave upwards for x > 1 and concave downwards for x < 1.
2 3
Again d—zl =0atx=1and d—Z #z0atx=1,y=1
dx dx

. (1, 1) is a point of inflexion.
(vi) Asx—o o,y —oandas=-w0,y— -o0.

Now let us draw rough sketch of the curve.
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Example 3 : Trace the curve
x=y-1(y-2)(y-3)
Solution : The given curve is
x=y-1)y-2 (-3 (1)
0] Symmetry

The curve is neither symmetrical about axes and not about origin. Also it can be seen
that curve is neither symmetrical about line y = x and about line y = -x.

(i) The curve does not pass through origin
(iii) Points of intersection with axes -
the curve meets x-axis wheny =0
.. From (1) curve meets x-axis at (-6, 0)
and it meets y-axis at (0, 1), (0, 2), (0, 3).
(iv) Asymptotes
The curve has not asymptotes.
(V) Tangents
Xx=(y-1)(y-2)(y-3)=y*-6y*+ 11y -6

7 3y?- 12y + 11

dx

Y_oo 3y?-12y +11=0
dx
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_ +12+4144+132

243
_12+25
6
+
= 6#3732 = 2.6, 1.4 (nearly)

Now wheny = 2.6 = x -0.384,
and wheny = 1.4 = x = 0.384, nearly
. tangents to the curve at (-0.384, 2.6) and (0.384, 1.4) are parallel to y-axis.
(vi) Additional points
y<0=x<0

No portion of the curve lies in the fourth quadrant.

O<y<1 = x<0
O<y<?2 = x>0
O0<y<3 = x<0
3<y = x>0
X — = y — ©

Below, we give a rough sketch of the curve.

.0
o, 0
>
y 4

|

Iz

&
At

_‘t.'é.. :Ll f

2

\‘

/. 204
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Example 4 : Trace the curve

1
y=x+ =
X

Solution: The given equation of curve is

(i)

(ii)

(iii)

(iv)

y=X+ 1 (1)
X
Symmetry

The curve is symmetrical with respect to origin.
if Xx<0 =y<0
and x>0 =>y>0

The graph of the curve lies in 1st and 3rd quadrant only

Origin

Origin does not lie on the graph

Asymptotes

The equation of curve is

x2-xy+1=0

asymptotes are x (x-y) = 0 (by inspection method)

i.e. x =0,y =x are the asymptotes
Points of intersection with coordinate axes the curve meets x-axis wheny =0
X2+ 1 =0 = x = %+ 2 which is imagining.

Curve does not meet x-axis.

We note here that curve meets the y-axis if x = 0 which is not possible. Since domain if function
is all reals except x = 0.

=

(v)

the curve does not meet y-axis, infact y-axis is the asymptote of the curve.

Rising the falling-

1
y=x+=
X
dy . 1 dy_2
dx X dd X
L dy
curve is rising where —= >0
X
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1
= 1-—2>O:>1<X2:>X2>1:>|X|2>1
X

= [X|>1=x>1orx<-1
the curve is rising in (-0, -1) U (1, ).
The curve is falling when

& <0= [X|<l= -1<x<1
dx

= curve is falling in (-1, 1)
ﬂ =0whenx=1 orx=-1
dx

2
Now when x = 1, d—Z >0
X
curve has a local maxima at (+1, +2)
2
when x = -1, d—zl <0
dx
curve has a local minima at (-1, -2)
2

. . d
The curve is concave upwards if —2/ >0
X

= —3>0:x>0
X

Curve is concave upward on (0, «)

Likewise, curve is concave downward, on (-co, 0)

2
Now d y;tOVX

Y
= there is no point of inflexion.
X y dy d’y
dx dx’
-2 -5 +ve rising
2
3 13 +ve rising
2 6
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-1 -2 0 -ve maxima, split water,
convex upwards

1 -5 -ve falling
2 2
1 5 -ve falling
2 2
1 2 0 +ve minima, holds water,
concave upwards
3 13 +ve rising
2 6
2 5 +ve rising
2

The rough sketch of the curve is given below:

3
+
3! \ { )
A
-\D““'- .,l
z
|
3 O - 1 ‘ 44— —
-‘f_‘—-’—¥——-‘) —*T—O b 2 3 - x
-\ -3 -3
-\
. ¥ 1
.-r- -4

Example 5 : Trace the curve

2

yo X
1+ x?
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Solution : The given equation is

2

X
YT
= ([@+xX)y=x (1)

o ya+x*)-x*=0

0] The curve is symmetrical about y-axis (since only even powers of x occur in the
equation of given curve)

(i) the curve passes through origin and the tangent at the origin is y = 0 i.e. x-axis.
(iii) Domain of the function is (o, ®w) and 0 <y <1

(iv) the curve meets both axis in (0, 0)

(v) the asymptote of the curve isy - 1 = 0. Since y < 1, the curve lies below the

asymptote.
) d 2X
R
dx (1+x )
Now ﬂ > (0 for x>0 and ﬂ <0Oforx<O.
dx dx

The rough sketch of the curve is

14.4 Working Method for Tracing Parametric Curves

Two cases arises

Case 1 - If possible, eliminate the parameters and obtain the corresponding Cartesian equation
of the curve. Now proceed as done earlier to trace the curve.

Case 2 - If case fails, then proceed as follows :
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() Symmetry

0] If x = f () is an even function of t and y g (t) an odd function of t, then the curve is
symmetrical about x-axis.

(i) If x = f (t) is an odd function of t and y = g(t) is an even of t, then the cruve is
symmetrical about y-axis.

(iii) If x = f(t) and y = g(t) are both odd function of t, then curve is symmetrical in
opposite quadrants.
()} Origin

If x =0 =t € R which makes y equal to zero, then curve passes through origin.
(1)  Points of Intersection

Find the points of intersection of the curve and the coordinate axes.
(IV)  Limitations

Find the greatest and the least values, if possible, of x and y which give lines paraller to
axes between which the curve lies of does not lie.

V) Points
Find the points where % =0, % — ®
(VI) Region
0] obtain the regions in which curve does not lie
(ii) consider the signs of %and %
(iii) consider the values if x, v, % % %
(VIl)  Asymptotes
Find asymptotes, if any
Some lllustrated Examples
Example 6: Trace the curve
x=a (6 +sin 0)
y =a (1 + cos 0), -m<O0<n

Solution: The given equation of the curve is
x=a (6 +sin 0)
y=a(l+cosb), n<O<m

which represents cycloid.
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We note here that 6 cannot be eliminated easily, so we proceed as follows:
0] Symmetry -

The curve is symmetrical about the axis of y for (6 + sin 8) is an odd function of 6 and (1
+ cos 0) is an even function of 6.

(i) Origin -
Clearly the curve does not pass through origin
(iii) Intercepts -
The curve meets the x-axis when
y=0 = l1+cos6=0 = cosO=-1 = 0 =m, -m.
The point of intersection with x-axis are
A(am,0),B(-am,0)
Again the curve meets the y-axis when x =0
= 6+sin6=0 = sin6=-6
or 06=0
the point of intersection with y-axis are
c (0, 2a)
(iv) Asymptotes -
There are no asymptotes of the curve
(V) Points -

ﬁza(1+cose), ﬂz—asine
do

deo

dx d% 0 a(l+cosé) B 2cos’ %

dy _ d%e— —asing __ _Zgn%m$6/ =-tan %

Q =0when6=0
dx
= at (0, 2a) the tangent is parallel to x-axis

And ﬂ—mowhen O0=m, -n
dx

at (am, 0) and (-ax, 0), the tangent is perpendicular to x-axis
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(vi) Region -
Vv 0, % is +ve
do

= x always increases with 0

also Q istvefor-n<O<n
dx

Thus y increases when 0 increases from -r to 0 and y decreases when 0 increases from
Otom.

The rough sketch of the graph of this curve is as below:

A
O=0lC
-~ : A ‘.-’
¢ A/ :
- —— T =S .
0 ‘ e=Tl X
p=-T |
Example 7: Sketch the curve
X =a cos® 0
y=asin®0

Solution: We have equation of the curve
x=acos®0,y=asin®0 (Astroid)
Eliminating the parameter, we get the equation of the curve as

NI

() Symmetry -

The curve is symmetrical about both the axes.
(i) Origin -

The curve does not pass though origin
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(iii) Intercepts -
The curve meets the x-axis at
(+a,0), (0, +a)

The equation of tangent at (+ a, 0) is the x-axis and the equation of tangent at (0, + a) is
the y-axis.

(iv) Asymptotes -

The curve has no asymptotes

(V) Points -
gza-3acoszesin9
déo
and ﬂ =+ 3asin?0 cos O
dée
dy
ﬂ =-tan 0 ﬂ = A@
do do  dx
dée

@) As 0 increases from 0 to %

(b) As 0 increases from % to «, x decreases from 0 to -a and y decreases from a to

0 because
%<Oandﬂ>o for£<e<Z
de dée 2 2

. 3T .
(c) As 6 increases from r« to Py x increases from -a to 0 and y decreases from 0O to

—abecause%>0andﬂ<0 for n<0< 3—”
dég 2

. 3 . :
(d) As 0 increases from 7to 27, X increases from 0 to a and y increase from -a to
0.

We don't get new points for other values of 6 as x and y are periodic function of 6 with
period 2.

The rough sketch of the curve is given below:

251



145 Self Check Exercise
Q.1  Trace the curve y = x3
Q.2 Tracethecurvey=(x+1)2 (x-3)

4
Q.3 Tracethecurvey= —+X
X

Q.4 Trace the curve
Xx=a(t-sint)
y=a(l-cost)
14.6 Summary
Dear students, in this unit we have learnt.
(@ curve tracing
(ii) working method for tracing parametric curves
147 Glossary

(2) Multiple Points - A point though which two or more than two branches of a curve
pass, is referred to as multiple point.

(2) Isolated Point - A double point is called on isolated point or conjugate point if
two tangents at the double point are not real or there is no real point on the curve
in the nhd. of double point.
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14.8 Answers to Self Check Exercises
Ans. 1

Ans. 2
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Ans. 3

Asyvnﬂi}f
A A
7/
\“—/4’{1’
A
0 el 2
R EEE "ol X
o

14.9 Reference/Suggested Reading
1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
2. H. Anton, L. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2002
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14.10 Terminal Questions
2

1. Trace the curve y = 5
1+ X
1+ X
2. Trace the curve y =
X+1

Trace the curve y = x? (x - 3a), a>0

Trace the curve
1
_ - t
X=a(cost+ > log tan2 /2)

y=asint
(Tractrix)
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Unit - 15
Polar Coordinates And Tracing of
Curve In Polar Coordinates

Structure

15.1 Introduction

15.2 Learning Objectives

15.3 Polar Coordinates

15.4 Relation Between Cartesian And Polar Coordinates
15.5 Polar Coordinates And Tracing of Curve in Polar Coordinates
15.6  Self Check Exercise

15.7 Summary

15.8 Glossary

15.9 Answers to Self Check Exercises

15.10 Reference/Suggested Readings

15.11 Terminal Questions

15.1 Introduction

Dear students, we are generally introduced to the idea of sketching curves by relating x-
values to y-values through a function f. That is, we set y = f(x) and plot lot of points pair (X, y) to
get a good notion of how a curve looks. This method is useful but has limitations, not least of
which is that curves that fall the vertical line test cannot be graphed without using multiple
points. In previous unit introduced and studied a new way of plotting points in the x-y plane.
Using parametric equations x and y values are computed indecently and thereafter plotted
together. This method allows us to graph an extraordinary range of curves. This unit introduces
another way to plot points in the plane; using polar coordinates.

15.2 Learning Objectives
The main objectives of this unit are :
0] to define Polar coordinates
(i) to study relation between rectangular (cartexin) and polar coordinates.
(iii) to trace the curve in polar coordinates.
15.3 Polar Co-ordinates

Let O be a fixed point and OX a fixed straight line through it, whose positive direction OX
as shown by the arrow. O is called the pole, and OX is called the initial line.

Let P be a point in a plane through the initial line. Join OP. Then
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\ g = Vectorial Angle

O (Pole) Initial Line

(1) the length OP is called the radius vector of P, and is denoted by r,
(i) the angle XOP is called the vectorial angle of P, and is denoted by 6 and

(iii) the two together, taken in this particular order, are called the polar co-ordinates
of P, and are denoted by (r, 0).

Signs of the co-ordinates

(1) 0 is regarded as positive, if it is traced in the counter-clockwise direction, and is
negative, if it is traced in the clock-wise direction. Therefore, it follows that (r, ) and (r, 6 + 2 n
n), where n e Z, represent the same point and consequently, the vectorial angle can have
infinitely many values, with the same value of r.

On this account, we say that vectorial angle of a point is not unique.

(i) 'r', the radius vector, is positive, if it is cut along the line bounding the vectorial
angle and is negative, if it is cut along the opposite direction of the line bounding the vectorial
angle.

P(r @)

P'(-r, 0)

Let P be the point having the co-ordinates (r, 6).
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Produce PO to P!, such that O is mid-point of PP; i.e., |OP| = |OP'| ; then P' will have
polar co-ordinates (-r, 6)

Note: OP'is a bounding line of vectorial angle 6 + tor ¢ -
polar co-ordinates of P' are also (r, 6 + )

For vectorial angles 0 + &, or 6 - &, OP is negative.
co-ordinates of P are (-r, 6 + )

we conclude that, the polar co-ordinates of a point are not unique, whereas, the
rectangular Cartesian co-ordinates of a point are unique.

Conclusion : Giving due consideration to the signs of r and 6, we conclude that the
general co-ordinates of a point (r, 6) are ((-1)" r, 6 + n ); where n is any integer.

15.4 Relation between Rectangular (Cartesian) and Polar Co-ordinates

Given the point P (X, y) in Cartesian Co-ordinate system, express x and y in Polar form.
Also, if P (r, 0) is a polar coordinate form, express r, 6 in Cartesian form.

Y,‘.

p

P
y
: ] [ > X

"6 : X M

:
L 3

Proof: Let (X, y) be the Cartesian co-ordinates of P, and (r, 6) be its polar co-ordinates.
(1) To express x and y in terms of r and 0

From P draw PM L X'OX

Inrt. Z£d A OMP,

——=20s 0
OoP
OM =0OP cos 0
X=rcoso0
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oM .
and —— =sin 0
OoP

MP = OP sin 6
y=rsino
o we have X =rcos 0, y =r sin 6.
(i) To expressrand @interms of xand y
Now x=rcos® ... (1)
y=rsino ... (2)
Squaring and adding (1) and (2), we get

X2 +y?=r% (cos? 0 +sin? 0) = r? (1) = r?

rP=x2+y?  or r= (X +y

Dividing (2) by (1), we get

y rsiné
~= —=tan©
X rcosé

tan 0 = X,oreztan'lz.
X X

we have r= X' +y?, 0= tap‘l%

Note 1. In practice we generally use the relations:

X
rza/X2+y2,cose=?,sin9=?y

Note 2. Rule to change a Cartesian equation to polar equation.

In the given equation, put x =r cos 6, y - r sin 6, and simplify the result. The resulting
equation is the required equation.

Note 3. Rule to change a polar equation to Cartesian equation.

. . . X . y .
(1) In the given equation, put cos 6 = —, sin 6 = =, and clear off fractions.
r r

(i) Putr = «/X2+y2 , and express the resulting equation in the rational form (i.e.,
free from fractional powers). The resulting equation is the required equation.

Example 1: Find the Cartesian coordinates of the points (2, 60°), (-2, 30°)
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Solution: Let (X, y) be Cartesian coordinates of (2, 60°) i.e. (2, —)
X=2C0Ss —=2x —=1

2
N
=2sin —=2x —=+/3
y 3725, V3
required Cartesian coordinates of (2, 60°) are (L \/§)

Again let (x, y) be Cartesian coordinates of (-2, 30°) i.e. (—2, %)

X = -2 CO0S %=—2x§=—\/§

1
y =-2sin %:-Zx E:-l

required Cartesian coordinates of (—\/§, —1)

S
Example 2: Find the Cartesian coordinates for the point (—«/_—%j

)
Solution: Let (x, y) be Cartesian coordinates of (—«/é—%j

6 2 2
57[) . o7 (
y=-3|——1|=3sin—=3sin | 7——
6 6
T 1 3
=3sin —=3x -=
6 2 2
required Cartesian coordinates of (—\/é—%[j are (%g}
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Example 3: (a) Plot the following points whose polar co-ordinates are

o) e (35w [

. V4 8r
(iv) (—3, —ZJ (v) (2, - ?j

Also determine their cooresponding Cartesian co-ordinates.
(b) Find the Cartesian coordinates of the points (2, 1800), (3,%)

(© Find the Cartesian coordinates of the point P whose polar coordinates are

%)

Solution: (8) (i) P« (3,%)

By

+ X

O

Let the +ve half ray of x-axis be taken as polar axis.

Let (x, y) correspond to P (3,%}

/4 /4
Xx=3c0os —,y=3cos —
4 4

-
R

e
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Cartesian co-ordinates of P (S,EJ are (iij
4 22
b
ii P -2,—
(i) < ( 3j
Here P is the reflection of P’ (2,%)in the pole.
]
Po(zi 3)
2
pid
0 3 — X

pl2%)

Let (X, y) correspond to P (—2, %)
T
X=-2c0s —=-1
3
y =-2sin s 3
3
(—l, —\/é) are the Cartesian co-ordinates of P(—Z, %)
T
iii P 3,——
W Pola-f)

Let (x, y) correspond to P (&—%)

X = 3 cos (—zj— 3
1)" 2
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ol

( 3 3 j are cartelist co-ordinates of P (3,—%)

2 {2

) T
(iv) Po (—3,—ZJ

p(-3-F)
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8r
(V) P« (2,—?]

Let (X, y) correspond to P [2,—%)

o(2.4)

y =2sin 8?77=23in (2ﬂ+2§]=23in 2—7[=2 [ﬁjz \/§

(—1, \/é) are the Cartesian co-ordinates of P(Z,%zj

(b) Let (x, y) be Cartesian coordinates of (2, 1800) i.e. (2, n)
y=2sint=2x0=0

required Cartesian coordinates of (2, 180°) are (-2, 0)

Again let (x, y) be Cartesian coordinates of (3%)
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X =3 cos %=3x0=0
y=3sin £=3x1=3
2
required Cartesian coordinates of [3, gj are (0, 3).

(© Let (x, y) be Cartesian coordinates of (6%)

X =6 cos %=6X§=3x/§

1
y=6sin —=6x ==3
6 2
. : . T
required Cartesian coordinates of (6EJ are (3\/5, 3)

Example 4: Determine the polar co-ordinates of point (2\/5 3)

Solution: Let (r, 6) be the point corresponding to (2\/5 3)

2=rcoso6 L. D

and 23=rsine .. 2
Squaring (1) and (2) and adding, we get,

4 +12 =r?(cos? 0 + sin? 0)

16 =r2 = r=4

from (1) and (2), we get,

N

1
cosf=—,sinf=—
2 2

0= %as 6 lies in Ist quadrant

Example 5: Find the polar coordinates for the points with the Cartesian coordinates (—\/5,1)
Solution: Let (r, 6) be the point cooresponding to (—\/5,1)

265



—\/§ =rcoso (1)

and 1l=rsino0 ... (2)

Squaring and adding (1) and (2), we get
3+1=r?(cos?0+sin?0) or 4=r> = r=2
from (1) and (2), we get

3 . 1
cosf=—-———,sNn0=—
2 2

T

tan 0 = - = 0=r=

6
[Q 6 lies in lind quardrant]

polar coordinates of (—«/§,1) are (Z%j

Example 6: Find the polar coordinates of the point whose Cartesian coordinates are (-2, 2).
Solution: Let (r, 6) be the point corresponding to (-2, 2)

-2=rcos6 .. (2)

and 2=rsino6 .. (2)

Squaring and adding (1) and (2), we get

4+4=r*(cos?6+sinB)or8=r> = r=242

from (1) and (2), we get

cos == i,sinez i
2 J2
tan 0 = - = 0=m- % [Q 0 lies in lInd quadrant]
3
= e:—”
4

polar coordinates of (-2, 2) are (ZﬁCOSsZﬁ,Z\/ESin%j
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15.5 Polar Coordinates And Tracing Of Curves In Polar Coordinates

Procedure for Tracing Polar Curves

We shall keep in mind the following points for tracing the graphs of the equation f(r, 0) =

Symmetry

(i)

(ii)

(iii)

(iv)

v)

Pole

(i)

(ii)

(iii)

Symmetry about the initial line or x-axis : If the equation of the curve remains
unchanged when 6 is changed to -6, the curve is symmetrical about the initial
line.

: Vs . . .
Symmetry about the line 6 = Eor y-axis : If the equation of the curve remains
unchanged when 6 is changed to = - 6 or when 6 changed to -6 and r to -r, the

curve is symmetrical about the line 6 = 2

. T . .
Symmetry about the line 6 = Zor y = x : If the equation of the curve remains

unchanged when 6 is changed to 5 0, the curve is said to be symmetrical about

the line 6 = r
4

3
Symmetrical about the lie 6 = —”or y = - x . if the equation of the curve remains
4
3
unchanged when 6 is changed to 77[ 0, the curve is said to be symmetrical

about the line 6 = 37”

Symmetry about the pole : If the equation of the curve remains unchanged when
r is changed to -r, the curve is said to be symmetrical about the pole.

Find whether the curve passes through the pole or not. It can be done by putting
r = 0 in the equation and then finding some real value of 0. If it is not possible to
find a real value of 0 for which r = 0, then the curve does not pass through the
pole.

Find the tangents at the pole. Putting r = 0, the real values of 6 give the tangents
at the pole.

Find the points where the curve meets the initial line and the line 6 = E
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Il Value of ¢
. do . . T
Find ¢ from the resulttan ¢ = r _d . Then find the points where ¢ =0 or E
r

V. Asymptotes
If r - o as 6 — 0: (any fixed number), then there is an asymptote. Find it by the method
given below:

1
0] Write down the given equation as F: f (), say.

(i) Equate f(0) to zero and solve for 6. Let the roots be 01, 6,,......
(iii) Find f'(6) and calculate it at 6 = 01, 0,......

1
f(6,)

(iv)  Asymptotes are r sin (6 - 61) = % rsin (0 -6y =

V. Special Points
Find some points on the curve for convenient values of 6.
VI. Region

Solve the given equation for r or 6. Find the region in which the curve does not lie. This
can be done in the following manner.

0] No part of the curve lies between 6 = oo and 6 = B if for a < 6 < B, r is imaginary.

(i) If the greatest numerical value of r be a, the curve lies entirely within the circle r =
a. If the least numerical value of r be b, the curve lies outside the circle r = b.

Example 7: (a) Trace the curver=a (1 + cos 6), a> 0.
(b) Trace the curver =5 (1 + cos 0)
When 0 increases from 0 to &, r remains positive and decreases from 2 a to 0.
When 6 increases from = to 2x, r remains positive and increases from 0 to 2 a.
The shape of the curve is an shown in the figure.
(b) Take a =5.
Example 8: Trace the curve r =a (1 - cos 0)
Solution: The equation of the curveisr=a(1-cos6) ... (1)
. Symmetry
The equation of the curve remains unchanged when 6 is changed to -6.
curve is symmetrical about the initial line.
Il. Pole.
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Puttingr = 0 in (1), we get,

a(l-cos®)=0o0rcosbH=1 = 06=0

pole lies on the curve and tangent at the pole is 6 =

The curve cuts initial 8 = 0 at (0, 0) and the lines 6 = + %at (a,

Value of ¢
1-asine
de
252 ?
tan¢—r%—a(1-cose) = 2
r snd Zsingcosg
2 2
tan ¢ = tan Q = o= Q
2 2

é=0whenOwhen6=0,r=0

at (0, 0), the tangent coincides with the initial line.

0

2

Asymptotes: Since r does not tend to infinity for any finite value of 0.

curve has got no asymptote

(¢3)

tangert

o3

§=x

20 (%)

Special Points : We have

T
by T

0: a x
4 2
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2a

Q

N

Solution: (a) The equation of the curve isr =a (1 + cos 0)

1. Symmetry : The equation of the curve remains unchanged when 6 is changed to
- 0.

curve is symmetrical about the initial line.
Il. Pole : Puttingr=0in (1), we get

a(l+cos0)=0o0rcosO=-1

0=m

pole lies on the curve and tangent at the pole is 6 = x,

The curve cuts the initial line 6 = 0 at (2a, 0) and the lines 6 = + %at (a,zj : (a,—zj

2 2
Il Value of ¢
i— asin 6
do
Zsinzg
de 2
tan¢=rd—-a(1+cose)x : az- )
' —asin 2sin— Ccos—
2 2
tan¢=-cot§ = tan ¢ = tan £+Q — ¢=£+Q
2 2 2 2 2

¢:%When6=0,r:2a

at (2 a, 0), the tangent is perpendicular to initial line.
V. Asymptotes:
Since r does not tend to infinity for any finite value of 6.
curve has got no asymptote
V. Special points.
We have

0: 0 £z
42
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VI.

VI.

r: 2a a£1+ i} a 0
' 2

Region.

Sincer=a (1 + cos 0)

max. value ofr=2 a

curve lies entirely within the circle r = 2a

Region:

Sincer=a (1 - cos 6)

max. value ofr=2 a

curve lies entirely within the circle r = 2 a.

When 6 increases from 0 to =, r remains positive and increases from 0 to 2 a.
When 6 increases from = to 2 &, r remain positive and decreases from 2 a to 0.

The shape of the curve is given in the figure.

Example 9: Trace the curve r = a (1 + sin 0)

Solution: The equation of given curve is

r=a(l+sin® . (1)

I. Symmetry. The equation of the remains unchanged when 6 is changed to =« - 6.

, , . /4
curve is symmetrical about the line 6 = 5
Pole. Puttingr=0in (1), we get

a(l+sing)=0o0rsinf=-1 = 0= —
. _ 3r
pole lies on the curve and tangent at the pole is 6 = Py

The curve cuts the initial line 6 = 0 at (a, 0) and the line 6 = %at (Za,zj

2
Value of ¢
i =acoso
do
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40 sinzg+coszg+25ingcosa
tan¢=rd—:a(l+sin9). = 2 02 7
r acosé co2? _sin?
2 2
2
(sin9+cosej cosg+sing
2 2 _ 2 2

cos€+sin€ cosg—sing cosg—sing
2 2 2 2 2 2

1+tang
2 T 6
0 = tan Z‘i‘zj
1-tan—
2
o= 242
2

When6=0,¢=%

VA

When 6 = >’ o= % = ato= % the tangent is perpendicular to the line 6 =

Asymptotes. Since r does not tend to infinity for any finite value of 6.
curve has got no asymptote

Cla.zl a a JAD0) >X
f=x : 00
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V Special Points. We have

0: z 0 z T
2 2
r: 0 a 2a a

VI Region. We know that
[sinf] <1
from (1),r<2a

curve lies entirely within the circler=2 a

. Vs . " .
When 6 increases from 0 to E the value of r remains positive and increases from a to

. T . "
2a. As 0 increases from E to w, r remains positive but decreases from 2 a to a.

The shape of the curve is given in the figure.
Example 10: Trace the curve r=a (1 - sin 6)
Solution: The equation of given curve is

r=a(l-sin0 .. (D)

I. Symmetry: The equation of the curve remains unchanged when 6 is changed to = - 6
: : . T
curve is symmetrical about the line 6 = 5
Il. Pole. Putting r =0 in (1), we get,

a(l-sinB)=0 = sinf=1 = 0=

NN

: _ T
pole lies on the curve and tangent at the pole is 6 = PR

3 3
The curve cuts the initial line 6 = 0 at (a, 0) and the line 6 = 7” at (2a,7”j

M. Value of ¢

dgz-acosa

tan¢-r%—a(l sin 0). ———
dr —acosd
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sin2Q+coszg—29'chosQ
2 2 2 2

cos2 ! —sin??
2
( . 9)2 6
COS*-SII’]E COS— —Sin—
= - 0 2=
(cos—smj(cos+smj cos_+sn
1-tan?
2 0 3
=- 5 =-tan (——E)ztan (7+—j
1+tan—
3r 60
= —+4+—
¢ 4 2
3r
When 6=0,¢=—
4
When 6 = 3—” ¢ = s
2 2

3 3
ato = ?ﬂ tangent is perpendicular to the line 6 = ?ﬂ

IV. Asymptotes: Since r does not tend to infinity for any finite value of 0.

curve has got no asymptote.
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ﬂ\
Q
g =0
gux > X
(’ a
24
a=3%
V. Special Points. We have
Vs 3r
0: 0 — i —
2 2
r: a 0 a 2a
VI. Region. We know that [sin 6] <1

from (1),r<2a

curve lies entirely within the circler=2 a

. T . "
When 6 increases from 0 to —, the value of r remains positive and decreases from a to

_ 3r . . .
0. As 0 increases from = to 7 the value of r remains positive and increases from a to 2a.

The shape of the curve is given in the figure.

Example 11: Trace thecurver=a+bcos0,a>b

Solution: The equation of curveisr=a+bcos6 ... (1)

I. Symmetry: The equation of the curve remains unchanged when 6 is changed to - 6
curve is symmetrical about the initial line.

Il. Pole. Putting r =0 in (1), we get,

a
a+bcos0=0 orcosezg

a
|cose|=6>1asa>b
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This is not possible
for no value of 0, is equal to zero

curve does not pass through the pole.

Il Value of ¢
dr
—=-bsin0
dé
déd a+bcosd
tano=r —= ——=#
dr —bsing

¢ # 0 at any point

When 6 =0, r=a +b, then ¢ = %
at (a + b, 0), the tangent is perpendicular to initial line.

IV. Asymptotes: Since r does not tend to infinity for any finite value of 0.
curve has got no asymptote.

{u 4+ b, O) > X
tangent
(o)
&

V. Special Points. We have
6: 0 =
2
r: atb a a-b
VI. Region. Sincer=a+bcos0and|cos0]<1
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[r] <a+b

curve lies entirely within the circler = a + b.

When 0 increases from 0 to E r remains positive but decreases froma +b to a.

. Vs
When 0 increases fromE ton, rdecreases fromatoa-b.

The shape of the curve is given in the figure.

Example 12: Trace the curver= 2 + 3 cos 0

Solution: The equation of curve is
r=2+3cos® L D

I. Symmetry: The equation of the curve remains unchanged when 6 is changed to -0.
curve is symmetrical about the initial line.

Il. Pole. Putting r =0 in (1), we get,

wIinN

2+3cos6=0o0rcos6=-— =cos(n-a),say

0 = n - a is tangent to the curve at pole where o is given by

co -a)= - —
S (m-a) 3
Il Value of ¢

1— 3sinod

do
dé 2+3cosf

tan¢o=r —= ————
dr -3sind

2
Nowtan<|>=0when2+30056=00rcose=5 oro=m-a

at (0, = - o), the tangent to the curve is parallel to initial line.
Now tan ¢ > owhen®=0o0r=

at (5, 0) and ( -1, =), the tangent is perpendicular to the initial line.
IV. Asymptotes: Since r does not tend to infinity for any finite value of 0.

curve has got no asymptote.
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V. Special Points. We have

6: 0o I g
2
r: 5 2 -1
VI. Region. We know that [cos 0] < 1

from (1),r<5

curve lies entirely within the circle r = 5.

As 0 increases from O to E r remains positive and decreases from 5 to 2. When 0

. T
increases fromE to m, r decreases from 2 to 0 and then from 0 to -1.

A rough sketch of the curve is given in the figure.
Example 13: Trace the curve r = a sin 30, a > 0.
Solution: The equation of curve isr=asin3 .. (1)

I. Symmetry: The equation of the curve remains unchanged when 6 is changed to = - 6.
. : . /4
curve is symmetrical about the line 6 = E

Il. Pole. Putting r =0 in (1), we get,
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asin30=0 or sin30=0

30=0, n, 2=, 37, ...
2
or e=o,1,—”,n,....
3 3

the curve passes through the pole and the tangent at pole are
T 27 .
0=0, 5 ? as the other value of 6 give the same tangents.

Ill. Asymptotes: Since r does not tend to infinity for any finite value of 0.
curve has got no asymptote.
V. Special Points. We have

2 5
e: o F z = 2@ 5
6 3 2 3 6
r: 0 a 0 a 0 a 0
V. Region. From (1), |r|=a|sin 8| <a

curve lies entirely within the circle r = a.

When 0 increases from 0 tog, r positive and increases from 0 to a.
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, T T . "

When 0 increases from s to 3 r is positive and decreases from a to 0.
. VA

Thus we get a loop between the liens 6 =0 and 6 = 3

As 0 increase from 5 to o r is negative and numerically increases from 0 to a and

_ Vs 2r . . .
when 0 increases from P to ? , ' is negative and numerically decreases from a to 0.

2
we get another loop between the lies 6 = % and 6 = ?ﬁ

) 2 5z . .
When 6 increases from ? tog, r positive and increases from O to a and when 6

) 5t ) "
increases from ? to m, ris positive and decreases from a to O.

2
we get third loop between the lines 6 = ?ﬂ and 6 = .

When 0 varies from = to 2z, the same loops are repeated and we do not get any new
loop as r is periodic.

The curver=asinn6 or r=acosnb
consists of n or 2 n loops according as n is odd or even.
15.6 Self Check Exercise
Q.1  Determine the polar coordinates for the following point
(i) (-5,-12)

(i) (2 -243)

Q.2 Transform the equation
X2+y?-2x+2y=0
into polar coordinates

Q.3 Trace the curve
r=acos 30

15.7 Summary
In this unit we have learnt.

() polar coordinates
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(i) the relation between Cartesian (rectangular) and polar coordinates
(iii) to trace the curve in polar coordinates.

15.8 Glossary
(2) Angle between radius vector and tangent -

If ¢ = angle between radius vector and tangent then
do . ,
tan¢o =r. E , (r, ©) is any pointer the curve.

(2) Angle of intersection of two curves -

If $1 and ¢. are the angles which the tangents to the two curves make with radius
vector then

Angle of intersection of two curves = ¢, - ¢1
15.9 Answers to Self Check Exercises
Ans. 1 (i) tan 6 = 12/5

" T
@ 4-3)

Ans. 2 r=1(cos 0 - sin ¢)
Ans. 3

15.10 Reference/Suggested Reading

1. H. Anton, L. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2002
2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
15.11 Terminal Questions
1. Find the polar coordinates of the points
(i) (-7,-12)
(i)  (-3,-4)
(iii) (-1, -1)
2. Transform the equation
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X2+y?-2x+2y=0

into polar coordinates
a
Ifr= 5 prove that tan ¢ = -0

Find the angle between the curve
r=2acos 6

r=2asin 0

Trace the curve

0] ro=a

(i) r2 = a2 cos 20
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Unit - 16

Function of Several Variables
(up to Three Variables)

Structure

16.1 Introduction

16.2 Learning Objectives

16.3 Function of Two and Three Variables
16.4 Limit and Continuity of Function of Two and Three Variables
16.5 Self Check Exercise

16.6 Summary

16.7 Glossary

16.8 Answers to Self Check Exercises
16.9 Reference/Suggested Readings
16.10 Terminal Questions

16.1 Introduction

Dear students, we are already acquainted with the concepts of limit, continuity,
differentiability and integrability of a real-valued function of a single real variable whose domain
and range are the subsets of set R (set of real numbers). In this unit we shall study those
functions whose domain and range may not be subsets of R, i.e. functions whose domain and
range are subset of R" (n > 2). Such functions are called functions of several variables.
However, our main concern is to study function which are dependent on up to three variables
(two or three).

16.2 Learning Objectives
The main objectives of this unit are
0] to study a function of two and three variables defined in a certain domain.
(i) to define nhd. of a point in R? and in R3.
(iii) to study limit and continuity of a function of two and three variables.
(iv) to study algebra of limit and continuity of function of two and three variables.
16.3 Function of Two and Three Variables

Let us recollect the definition of the Cartesian product of sets. Set A, B be any two sets,
then the set

AxB={(a,b):aeA beB}
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is called a Cartesian product of the sets and B and the element of the set (a, b) is called
an ordered pair and (a, b) # (a) unless a = b.

We define

R2=R xR ={x,Yy) : X,y € R}, which represents two dimensional plane.
Similarly

RE=RxRxR={(X,y,2): XY,z e R},

Which represents three dimensional plane.

Let X, y € R be two variables. One of these variables, say x, may have any value
belonging to a certain given interval and corresponding to this value x, y may have any value
belonging to any given interval or a set of intervals. In this way we obtain a system of order pairs
of numbers (x, y). Now, if to each possible pair (X, y), we associate, in any manner whatsoever,
a value of another variable, say X, then we say that z is a function of two variables x and y. We
write it as z = f(x, y) where X, y, are independent variables and z is a dependent variable. The
aggregate of the ordered pairs of numbers (x, y) is called the domain or region of definition of
the functions and the set of corresponding value z € R is called range of the function.

Similarly we can define a function of three variables.

Remark 1 : In the theory of function of two and three variables, an ordered pair of numbers (X,
y) is called point of R? and an ordered triad of numbers (x, y, z) is called point of R®.

Remark 2 : the elements of R are scales whereas the elements of R? and R® are vectors.
Now we state a few definitions which will be used during the course of discussion.
Definitions

Definition 1 : Neighbourhood of a point in R?.

Let (a, b) € R? be a point of R3. Let 3> 0 (however small it may be) be a real number.
Then the set of points lying within a circle having a centre at (a, b) and radius &, called a
symmetric neighbourhood of the point (a, b) and is written as S((a, b), &). If P (X, y) is any point
in this circular region, then

\/(x—a)2+(y—b)2 <d
Remark 3 : The circular region S((a, b), d) - [(a, b)] is called a deleted neighbourhood of (a, b).

Definition 2 : Neighbourhood of a point in R3.

Let (a, b, ¢) € R? be a point of R®. Let &> 0 (however small) be a real number. Then the
set of points lying within a circle having a centre at (a, b, ¢) and radius &, is called a symmetric
neighbourhood of the point (a, b, ¢) and is written as S((a, b, c), d). If P (X, y, z) is any point in
this spherical region, then

Jx=a)* +(y-b)2+(z-c)* <5
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Remark 5 : The spherical region S((a, b, c), d) - [(a, b, c)] is called a deleted neighbourhood of
(a, b, c).

Definition 3 : Open Set.

An subset of R? is called an open set, if either A is an empty set or A is a neighbourhood of each
of its points.

Definition 4 : Closed Set
A subset A R? is called a closed set if its complement A® is an open set.
Definition 5 : Limit point of a set in R?.

First Definition. Let A = R? A point a € R? is called a limit point of the set A if every nhood. Of
a contains at least one point of A other than a.

Second Definition. Let A — R?. A point a € R? is called a limit point of the set A if every nhood,
of a contains Infinitely many points of A.

Remark 6. It can be proved that the above two definitions are equivalent.
Remark 7. Limit point of a set, If it exists, may of may not belong to the set.
Real Value Function of Two and Three Variables.

Definition 6 :

Let A = R2 The mapping f : A — R is called a real valued function of two variables.

3 2

e.g. f(x,y) =x2 +y2, f(x,y) = Xz_ y2 and f (x, y) = sin (x + y) are functions of two
X +y

variables x, y.
Definition 7 :
Let A = R3 The mapping f : A — Riis called a real valued function of three variables.

eg. f (XY, 2)=x2+y>+ 2% f(X,y,z)=xy+yz+zxand f (X,y,z) =log (x +y + z) are
functions of three variables x, vy, z.

16.4 Limit And Continuity of Function of Two And Three Variables.
Simultaneous Limit of a Function of Two Variables

Definition 8 : Let A = R2 Let f : A — R be a real valued function of two variable x, y defined on
a circular nhood with centre (a, b), except possibly at point (X, y)

Then a real number is called a limit of f (x, y) at (a, b) If given > 0, there exists areal & >0 (9
depending upon and (a, b), such that

If (x,y)-l|<for0< \/(x—a)z +(y—b)2 < d and we write limxy)-@bxy)ea f(X, y) = |
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Remark 9 : The region < \/(x—a)z +(y—b)2 < 3 can also be writtenas 0 < |(x, y) - (a, b)| <

Cor. The limit | is also called the double limit of f when x, y — a, b simultaneously.
Another definition of a function of two variables:

Let f be a real valued function of two variables x and y defined on a square neighbourhood with
centre (a, b), except possibly at (a, b)

Then f (x, y) is said to have a limit | € R as (x, y) — (a, b) if for given > 0, however small, there
exists a +ve real d (depending upon) such that

[f(X, y) - l]| <whenever

O<|x-a<d,0<|y-b|<?d and we write it as

lim f &y =I

(x,y)—>(ab)
Definition 9 : Limit of a function of three variables.

Let Ac R3. let f: A — R be a real valued function. Let (a, b, ¢) be a limit point of A then a real
number | is called a limit of (x, y, z) at (a, b, ¢) if for a given > 0, there exists a real d > 0)

(depending upon and (a, b, ¢) such that |f(x,y,z) - || < f or 0 < \/(x—a)2+(y—b)2+(z—c)2 <3
and we write

lim f&xvyz2=I

(xy,2)>(ab.c)
Remark 10: [f (X,Y,2)-l|<forO0<]|(X,y,2)-(a,b,C)|< d
or [f(x,y,z)=l|<for0<]|(x,y,2)-(a,b,c)< d.
Algebra of Simultaneous Limits
Theorems. Let f, g : A — R? where A c R?, be two functions.
Let (a, b) be limit point of A, then
1. If |imz<),(?ly~)>e(aA,b) f(x, y) =1, exists thenf is bounded in some deleted neighborhood

of (a, b) but the converse is not true.

2. If |im(x,y—)>(a,b)f (x, y) = |, exists and |im(x,y_)>(a,b) g(x, y) = m, exists then:
X,y)eA Xy)eA
(a) |im(x*yy—)>e(g\,b) (f +9) (X, y) =1+ m, exists
® My @0 (O)(x, ) = I, exists
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. 1 1
(© Ilmx,y—>(a,b) [—j (X, y) = —, exists, provided m = 0
xyeA "\ ¢ m

; f 1
d xy—@ab) | — | (X, y) = —, exists, provided m = 0
@ limyyao (gj( N= p

(e) |im(x,y_)>(a,b) (kf) (x, y) = kI, exists, k being a real number.
X,y)eA

The converses of 4(a) to 4(e) are not ture.
3. If

[ Mxy-@n f(x, y) =
(xy)eA
I, exists then || Mxy-@b [£(X, ¥)| = I|, exists but its converse is not true.
(x,y)eA

All the above theorems are easy to prove. (Students are advised to prove themselves).
Theorem 4: liMyy)—@p) f(X, Y) exists then it is unique.
Proof: If possible, let limxy)—@b) f(X, ¥) = | and limy)—@p) f(X, ¥) = I' where |' = |

Let us assume that I' > |

let=——>0
2
lim 7y =1
(x,y)—>(a,b)
f or given > 0, however small , 3 a + ve number & ; (depending upon)
lf(xy) -1<for0<|(x,y)-(a b)|< 51 (1)
again |jm fx.y=I

(xy)>(ab)
f or given > 0, however small, 3 a + ve number 8 , (depending upon)
lfx,y)-I'<forO<|(x,y)-(ab)<d2 ... 2
let ®=min {31, 2}

From (1) and (2), we have,

I/, y)-lI<forO0<|x,y)-(a,b)<d ... 3
[f,y)-lIN<forO<|(x,y)-(a,b)<d ... 4)
Now I' - I =|I"- I (">
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=|I"- ) + f(X) - ]
< |- FOO1+HF) - ]
=1/ -+ ) - 1] < +
=92 [using (3) and (4)]
N |'_|<2=2[ﬂj=r=|'-|<|'-|
2

Which is absurd. Our supposition is wrong.
=l
Here limyxy)—@ab) f(X, y) if exists is unique

Theorem 5: Let f: A — R, where A — R? be an open set. Let f(x, y) be defined in a
neighbourhood of (a, b) not necessarily at (a, b)

lim /&y =1

(xy)>(a,b)
(A
Let g(x) be a function of a single variable, such that limy—a g(x) = b then limya f(X, g(x)) = |
Proof: Since |imz<,y_)>(a,b) fix,y) =1 [given]
X,y)eA

. given >0, 3 areal &> 0, (depending upon) s.t.

I/, y) -l < for0<(x,y)-(a b)|<?

= y)-lI<for0< J(x-a) +(y-b) < 5 (1)
Also limyxa g(X) =b [given]

.. Giveng= 0 >0,3 areal number 1>0 (take 31 < 9d)
0
|g(x)-b)<5for0<|x-a|< 51 . 2

Now 0 <|(x, g(x) - (a, b)|

2 2 52
= \/(x—a) +(g(x)—b) < q/5124-7 [81< 3]
< \/§< o) [01< 0]

=0< \/(x—a)2+(g(x)—b2) <3
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ie.0<Ix,9x)-(@,b)<os .. 3)
. From (1) and (2), we see that
[f(x, g(X) - || < e whenever 0 < |x, g(X)) - (a,b) < &
[Putting y = g(x) in (1)]
= |fx 9(x) -l <e
[im f(x g(x) =1

X—a

Cor. Let f: A - R, where A c Rz is open and (a, b) is limit point of A. Let g1 and g. be the
functions of a single variable x.

st lim,..9:0 = lim,,.9%2 ) =b
lim £ g: ) = |[im £ gz )

X—a X—a

Then |im(xy)_>(ab) f(x, y) does not exist.

Remark 11: The corollary above is very useful to show the non existence of limits of unctions of
two variables.

Remark 12: Roughly speaking. Theorem 5 shows that if |im(x y)_)(ab)f(x, y) exists, then this
limit is independent of the path along which we approach the point (a, b).

Thus if we can find two different paths of approach along which f(x, y) has diferent limits, then
[11My)sian /0 Y) doesn't exist.

Remark 13: If |im(x’y)ﬁ(a’b)f(x, y) =l and limg)-w) g(y) = a, then

lim /@1 ). y)# lim f(2y). y). then |jm /f(x,y) does not exist.
(y)>(b) (¥)>(b) (xy)>(ab)
X+ y°

For example. Consider f(x, y) =

Y0

find out || Miyy00 f(x, y) exist or not.

First let us take (x, y) — (0, 0) along y-axis i.e. x = 0.

3 3 3
. . X +y . O+y
Then f(x,y) = =
lMe.y00 (x,IyI)mO) X —y? (x,IyI)mO) 0-y?
l[im (1)=-1
(x.y)—>(0,0)
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Now let us take (x, y) — (0, 0) along x - along x - axisi.e.y =0

3 3
. . X +
Then [im /&)= [im 5
(x,y)—(0,0) (xy)—>(00 X —Y
3
= X102 |im 1=1

X =0 (xy)-00
Here we get two different limits of the function when (x, y) approach along different parts.
.. The limit of this function as (z, y) — (0, 0) doesn't exist.

Repeated Limits (or Iterated limits)

|im(|imf(x, y)J and ||m(||mf(x y)jare called iterated limits or repeated limits. An

x—a y—a y—a x—a

iterated limit is a limit of a limit and can be found as in case of a function of a single variable.
The two iterated limits, if they exist, need not be necessarily equal.

Remarks 1: The two repeated limits if they exist may not be equal.

2. If |jm /(x. y) exists and the two iterated limits exist, then they must be equal.
(x,y)—>(a,b)
3. However, if the tow iterated limits exist and are equal, there is no guarantee of
the existence of  |jm f(x. Y)
(xy)—>(ab)
For the sake of distinction.  |jm /f(x. y) is called simultaneous limit.
(xy)->(ab)

Let us look at some examples:-

2 2

Example 1: Let f(x, ) = Y, (x, y) = (0, 0)

X2 +y?

Prove that |jm /(. y) does not exist
(xy)-(ab)

Solution: Let g(x) = mx, where m is any real number

Now |{mg(x) = O for all real

x—0

and |{m /. 9() = |jmf(x, mx)

x—0 x—0

=lim

oo Xe+mPxe 1+n?
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i.e. |[|m/(x, g(x)) depends upon m, whereas || ma(x) = 0 is independent of m.

x—0 x—0

lim /(. y) does not exist. [See cor. Of theorem 5]
(x.¥)->(00)

1
Example 2: Let f(x, y) = x sin 1 +ysin —, x =0, y = 0. Use definition to prove that
y X

lim 7. y)=0.

(xy)—>(0,0)

Solution: Let0 < |x-0] < 61=%and0<|y-0)< 62:%

Now |f(x, y) - 0] = »

1 1
xsin=+ysin=
y

< X +1y]

.1
sin—
y

1
sin—
X

sn=

L gl}

y

<1

1
sin—
X

< X[+ 1yl {

& ¢ & &
< —+— for0<|x|<d:1=—,0<|y|< d,=—
>t f IX| < 81 > lyl < 2 >
.. By definition, lim 7x.y)=0
(x,y)—>(0,0)

Example 3: Let A={(x,y):0<x<1,0<y<1,).Let: A— Rbe defined by f(x,y) =x+Yy.

Showthat |im f(x,y)=%

(x)>(0-)
Solution: Let 0 < |x - 0] < 61=£and0< y—£< 62=£
2 2 2
1 1
Then |f(X,y)—=|= | X+ Yy—=
- -3
1
=|(x-0)+| y——=
(x=0) [y 2}‘
1
<|x-0|+ |y—=
o+ -3
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<2, 0<|x- O|< ¢ ando < y——<£
2 2 2
||m f(x y)——
(x)>(0.5)

Example 4: Show that for the function f defined by
X2y2
Xy +(x-y)°
The two repeated limits at (0, 0) exist and are equal, but the simultaneous limit does not

fxy) =

exist.

2,2

Xy
Xy? +(x—y)?
Obviously, D; = R? - {(x, y) € RZx?y? + (x - y)? = 0} = R - {(0, 0)}

Solution: f(x,y) =

[given]

X2y2
Now [imn, o [lim/ee = lim tim "=
. . X2
=lim| lim———:=
y—0 x>0 5 X
X“+| = -
i)
=[im(©)
y—0
=0 . D

2,2
- - H X
And||m{||mf(X,Y)}=|lm I|m 2 Y 2
x—0 y—0 x—0 S0 X y + (X_ y)

y—0

=lim| lim—2——
x—0 y—0 y2+(1+ }
X

= im(©)
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=0 .. 2
From (1) and (2) we see that the two repeated limits at (0, 0) exist and are equal,

Now we shall prove that

X2 y2
im /&<y =|j
(x,IyI)EQ,O) (x,Iy!Ht},O) X2y? + (x—y)?

Let g(x) - mx, where m is any real number

Now |im,.,,9®) = [im(mx) = 0 f or all real m

x—0

And |[[m f(x, 9()) = [1m f(x, mx)

x—0 x—0
: m’x*
- llm mex* + (1-m)?
. m’x?
- llm mex® + (1—m)?
_ 0,if m=#1
~ |Lif m=0
This Implies that the simultaneous limit ||m f(x, y) does not exist.
(x¥)—(0,0)
_ . Xy .
Example 5: Show that ||m(xyy)_)(0’0)f(x, y) = W doesn't exist.
. X4y4
Solution: Let f(X,y) = ————
f( y) (X2 + y4)3

Let (x, y) — (0, 0) along the curve x = my?

) ) xty?
[im /&= lim Y

(xY)(00) 00 (X +Y*)
e (my)'y* m'y"”
=lime—, == lim-—,—=
y=0 [(my)+y] y=0 [my +y]



m4

Which is not unique as it takes different values for different values of m.

lim /(. y) doesn't exist.

(xy)-(0,0)
Continuity of a real valued function in R? and R,
Definition 10.
Let f: A— R, where A — R®. Let (a, b)
e A. The function f is said to be continuous at the point (a, b) if
givene>0,3areal 6>0, s.t.
lf(x,y) - f(a. b)<e for|(x,y)-(a,b)< d(x,y) e A
If X, y)-f(@, b)y<efor|x-al<?d,]|y-b|l< die. f(x, y) is continuous i.e. (a, b) if
1My an /&0 ¥) = f(a, b).
Definition 11:
Let f: A— R, where Ac R3 Let(a, b, ¢)

€ A the function f is said to be continuous at the point (a, b, ¢) if given € >0, 3 a
real & > 0 such that

|f (X1 Y, Z) - f(a! b! C)I <g f or |(X1 \ Z) - (a! b! C)l d !(Xv Y, Z) €A
lf(x,y,2)- f(a,b,c)<efor|x-al<d,ly-b)<d,|z-c|< 5.
Algebra of Continuous Functions in R?.

Theorem 8: If f is continuous at (a, 0), then f is bounded in some neighbourhood of (a, b),
converse in not true.

Theorem 9: If f, g: A — R, A c R? are continuous at (a, b), then
(a) f+4, f-g, are continuous at (a, b)
(b) f, g is continuous at (a, b)

(© L, g(a, b) = 0 is continuous at (a, b)
g

(d) kf where k is any real member, continuous at (a, b)
Converse of (a), (b), (c) and (d) are not true

To clarify what we have just said, consider the following examples:-
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xysinl,x;ﬁo
Example 6: Let f(X, y) = f(x) = X
0, x=0

Discuss the continuity of (x, y) at the point (0, 0)

Solution: |f(x, y) - f(0, 0)] = ‘xysin%—o

=X Iyl

1
sin—
X

sinisl}
X
<Jee=c [forlx|<d1=+e,lyl< d2=e]

- f(x, y) is continuous at the origin.

Example 7: Show that f : R? — R defined by

<Xl 1yl {

2 2

X -y
, , 0,0
10, y) = 09 = Xy[x2+y2j (x,y) # (0,0)

0, (&x,y)=(0,0)

is continuous at (0, 0)

2

) X _y2
Solution: |f(x, y) - f(0, 0) = XyX2+y2 —

2 2
X_
=1yl [

X+y

X2 _ \2
<Xl Iyl [%+§Sﬂ

<Vee=¢ forix<+e,lyl<e

- f(X, y) is continuous at (0, 0)

2

Example 8: Prove that the function f : R? — R defined by
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~ 1Lif y=0
f(x)‘{o, if y=0

is continuous nowhere on the x-axis,
Solution: f(x) will not be continuous at any point on the x-axis if we prove that |im(x (a 0)f(x,
y) does not exist where (a, 0) is any point on X - axis.

Let S(a, 0),8), 3> 0 be a nhood. of the point (a, 0). This nhood. of (a, 0) contains infinitely
many points where y = 0 and infinitely many points where y = 0.

Let (a+£,0} and (a+lje S ((a 0),9).
m m

1 1
Obviously the sequences {(a+a,0j}and {(a+ Ej} converge to (a, 0) but the sequences

1
{ f (a+ Ej} converge to 0 and 1 respectively.

Hence ||m f(x,y) does not exist which implies that f(x, y) is not continuous at (0, 0)
(x,y)—>(0,0)

29
Example 9: Let f(x, y) = f(X) = {Xerng, (x,y) = (0,0)

0, (xy)=(0,0)

Discuss the continuity of f at the origin.

Solution: g(x) = mx, where m is any real number

limo®) = |[immx =0 f or all real m

x—>0 x—0

lim /£, 9 = [im f(x, mx)
x>0 x=0
— | 2m2X3
Lrp X2+ X3
2m’
= depends upon m(m = -1)

1+m

Where || mo(x) = 0 is independent of m

x—0
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lim f(x y) does not exist.

(x.y)=>(0,0)
Hence f(x, y) is not continuous at (0, 0)
Example 10:
Let f : RZ — R be a continuous function. Show that the function g : R2 — R defined by g(x, y)

TG y)if (% y) = (0,0)
~ (% y),if (&X,y)=(0,0)

is not continuous at (0, 0)

Solution:  |im 9x.y)= |im /& y) =/(,0)

(x¥)—(0,0) (x,¥)—>(0,0)
Also g(0,0) = f(0,0) + 1 [f is continuous at (0, 0)]
Thus we see that lim 9. y)=9(0,0)

(x,y)—>(0,0)
. g(X, y) is discontinuous at (0, 0).
16.5 Self Check Exercise

2\,2

Xy
Q1 Letf(x,y)=<x"+y*
0, x=0=y

X +y?£0

Prove that a straight line approach gives the limit (0, 0)
Q.2 Letf:R2— R be defined by

1 x rational
0, xirrational

f(x,y)={

Prove that

lim /f(x y) does not exist at any point (a, b) € R%

(x,y)—>(a,b)

Q.3 Examine the continuity of the function

X2 — y2
fx,y) = xy[ 2+ yz], (x,y) = (0,0)
0, (xy)=(00)

at the point (0, 0)
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16.6

16.7

16.8

16.9

Q.4 Prove that the function
2

X
fy) = e yox X =00

0, (xy)=(00)

is discontinuous at (0, 0)
Summary
In this unit we have studied
0] function of two and three variables
(i) to find the limit and continuity of function of two and three variables
(iii) algebra of limit and continuity of these functions.
Glossary
(1) Square nhd. of (a, b) -

A square nhd of a point (a, b) € R? is the set of points (X, y) that are inside on
open square with centre (a, b) and side parallel to the coordinates axes such that

[x-a]< 8 and |y-b|<?d forsome & >0
square nhd. of (ab) ={(x,y): [x-a]<d,|y-b|<d, 8>0}
(i) Circular nhd. of a point (a, b) -

A circular nhd. of a point (a, b) in R? is the set of points (x, y) that are inside a
circle with centre (a, b) such that

(x-a)?+(y-b)?<d2 3>0
Circular nhd. of a point (a b)
={x. y): (x-a)*+(y-b?>< 3% &>0}
Answers to Self Check Exercises

mx

Ans.1 |im /&y =]im 0

(x,y)—(0,0) x—0 X2 + mz
Ans. 2 Prove it.
Ans. 3 fis continuous at (0, 0)

Ans.4 |im /(x.y) does not exist. Therefore f(x, y) is not continuous at (0, 0)
(x,y)—>(0,0)

Reference/Suggested Reading
1. H. Anton, L. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2002
2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
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16.10 Terminal Questions

2

Xy

4
xy)-00 X +Y

1. Prove that does not exist.

2. Provethat | im fxvy.2)= %,f: R®—>R, f(x,y,2) =x

(x,y:2)(5,00)

3. Let f : R® — R be defined by f(x, y, z) = x? + 3y? + 522

show that f is continuous function.

XX +y°
——, (% y)#0 .

4. Let f(X,y)=1X+Y is f continuous at (0, 0)?
0, (xy)=0

299



Unit - 17

Partial Differentiation

Structure

17.1 Introduction

17.2 Learning Objectives

17.3 Directional Derivatives

17.4 Partial Derivatives

17.5 First Order Partial Derivatives of A Function of Three Variables
17.6 Geometrical Interpretation of Partial Derivatives of First Order
17.7 Partial Derivatives of Higher Order

17.8 partial Derivatives And Continuity

17.9 Differtiability And Differentiable Functions

17.10 Self Check Exercise

17.11 Summary

17.12 Glossary

17.13 Answers to Self Check Exercises

17.14 Reference/Suggested Readings

17.15 Terminal Questions

17.1 Introduction

Dear students, in this unit we shall study the concept of partial derivatives. A partial
derivative is defined as a derivative in which some variables are kept constant and the
derivative of a function with respect to other variable can be determined the process of finding
the partial derivatives of a function is called partial differentiation. The partial derivative of a
function differentiation. The partial derivative of a function differentiation. The partial derivative

of
of a function 'f' with respect to 'X' is represented by fx or & .

17.2

Learning Objectives

The main objectives of this unit are

() to study directional derivatives
(i) to study partial derivatives

(iii) to learn about first order partial derivatives of a function of three variables

(iv) to learn partial order of higher order
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(v) to study partial derivative and continuity etc.
17.3 Directional Derivatives

Definition : Let f : A— R, Ac R"and A is an open set.

Let a= (a1, az, ...... an) € A

v =(V1, V2, wue. vn) be unit vector i.e.

\/vf Vo4V =1
Further Lett € R (t, scalar), s.t.

attv=(ar+tvy, az+tvy, ...t an+tvy) € A

i lim f(a+t\?— f(a)

t—-0

exists, then we say that f has a directional derivative at a in the

of
direction of v and is denoted by fv (a) or E .

17.4 Partial Derivatives
If in the above definition, we take
v=e1=(1,0,0,....0) then

f(a+tv)—f(a)
t

_ lim f(a +t,8,,a,...a,)-f(a,a,..4a,)

t—0 t

fei(a) = |t|_[Q

is called the partial derivative of f at a in the direction of el, provided the limit on the
right hand side exists.

f(a+tv)—f(a)
t
= lim JEuatta..a)-1(a,8,..4)

t—0 t

fez(a) = l'jg

if it exists, is called the partial derivative of f at a in the direction of e.
Proceeding in this way, we can define partial derivative of f at a in the direction of
ei=(0,0, ... 1<ithplace > 0,0,...)
i=1,2,3,...nas
f(a+tv)—f(a)
t

fei(@) = [LVQ
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f(aa,,....(a+t),a,,...a,)- f(a,a,,..a,)

t—0 t

Provide the limit on the right hand side exists.
Remark.
1. fei(a), feqx(a), fes(a)..... fei(a)..... fen(a) are also denoted by

Di(a), D2(a), Ds(a)..... Di(a)..... Dn(a) and abe called first order partial derivatives
of fw.rt. Xi, X2, X3..... Xi..... Xn, resp. at the point a.

2. If we take n=2 in the definition, the f: A—R when A is an open sub set R?. Since
A is open,

f(a, b) € A we can find real number h, x st. (a + h, b + k) € A, then
f(a+h,b)— f(a,b)
h

fx(a,b)=lim

and
f(a,h+k)- f(a,b)
k

provided limits on the right hand side exist, are called the partial derivative of f w.r.t. X
and w.r.t. y resp. at the point (a, b)

fx(a,b) lim

It is customary to denote fx (a, b) by f1 (a, b) or by % (a, b) and fy (a, b) by f2 (a, b) or
of
by — (a, b).
Y o (a, b)

17.5 First Order Partial Derivatives of a Function of three Variables
If in the definition, we take n = 3 then

f: A — R, where A is open subset of R3. Since A is open, therefore, we can find real
numbers h,k,Isb(a,b,c) e A= (a+h,b+k,c+l) eA

f(a+h,bc)- f(a,b,c)
h
f(a,b+k,c)- f(a,b,c)
k
f(a,b,c+I1)- f(a,b,c)
I

Then f« (a, b, c) = Ihlng

fy(@& b, c)= L'LT(}

and fx (a, b, c) =
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Provided limits on the right hand exist, are called the partial derivatives of f w.r.t. x, and
w.r.t. y and w.r.t. z respectively at the point (a, b, c).

f
fx (a, b, ¢) is also denoted by f1 (a, b, ¢) or % (a b, c)

f
fy (a, b, ) is also denoted by f> (a, b, c) or % (a, b, €)
And similarly
. of
fx (a, b, ) is also denoted by f3 (a, b, c) or & (a, b, c).

Remark 1 : From above remarks it is obvious that the partial derivatives of f w.r.t. x, w.r.t. y and

of of
w.rt.zie —, ﬂ — are the ordinary derivatives of f w.r.t. x.
oX oy o0z

(taking all other variables as constants), w.r.t. y (taking all other variables as constants)
and so on respectively.

2. Let f: R" — R, then f has a partial derivative f; at a = (a1, az, as,..... an) if f f(az
+ h, az, as,..... an) - f(a1, az, as,..... an) =

hfi(ai, az, as,..... an) + he where € depends upon ay, ay, ..... anandhand e - 0ash —
0, (a1, a2, as,..... an) being a fixed point.

17.6 Geometrical Interpretation of Partial Derivatives of First Order.
Let
f : R? — R be a real valued function of two variables and z =
f (x, b) represents the curve which is the intersection of this

surface and the plane y = b. Now f (x, b) can be regarded as a function of one variable

d
and we know that d_ (x, b) represent the slope of the tangents to the curve
X

f
z = f (x, b) at the point (a, b, f(a, b) in the xz plane. But % (a, b)

= fx (a, b), therefore the partial derivative fx at (a, b) represents the slope of the
tangent to the curve z = f (X, y), y = b. For example, if z = f(X, y)

z
=x?+y? then a—(1, 0) =2.
OX

Which is obviously the slop of the tangent at (1, 0) to the curve z = x?, which is the
intersection of the surface z = x2 + y? and the plane y = 0.
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Let us see that the method is with the help of following examples :-

X -y
——, (Xy)=0
Example 1: Let f(X,y) = {X"+Y

0} (x,y)=0

prove that fx (0, 0) and fy (O, 0) both exist but are not equal.
Solution : By definition,
f(0+h.0)- (0,0

fx(0,0)=lim

h
=lim f(h10)_f(0,0)
h—0 h
h®-0
w0 0 o oh
=lim T+*2 = |im—- =1
h—0 h h—0 h
and f, (0, 0) = lim f(0.0+k)— f(0,0)
k—0 k
_ jim 1©.K - (0,0
k—0 k
0-k?
.
=lim 25— =lim —=-1
k=0 k k—0 k

Thus, we see that both f (0, 0) and fy (0, 0) # fy (0, 0).
Example 2 : Let

2, (x,y)#0

f 1 R* — R be defined be f(x) = {0’ (X.y) =0

prove that the partial derivatives of f do not exist at (0, 0).
Solution : By definition,
f(h,0)- f(0,0)

h

fx(0,0)=lim

. 2-0
= [im ——
h—0 h
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.1
=2lim = does not exist,
h-0 h

and

. f(0,k)-f(0,0)
f(0,0) = lim >

=lim —
k—0

2-0
k

o1
=2lim n does not exist.

k—0

This complete the solution.

. Xy .
sin if (X, 0
Example 3 : Let f(x, y) = (Xz + YZJ 9

0 if (x,y)=0
Evaluate fx (0, 0) and fy (0, 0). is f continuous at (0, 0)?
Solution : By definition,

f(0-F00) , o o jim SNO=0_,
h h—0 h

fX (Ov 0): lhILT(IJ]

fOR-fO0 o im sinclz—o o

And fy (0, 0) = lim

Thus both fx (0, 0) and fy (0, 0) exist and are equal.
To discuss the continuity of f at (0, 0), we first discuss its limit at (0, 0).

Let g(x) = mx where m is any ream number and Iing g(x) = Iin(‘)l mx = O for all real m.
X— X

Now lim f (x, g(x)) = lim f (x, mx)

_ fimsin |
x>0 X2 +mPx?
2
= limsin ———
x-0 (I+m7)x

2

i depends upon m
+m
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( I)i rr(loo) f (x, y) does not exist. This implies that f(x, y) is not continuous at (0 0).
X,y)—>(0,

Example 4: Let f: R? - R be defined by f (x, y) = x® + y2.
Solution : By definition,
f(a+h,b)- f(a,b)

h

fa, b) = L'LQ

. (a+h)*+b?—(a’+b?

= |lim
h—0 h
3 2
— lim h(a®+3ah+h
h—0 h

= lim(3a? + 3ah + h?)
h—0

f(a,b+k) - f(ab)

and fy (a, b) = lim

3 2 3 2
— lim & +(b+k) —(a>+b?)
k—0 k

i _k(2b+k) . _
or fy (a, b) = Iklgg = Iklgg (2b + k) = 2b.

Example 5: Let f : R®* — R be defined by f (x, y, z) = x%y.
Evaluate fx (1, 2, 3), fy (0, 3, 2), f- (2, 3, 4).
Solution : By definition,
f(l+h,2,3 - (1,23
h

3
iy 20+h)-2

h—0 h

2(h*+3h+3)h
h

fx(1,2,3)=lim

= lim
h—0

= IhirEIZ(h2+3h+3)=6

f(0,3+k2)-f(032) . = 0-0

andfy(0,3,2)=L|£g - 3 im o
and fx (2, 3, 4) = Ilirg f(2’3’4+||)_ f(234) _ '.”Q 24-24 _ 0

Example 6: Let f (X, y) = »\/X“ +y*+| Evaluate fx (1, 2) and fy (1, 2).
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3
Solution : £ (x, y) = X + Yy +1 = (x* + y* + )2 4x3 = 2X

Xyt

Putting x =1, y = 2, we have,

16 _ 16 _8J2
1,2)= = =
a2 NEREN AR

Example 7 : Let f : R? = R. If fx (X, y) = 0, then show that f (X1, Yo) = f(X2, Yo) f or all X1, X2, Yo.
Solution : Letus define F : R — R by F (x) = f (X, Yo)
F(x+h)—F(x)
h
[By definition or ordinary diff. coeff.]

_ lim f(x+h,y,)—-f(XV,)
h—0 h

Now F'(x) = limn-o

= fx (X, Yo) {by definition i}
OX

=0V xand yo, fx(X,y)=0
and F' (x) =0 = F is constant
= F(x1) = F(x2) V x1 and x2
=/ (X1, Yo) = (X2, Yo) V X1, X2 and Yo
This competes the proof.
17.7 Partial Derivative Higher Order

Definition : Let f ; D — R, where D is an open subset of R?. Let fx, fy exist in the
neighbour hood S of a point (a, b) € D.

Obviously S = D and therefore X < R? and is open.
Then fy, fy: S — R are defined and are functions of two variables x and y.

Suppose fx and fy possess partial derivatives w.r.t. x and w.r.t. y.

2

Then i(fx(x, y)) is denoted by 0 Z
OX OX

or fxor fu1

= lim fX(X+h, y)_ fx(X1 y)

h—0 h

2

0 . o-f
and — (fx(X, is denoted b
oy (fx(x,y)) y oy

Or fyx OI’ f21
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= lim fx(X’y+k)_ fx(X1 y)

k—0 k

2

o 0 ) o-f
Similarly — (fy(X, is denoted b
Y % (% y)) y oxdy

or fx or fiz

lim f,(x+h,y)-f,(xY)

h—0 h

2

0 . o-f
and — (fy(X, is denoted b or fyx or
oy (fy(x, y)) y 8y2 Jyxor f22

i Oy 1,00Y)

h—0 k
o f o*f  o*f  O*f
ox? " oxay oyox’ oy?
of two variables.

are called the 2nd order partial derivatives of f, where f is a function

2 2

and
oxoy O0yox

Change of variables

Remark, need not necessarily be equal.

Theorem 1 : If zf(Xx, y) possess continuous partial derivatives and x¢ (t), yy (t) possesses
continuous derivatives, then

dz_oz ox oz oy
dx ox dt gy ot
Solution : Let 8t be a small change in the value of t.

Let d3x, 0y, &z be the corresponding changes in X, y, z respectively. Obviously z is a
composite function of a single variable t.

Thenz+ dz f(x+ dx,y+dy),wherez f(x,y)and &%, 8y, 8z—0as dt— 0.
L 0z=f(x+dx Y+ By)-f(xY)
(f(x+ 3%, y+ dy)- f(x+ dxy)+ (f(x+ dxy)- f(X,y)

0z _ (F(x+6x,y+38y) - f(x+xY) N (f(x+oxy)—f(XYy)
ot ot ot

oz _ (f(x+oxy+dy)-f(x+oxy) dy
ot ot ot

or

or
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L Jx+oxy) - f(xy) dy

ot ot
or lim 9% = jim | F(x+%y+8y) - f(x+5xy) Sy  (f(x+xy)—f(xy) dy
50 St 6to0 St ot ot ot

5z_of oy, sf d
ot sy St Sx ot
0z 0z ox ¢Sz dy

or = . t— .

ot ox ot oSy dt

Let us look at some examples :

Example 8 : Compare the 2nd order partial derivatives for the function u = log «/X2+y2 and
verify the following :

o°u o%u
(1) =
OXoy  0yoX
(2) Uir + Uz = 0.
1
Solution : u = logX* +Yy* = Elog (X2 + y?) (1)
LML L e X -(2)
oX 2 X+y? X2+ y?
M=l 1 s Y - (3)
X 2 X+y? X2+ y?

Differentiating (2) and (3) partially w.r.t. x and w.r.t. y, we have

U (X+y)l-x2x Yy -x

8u2 (x2+y2)2 - (x2+y2)2
o’u ) 2xy
= XX +Yy)RL2y=-———
OyoX 6y 2y (X + y?)?
o%u 2xy
and =-y(x?+y)2 2X=-——————
OXoy Yo+ y) (X® + y?)?
%u _ (C+y’)l-y2y - X-y°
oy’ (O +y?*)*? (¢ +y*)*?
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ou _ du _ 2y
oxoy  oyox (X2 +Yy?)?

Obviously

2 2

y2_X2 X2_y y2_)(2_'_)(2_y
+ =
(x*+y°)* (X +y)’ (X*+y?)*

and ui; + U =

Oruis+uUx=0

tan 2 - y? tan 12 (x,y) # (0,0)
y y

0, (x,y)=(0,0)

Show that f12 (0, 0) # f21 (0, 0).

Example 9 : Let f(x,y) =

. _ f(h,0)—-f(0,0) . 0-0 _
Solution : f1 (0, 0) limn_o - LI_rB . =0
and £, 0, 0) lim QK=100 ;. 0-0 _,
k-0 k k>0 K

Let (x,y) # (0, 0).

fx (X, y) = X2 ! 5 . (—lzj +2xtant X - y2, ! 5 - L
1+ X y 1+X—2 y
X y
2 3
= nyz- 2y 2+2xtan'1§
XT+yS X4y
2 2
= —y()i +)£ ) +oxtant X
X“+y
=-y+2xtan‘1§
y
X
and  fy (x,y) =2 — ﬁ et -[_—z}'%tan-lf
1+y—2 X 1+X—2 y y
X y
x* xy? X
= + -2y tant=
X2+y2 X2+y2 y y
=x-2ytan'15
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=-1

0K~ 1,00 . k=0
k

0.0 Iy -

=1

fy(h,O); 09 . h-0

and fxy (0, 0) = Ihlgg = im —

Therefore fyy (0, 0) # fyx (0, 0) or f12 (0, 0) # f21 (0, 0)

WOy
Example 10 : Let f(x,y) = { (2 +y?) ' (%, y) #(0,0)
0 (xy)=(0,0)

Show that f12 (0, 0) # f21 (O, 0).

- _ f(h,0)-f(0,0) . 0-0 _
Solution : fx (0, 0) Ll_rfol ™ Ll_r)rg - =0
and fy (0, 0) lim 10Kk =-10.9 y, 0=0 _,
k-0 Kk k>0 kK

Let (x,y) = (0, 0).

(% + Y3y — y°) — xy(X* — y*)2x
(< +y?)?

fX (X! y)=

X = XY+ 3%y —yP —2x Ly + 2x°Y°
(X +y?*)?

X'y —y° +4x%y°
(¢ +y?)?

(X -y + APy
(O +y?)?

'Xz_yz 4x2y2
=Y 2 NP 212
LC+y) (X +y7)

and fy (x, y) =X {(Xz +Y*)(X* =3y*) - y(X* - y2).2y}

(XZ + y2)2

_ X4 _ y4 _4X2y2
(X" +y?)?
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. x2—y2 B 4x2y2
OC+y?)  (XC+y)?

Now
. f.(0,k)-1(00 . -k-0_
fn 0.0)fim 22 i = =
L f,(h,0)—f, (O, 0) -0

and fxy (O, 0) = L|_r)r0] h h—>0 T =1

Therefore fyx (0, 0) # fxy (0, 0) or f12 (0, 0) # f21 (0, 0)
2 2
Example 11 : If u = e* cos by, verify that ou = ou .
oXoy  0yoX
. ou
Solution : — = ae® cos by
OX
and 8_u = -be® sin by
2
ou 8 6_u = — (-be* sin by) = -abe® sin by
axay ox ax
= (8_ i (-ae® cos hy) = -abe® sin by
ayax 0 oy
o°u .
Thus we see that —— = = -abe® sin by
oxoy YOX

2
Example 12 : If X*yYz* = ¢; show that aa u
X

= -(x log ex)-1, where x = y = z.

Solution : We have x*yYz? = ¢
Taking log of both sides, we get,

log x*+ log y¥ + log z* = log ¢

= xlogx+ylogy+zlogz=1logc

= zlogz=Ilogc-xlogx-ylogy (1)
Differentiating (1) partially w.r.t. X, we get

zlgﬂo z %-O x1+lo X
z OX g’ax "X g
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= (1+log 2) % =-(1 + logx)

0z 1+logy
= — =\ T
OX 1+log x

Similarly, differentiating (1) partially w.r.t. y, we get

oz _ (1+Iog yj @)

oy " | 1+logz

Again, differentiating (3) partially w.r.t. X, we get
o’z _ & (1+Iog yj

oxoy X

1+logz

=-(1+logy) i (1 +log 2)-1
OX

=-(1+logy) [—(1+ logz) - ZEg
Z OX

_ (+logy) |_(1+ log x
z(1+log z)° 1+logz
_ (+logx)(1+logy)
z(1+log 2)°

L 1

Now f orx =y =z, we get
3’y _  (1+logx)(1+logx)
OX0y X(1+log x)*
-1 _ -1
X(1+logx) x(loge-+logx)
-1
xlogex

= -(x log ex)?
2
Hence ox _. (x log ex)?
oxoy

Example 13: If u = f (r), where r = \/X*+ y* , prove that
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o°u 0%

PR ——f (f)+—f (n).
Solution: We are given r = {\X* +y?
= =Xty L (1)

Differentiating (1) partially, w.r.t. x and y, we get

2r 8_r: 2x and 2r ﬂ=2y
OX oy

Now u = £ (r)

8
- f() Gl ;Xf' ® [using (2)]

234 e
ox> ox\ox) ox

O (xf (1) = xf (1) "
r o OF ) =xt ()

2

r

[ris a function of f (X)]

r[ﬁ%ngb¢(mq—ﬁ(n;

r.2

r{ﬂ"a);+f(o}—jff(o

2

r

- CE ) rf - )
ie. 28 . 3)
OX r

Similarly,
2 r?
o y f (r)+rf (r)—Tf (r)

% T (4)

> =
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Adding (3) and (4), we get
2 2

82u+82u _ X2 (r) +rf '(r)—); f(r) . y2 £ (r) +rf '(r)—z f'(r)
8x2 6y2 r2 r2
(X +y*) £ (r) +2rf '(r)_rl(x2 v ()
2 r
refrir)+2rf'(r)—— f'(r)
= r2 I
_ rer(r)+2rf (r)—rf '(r)
I,.2
ot ' 1
- OO g 20
Hence @+ a_zljz )+ lf’(r)
m= dy r

17.8 Partial Derivatives and Continuity

Students will recall that continuity of a function of a single real variable at a point does
not necessarily imply the differentiability of the function there at. Likewise, in case of a function
of several variables, the continuity does not necessarily imply the existence of partial
derivatives.

Students may now be led to believe that the existence of partial derivatives will imply
continuity, but unfortunately it is not true. (See example 3 above). However, the following
theorem shows that an additional condition imposed on the partial derivatives will ensure the
continuity.

Theorem 1: If a function f(x, y) has partial derivatives fx and fy, at every point of an open set
D(D < R? and if these partial derivatives are bounded in D, then f(x, y) is continuous
everywhere in D.

Proof: Since fx and f, are bounded in D therefore 3 areal M > 0, s.t.
[fX(X, y) <M and |fy(X,y) <M forall (x,y) € D. (1)
Since D is open, therefore 3 areal 8> 0, s.t.
(a,b)eD=(@+h,b+k)eDfor|h|< d,|kl<?d
We write
f@+h,b+k)-f(a b)=(f(a+h b+k)-fa,b+k)+(f@ab+k)-f(ab) ... 2
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Now we define two function ¢(x) and y(y) of a single real variable as:
o(x) = f(x,b+k),xe[@,a+h] .. (3)
and y(y) = f(a,y),ye[b,b+k ... 4
Now ¢(a + h) - ¢(a) = f(@a+ h, b + k) - f(a, b + k)
And y(b + K) - w(b) = f(a, b + k) - f(a, b)
And therefore (2) reduces to
fa+h,b+Kk)- f(a b)=(¢(@+h)- @)+ (b +Kk)-y(b)) ....(5)
From (3) and (4) it is obvious that
d'(X) = fx(X, b+ k), exists Vxela,a+hl ... (6)
and y'(y) = fy(a,y)existsvye[b,b+k ... (7)

Thus ¢(x) and y(y) satisfy the conditions of Lagrange Mean Value Theorem in the intervals [a, a
+ h] and [b, b + k] respectively and hence

d(@a+h)-¢(a)=ho'(@a+6h),0<6<1

= hfy(a + 6h, b + k) [of ()]
and y (b + k) - w(b) = ky'(b + ¢k),0<p <1
Kfy(@, b + ¢k) [of (7)]

and therefore (5) reduces to
f(@a+h,b+Kk)- f(a, b) = hf«(a+ 6h, b + k) + kfy (a, b + ¢k)
or |[f(a+ h, b+Kk)- f(a, b)| = |hfx(a + 6h, b + k) + kfy(a, b + ¢k)|
<Ih|fx(a + 6h, b + k) + |k|f,(a, b + ¢K)|
< [P M+ [k[[M|
< (lhl + k)M [of (1)]
But the right hand side — 0 as (h, k) — (0, 0) and this implies that
lim (f@a+h,b+Kk)-f(a,b)=0

(h,k)—(0,0)

ie. lim (f(a+h,b+Kk)- f(a, b)

(h,k)—(0,0)
Which implies that f(x, y) is continuous at (a, b) where (a, b) is any point in D.
Remark : The above result is also true for functions defined in R".

Remark : We shall prove later on that if fx and fy are continuous in D, then f(x, y) is also
continuous in D.

17.9 Differentiability and Differentiable Functions
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We have already seen (in lower classes) that if f is a real valued function of a single real
variable x, then f is differentiable at xo only s.t.

f(Xo + h) f(Xo0) - ah = he where € — 0 as h — 0 and the constant a = f(Xo)
Now we want to extend this idea to functions defined in R".
Definition : f : D — R, where D — R? and is open is said to be differentiable at the point (a, b)
D if f 3 two constants o and  [depending on f and the point (a, b) only].
s.t. fa+h,b+k)- f(a,b)-ah-pk=vh*+k? ¢ (h, k)
where ¢ (h, k) is a real valued function, s.t. ¢ (h, k) —» 0 as
(h, k) — (0, 0).

Definition : f: D — R, where D is an open subset of R® is said to be differentiable at the point
(@, b, c)

e D, if 3 three constants «a, 3, y [depending on f and the point (a, b, c) only] s.t.

f@+h,b+kc+l)-f(ab,c)-ah-Bk-yl= v +k*+1% ¢ (h k)
Where ¢(h, k, 1) is real valued function, s.t.
d(h, k, 1) > 0as (h, k, 1) — (0, O, 0).

Remark : It can easily proved that f D — R, where D c R? and is open is differentiable at the
point (a, b) € D if f 3 constants a., B [depending on f and the point (a, b) only], s.t.

f(@ h,b+Kk)- f(a,b) - ah - Bk =¢h + nk

Where ¢, 1 — 0 as (h, k) — (0, 0)

Similarly,
f:D — R, where D c R? and D is open is differentiable at (a, b, c)
D if f 3 constants a, B,y (depending on f and (a, b, c) only], s.t.

f@+h,b+k,c+l)- f(a b, c)-ah-pk-yl=he + kez + les where g1, &2, e — 0 as (h, k,
) — (0, 0, 0) and so on.

Theorem : Let f: D — R, where D is an open subset of R?. If f is differentiable at a point (a, b)
of D, then f has both the partial derivatives at (a, b). Moreover fx (a, b) = o and fy, (a, b) = B,
where a, B are the constants occurring in the definition of differentiability of f at (a, b) given
above.

Proof : Since f is differentiable at (a, b), therefore, we have
f(@+h,b+K)- f(a, b) - ah - Bk =he + kn
Where ¢, 1 — 0 as (h, k) — (0, 0)
Take k =0, then
f(@a+h,b)- f(a b)-ah =he
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or flath,b)- f(a,b)=h(a+¢)

lim = @D =T@DB) b
h—0 h h—0

= fx(@b)=a [ge—0ash—0]
Similarly if we take h = 0, we have, fy (a, b) = p.

Remark : If f is differentiable at (a, b) € D, where D = R? and is open, then f(a + h, b+ k) - f (a,
b) - h fx (a, b) - k fy (a, b) = he + kn, where ¢, n — 0 as (h, k) — (0, 0).

Theorem : Let f : D — R, where D is an open subset of R2. If f is differentiable at the point (a,
b) of D, then f is continuous at (a, b) given above.

Proof : Since f is differentiable at (a, b), therefore,
f(@a+h,b+Kk)- f(a, b)-hfx(a, b) - kfy (a, b) = he + kn
where ¢, 1 — 0 as (h, k) — (0, 0)
le. fla+h, b+Kk)- f(a+Db)-h[fx(a b) + e +klfy(a, b) +n]
Taking limits on both sides as (h, k) — (0, 0), we have,
lim f(a+h,b+k)= (hvkl)ig(]qo) [f(a, b) - h[fx (a, b) + €] + K[fy (a, b) + 1]

(h,k)—(0,0)
=f(ab)
Which implies that f (x, y) is continuous at (a, b).

Remark : The conditions mentioned in above theorems are necessary but not sufficient. In
other words the converses of above theorem are not true.

i.e. (1) existence of the partial derivatives at a point does not imply the differentiability of f at
that point,

(2) Continuity of f at a point need not imply the differentiability of f at the point.
To clarify what we have just said, consider the following example :-

Xy
Example 14 : Let f (X, y) = m (x,y) = (0, 0)
0,(x,y)=(0,0)
show that f is continuous at (0, 0) and fx (O, 0), fy (O, 0) exist but
f is not differentiable at (0, 0).

Xy

N

Solution: |f (X,y) - f (0, 0)| =

Xy ) ‘

N
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<g
for|x-0|<d1=¢
forly-0l<d.=¢

= f (X, y) is continuous at (0, 0)

By definition, fx (0,0) = limh—o f(h,0)-f(0,0) — lim 0-0 —o
h h-0 |
. f(0,k)-f(0,0)_,. 0-0
0,0) = lim = -0
fy( ) k—0 k |I!—r>.p k

Thus we see both fx and fy exist at (0, 0)

hk
No h, k) - (0, 0) - hfx(0, 0) - kfy(0, 0) =
w f(h, k) - £(0, 0) - hfx(0, 0) - kfy(0, 0) e
hk
= Jh?+kK? . ——
i Jh? +k?

where ¢(h, k) = — 0 as (h, k) — (0, 0)

hk
[ lim ¢(h k) does not exist. (Prove it)]

(h,k)—(0,0)

Hence by definition of differentiability of f, f is not differentiable at (0, 0)

Example 15: Let f(x, y) = |Xy|}/2. Prove that f is continuous at (0, 0) both the partial derivatives

fx (0, 0), fy (0, 0) exist but f is not differentiable at (0, 0)

Solution: LMy, a0 /60 = lim 1%?=0=/0,0)

(x¥)—(0,0)
f is continuous at (0, 0)
. f(h,0)— (0,0 . 0-0
Also fx (0,0) = |jm (09-709 lim
h—0

h—0 h

=0



f(0,k)- f(0,0) ,. 0-0
= m—:o
II!—)O K

and fy (0,0) [im

k—0 k
Thus we see that both f, and f, exist at (0, 0)
For differentiability at (0, 0)

£(0, K) - £(0, 0) - (0, 0) - kf,(0, 0) = |k 2.

hk |2
- Jrere K
Jh? +k?

= vh? +Kk? ¢(h, k)
2
where ¢(h, k) = %e 0 as (h, k) — (0, 0)

Jh? +k

[ lim ¢(h, k) does not exist. (Prove (t)]

(x¥)—(0,0)
Hence by definition of differentiability f is not differentiable at (0, 0)

Theorem. Let f : D — R, where D is an open subset of R?. If the partial derivatives fx and fy
exist in a neighbourhood of a point (a, b) € D and are continuous at (a, b), then f is
differentiable at (a, b)

Proof: Since D is open, therefore, 3areal >0, s.t. (a,b) e D
= (@+h,b+k)eDfor|h|< d,|kl< 5.
Now proceeding as in Theorem, we have,
f(@+h,b+Kk)- f(a, b) =hfx(a+6h,b+k)+kfy(a, b+ ¢k)
Where0<6<1,0<¢<1.

Because fx and f, exist in the neighbourgood of (a, b) and are also continuous at (a, b),
therefore,

lim /x(@@+6h, b+Kk)= fxa, b)

(x,¥)—(0.,0)

And  [im @ b+ oK) = fi(a, b)

(xy)—>(0,0)

~fx@+ |im h.b+Kk) = fx(@ b)+e

(x,¥)—(0,0)

And fy(a, b + ¢k) = fy(a, b) +n
where ¢, n are functions of h and k and ¢, n — 0 as (h, k) — (0, 0)
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Therefore f(a + h, b + k) - f(a, b) = h[fx(a, b) + €] + k[fy(a, b) + n]
or f(a+ h,b+Kk)- f(a, b) - hfx (a, b) - kfy(a, b) = ne + kn
Where . — 0 as (h, k) — (0, 0)
Hence f is differentiable at (a, b)
Let us look at some examples:-
Example 16: Prove that f(x, y) = e**¥ is differentiable at (1, 3)
Solution: Here, f(x,y) = e**
Differentiating partially w.r.t. X and y, we have,
S, y) = e and fy(x, y) = e

Obviously both fx and fy exist in the neighbourhood of the point (1, 3) and are also continuous
at (1, 3)

f(x, y) is differentiable at (1, 3).

Example 17: Let f(X, y) = cos (X + V). Prove that f is differentiable at (%%)

Solution: f(x,y) =cos (x +Yy)
Obviously fx(x, y) =-sin (x +y) and fy(X, y) = -sin (x +y)

Clearly, fx and fy exist in the neighbourhood of (%%) and are

also continuous at (%%) therefore, f(X, y) is differentiable at

(55}

Young's Theorem:
Statement. Let f : D — R, where D is an open subset of R?

If fx and fy exist in the neighbourhood of a point (a, b)

e D and are differentiable at (a, b) then fy/(a, b) = fyx(a, b).

Proof: Since fx and f, are differentiable at (a, b).
Therefore fyy, fyx fxy @and fyy exist at (a, b)

Since D is open, 3 areal h >0, then point (a+ h,b+h) e D
Now we write F(x) = f(x, b + h) - f(x, b),a<x<a+h,
ThenF(a+h)-F@)=fa+h,b+h)-f(a+h,b)-f(a,b+h)+ f(ab) ... (1)
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And f'(xX) = fx(x, b+ h) - fix(x,b) ... 2

Also by Lagrange's Mean Value Theorem in the interval [a, a + h]
F@+h)-F@=hF(@a+0h),0<6<1

Using (2), we have,
F(@+h)- f(@)=h[fx(@a+6h,b+h)-f(a+06hb)] ... 3)

Since fy is differentiable at (a, b), therefore by definition of differentiability, we have,
fx(@+ 6h, b +h) - fu(a, b) - Bhfw(a, b) - hfyx(a,b) = 0hx + hn

Where g, n — (0, 0), as (h, h) — (0, 0)

fx(@+6h, b+h)- f«a, b) - 0hfx(a, b) - hf(a, b) + he' ... 4)
Wheree' - 0ash —0
Similarly fx(a + 6h, b) - fx(a, b) = 6hf«w(a, b) + he" ... (5)

Wheree" —-0ash—0
Subtracting (5) from (4), we have,
fx(@+6h,b+h)-fi(a+6h, b)=hfx@a b)+h(+&") ... (6)
Now putting (6) in (3), we have,
F(a + h) - F(@) = h[fyx(a, b) + h(e' + €")] = h2[f,x(a, b) + e1] where g1 =¢'+&" — ash — 0
of F(a+ T])z_ F(a)

= fx(a,b) +&"

Using (1), we have,
f(a+h,b+h)—f(a+h,b)-f(a,b+h)+ f(a,b)
h2
Again writing G(y) = f(a+ h,y) - f(a,y),b<y<b+h
And proceeding as above, we have,

f(a+hb+h)-f(a+ hr,]g))— fab+h)+f(ab)_ @ b) +e2 . (8)

= fwx(a, b)+e ... (7)

Where ez - 0ash — 0
From (7) and (8) we see that
fyx(@, b) + €1 = fyy (a, b) + &2, where g1, 82 — 0
Taking limits on both sides as h — 0, we at once get fyx(a, b) = fxy (&, b).
This completes the proof:
Schawrz's Theorem:

Statement. Let f : D — R, where D is an open subset of R2.
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If (1) fxfy exist in the neighbourbood of a point (a, b) € D
And (2) fx is continuous at (a, b) then, fyx(a, b) exists and is equal to f. (a, b).
Proof: (a, b) € D and D is open, therefore 3 areal & >0, s.t.
(@a+h,b+k)eDfor|h <3, |kl<?d.
Consider F(y) = f(a+ h,y) - f(a,y),b<y<b+k ... (1)
F(b+k)-F(b)=f(@a+h,b+Kk)-f(a,b+k)-f(a+h,b)+(a,b) ...(2)
Since fy exists, there F(y) is derivable in [b, b + K]
.. by Lagrange's Mean Value Theorem,
F(b +k) - F(b) =kF'(b + ¢k),0<p<1 ... (3)
Also from (1),
Fy)=fa+hy)-fH@y)
F'(b+¢k) = fy(a+h,b+¢k)- fy(a,b+ok) ... 4)
From (3) and (4), we have,
F(b + k) - F(b) = k[fy(a + h, b + ¢K) - fy(a, b + ¢k)] ..... (5)
Let G(X) = fy(x, b+ ¢k),a<x<a+h ... (6)
Then G(a+ h)-G(a) = fy(a+h, b+ ¢k)- fy(a,b+ok) ... (7)

Since fxy exists, therefore C(x) is derivable in (a, a + h) and .. by Lagrange's Mean Value
Theorem in [a, a + h],

From (6), G'(X) = fxy (X, b + ¢k)

o G'(a+6h)=fyl@a+obh,b+ok) ... 9)
From (8) and (9) we have,

G(a +h) - G(a) = hfxy(a + 6h, b + ¢k) ......(10)
From (7) and (10), we have,

fy(@a+h, b+ ¢k)- fy(a, b+ dk) =hfy(a+6h,b+ok) .. (12)
From (5) and (11), we have
F(b + k) - F(b) = hkfy (a+6h, b+ ¢k) ... (12)

From (2) and (12), we have
f@+h,b+k)-f(a,b+k)- f(a+h,b)+ f(a, b)=hkfy(a+ 6h, b+ k)
or 1 { f(a+h,b+k)— f(a+b,k) 3 f(a+h,b)— f(a,b)

k h h

Taking limits on both sides as h — 0

}= fxw(@a+6h, b+k)
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= lim/f«(@+ 6h, b +k)

h—0

1],. f(a+hb+k)— f(a+bk),. f(a+h,b)-f(a,b)
-l l[im
k h—0 h h—0 h

or %[fx(a, b + k) - fx(a, b)] = fxy (a + 6h, b) [Since fxy is continuous]

., f@b+ klz —f (a,b)

Taking limits on both sides as k — 0

) f (a,b+k)-f (a,b )
lim (@brk)-fa )=I|mfxy(a+eh,b)

k—0 k k—0

= fw (@ +6h, b)

or fy(a, b) = fy(a, b) [Since fy is continuous]
This proves the theorem.
Remark. Schwarz's Theorem can also be stated as:
Let f:D — R, where D is an open subset of R?.
If (1), fxfyfyx exist in the neighbourhood of a point (a, b)
2. fyx is continuous at (a, b).
Then fyx(a, b) exists and is equal to fy«(a, b).
17.10 Self Check Exercise
Q.1  Let f(x,y) =log (x* +y?)
Find fx (1, 2), fy (0, 1)
Q.2 Letf(x,y)=x3+y%-3axu
find fx (a, a), fy (a, @)
Q.3 Let f: R®* > R be defined by f(x, y, z) = x?y?z3, find
fx(1, 1, 2)and fy (0, 2, 3)
Q.4 Consider the function

u=log 4/¥*+Yy®, compute the second order partial derivative and

verify that ui; + U =0
17.11 Summary
In this unit we have studied
(1) what do we mean by directional derivatives
(i) definition of partial derivatives
(iii) first order partial derivatives of a function of three variables
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17.12

17.13

17.14

17.15

(iv) the geometrical interpretation of partial derivatives of first order
(V) partial derivatives of higher order

(vi) partial derivatives and continuity

(vii)  differentiability and differentiable functions

Glossary

QD Open set -

Any subset A of R? is called on open set of either A is an empty set or A is a nhd.
of each of its points.

2) Closed set -
A subset A of R? is called a closed set of its compliment A¢ is an open set.
Answers to Self Check Exercises

2
Ans.1 —,2
5

Ans.2 0,0
Ans. 3 16,0

Ans. 4 Find the derivatives and proceed.

Reference/Suggested Reading
1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
2. H. Anton, L. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2002
Terminal Questions
1. Evaluate fx (0, 0, 0), fy (0, 1, 0) if f(X, Y, Z) = sin (X3 + 2xy + z?)
2. If £(x,y) = |xy|%, prove that fx (0, 0) = f, (0, 0) =0
3. It z = xy tan % prove that x %+y2—;=22.
- r24t
4, If 6 =t" e, find the value of n s.t.

1000\ 00
r2 or or ot
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Unit - 18

Partial Derivatives of
Homogeneous Functions

Structure

18.1 Introduction

18.2 Learning Objectives

18.3 Homogeneous Function

18.4 Euter's Theorem on Homogeneous Functions of Two Variables
18.5 Euler's Theorem On Homogeneous Functions of Three Variables
18.6  Self Check Exercise

18.7 Summary

18.8 Glossary

18.9 Answers to Self Check Exercises

18.10 Reference/Suggested Readings

18.11 Terminal Questions

18.1 Introduction

Dear students, in this unit we will study the concept of homogenous function and patrtial
derivatives of these functions. The concept of homogeneous function was originally introduced
for functions of several variables. With the definition of vector space at the end of 19th century,
the concept has been naturally extended to functions between vector spaces, since a triple of
variable valves can be considered as a coordinate vector.

18.2 Learning Objectives

The main objectives of this unit are

0] to define homogeneous functions

(i) to find the partial derivatives of homogeneous functions

(iii) to prove Euler's theorem on homogeneous functions of two or three variables
18.3 Homogeneous Functions

A function of two variables x and y of the form

fX,y)=aox"+ar X"y +a; x"?y? +........ an1 Xy + apy"

in which each term is of degree n is called.

homogeneous function
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This function can be rewritten as

o= [ L)oo L vovura(2)]
(5}
O IR () P N =T

Thus a function f(x, y) if homogeneous of degree n in two variables x and y, can be
expressed in the form.

ferl;
X y

Another Definition 1. f(x, y) is a homogeneous function of degree n if

J&y)=y"

f(tx, ty) =t" f(x, y) for all t independent of x and y
Definition 2. Let f : R" — R be a function of n variable x1, x........ Xn. Lett e R.

if f(txy, tXo....... txn) can be expressed as f(txs, txz,....... tXn) = tPf(X1, X2......Xn) for all real t,
then f(X1, X2.....Xn) is called a homogeneous function of order (or degree) p.

For example:

. X%+ y?
M fxy=
X+Y
- ) = X +t7y* _ (¢ +y?)
’ tX+ty t(X+Y)
_ tl X2 + y2
X+Y
=tf(x,y)

- f(x, y) is a homogeneous function of order (degree) 1.
(i) f(x,y) =x?tan? (ij y? tan? X , Xy =0
X y

t
f(tx, ty) = t?? tan® %_ 2y2 tan-? :_X
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- {xtantY - y*tan™ X
X y
=t f(x,y)
Hence f(x, y) is a homogeneous function of order (degree) 2.

18.4 Euler's Theorem on Homogeneous function of Two Variables

Theorem 1. If f : R> —» R is a homogeneous function of two variables x and y and is of order n,
then
of of

X—+y—=nf.
OX yay /

Proof: Since f(x, y) is a homogeneous function of two variables x, y of order n, therefore it can

be written as x" F(Xj

X

Let  f(x,y)=XF(v),v= (%)

= Z—]; = X"f'(v). % +n x" F(v)

=x"F'(v) {[lzj} + nx"1 F(v)

X
= xﬂ =-yx"FW+nx"Fv) L (1)
OX

& 0 Ey=xn F (). = e[ L
and E_X ayF(v) x"F (v).ay X F(v).(xj
= y% =yx™MFv 2

Adding (1) and (2), we get

f of
- — nE
X8X+y6y n x" F(v)

or xg—i+y%=nf Q f=x:y)=x"F(v))

Hence the theorem

Cor.1. Ifwe take z = f (x, y) then
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Differentiating partially w.r.t. X, we get
0%z oz o’z oz
X—+—1l+ty—=n_—

ox~  OX oxoy — OX

0%z 0%z 0z
= X— +Y =(n-1) —
oX oxoy oX
Cor. 3. Also
0z 0z
— +y —=nz
OX oy

Differentiating partially w.r.t. y, we get

0%z 0’z oz
+ + —.1=nz

X [
oyox oy oy

Differentiating partially w.r.t. y, we get

0°z 9%z, o0z . _ o0z
X ty—+—.1=n—
oyox "oy’ oy oy
. o2 5 essuming
z z z
- + y—2 = (n‘l) - 622 822
oxoy oy oy =
OXoy  0yoX

Cor.4. Multiplying the results of cor 2. by x and result of cor 3. by y on both sides and adding,
we get

2 2 2
xza—§+ 2xy 0z + yzé—fz (n-1) {xg+ yg}
oX oxoy oy ox ~oy
2 2 2
x2%+ Xy 88 82 + yz%: n(n-1)z.
X X3y y

Cor.5. We have from theorem 1,
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S HEHE]

=x"1 & (Xj (Take z = (X, y))
X

0z . . ,

= P is a homogeneous function of degree n-1 in x and y.
and similarly

g: Xn-l g' X - Xn-l W X

oy X X
= % is a homogeneous functions of degree (n-1) in x and y.

18.5 Euler's Theorem on Homogeneous function of three Variables.

Theorem 2. If f : R®* — R is a homogeneous function of three variables x, y and z and is of order
n, then

of of of
—+y—+zZ—=nf
ox "oy O
Proof: Since f is a homogeneous function of three variables X, y, z of order n
f(tx, ty, tz) =t" f(x,y,z) V Realt.  ...... (1)
Put tx=uty=v,tz=w. ... (2)

ou ov ow

— =X, —=Y, —=2Z

ot ot ot
From (1), we have

fu, v, w) =t f(x, y, 2) (using (2))
Differentiating partially w.r.t. t, we have,

of ou of ov of ow

_ Yt —"\ — 4+ —, — = tn-l r Yo
ouat aviat ow at Joey. 2
= x% +y2—f, *z S—iv =ntxy. 2) (using (3) .. ®

Taking t = 1, we have

X=UYy=v,Z=W
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of _of of _of of _ of

ou ox' v oy ow oz
is from (4), we have
X +ty_— +z al =nf(x,y, 2)
OX oy 0z
Hence the proof of the theorem.
Theorem 3. Extension of Euler's Theorem in R2.

If fis a homogeneous function of two variables x and y and is order n, then

2 2 2
X? gx]; + 2Xy 86X5Ty +y? a&'yz =(n) (n-1) ¥.

Proof: By Euler's theorem

x—f +y— =nf ... 1) (Q fis homogeneous)

Differentiating Partially w.r.t. X, we get

oot of o, ot of

. n —_—
o’ 0X Y oxoy — OX

o* f 0% f of
= X— +*y—— =(-1)—
OX oxoy OX
Multiplying both sides by x, we get
2 2
X2 0 ]; + Xy of =(n-1)xﬂ ..... 2
OX oxoy OX

Again differentiating (1) partially w.r.t. y, we get

o°f o*f of _  of
X +y 5 + — =n —
oyox " oy" oy oy
2 2
Ty o 2
oyox " oy oy
Multiplying both sides by y, we get
o° f o°f of
+y —=Mn1)y — ... (3)
O0yox oy oy

Adding (2) and (3), we get

or X

Xy
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2 2 2 2
21 + Xy {xa f +ya f }+y28 f :(n-l){x@+yﬂ}

ox? oXoy = oyox oy? OX oy
2

Since xi+yi: nf, and o'f , We have

ox "oy oxoy

2 2 2
X28 Z + 2xy of +y? 0 Z =n(n-1) f.

OX oxoy oy

Hence the proof of the theorem.
Example 1: Verify Euler's theorem for z = x* log (Xj
X

Solution: Since z is a homogeneous function of x, y and is of order 4, therefore by Euler's
theorem.

0z
X— +y oz =4z=4x*log (Xj
OX oy X
Verification

Since z = 4x* log (zj

and

OX
x% +y oz = 4x*log (Xj =47z
OX oy X

Hence the verification.
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3
X z
Example 2 : If z=tan? ;ys , then show that xa— +y 2 = sin 2z.
X—Y oX oy

Solution : We have

z =tan? —X3 ty
X=y

3 3
= tan z = Y
X—-y
taketanz =u
X +y°
X-y
Clearly, u is a homogeneous function of x and y and of order 2.
ou
x—+ya—u=2u=2tanz (1)
OX oy
Sinceu=tanz
ou ,. 0z ou ,_ 0Z
— =sec*z. — and — =sec’z —
OX OX oy oy

From (1), we have

,_ 0Z ,_ 0Z
xsec’z — +y sec’z — =2tanz
X

a 2
z 0z _2tan” _ 2tanz_2tanzpo§zZ

or X— +y — = =, = .
OX SEC X Cos
2 %os2 z #

=2sinzcosz
=sin 2 z.
X2yZ
Example 3:Ifu= then show that
X+Yy
o%u o%u ou
X + =

Z - =2 =
oxoy Y oy” oy
Solution : Clearly, u is a homogeneous function of x, y and is of order 3.

by Euler's Theorem
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Differentiating w.r.t. y , we get
o%u o°u . ou_ _odu
X +y — + —=3—
oxoy oy oy oy
o°u o%u ou
X +y — =2 —
O0yox oy oy
Example 4 : Verify Euler's theorem for

_ /x2+y2

Solution : Here u = 2 y° (1)

or

u is homogeneous function of x and y of degree 1.

We shall show now to verify Euler's Theorem, that

x@+ya—u=u ..(2)
OX oy
From (1) we have
X +y?
oo X and CL
X 2% +y? 2 +y?
2 2
a_u = X— and y a_U: y—
OX x2+y2 x2+y2
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ou ou X y?
wx VT T T
X TOy Xty 4y

= X—::Tyyzz = «/x2+y2 =u

X

Hence

X o +y au =u

OX oy

Hence the verification of Euler's theorem.
18.6 Self Check Exercise

Q.1  Verify Euler theorem for

u=xy+yz+zx
Q.2 Ifu=e, verify Euler's theorem.

Q.3 Foruxnsin y , verify Euler's theorem.
X

4

X' —y
Q.4 Ifu=log ( j then show that

X=y
ou ou
X—+y —=3.
OX oy

18.7 Summary
In this unit we have learnt the following :
0] definition of homogeneous function
(ii) Euler's theorem on homogeneous functions of two variables
(iii) Euler's theorem on homogeneous function of three variables.
18.8 Glossary

1. Homogeneous Function of degree k
— a homogeneous polynomial of degree k defines a homogeneous function of
degree k.

2. Positive homogeneity -

f@r,x)=rf(x)Vxex.andall pontins real r > 0.
3. Absolute homogeneity -
f(sxX)=|s|f(X)Vxex andall Scalarss € F
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18.9 Answers to Self Check Exercises

Ans. 1 u=xy +yz+ zx = X (X+X.E+E

j =x?f (X’Ej and then proceed.
X XX X X X

— aXly = 0 % — 0 X
Ans. 2 u=e*=x"¢e =x°f and then proceed.
X

Ans. 3 Proceed to verify Euler's theorem.

4

4 4 4
Ans. 4 u = log Xy = e'= Xy - Z (say), then proceed.
X=-y X=-y
18.10 Reference/Suggested Reading
1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
2. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2002
18.11 Terminal Questions
1. Verify Euler's theorem for the functions
: 1
() fxy)=———
X +Xy+Yy
(i) f (xy) an? + 2hxy + y%b
(i) S xy)= 2
X+Yy
.. X LY
2. If f(xy)=sint+— +tan1;,thenxfn+yfy=0
y
X
3. Itz =xy f(yj then prove that
0z 0z
X —+y—=2z.
oxX "oy
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Unit - 19
Maxima and Minima
Structure
19.1 Introduction
19.2 Learning Objectives
19.3 Definite, Semi-Definite and Indefinite Functions
19.4 Maximum and Minimum for Functions of Two Variables
19.5 Maximum and Minimum for Functions of Three Variables
19.6 Lagrange's Method of Multiplier
19.7 Self Check Exercise
19.8 Summary
19.9 Glossary
19.10 Answers to Self Check Exercises
19.11 Reference/Suggested Readings
19.12 Terminal Questions

19.1 Introduction

Dear students, we have already studied the concept of maxima and minima of a real
valued function of a single variable, at our lower level in this unit we shall study maxima and
minima of real valued function of two or more in depended variables. In mathematical analysis,
the maxima and minima of a function are respectively the largest and smallest value taken by
the function. Known generally as extermum they may be defined either within a given range or
on the entire domain of a function. Pierre de Fermat was one of the first mathematician to
propose a general technique, for binding maxima and minima of functions.

19.2 Learning Objectives
The main objectives of this unit are
0] to define, definite, semi-definite and indefinite functions
(ii) to defined maximum and minimum value of a function
(iii) to find maximum and minimum value for functions of two variables.
(iv) to find maximum and minimum for functions of three variables.
(v) to study Lagrange's method of multiplier.
19.3 Definite, Semi-Definite and Indefinite Functions

Def. 1. Definite Function. A real valued function f with domain D; — R" is said to be
positive definite if f (x) >0 f or all x € D; and negative definite if f (x) <O for all € D;. A positive
definite or a negative definite function is said to be definite function.
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For example, the function

f:R?> > Rdefined by f (x,y) =x2+y2+ 2V (x,y) € R? is positive definite as f (x, y) >
2V (x, y) € Df = R? whereas the function f : R®* — R defined by

fFXY,2)=-(x2+y?2+ 22+ 2)V (X, Y, z) € R®is negative definite as
f(X,y,2)<-2V (x,y,2) e D;=R?,

Def. 2. Semi-definite function : A real value function f with domain D; = R" is said to be semi-
definite if it vanishes at some points of D; and when it is not-zero, it is of the same sign
throughout.

For example, the function f : R? — R defined by f (x, y) = X2 + y?, (X, y) € R? is semi definite as
f(0,0)=0and f (x,y) >0 forall (x,y) € R?, (x,y) # (0, 0).

Def. 3 Indefinite Function : A real function f with domain Dy = R" is said to be indefinite if it can
assume values which have different signs i.e., f is said to be indefinite if it is neither definite nor
semi-definite.

For example, the function f : R®* — R defined by f(x,y, z) =3x -4y +2zV (X, Y, z) € R®is an
indefinite function as f(x, y, z) can be positive or zero or negative.

Sign of a Quadratic Expression
@) Function of two real variables.

Let f(x,y) = ax?+ 2hxy + by?, a= 0

1 (a?x? + 2ahxy + aby?)
a

~l(@x+hy)? + (@b )y

The following cases arise:

Case 1. When ab - h? > 0, then f(x, y) has the same sign as that of a for all (x, y) € R This
implies that f is definite if ab - h? > 0 and is positive definite or negative definite according as a
is positive or negative.

Case 2. When ab - h? = 0, then f(x, y) has the same sign as that of 'a’ for all (x, y) € R% This
implies that if ab - h? = 0 and (ax + hy) = 0 for any (x, y) € R?, then f is definite. It is positive
definite. It is positive definite or negative definite according as a is positive or negative.

Case 3. When ab - h2 =0 and (ax + hy) = 0 f or some (X, y) € R?, then f is semi definite.
Case 4. When ab - h? < 0, then we cannot be sure of the sign of f(x, y) and hence f is indefinite.
(b) Function of three realvariables.

Let f(x, Y, z) = ax? + by? + cz? + 2fyz + 2gzx + 2hxy
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a a h g
(1) If a= 0, then f(x,y, z) >0if a, h b" h b fl|are all positive
g f ¢
i.e. fis positive definite.
2) If a # 0, then f < 0O if the above three expressions are alternately negative and positive,

i.e. fis negative definite.
19.4 Maximum and Minimum for Functions of two Variables

Def. Let D = R? and (a, b) be an interior point of D where D is the domain of f(x, y). Then f(a, b)
is said to be a local (or relative) maximum value of f(x, y) if f(X, y) < f(a, b) for all points (x, y) in
a sufficiently small neighbourhood of (a, b), [(X, ¥) # (a, b)].

Alternative Definitions
Maximum Value

Def. A function f(x, y) is said to have a maximum value at a point (a, b) if f(a, b) > f(a+h, b +
k) for all small values of h and k, positive or negative of f(a, b) - f(a+h,b+k)>0V h, k

Minimum Value

Def. A function f(x, y) is said to have a minimum value at a point (a, b) if f(a, b) < f(a+ h, b + k)
for all small value of h and k, positive or negative of f(a, b) - f(a+h, b+ k) <0V h, k.

Extreme Values

1. The local maximum and the local minimum value of f(x, y) are also called the
extreme values of f(x, y) and the points where f(x, y) has an extreme value are
called extreme point.

2. A point (a, b) € D is called an interior point of D if every point of some
neighbourhood of (a, b) is a point of D.

Theorem 1. The necessary conditions for f(a, b) to be an extreme value of f(x, y) are that fx(a,
b) = fy(a, b) = 0, provided that fx(a, b) and fy(a, b) exist.

Proof: If f(a, b) is an extreme value of f(x, y) then, clearly it is also an extreme value of the
value of f(x, b) of one variable x for x = a and therefore its derivative w.r.t. X i.e. fx(a, b) for x =
a, in case it exists, must necessarily be i.e. fx(a, b) = 0. Similarly we have f,(a, b) = 0.

Remark 3. The points where fx(x, y) = 0 = fy(x, y) are called critical or stationary points which
not be extreme points. Hence every extreme point is a stationary point but not conversely.

Remark 4. Consider a function f(x, y) = x* - y2.
Here fx(x, y) = 2x and fy(x, y) = -2y.
- fx(0,0)=0and fy(0,0)=0
Now f(0 + h, 0 + k) - £(0, 0) = f(h, k) - £(0, 0) = h? - k2.
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which does not hold the same sign i.e. positive or negative for small values of h and k.
. (0, 0) is not an extreme point of f(x, y).
Remark 5. f(x, y) can have extreme value at (a, b) even though f«(a, b) do not exist.

For example, f(x, y) |X| + |y| has an extreme value at (0, 0) even though fx(0, 0) and f,(0, 0) do
not exist.

Remark 6. The greatest of all the extreme values is called absolute maximum or global
maximum.

Remark 7. The smallest of all extreme values is called an absolute minimum or global
minimum.

Remark 8. Saddle point. The point where f(x, y) has neither maximum value nor minimum
value is called a saddle point.

Theorem 2. Sufficient Conditions.

Let f be a real valued function of two variables x and y and if f«(a, b) = 0 = fy(a, b) and fx(a, b)
= A. fy(a, b) =B and fy/(a, b) = C then

1. f(a, b) is a maximum value of f(x,y) if AC-B2>0and A<0

2 f(a, b) is a minimum value of f(x,y) if AC-B2>0and A>0

3. f(a, b) is not extreme value of f(x, y) if AC - B2<0

4 f(a, b) may or may not be an extreme value of f(x, y) if
AC-B?=0 [itis called a doubtful case]

Proof: We assume that f has continuous patrtial derivatives of first, second and third order w.r.t.
x and y both in a neighbourhood, say N of (a, b). By Taylor's theorem on two variables with
remainder after three terms, we have,

f(@+h,b+k)

) o 0 1(,06 oY
=f(a, b) + [h&+k5]f(a, b) + > (h&+ k&j f(a, b)

1( 0 oY
+—| h—+k—| f(a+th, b +1tk)
[ Wj

WhereO<t<land(a+h,b+k)eN.
= f(@+h,b+k)- f(a, b)

= hfx(a b) +kfy(a, b) +% [h?fx(@, b) + 2hkfxy (a, b) + k* fyy(a, b)]

+% [R3 frx(U, V) + 302K fxxy (U,V) 3hK? fryy(UV) + K2 fyyy(UV)]
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Whereu=a+th,v=b+tk, 0<t<l1.
Since fx(a, b) = 0 and fy(a, b) = 0, we have

1
f@+h,b+Kk)- f(a,b)= 2 (Ah? + 2Bkh + Ck?) + g(h, k)
Where g (h, k) is a third degree expression in h, k.

1
We suppose for sufficiently small values of h and k, the sign of > (Ah? + 2Bkh + Ck?) + g(h, k) is

the same as that of Ah? + Bhk + Ck2.
The following cases arise:

Case 1. Let AC - B2 > 0. Here nether A nor C can be zero, since, if A=0or C =0then AC-B2=
-B2 < 0, which is wrong.

Therefore, we write
1
Ak? + 2Bhk + Ck? = Z [(Ah + Bk)? + (AC - B?)k?]

Now since AC - B? > 0, therefore, (Ah + Bk)? + (AC - B?) is always positive except when Ah + Bk
=0 and k =0 i.e. except when h = 0 and k = 0 and in that case the value of this expression is
zero.

Thus, we find that whenever h = 0 and k # 0, Ak? + 2Bhk + Ck? has the same sign as that of A.

Therefore, (1) f AC-B2>0and A<O0,then f(a+h,b+k)-f(a,b)<Oforall(a+h,b+Kk)e
N ((a, b)) i.e. (a, b) is a point of maxima of f and therefore f (a, b) is a maximum.

(2) If AC-B?>0and A>0,then f(a+h,b+k)-f(ab)>0forall(a+h,b+k)eN
-{(a, b)} i.e. (a, b) is a point of minima of f and .. f(a, b) is minimum.

Case 2. LetAC-B?<0

If A =0, we can write
1
Ah? + 2Bhk + Ck? = A [(Ah .. Bk)? - (B2 - AC)K?]
Since AC - B?< 0 i.e. B - AC > 0, we find that Ah? + 2Bhk + Ck? has the same sign as that of A

when k = 0 and has the sign opposite to that of A when Ah + Bk =0

Hence, Ah? + 2Bhk + Ck? has opposite sign when k = 0 and when Ah + Bk = 0 i.e. there exists
points in the neighbourhood N of (a, b) where Ah? + 2Bhk + Ck? i.e. f(a, b) has opposite signs
and hence (a, b) is not an extreme point of the function f.

Likewise, if C # 0, It can be shown that (a, b) is not an extreme point of f. A=0and C =0, then
Ah? + 2Bhk + Ck? = 2Bhk
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So that this expression takes values with opposite signs when hk > 0 and hk < 0. Hence, there
exist points in the neighbourhood N of (a, b) where f(a + h, b + k) - f(a, b) has opposite signs,
and hence (a, b) is not an extreme point of the function f.

Case 3. LetAC-B?=0

If A =0, we write as,

(Ah+ Bk)2
A

and the value of this expression becomes zero when h, k are so chosen that Ah + bk = 0.
therefore, the sign of f(d + h, b + k) - f(a, b) depends upon that of g(h, k) and hence it needs
further in vestigations.

IfA=0,then AC-B2=00rB=0
IfA=0,then AC-B2=00rB=0

1
AN + 2Bhk + CK? = = (Ah + BK)” + (Ac - BYK] =

. Ah? + 2Bhk + Ch? = k? and the value of this expression becomes zero when k = 0, whatever h
may be. Again, in this situation, the sign of f(a + h, b + k) - f(a, b) depends upon that of g(h, k),
and hence it needs further investigations.

Thus, if AC - B2 = 0, then (a, b) may or may not be an extreme point. This is called a doubtful
case. This completes the proof.

Working Method to find Maxima and Minima.
Let f(x, y) be a given function

of
Step 1. Find — and ﬂ
OX oy

f
Step 2. Solve 6_ =0and ﬂ =0
OX oy

Simultaneously to find x and y

Let (X1y1), (X2y2) ...... be the solutions of these equations.

2 2 2
Step 3. Find A = 0 ]; ,B= ot and C = 6];
0

X oxoy

and evaluate A, B, C for each point (X1y1), (X2y2)

Step 4. If for a point say (x1y1) we have

(1) AC - B2 >0 and A < 0 then (xyy1) is @ maximum value and f(x, y) has a maxima
for this pair.

(2) AC - B> 0 and A < 0 then (x1y1) is @ maximum value and f(x, y) has a minima at
(x1y1)
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3 If AC - B2> 0 and A < 0, then f(x, y) has neither maxima nor minimum value at
(Xay1)
(4) If AC - B2 = 0, then it is a doubtful case and further investigation is required.

In this case, we consider:
(@) If f(x1 + hy: + K) - f(xay1) <O, then f(x, y) is maximum at (X1y1)
(b) If f(x1 + hy: + K) - f(x2y1) > O, then f(x, y) is minimum at (X1y1)

(© If f(x2 + hy: + k) - f(X1y1), does not keep the same sign, then f(x, y) is neither
maximum nor minimum at (X1y1)

Note. The points (x1y1) (Xz2y2) obtained are called critical points or stationary points or extreme
points or turning points and the values of f(x, y) at these points are called stationary values or
extreme values.

To clarify what we have just said, consider the following examples:-
Example 1: Find the maximum and minimum value of
fx,y) =2x* +y* - 2x% - 2y?
fx,y) =2x* +y* - 2x% - 2y?
fx=8x3-4x
fy=4y>- 4y
fxy=0
fxx =24x%-4
fyy =12y*- 4
For extreme points,
fx=0,fy=0
5 8x3-4x=0 and 4y®-4y=0

i.e.xzo,ii andy=0, + 1.

2

.. the possible extreme points are

1 1 1 1 1 1
©.0.0.4. 0.9 (ﬁ"’) (ﬁ‘j’(ﬁ"lj’ (_ﬁ’oj’ (‘ﬁ’lj’ (‘ﬁ"l)
At (0, 0)
A = fxx(0,0) = -4
B=fxy(0,0)=0
C=fyy(0,0)=-4
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S~ AC-B?=16>0andA=-4<0
. (0, 0) is a point of maximum and maximum value at (0, 0) is O.
at (0, +1) [f(0,0) =0]
A=fx(0,+1)=-4
B=/fy(0,+1)=0
C=/n(0,+1)=8
. AC-B?=-32<0

. (0, £ 1) are not extreme points.

A (%oj
A= fux %,0 =8
B = fu %,0 =0
C = fy %,0 =-4

. AC-B?=-32<0

1
—,0 | is not an extreme point
(JE ] P

At (i +1j-
27
A= fo %,il :
o= 1o Ls1)0
1
C:fyy ﬁ,il =8

. AC-B’=64>0andA=8>0
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,il} are points of minimum and minimum value

D

)

A (—%oj
A= frx —5;@ =8
B = fu —5;@ =0
C = fy i%ﬁ =-4

~. AC - B%2 =-32 < 0 and therefore

VR

1
—,0 is not an extreme point.
72 j P

. AC-B*’=64>0andA=8>0
1 . - - 1 3
. | =——=,%1 |are points of minimum and minimumvalue = f | ——=,+1| =-—
J2 V2 2

Example 2: Find all the maxima and minima of the function
fy) =X +y®-63(x +y) + 12xy.
Solution: f(x,y) =x3+y3-63(x +y) + 12xy
fx=3x2-63+ 12y
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fy=3y?- 63+ 12x
frv =12, fxx = 6X, fyy = 6y
For extreme values fx=0and f, =0
i.e.3x2+12y-63=0
and 3y +12x-63=0
LX2+4y-21=0
L YyP+4x-21=0
Subtracting, we have
x2-y?2-4(x-y)=0
or(x-y)(x+y-4)=0
= eitherx -y =0or X+y-4=0
.. We get two sets of equations:
X2+4y-21=0
=Xx=3,-7
L y=3,-7
Orx?+4y-21=0
andx+y-4=0
Elimination y, we have,
Xx2-4x-5=0
=x=5,-1
Ly=-1,5
Thus the possible extreme points are (3, 3), (-7, -7), (5, -1), (-1, 5)
At (3, 3)
A=fx3,3)=63=18>0
B=fuw(3,3)=12
And C = f,,(3,3) =63 = 18
S AC-B?=18x18-12=324-144=180>0,alsoA=18>0
= (3, 3) is a point of local minima and local minimum value
=f(3,3)=27+27-63(3+3)+12.3.3=-261
At (-7, -7):
A=-42<0,B=12and C =-42
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AC - B2 = (-42)(-42) - 122=1620>0
Also A=-42<0
= (-7, -7) is a point of maxima (local) and (local) maximum value
= f(-7,-7) = (-7)3 + (-7)% - 63 {(-7 -7) + 12(-7)(-7)] = 784
At (5, -1):
A=30>0,B=12andC=6(-1)=-6
= AC - B2=30(-6) - (12)2=-180- 144 =-324<0

. (5, -1) is not an extreme point.

At (-1, 5):
A=6(1)=-6<0
B=12
C=6(5)=30

= AC-B2=-6(30) - 122=-324<0
. (-1, 5) is not an extreme point.

So f(x, y) has a local at (-7, -7) and maximum local value = 784 and has a (local) minima at (3,
3) and local minimum value = -216.

Example 3: Find the extreme values of the function
fxy) = (x-y) + (y - 1)*
Solution: We have

fxy)=(x-y)*+(y-1)°

T = atx-yy and &= ax-yp + agy - 17
OX oy
Now for critical points ﬂ =0and i =0
= 4(x-y)*=0
And -4 (x-y)*+4(y-1)3=0
SY= X L) and-(x-y)*+(y-1°*=0 ... 2)

Using y = x in (2), we get
0=(y-1p°=y=1
Puttingy = 1 in (1), we get

x=1
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- (1, 1) is the only critical point

o°f
Now A = =12(x - y)®
o (x-y)
2
B= of =12(x - y)?
oxoy
_o°f _ 2 2
and C= —-=12(x - y)* + 12(y - 1)

At (1, 1),
A=12(1-1)=0
B=12(1-1)=0
andC=12(1-1)+12(1-1)=0
= AC - B2 =0 is a doubtful case
.. Further investigation is required.
Consider f(1 +h, 1 +K) - f(1, 1)
=(1+h-1-k*+(1+k-1)*-0
=(-k*+k*>0
For small +ve or negative values of h and k.
- f(X, y) is maximum at (1, 1) and maximum value is
f(1,1)=(1-1)*+(1-1*=0
19.5 Maximum and Minimum for Functions of three variables

The Local Maximum and Local Minimum values for functions of three variables are defined in
the same way as for the functions of two variables.

Definition. A function f(x, y, z) is said to have a maximum value at the point
(X1, Y1, z1) if
f(X1, Y1, Z1) > f(xa + h, y1 + k, z1 + 1)
i.e. if f(x1+h,y1+K, z1+1)- f(xa, y1, 1) > 0 for small values of h, k and | positive or negative.

Theorem 3. The necessary conditions for a real valued function f(x, y, z) with domain D < R® (D
is open) to have an extreme value at the point (a, b, ¢) € R are (f«(a, b, ¢) = fy(a, b, ¢c) = f.(a, b,
c)=0.

Proof: It f(a, b, c) is an extreme value of the function f(x, b, c) of one variable for x = a and,
therefore, its derivative fy(a, b, c) for x = a in case it exists, must necessarily be 0 i.e. fx(a, b, c)
=0.
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Similarly, we have,
fy(a, b,c)=0, fz(a,b,c)=0
Definition, Critical point (stationary point)

A point (a, b, c) is said to be a critical point or stationary point of function f(x, y, z) if fx(a, b, ¢) =
0, fy(a,b,c)=0and fx(a, b,c)=0

Theorem. Let f(x, y, z) be a function of three independent variables x, y, z. Then the sufficient
conditions for a point (a, b, ¢) to be an extreme point are that

QD df(a, b, c) =fxdx + fxdy + fxdz=0
or fx(a, b,c) = fy(a, b,c)=f,(a,b,c)=0
(2) d?f(a, b, ) = fu(dX)? + fyy(dy)? + fux(dz)? + 2fxy(dxdy) + 2fz(dzdy) + 2f-(dzdx)

keep same sign for arbitrary small values of dx, dy and dz. Further (a, b, c) is a point of maxima
or minima according to as d?f is negative or positive. The point (a, b, c) is point (a, b, c) is not
an extreme point if d?f does not keep the same sign and may or may not be an extreme point if
d?f deeps the same sign but vanishes at some points in neighbourhood of (a, b, c).

(we assume it without proof)

Theorem. Let f(X, y, z) be a function of three independent variables x, y, z. Then d?f will always
be positive.

f f f fxy f

Iff £ o Y, | f f f
/ fyx fyy Xy 1:yz
XX Xy z

are all +ve and d?f will always be-ve if their signs are alternatively negative and positive.
(we assume it without proof).
In view of the above results the sufficient condition for extreme values can be stated an follows:

Theorem (Sufficient conditions). Let f(X, y, z) be a function (real valued) of three variables
defined on an open det D = R® and f«(a, b, ¢) = f.(a, b, ¢) = 0, then (a, b, c) is a point of local
maximum or local minimum according as, the three expressions:

fxx ; ¢ fo T, T,
yX Yy
fo Ty fa

are alternately negative and positive or all are positive at (a, b, ¢). [we accept it without proof.]
Working Method to find Extreme Values of a Function of Three variable

Let f(X, Y, ) be a given function of three independent variables x, y and z.
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Step 1. Find ﬂ ﬂ and ﬂ
OX

oy 0z
of of
Step 2. Solve equations — =0, i = 0 and — = 0 simultaneously for x, y, z.
OX oy 0z
Let (a, b, ¢) (as, b1, ci)....... be the solutions of these equation which are critical points.
2 2 2 2 2 2
Step 3. Find A = 0 Z , B= 2 z , C= 0 Z , F = of , G = ot , H= of and evaluate the
OX oy 0z O0yox 0Z0X oxoy
following expressions in order.
A H G
A H
A, ,/H B F
H B
G F C

Step 4. Find the value of each of the three expressions at stationary point (a, b, c).

H
(1) IfA<0, >0
B
A H G
H B F|<0
G F C

Then f (x, y, z) is maximum at (a, b, ¢) and maximum value is f(a, b, c).

A H G
2) IfA>0 >0H B F|>0
G F C
Then f(x, y, z) is minimum at (a, b, c) and its minimum value is f(a, b, c).
3) If we fall to get any idea of maximum value or minimum value from the expressions
A H G
A, A H ‘ H B F| then we calculate d?f at (a, b, c)
: G F C
(a) If d?f > 0 for small values of dx, dy and dz then f(x, y, z) is maximum at (a, b, c)
(b) If d?f > O for small arbitrary values of dx, dy and dz then f(x, y, z) is minimum at
(a, b, c)
(©) If d?f does't keep the same sign for small arbitrary values of dx, dy and dz then

f(x,y, z) is neither max. at (a, b, ¢) nor minimum.
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Let us see what the method is with the following example:-

Example 4: Discuss the maximum and minimum values of the function f(x, y, z) = x? + y? + 2% +
X - 2Z - Xy.

Solution: Here, f(X, Y, 2) = x>+ y? + 22 + X - 2Z - Xy
fx=2x+1-y,fy=2y-X, f2=2z-2
fx=2,fyy=2,fn=2
Jyx=-1, Jry =-1, fx=0
fx=0,fzy=0,fyz=0
For extreme values, fx=fy=f,=0

2x-y+1=0 0}
2y-x=0 (2)
22-2=0 3

From (2), x = 2y, puttingin (1) 3y+1=0o0ry=-

From (3),z=1

2 1
Thus, we have x=-—,y=-—,z=1
3 3

NOW fxx£—§,—%,lj= 2 > 0

fof |2 -
W‘:‘l J‘:4—1:3>0

fyx fyy 2
f fXy f 2 -1 0

and fyx fyy fyzz—l 2 0=6>0
f fXy f, 0 0 2

Thus we see that all the above three quantities are all positive and therefore f(x, y, z) has a

. . 2 1
minimum value at the point —5,—5,1

Example 5: Examine

f(X, Y, 2) = 2xyz - 4zX - 2yz + x> + y? + 72 - 2x - 4y + 4z for extreme values.
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Solution. f(X, Y, z) = 2xyz - 4zx - 2yz + X2 + y?> + 72 - 2x - 4y + 47
fx=2yz-4z +2x -2
fy=2zx-2z+2y-4
fz=2Xy-4x-2y+2z+4

For extreme points, fx=0, fy=0, f,=0

ie.2yz-4z+2x-2=0

oryz-2z+x-1=0 (1)
2zx-2z2+2y-4=0
orzx-z+y-2=0 ... (2

and 2xy - 4x-2y+2z+4=0
orxy-2x-y+z+2=0 ... 3)
Adding (2) and (3), we have
ZX+Xy-2x=0
orx(z+y-2)=0
.. Eitherx=0o0orx+y-2=0
Thus we have two sets of equations:
yz-2z+x -1=0 yz+x-2z-1=0
ZzX-z+y-2=0 ZzX-z+y-2=0
x=0 z+y-2=0
Solving these equations, we get solving these equ, we get
(0,3,1), (0,1, -1) (1,2,0), (2,1,2), (2,3, -1)
.. the possible extreme points are (0,3,1), (0,0,-1), (1,2,0), (2,1,1) and (2,3,-1).
Again, we have
fxx =2, XX =2, fyy = 22.
fyz=2X-2,  fyx =2z,
fxze=2y-4m fyy=2X-2, fXx =2y -4
For the point (0,3,1), we have,
f

x xy

f, f,

yX

w=2>0,
/ 2 2

= =4-4=0
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fo To fo 2 2 2

XX Xy XX
and |f, f, f,=]2 2 -2=-32
fo fy, faf [2 2 2

Thus we see that the above three quantities are neither all positive nor alternately negative and
positive.

- f(X,y, z) is neither max. nor min. at the point (0,3,1)

It may similarly be shown that the function is neither a max, nor a min, at (0,1,-1), (2,1,1) and
(2,3,-1).

At (1,2,0), we have

i
fxx=2>0, = =4>0
fyx fyy 0 2
f fXy fo.l 2 0 O
and fyx fyy fy2=0 2 0=8>0
f, fXy f,l 0 0 2

since all the above 3 quantities are positive
... the function has a minimum at the point (1,2,0)
Example 6: Examine the following functions for extreme values:
f(X,y, 2) =x?>+y?+ 72+ 2xyz
Solution. f(X, Y, 2) = X%+ y? + 2% + 2Xyz
Sofx=2X+ 2yz, fy =2y + 22X, fx=2Z + Xy
Fox =2, fyy =2, fxx = 25 fry = fyx = 22,
fyz = fay = 2X and  fx = fx=2y
For an extreme value
Ix=f=/k=0
S2X+2yz =2y +2zx=22+2xy =0
orx+yz=0,y+zx=0,z+xy=0
- (%Y, 2)=(0,0,0), (1,1,-1), (1,-1,2), (-1,1,2), (-1,-1,-1)
At (0,0,0): fx=2>0
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fo f, fol [2 00
and |f,, f, f,=/0 2 0=8>0
f,, f, f, [0 0 2

this mean that f has a minimum value at (0,0,0)
at(1,1,-1): fxy=2>0

f, f| |2 -2
f fxy‘_‘ ‘:o
wx ful -2 2
fo f, fol |2 —2 2
and fyx fyy fﬂ=—2 2 2/=-32<0,
f,, f, f,| |2 2 2

. we see that these values fall to give us an answer, and, therefore we calculate d?f at this
point (1,1,-1)

Now d?f = fxx(dX)? + fy(dX)? + fzx(dX)? + 2fy,dydz + 2f,xdzdx + 2 fxdxdy
= 2[(dx)? + (dy)? + (dz)?] + 4[dydz + dzdx + dxdy]
= 2(dx + dy + dz)? - 8dxdy
Obviously, d?f is indefinite as it can have positive as well as negative values.
(1,1,-1) is neither a point of maxima nor a point of minima.

Similarly, we can prove that (1,-1,1) and (-1,1,1) and (-1,-1,-1) are also not extreme points,
though they are critical points.

19.6 Lagrange's Method of Multipliers

Stationary points under subsidiary conditions. To find the stationary points of the function f(xa,
X2,.....Xn) Of n variables xi, Xa,........ Xn Which are further connected by m equations; fi(Xi,
D Y Xn) = 0, | = 1,2,3,.....m. Lagrange has given very useful method known as Lagrange's
method of undetermined multipliers i.e. this method is useful to find the maximum or minimum
values of a function.

Under this method:
() We define a function called auxiliary function F(x1,Xz,.....Xn) by
F= f + lel + 7\,2f2 +...... + mem

Where 1,15,....... 1, are parameters independent of Xi,Xa,...... Xn and are called
Lagrange's Undetermined Multipliers.

(2) The we find ﬁ ok o+ and equate each to zero

ox = Ox,  Ox
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oF oF oF
€. —, — e = =
(These are the necessary conditions for extreme values)

3) Then solve these n equations with the help of given m constraints i.e. f1 =0, f> =
0.....fm = 0 f or Midoha....... Az and stationary points.

4) Find the values of f at the stationary points if the variables in a function of three
variable are not independent but are connected by some relations.

Working method for a function of three variables

Let  f(x, Yy, z) be a function of x, y and z which are connected by relations ¢1(x,y,z) = 0 and
d2(x,y,z) =0
Step 1. Define the auxiliary function
FX,y,2) = f(X, Y, 2) + Mada(X,y,2) + hada(X,Y,2)
Where A1 and A, are parameters independent of x, y, z (Lagrange's Multipliers).

oF oF
Step 2. Find & % E and equate each to zero which are necessary conditions for extreme

points.

Step 3. Solve these equations along with constraints for the parameters A1, A2 and for critical
points.

Then find the values of f(x, y, z) at the critical points which will give the maximum and minimum
values of f(x, Y, z)

Let us see what the method is with the following examples:-

Example 7: Find the maximum and minimum values of x? + y2 subject to the condition 3x? + 4xy
+ 6y? =140

Solution. Let f(x, y) = x?> + y? so that we have to find the extreme values of f under the
constraint

32+ 4xy + 6y?=140=0 (1)
Consider the function

F(X, y) = x2 + y? + A(3x? + 4xy + 6y? = 140) where X is Lagrange's multiplier

. ﬁ—2x+7b(6x+4)
S y).

—F =2y + AM(4x + 12y)
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For extreme points, % =0and % =0
L (L+3)x+ 20y =0 (2)
and 2Ax+ (1 +6A)y =0 3)
Since (%, y) = (0, 0), form (2) and (3), we have
1+314 24
24 1+64

or (1+3)) (1+61)-412=0
orla)2+9x+1=0
1

1
orA=-—,-=
2 7

1
Case 1. When = Y from (2) we have, x = -2y and putting in (1), we have

12y? - 8y? + 6y? = 140
- y?=14 and then x? = 4y? = 56
X2 +y2=56+14=70

1
Case 2. When A = 7 , from (2) we have y = 2x and putting in (1), we have

3x? + 8x% + 24x% = 140 or x? = 4 and then y? = 4x*> = 16
LXP+y?=16+4=20
Therefore, the maximum and minimum values of x? + y? are 70 and 20 respectively.
Example 8: Determine the stationary values of the function

2 2 2
fx,y,z)= —2+§+—2 subject to the condition ax? + by? + czZ2=1 and Ix + my + nz = 0.
a C
2 2 2
. X z
Solution: f(x,y, z) = ¥+§+? D
fi(x,y,z)=ax?+by?+cz?-1=0 2
and fo(x,y,z)=Ix+my+nz=0 3)
Let F(X, Yy, z) = f + haf1 + haof2
X2 y2 2
= ¥+F+?+ M(ax? + by? + ¢z? - 1) + Lo(Ix + my + nz)
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oF _ 2X
—= — +2aMx+ Ik

X a
2

F -2, oy + s

oy b

oF  2x

E— ?'f' 2Ch1Z + N2

OF _, OF_oF

ox oy oz

2

- a—¥+ 2a0Mx + 11, =0 (5)
2
b—2’+2bx1y+mx2=0 ©6)
2
C—Z+ 2Chz+nk2 =0 @)

Multiplying (5) by x, (6) by y and (7) by z and adding,
X2 y2 ZZ
2{¥+F+?}+ 20 (@x®+by? +czd) + A2 [IX+my +nz] =0

Using (2) and (3), we have
a

X2 y2 22
7\,1 =- (?F-’_?j = -f

2 2 2
X* Yy z B
2{—2+F+?:|+ 27\.1, 1+7\«2 . 0—0

Putting this value of A1 in (5), (6) and (7), we have
2% :
? -2ax f+1A, =0

2y _
F -2byf+mk2—0

2z
?-chfz+nk2:0
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« = —a’l A, _ —b'ma, = —-c’nA,
si-act) 7T 20-bt) 't 20-Jt)
To find relation free of A2, IX+ my + nz =0
A, | ail* P c’n?
= - | = +— +— =0
2 af-1 bf-1 cf-1

a2| 2 b2 m2 CZnZ

or + + =
alf-1 bf-1 cf-1

Which is a quadratic in f and gives two values of f which are the extreme values of f.

Example 9: Find the minimum values of f (x, y, z) = x? +y? + z where x + y + z = 3a.

Solution : f (X, Y, z) = X% +y? + 72 ..(1)
fi(xy,z)=x+y+z-3a (2
LetF (X,y, z) = (X2 +y? + z?) + A(X + Yy + X - 33) ... (3)
oF
— =0=2x+A=0
OX

%=0:2y+l=0
oy

oF
—=0=2z+1=0
0z

X = —z—i

s y >

Sincex+y+z=23a

31

-— =3a

2

ori=2a

.. the stationary value is given by (x, y, z) = (a, a, a)
Putting A = -2a in (3), we have
F(X,y,2)=x?>+y?+2z?2a(x+y +z - 3a)
Fx=2x-2a, Fy=2y-2a, F,=2z-2a,
Fyy =0, Fzy =0, Fx. =0
Fux = 2, Fyy = 2, F.. =2,
At (a, a, a)
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o Ty ‘2 o‘
Fx=2>0, = =4>0
fyx fyy 0 2
f o fXy f,, 2 00
And fyx fyy fYZ:O 2 0=8>0
f, fZy f, 0 0 2

Thus all the above three quantities are positive.

. (a, a, a) is a point of minima of F (X, y, z) and therefore f(Xx, y, z) also has a minimum value at
(a, a, @) and minimum value of

f(x,y,2) = f(a, a, a) = a? +a? + a? = 3a?
19.7 Self Check Exercise

Q.1 Find the local maxima, Local minima and saddle point, if any of the function.
f(X,y) = zXy - 5x? - 2y? +4x - 4

Q.2 Find the points of extreme volumes, if any of the function
fxy)=x3+3x+y*-y+4

Q.3 Find the extreme values of the function
fX, Y, 2) = X2 +y? + 72 + 2xy +Z

Q.4 Use Lagrange's methods of multiplier to find the point on the plane 2x - 3y + 6z =
49 nearest to the origin in R3.

19.8 Summary
In this unit, we have learnt the following :
0] definition, semi definite and indefinite functions
(i) maximum and minimum for function of two and three variables
(iii) Lagrange's methods of multiplier
19.9 Glossary
1. Maximum Value -
f(x) is said to have a maximum value atx=a,y=b
if f(a,b)>f(a+h,b+Kk)for
small values of h and k, positive or negative.
2. Minimum value -
A function f (x, y) is said to posses a minimum value atx =a, y = b if

f(a, b) < f(a + h, b + k) for small values of h, k positive or negative
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3. Extreme Value -
A maximum or a minimum value of a function is called on extreme value.

19.10 Answers to Self Check Exercises

Ans. 1 Local maximum at (ggj and

local maximum value = ?

Ans. 2 No point of extreme value of f.

Ans. 3 Local minimum at (0, 0, 0), and no other points have maximum or minimum
points.

Ans. 4 (2, -3, 6) is the required points.
19.11 Reference/Suggested Reading
1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
2. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2002
19.12 Terminal Questions
1. Find the extreme value (if any) of the function
fxy) =2x*-3x%y +y?

2. Find the extreme value, if any, of the function
f X y)=xy*(1-x-y)
3. Find the maximum and minimum value of the function

sinXx +cosy+cos (X+Y)

4. Using Lagrange's method find the points on the plane
2X+3y-z=05,
which is nearest the origin in R3,
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Unit - 20

Jacobian
Structure
20.1 Introduction
20.2 Learning Objectives
20.3 Jacobian of Functions of Several Variables
20.4 Jacobian of Composite Functions
20.5 Jacobian of Inverse of a Function
20.6 Jacobian of Implicit Function
20.7  Self Check Exercise
20.8 Summary
20.9 Glossary
20.10 Answers to Self Check Exercises
20.11 Reference/Suggested Readings
20.12 Terminal Questions
20.1 Introduction

Dear students, in this unit we shall study Jacobian of function. The term Jacobian of
often interchangably used to refer to both the Jacobian matrix or its determinant. Both the matrix
and the determinant have useful and important application. The Jacobian matrix aggregates the
partial derivatives that are necessary for backpropagation, the determinant is useful in the

process of changing between variables.

20.2

20.3

Learning Objectives
The main objectives of this unit are

0] to define Jacobian of Function of several variables.

(i) to study Jacobian of composite function
(iii) to find Jacobain of inverse of a function
(iv) to learn Jacobian of implicit functions.
Jacobian of Functions of Several Variables

Definition. Let f = (f1, f2,.....fn) : D — R", where D is an open subset of R". Let each of
the function f1, f»,.....fn possess all the first order partial derivatives at a point X = (X1, Xz,

D, then the determinant.

o oo ot
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%, 0%, 0%, x,

of, of, of;, oy

o, %, o, ox,

of, of, of,  of,

o, %, o, ox.
. , . . o(f, f,,... %)
is called the jacobian of f1,f2,.....fn W.r.t. X1, X2,....... Xn and is denoted by fn (X) or (—“)

s Xy e X,

Note. In the above definition of Jacobian, the functions fi, f2, .... fn are real valued functions
defined on an open subset of R".

Remark 1. Let each ai(fi(X)) be written as Dj (fi(X))
X.
J

1<i<n, 1 <j<n, then jj(x) can be written as
. o(f, f,,... T,
jog = L fore o)
O(Xs Xy eene- X))

Dif1 D2f1 Dsf1 ....... Dnf1
Dif2 Daf2 Dsfa ....... Dnf2
Difs D2fs Dsf3 ....... Dnfs

= det [Difi(X)]nxn
Theorem 1. Let f : R" — R" be a differentiable function, then fj(x) exists at every point x € R".

Proof: Since f = (f1, f2, ... fn) is differentiable at each point x = (X1, X2,.....Xn) € R", therefore,
each of the real valued function f1, fo, ........ fn is differentiable at x and further since each f1, i =
1,2,3,........ n is differentiable at x = (X1,Xa,.....Xn), therefore each of iiﬂ ...... —L  exists i.e.
0% 0%, 0% OX,

each Dj(fi(x)) exists for 1 <i<n, 1 <j<n. Hence by definition fj(x) exists.
Theorem 2. Let f = (f1,f2,.....fn) R" > R".
If f1,f2,.....fn are such that

f1= fa(xy) i.e. f1is a function of x; only
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f2 = fo(X1, X2) i.€. f» is a function of x1 and x» only

fa = fa(X1, X2, X3) i.e. f3zis a function of x1, X and Xz only

fo = fa(X1,X2,X3,....%n) i.e. fn is a function of Xi,X2,Xs,.....xn only then M:
O(X, Xy eeneX,)

of, of, of, o,

ox o%, %, ox.

Proof: Obviously aﬂﬁ(x) =0forj>i,i=123,...n-1
X
J

~Ji(x) = det[Di(fi(X)]nxn |where det [Dj(fi(X)ln«n is @ lower triangular matrix and therefore j/(x) =
product of the diagonal elements in det [Dj(fi(X)]nxn

_ o,

This completes the proof.

Remark 2. Theorem 2 can also be stated as:

If the functions f1,f2,.....fn Of n variables x1,X2,Xs,......Xn be such that f; is independent of x; for j >
ii=123..n-1 then QU fore®o) - OF, OF, Oy O,

Let us look at some examples:-
Example 1: Let f(x, y) = (xcosy, xsiny) Evaluate j«(x, y)

Sol. f(x,y) = (fa(x, ¥), fa(X, ¥)) = (x cos y, X sin y)
o fi(x,y) =xcosyand f2 (X, y) =xsiny

of, of .
—L=cosyand —2=sin
OX y OX y

%:-xsinyand %ZXCOS)/
oy

By definition
A
. ox oy CoSy -—XsSiny , - , -
X, y)= =|. = X C0S?y + X Sin%y = x(cos?y + sin?y) = X
1%, y) o, o, "|sny xcosy y y = X(cos%y y)
ox oy
Example 2: If x =r sin 6 cos ¢, y =r sin 0 sin ¢, z =r cos 0, find —G(X, Y.2)
o(r,6,¢)
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Sol. x =r sin 6 cos ¢

" %zsinecosq), %:rcosecosd)and %:-rsinesind)
or 00 o¢p

Againy =rsin 0 sin ¢
oy _ oy Y _

. —=sin0sindg, —=rcos 0sind, — =-rsin 0 cos
or ¢ 00 ¢ o¢p ¢

y4 z .
Alsoz=rcos 9, .. a—=cose, a—zrsmq), %:o

06 o¢
ox X X
o 00 o

oxy2) _|oy & &

.. by definition, = —
or,8,9) |or 00 0¢

oz oz iz

or 060 0¢

sinfdcos¢ rcosfdcosg -rsindsing
= |sndsing rcosfdsing rsingcosg
cosé —rsing 0
= cos 0 [r? sin 0 cos 0 cos?) + r? sin 0 cos 0 sin?g] + r sin O [r sin? O cos 2 + r sin? 0 sin¢]
=2 cos 0 sin 0 cos 0 (cos?p + sin?p) + r sin 0. r sin?0 (cos?p + sin?¢)
=12 sin 0 cos? 0 + r? sin? O
=r? sin 0 (cos?0 + sin? 0).

Example 3: If y1 = ﬁ, Yo = ﬁ, ys= X% find (Y1, Y2, ¥s)
X

X3 O(X5 %5, %3)
Sol. Giveny; = %%
X,
%:_XZXS’%zﬁiﬁzﬁ
O X X X X
gz X4
%,
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LN X Ny XX Y, X

andyg—ﬁ
X,
0y % 0Ys _ﬁ,% X%
X X 0% X X X
N O M
0% 0X, 0%
By definition, M: % % %
(X%, %) 0% 0%, 0%
Y; OY; O,
0% 0% 0%
KN X X
X X X
X XXX
X, X X%
X X X%
X, X
XX XX XX,
=X12X§X§ XX XX XX
XX XX XX
-1 1 1
_ szgxl%gxz 1 -1 1
1 1 -

[operate Rz + R1, R3 + Ry]
-1 11

222
-5%%_10 0 2=4
X%% 19 2 0

20.4 Jacobian of Composite Functions
Theorem 3. Let f = (f1,f2,.....fn): R" > R"
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and g = (91,02,....... On): R" > R"
Be two differentiable functions:
Then jrog(X) = jA(g(X)) jo(X) where X = (X1,X2,......,Xn) € R"
Proof: Here f(X) = ((f1.f2,-......fn) (X) and (X) = (91,92,.....9n) (X)
Let F(x) = (fog) (x)
= (fu.f2,.-.-fn)0g(X)
(f1 0g, f20q, ....... ,fn0g) (X)
(F1,F2,....... Fn)(X) (say)
Then Fi(x) = (fiog)(x), i=1,2,3,....,n
By definition, je(x) = det[Dj(Fi(X))]nxn

Where Dj(Fi(x)) = Digi(x). D1fi(g(x)) + Djg2(X)D2fi(9(x)) + Diga(X). Dsf1(g(x)) +.....+ Dign(x) =
det[D;(Fi(X))]nxn

By product of matrices, we have,
[Di(Fi(X))]nxn- [Di(Fi(X))]nxn = det[Di(Fi(X))]nxn
.. det[Dj(Fi(x))]nxn. det[Dj(Fi(x))]nxn = det[Di(Fi(X))]nxn
Hence j/(9(x)).jo(X) = Jr(X) = jrog(X).
This completes the proof.
Remark. The above theorem can also be stated as:

If Fq, F2, Fs, ..... Fn are functions of y1, y2, y3,......yn Where y1, Yo, y3,.....yn are function of xi, X2, Xs,

a(FlyFZ!F:g Fn) — a(|:l’|:2’|:3 ........ Fn) a(y1’>/2'>/3 ......... yn)
O % % %) O(Yi Yo Vs Yn) 00X %% X))
And can be proved by taking y: = g«(X), 1 <i < nin the above result.

20.5 Jacobian of inverse of a function

Theorem 4. Let D be an open subset of R" and let f = (fi, f2, fayeeee.. fn): D — R" be
differentiable at every point of D. Suppose f is invertible on D and let f* be differentiable at
every point of the range of f, then

1
J1 (%)

Proof: Let F = f1 of then F(x) = (f* of)(x) = 1 (x) is the identity function By jacobian of
composite functions.

) = J 2 (F(0)-0(X) (1)

Joa (fO0) = [T =

366



Also je(X) = j1(x) =1 ..(2)
From (1) and (2),

2 (FO9). () =1

or j . (f() =

1
——=[i;(x)]"*
Jr (%)

This completes the proof.

Remark. The above result can also be stated as:

(X X0 % X)) _ 1
a( fl' f2’ f3 ......... fn) a( fl' f2’ f3 ......... fn)
00X, %0 %5 %)

Where yi = fi(X1, X2, X3,.....Xn) i = 1,2,3,...... n
20.6 Jacobian of Implicit Functions

Theorem 5. If ug, Uy, ...... un are functions of xi,X2,.....Xn, define emplicity by n equations

F1(u1,uz,....Un,X1,X2....Xn) = 0
Fa(ug,uUz,....Un,X1,X2....Xn) = 0

Fn(u1,Uz,....Un,X1,X2....Xn) = 0

o(F,F,,.....F,)
o(u, Uy, .....u;) _ O(X, %y X)

Th = (-1)"
. 0%y, Xy eneeniX,) D o(F,F,,.....F,)

o(u,u,,......u,)
Differentiating partially w.r.t. x, we have

% %+£ %+ +ﬁ %+6F1—0

ou, ox, ou, Ox ou, ax  ox
R M R (1)
T OU OX OX

Similarly for all other partial derivatives,
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W o(F,F,,.....F) d(u,u,,....u,
" O(U, Uyl O(Xy Xy erennn X))

oF, oF OF ou, oy oy
ou, ou, au| (0% % Ox,
oF, oF, OF, ou, adu, au,
oy, ou, ou, 0%~ OX, OX,

oF, oF, oF ou, ou, ou,

n n n

ou, ou, ou, oX OX, OX,

SR OR U 5 OF

ou, O, U, ox, au, X,
_ [y ou Z@_% Z@_%
ou, 0Ox ou, OX, ou, OX,

OF, oy «OF, du <« oF, oy
Zaui " Ox, Zaui X, Zaui OX

Using (1), we have

O/ 0ROk
0%, oX,  OX,
_| 0/ _oF, _OF = (1) o(R,F,,.....F,)
0%, OX, OX, O(Xy Xy eeeennX )
_oF, oF, OF,
o 0% OX
o(F,F,,.....F)
o(u,Uy,....u,) _ O(X, Xy X))
H = (1"
oM xrx) ) B(F Ry F)

o(u,U,,......u,)
Remark 5. If the equations are of the form:
F1(X1,X2,.....Xn,U1) = 0
Fa(X1,X2,.....Xn,U1,U2) = 0

F3(X1,X2, ....... Xn,Ul,Uz,Ua) =0
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Example 4: Let f(x, y) = (sin X, cos y) and g(X, y) = (X3, y?)

If F(x, y) = (fog) (X, y) = (sin x2, cos y?), prove that je(X, y) = -4xy sin x? cos y? and verify the
result by direct calculations.

Sol. f(x, y) = (sin x, cos y) and g(x, y) = (X2, y?)
COSX 0

. |=-cosxsiny
0O -siny

% y) =

- (9 y)) = j(x?, y?) = -cos x* sin y?

= 4xy

) 2X
and jo(x, y) = 0 2y

JEX, Y) = Jrog(X, Y) = i(Q(X, ¥))- Jo(X, ¥) = (-cOS X2 sin y?) 4xy
= -4xy cos x? sin y?
Direct method:

F(x, y) = (fog) (x, y) = fla(x, )] = (X, y?)
= (sin X2, cos y?) = (F1, F2)

of ok
_ o 2X oS X? 0
Jr(x, y) = Y| = .
F, K | 0 -2ysny
ox oy

Example 5: Prove that jf,1 (g¢m) = ¢for any (¢ n) belonging to the range of f, where f(x, y) =
(«/XZ + yz,tanlzj
X
Sol. Put £= \}¢+y? andn=tan'Y then f(x,y)= (%, n)
X

Belongs to the range of f.
Ly =f(8.n)
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X y
Jx2+y2 \/x2+y2 _ 1

Now j;(x, y) = —
-y X X +y
\/ x>+ y? \/ X2+ y?
By Inverse theorem,
. 1
]2 (FXy) = ~
! jr(xy)

Ja(tm)=X+y = ¢

Example 6: If f(x,y) = (X2 +y?% y’" + e and g(x, y) = (sin x, x?) prove that jfog(x, y) = 0, V (X, y).
So. By the theorem on jacoblan of composite functions,

Irog(X, Y) = if(9(X, ¥))-Jo(X, ¥)

) cosx O
Now jg(x, y) = o 0=0V(X, y)

Hence jrog (X, ¥) =0 V (X, Y)
Example 7: Let f(x, y) = (X -y, X +y). Evaluate j (&, n)

Sol. f(x,y)=(x-y,x+y)=(¢,n)where g=x-y,n=x+Yy

1 -
=2
111‘

% y) =

1
Jr (%)

Since jf,l(t.,n) =

. 1
Jf—l(gvn) = E

Example 8: Let f(x, y) = (€%, cos y) and g(x, ¥) = (x3, y°).
Evaluate je(X, y), where F = fog and verify the result by direct calculation.
Sol. We have, f(x, y) = (e*, cosy)
= (f1/2)
Where fi(x, y) = €%, fa(X,y) = cosy
And g(x, y) = (<, ¥°) = (9192)
Where gi(X, y) = x°, ga(X, y) = y°
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o, o,

ox oy

X

e
Now j«(X, y) = = = ieXsin
1% y) o, o, |o —sny y

ox oy
iHgx, ) = /03, y?) = -€" sin y3
99, 09,
) 0 32

Also jg(X, y) = X Y= [ ,| = 9X%Y?
99, 099, |0 3y
oxX oy

=35 y) = g%, ¥))- Je(X, Y) ir((x, ¥))

= (-€° sin y3)9x2y?

=-9x2esiny: ... (1)
Verification by direct calculation
F(x, ¥) = f((x, ¥)) = f(9(x, ¥)) = 1%, ¥°
= €, cosy = (F1, F)
Where F1(x, y) = e, Fa(X, y) = cos y®
oA o
ox 0 2g
Ie(x, y) = Y| _|3x€e 20. 3
o o | o -3ysny
oxX oy

= 9x%y? e sin y®
Which matches with the result (1).
Example 9: If X1 + X2 + X3 + Xa = Ux
X2 + X3 + X4 = UtU2
X3 + X4 = U1U2U3
X4 = U1U2U3Us
0%y %0 %51 %)
6(1'11’l'lz’l*|3’l'l4)

Sol. Here F1(X1,X2,X3,X4,U1) = X1+ X2 + X3+ Xa- U1 =0

Prove that = uluiu,

F2(X1,X2,X3,X4,U1,U2) = X2 + X3 + Xa - U1U2 = 0
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F3(X1,X2,X3,X4,U1,U2U3) = X3 + X4 - UrU2U3 = O
Fa(X1,X2,X3,X4,U1,U2U3U4) = X4 - UzU2U3Us = O
oF, _ . OF, _ . OF,

Obviously, —t=1, —2=1, —2=1
0 OX, O
And ﬁ: -1, ﬁ: -Us, a—F: -U1U2, ﬁ: -U1U2U3
ou, ou, Ou, u,
oF, oF, oF, oF,
8(ul,u2,u3,u4)=(_l) % Ox, 0% %,
A(Xs Xy Xgy X, ) oF, oF, oF;, oF,
6u 6u 8u au
_cnye 1111 _ 1

D(-u)(—uu)(-uul,)  uuly,

0% %0 %0 %) _
a(lJl’lJz’le’l-M)

Hence =y u u

Example 10: If u, v, w be the roots of equation
-+ (A-y)P°+(-2°=0
S3(X+Y A+ 3+ Y+ 2N - (xB+y3+ 29 =0

u, v, w are its roots

LUt vVHWEX+Yy+zZ
SoUv+ VW wu = X2+ y? + 72

X +y+ 2

=5

uvw =

LetFi=uv+w-x-y-z=0

Fo=uv+vw+wu-x2-y?2-22=0

Fs=uvw - 1X3- 1)/3‘ 123:0
3 3 3
-1 -1 -1 1 1 1
Now o(F,F, .. Fn): 2x 2y 272=-2|x y z
o(x Y,2) R -y 2 2y 7

2(x-y) (y-2) (z-x)
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1 1 1

GV Y F N

o(u,v,w)

vw  Wwu  w

=-(u-v)(v-w)(w-u)

o(F,F,,F)
o(u,v,w) _ (1)? o(xY,2)
(XY, 2) o(F,F,, F)
o(u,v,w)

s —2(X=y)(y-2)(z-X)
—(u-Vv)(v—w)(w—u)

= (1)

_ 2x-))(y-2(z-X)
(U-V)(V-W)(w-u)

Example 11: lfuzs + va+ ws=x+y+ 2z
U+ v2+Wo=X3+Y3+2Z3
u+v+w=X+ Y+ 2z, show that

o(u,v,w) _ (y=2)(z=x)(x=y)
o(xy,2)  (v—w)(w-u)(u-v)

Sol. Fi=w@¥+v¥+wi-x-y-z=0
Fo=uw?+v2+w?-x3-y3-22=0

Fs=u+v+w-x2-y*-22=0

-1 -1 -1 1 1 1
a(F1!F21F3) — _3X2 _3y2 _322 =-6 X2 y2 22
ox.y.2) -2x -2y -2z X y z
1 1 1
=6|(X y z
X2 y2 ZZ

=6(X-y)y-2)(z-x)
And
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3u? 3¢ 3w u> Vv W
Mz 2U 2v 2w|=6|u Vv w
ouvw 1 1 1

=-6(u - v)(v - w)(w - u)

AR R )

ouv,w) _ .y 9(XY,2)
M oy ARFLF)
o(u,v,w)

_ B(x=y)(y-2)(z-X)
—6(u—Vv)(v—w)(w—2)

_ (x=y)(y-2)(z-x)
u-v)(v—w)(w-2)

Example 12: Ifu = X , V= y LW = z
J1-r2 J1-r2 1-r?
Where r? = x2 + y? + z2 prove that Mz (1 - r?)52
(%Y, 2)
Sol. Given,u= —— v=—Y_ w= % Where r2=x2+y?+ 72

J1-r2 Ji-r?’ J1-r?

C = X — y _\/ﬁ

LU= , V= , W= ([1-X -y —2Z
\/1_X2_y2_zz \/l—XZ—yZ—ZZ

_ou_ 1-y*-Z  du_ xy
oXx (_X2 _ y2 _ z2)3/2 ! ay (1— X2 _ y2 _ 22)3/2
ou _ Xz
oz (1_ X2 _ y2 _ Z2)3/2

o yx AR o e S 8 2
Ox (1_ X2 _ y2 _ Z2)3/2 ! ay (1_ X2 _ y2 _ Z2)3/2 ' 0z (1_ X2 _ y2 . 22)3/2

ow_ Xz W _ yz oW _ 1-x°—y?
OX (1_ X2 _ y2 _ Z2)3/2 ! ay (1_ X2 _ y2 _ Z2)3/2 ! 0z (1_ X2 _ y2 _ 22)3/2
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ou ou oau
ox oy oz
o(u,v,w) _|ov ov ov
(X, Y,2) " |ox @ oz
OW OwW Ow
x oy oz
1-y* -7 Xy Xz
1- Nl yz _ Z2)3/2 1- Nl yz _ Z2)3/2 1- Nl yz _ Z2)3/2
_ yX 1-2-%° 2
1- 2 _ yz _ Z2)3/2 1- Nl yz _ Z2)3/2 1- Nl yz _ Z2)3/2
Xz \Vz4 1- x> —y?
1- 2 _ yz _ Z2)3/2 1- Nl yz _ z2)3/2 1- Nl yz _ Z2)3/2

1-y* -7 Xy Xz
= ! 1-22- X
- 1- Nl yz _ Z2)9/2 X 2
Xz yz 1-x* —y?
. X(1-y? - 7%) X2y X’z
_ 2 2 2 2
- (1 X2y — %)% Xy yd-2z"-x%) 2
XZZ 2 Z(l— X2 _ y2)
1-y* -7 Xz
= T 12 sz XYZ yX 1-72 - % zy
(1-x"-y -2 <z 1-x?—y?
Operating C1 - C2 - C3
1
2 2 2\9/2
A-x"-y -7
1— %% — yz _ 0 2
A-X-y -7 1-X-y' -7 y?
0 -A-X-y*-Z") 1-X-y?
(1_ XZ_yZ_ZZ)Z 9
W22 52\92 10 X
-X-y-2" | |
B (1- X2y 22)%? B



operating R1 + R2 + Rs3
1 0 X2
1 B 2

= 1 y
2 \j2__52\52

Expanding w.r.t. Ry,

_ 1
- 1- Nl yz _ Z2)5/2 .
1
T T

With this topic we come to end of this unit. This doesn't mean that we've exhausted all the
methods, of even all the important ones. We have just exposed you to a few elementary one
and some of their applications. As you study more mathematics you will come across these and
several others.

New let us quickly go through what we covered in this unit.
20.7 Self Check Exercise
Q.1  Evaluate I4(x, y), for
fx,y,2) = (x> +y?+ 2%y, 27
Q.2 Letf:R"— R"be defined by f(x) = x then find J;(x) V x € R".
Q.3 If f(r,0) = (rcos 0, rsin 0) and (x, y) is an arbitrary point in the domain of f*
compute |, (X, y)
20.8 Summary
In this unit, we have learnt the following :
0] what is Jacobian of function of several variables?
(i) Jacobian of composite function
(iii) How to find Jacobian of inverse of a function
(iv) to find Jacobian of implicit functions.
20.9 Glossary
1
Ji (%)

2. Jr0g(X) = IA(Q(X))- Jo(X)
X = (X1, X2......Xn) € Rn.

L 0= [T =
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20.10 Answers to Self Check Exercises
Ans. 1 2x
Ans.2 1

1
1/x2+y2

20.11 Reference/Suggested Reading

Ans. 3

1. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007
2. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2002
20.12 Terminal Questions
X
1. If U = 2X3
X
Uz = —XSXI
%
U = %
X3
Prove that J (u1,uz,us) = 4
X+
2. Let fi(X,y)= y
1-xy

f2(x,y)=tantx +tanty

be two function. Are f1, f> functionally related.

3. If u, v, w are the roots of the equation (A - x)3 + (A -y)® + (A - 2)* = 0.
Prove that o(u,v,w) _ —2(y-2)((z—x)(x-)
oxy,2)  (v—w)(w-u(u-v)
4. If X =rcos 0,y =rsin 0, verify that
o(xy) _o(ro) _,
or,0)  axy)
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